
Arm Enterprise Virtualization with Arm System IP,
backplane integration and performance

By Sridhar Valluru, Arm

Over the past decade, virtualization has been used to improve
system hardware utilization, reducing operating costs, and increasing
security. Virtualization technology enables multiple operating
systems to run in isolation on a single computer system instance,
thereby reducing cost, energy consumption and physical space.
Having a virtualized hardware platform also facilitates live migration
of software applications from one physical system to another in the
event of a hardware failure or security breach without affecting
operation. Virtualization not only makes economic sense for small
and medium businesses, but also adds scalability and flexibility for
cloud deployment by large enterprises.

Recent trends reveal an increasing use of off-chip accelerators
for offloading computationally intensive or specialized tasks to
dedicated hardware. For these accelerators to operate seamlessly
with on-chip processors, they must be able to address the same
physical memory as the processors themselves, while retaining
necessary isolation to guarantee system security. The latest Arm
System Memory Management Unit (MMU-600) provides hardware-
based address translation and protection capabilities for such off-
chip accelerators and IO devices connected via PCIe. The MMU-600
also supports address translation caching in these devices delivering
guaranteed translation performance. The Generic Interrupt
Controller (GIC-600) provides interrupt translation services to
route message interrupts such as MSI/MSI-X from PCIe to virtual
processing elements.

Previous white papers from Arm, “Virtualization is Coming to
a Platform Near You” and “Enterprise Virtualization with Arm
CoreLink SMMU and Arm CoreLink GIC”, discussed requirements
and use cases of virtualized platforms. This white paper discusses
the advances in systems IP and software support for enabling high
performant virtualized machines with Arm Cortex-A processors.

Introduction

Virtualization has become ubiquitous in infrastructure applications,
providing security, increasing efficiency and reducing cost by
enabling multiple isolated environments concurrently on the same
system hardware. Each environment runs on a virtual machine (VM)
that operates under the impression of having exclusive access to the
processors, peripherals, system memory and IO devices.

System performance is crucial to ensure that a virtualized
environment does not affect the end user experience of the
application. Performance within a virtualized environment depends
on a number of factors such as: transaction bandwidth, latencies and
prioritization, hypervisor and memory address translation overhead,
and the number of simultaneously executing contexts. System IP
from Arm takes these factors into consideration, and along with
optimized drivers, delivers the best overall system performance for
next generation virtualized machines.

Reference platforms and software framework from Arm are key
to enabling virtualization in the Arm ecosystem. Architectural
standards ensure uniformity across Arm platforms while allowing
each system vendor to provide differentiation. The Linaro
organization, comprising of Arm and its ecosystem partners,
contributes towards building tools and drivers, which help in
accelerating system development.

Virtualization support on Arm System IP

Arm System IP comprises of building blocks needed to build
efficient systems around Arm v8.x cores. The IPs have evolved over
multiple generations to address key performance and scalability
issues to enable cloud infrastructure platforms. The key IPs enabing
virtualization are the SMMU and GIC.

System Memory Management Unit (SMMU):

One of the key requirements of virtualization is to allow each VM to
operate in its own address space and hardware manage access to
physical memory by various system masters depending on contexts.
Arm’s latest System MMU, MMU-600, supports both stage-1
and stage-2 address translations with address space mapping and
security mechanisms to prevent un-authorized accesses. In a typical
system, stage-1 translation converts virtual address (VA) from
IO masters to intermediate physical address (IPA); this address
space is typically managed by the operating system. While Stage-2
translations convert from intermediate physical address (IPA) to
physical address (PA); this address space is typically managed by a
hypervisor. MMU-600 supports nested translations, a request for
which the MMU performs both stage-1 and stage-2 translations.

https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
https://www.arm.com/files/pdf/System-MMU-Whitepaper-v8.0.pdf
https://developer.arm.com/products/system-ip/enterprise-virtualization-whitepaper
https://developer.arm.com/products/system-ip/enterprise-virtualization-whitepaper
https://www.linaro.org/

 MMU-600 support’s PCIe Gen4’s Address Translation Service
(ATS) to allow PCIe-based IO devices or accelerators (masters) to
pre-fetch translations well in advance and place them in Address
Translation Caches (ATC) within the IO device. With this flow, the IO
master could issue DMA requests with translated addresses through
the device’s ATC, hence avoiding the translation overhead in the
MMU. PCIe Page Request Indicator (PRI) further enhances system
performance by enabling un-pinned page usage in system memory.
With PRI support, IO masters pre-fetch translations that can help
populate system memory pages with data from system disks without
incurring adverse page fault affects This can greatly improve
the efficiency of a IO master, since the disk to system memory
data transfer time is no longer observed by the real transactions.
Additionally, MMU enables IO masters to access a much larger range
of system memory, since they can now take advantage of virtual
memory.

A PCIe Root Complex (RC) with Single Root IO Virtualization (SR-
IOV) function allows virtualized PCIe functions to be integrated
into a system to provide IO virtualization. In a PCIe RC each virtual
function (VF) and physical function (PF) pair mapping is assigned a
unique PCI Express Requester ID (RID) that is mapped to a unique
StreamID in the system. MMU-600 helps map virtual address to
physical address using the StreamID pairs. With support for 236
StreamID’s, MMU-600 allows simultaneous mapping of millions
of VF-PF. SR-IOV enables system traffic to bypass the software
switch layer of the hypervisor virtualization stack. In a virtualized
environment the VF is assigned to a virtual processing element (VPE)
and the system traffic flows directly between the VF and VPE. As a
result, the IO overhead in the software emulation layer is diminished,
significantly reducing the overhead of a virtualized environment
compared to a non-virtualized one.

MMU-600 supports hardware invalidation of translations to be
propagated to ATC as defined in PCIe ATS flow to ensure IO masters
always cache the most updated memory translations. Because
the invalidation is handled completely by hardware, the software
overhead is minimized improving overall system performance.
MMU-600 is extremely scalable and can service the needs of tiny
networking cards to massive server systems.

Infrastructure systems vary from a small NIC card deployed at the
edge that handles streams of networking traffic from end devices
to a massive server deployed at a centralized data center. Each of
these system configurations typically have different performance
and power/area requirements. MMU-600 design scalability allows
solution providers to customize their designs to meet specific
performance and area targets of the system while maintaining
common MMU software drivers across the span of applications.

MMU-600 consists of two main blocks: a Translation Buffer Unit
(TBU) and a Translation Cache Unit (TCU). The TBU consists of
a Translation Look aside Buffer (TLB), while a central Translation
Cache Unit (TCU) stores a large cache of translations and handles
page table walks. A translation hit in the TBU-TLB is serviced
immediately and the transaction is sent to system fabric to complete.
In case of a miss in theTBU-TLB, a special transaction is sent to the
TCU to fetch the address translation. The TCU cache hit returns the
address tranlsation; otherwise a page table walk to system memory
is performed.

PCIe RC
(Gen4)

PCIe RC
(Gen4)

SATA

MMU-600

TBU TBU TBU TCU Memory

PCIe
Device

PCIe
Device

Figure 1: MMU-600 Structure

ChipA

CPU
Cluster

CPU
Cluster

Distributor A

Redistributor Redistributor

ChipB

CPU
Cluster

CPU
Cluster

Distributor B

Redistributor Redistributor

Multiple TBU’s can be serviced by a single TCU as shown in Figure
1. The communication between a TBU and the TCU is over an
AXI stream, using a SMMU specific protocol called Distributed
Translation Interface (DTI), enabling a distributed MMU
architecture. This helps design scalability by allowing TLB’s to be
close to IO masters and communicate with the TCU using messages
over an AXI stream (or similar) backplane.

Generic Interrupt Controller (GIC):

When running operations in a virtualized environment, it is crucial
to communicate interrupts and exceptions to the correct virtual
processing element in a timely manner. GIC-600 is a GICv3
architectural specification compliant interrupt controller with
enhanced support for a large number of cores and multiple chip
configurations.

GIC-600 structurally consists of an Interrupt Translation Service
(ITS) blocks, a distributor and re-distributors. The ITS block

translates Message Signaled Interrupts (MSI/MSI-X) interrupts to
Arm Locality-specific Peripheral Interrupts (LPI). The distributor
manages interrupt routing and directs interrupts to the appropriate
core-cluster that services the interrupts. The redistributor is a core
specific interface and maps the incoming interrupts to specific core
interrupts namely FIQ (Fast Interrupt Request), IRQ (Interrupt
Request) or SError (System Error). In a virtualized environment core
interrupts are virtualized and the incoming physical interrupts are
mapped by a hypervisor to a VM.

GIC-600 allows interrupts to be shared and distributed across
multiple compute + IO domains within a single chip. Additionally, it
also supports interrupt management across multiple chips/sockets
(as shown in Figure 2) or across multiple chiplets within the same
package, while maintaining a unified software view of interrupts for
all compute elements in the system. The inter-socket or inter-chiplet
messages are ported to the native communication transport protocol
supported by the system.

1. Private Peripheral Interrupts (PPI): These are peripheral
interrupts that target specific cores. For instance, generic timers use
PPI for interrupting cores.

2. Software Generated Interrupts (SGI): These interrupts are used
for inter-processor communications.

3. Shared Peripheral Interrupt (SPI): These are global peripheral
interrupts that can be targetted to a specific core or to a group of
cores.

4. Locality-specific Peripheral Interrupt (LPI): These are message
based interrupts primarily used to translate MSI/MSI-X interrupts.

GIC-600 supports up to 56K MSI/MSI-X interrupts in a system.
MSI/MSI-X translations and interrupt routing tables are stored

in memory and cached by the GIC to minimize latency of recently
used interrupts. Interrupts targeting a VM use the hypervisor to
direct physical interrrupt to a specific VM. The GICv3 specification
includes virtualization of CPU interface registers to directly control
interrupts targeting a virtual processing element. The hypervisor
has control of enabling/disabling the virtual CPU interface, virtual
register access to enable context switching, configuring maintenance
interrupts and controlling virtual interrupts. GIC-600 provides
interfaces to register LPI, SPI and PPI interrupts by the hypervisor,
which then identifies the target VM and priority for each interrupt.
All incoming interrupts are maintained in a list register, which is
used to target the interrupt to the appropriate VM. For LPIs the
list is compiled using tables for each VM. With this mechanism
the software overhead of mapping physical interrupts to virtual
interrupts is removed.

Figure 2: GIC-600 Structure

GIC-600 supports four different types of system interrupts that are mapped to the specific physical or virtual interrupts at the core:

ITS1 ITS1ITS2 ITS2

Address Translation Performance

The primary objective of a system MMU is to provide the same
view of memory to IO components in the system as the CPU itself.
For this purpose, incoming transactions from these components
undergo address translations from VA to IPA to PA requiring
numerous lookups of the translation tables. These tables are
typically stored in system memory but cached inside the MMU for
performance. Whereas systems can use software to perform a VA
to PA translation, this process is significantly slower compared to a

hardware translation. MMU-600 enhances hardware translation
performance significantly by pre-fetching and caching the
translations to minimize the number of cycles spent in accessing slow
system memory. This results in extremely low system performance
overhead for the translations compared to a system with no MMU,
and orders of magnitude improvements over translations performed
by software. Figures 3 and 4 show comparisons of translation
overhead on system performance for MMU-600 single and nested
translations versus software translation.

0.01%

0.10%

1.00%

10.00%

1000.00%

Read

T
ra

n
sl

at
io

n
 O

ve
rh

ea
d

 (L
o

g
Sc

al
e)

MMU-600 Stage 1 Translation

2MB Page 64KB Page

MMU-600 Nested Translation

100.00%

0.01%

0.10%

1.00%

10.00%

1000.00%

Write

T
ra

n
sl

at
io

n
 O

ve
rh

ea
d

 (L
o

g
Sc

al
e)

MMU-600 Stage 1 Translation

2MB Page 64KB Page

MMU-600 Nested Translation

100.00%

Figure 3: MMU-600 read translation overhead compared to Software (lower is better)

Figure 4: MMU-600 write translation overhead compared to Software (lower is better)

PCIe Flows with MMU-600 and GIC-600

Figure 5 shows a PCIe IO master interface with GIC-600 and MMU-600 System IP using a PCIe RC to translate PCIe protocol to AMBA.

Address Translation Services (ATS) and Page Request Initiator (PRI) Flows:

To populate the Address Translation Cache (ATC) a PCIe EndPoint (EP) generates a request for address translation (ATS) to PCIe RC. PCIe RC
initiates a request to MMU-600 TCU over a DTI interface to pre-fetch translations. If valid, the requested pages translations are presented to
PCIe EP to populate its ATC. If the translation is not present, a negative response is reported back to the PCIe EP.

PCIe
EP

PCIe
RC

Memory

Cores

ATC PCIe
EP

PCIe
RC

PCIe RC

TBU

F
ab

ri
c

M
em

o
ry

TCU

Figure 6: ATC Cache miss and ATS flow

Figure 5: PCIe Integration into System

Once the translation is available in ATC, the IO master can initiate memory access requests using the translated addresses. These
requests are sent from IO master to PCIe RC. The requests are bypassed in MMU-600 TBU and sent directly to the system memory.

MMU-600

GIC-600

Interrupt Flow:

Interrupts from PCIe, flow in the form of Message Signaled Interrupts (MSI). The PCIe MSI’s are translated to Arm LPI interrupts by
the GIC-600 ITS module. The interrupts are sent to a distributor within a SoC to be routed to the appropriate physical core hosting the
hypervisor. The hypervisor updates the list registers to map the incoming interrupt to a virtual interrupt targeting a specific VM..

If an ATS request fails with a not-present result, the PCIe EP could issue a Page Request Initiator (PRI) transaction to MMU-600, which
asks the system software to make the requested pages resident in system memory. The system software indicates the completion of
PRI process at which time the PCIe EP can initiate another ATS request to populate the ATC.

Figure 7: ATC Cache hit flow

Figure 8: Interrupt flow with GIC-600

F
ab

ri
c

M
em

o
ry

PCIe
RC

PCIe RC

TBU
PCIe

EP
ATC

TCU

Arm Standards and Reference Subsystem

Arm provides standard specifications for ensuring system
integration uniformity across various systems builders while leaving
enough room for differentiation. The specifications address system
architecture, boot/configuration and security/trust circles to ensure
standardization of systems from various vendors and software/
hardware interoperability.

Arm’s Server Base System Architecture (SBSA) specification defines
the key system components that are needed in every Arm-based
server system to ensure a single OS image can be loaded onto
any Arm partner-built system. This specification also outlines a
common set of features that firmware can rely on, allowing for some
commonality in firmware implementation across platforms. Fully
discoverable and describable peripherals aid the implementation of
such a firmware model.

Arm’s Server Base Boot Requirements (SBBR) specification defines
boot and runtime services that are expected by an enterprise
platform OS or hypervisor. Boot and system firmware for 64-bit
Arm servers is based on the Unified Extensible Firmware Interface
(UEFI) specification, which defines the run-time exception level,
the system memory map at boot time, the definition of a real-time
clock to monitor time, and the configuration tables. Installed system
hardware is defined using the Advanced Configuration and Power
Interface (ACPI). In addition, various aspects of runtime system
configuration, event notification and power management are also

handled by ACPI. The OS must be able to use ACPI to configure the
platform hardware and provide basic operations. The ACPI tables
are passed, via UEFI, into the OS to drive the OSPM (Operating
System-directed Power Management).

Arm’s Trusted Base System Architecture (TBSA) and Trusted Base
Boot Requirements (TBBR) specifications provide the framework
for defining the security enclaves, secure boot components and
guidance needed for robust security for server systems.

Arm reference subsystem integrates key components required
for building an Arm based infrastructure platform following the
standards guidelines. All software needed to boot on the reference
platform is available from the Linux mainline. Key benchmarks are
measured on the reference platform to aid partners in their system
definition. The reference system thus allows partners to build their
market specific systems on top of pre-validated platforms for faster
Time-to-Market. The reference platform guide is available to Arm
partners under NDA. A white paper on system performance explains
Arm’s approach to reference system and provides details on partner
engagement.

Industry Participation

Arm works with industry partners to enable various software
layers and APIs needed for virtualization. The base virtualization
hypervisor technologies, KVM and Xen, have been optimized for the
Arm architecture by working with open source communities.

Figure 9: Arm Virtualized System Components

Linaro, an industry group within the Arm ecosystem, helps
create high-level software including OpenStack, OpenNFV and
OpenDataPlane. This shared software infrastructure provides
an optimized foundation for Arm-based systems while reducing
ecosystem fragmentation, eliminating redundant effort, and
providing end users with a choice of systems from various
Arm vendors.

The move towards Software Defined Networking (SDN) and
Network Function Virtualization (NFV) requires high performant
hardware to enable seamless transformation from customized
hardware to standard hardware deployments configured by
software. Arm provides key IP and works with its partners to enable
this paradigm shift.

https://developer.arm.com/products/system-design/system-guidance/system-guidance-for-infrastructure
http://pages.arm.com/rs/312-SAX-488/images/Enterprise_Performance_White_Paper.pdf

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the product described in, this

document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in this document is subject

to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied or expressed,

including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information to the reader about

the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information in this document or any error or omission

in such information.

© Arm Ltd. 03.18

Summary

Arm provides a scalable high-performance solution for virtualization
in infrastructure platforms. This solution comprises of Arm’s SMMU
and GIC System IP that delivers IO and interrupt management
while providing the fastest path to memory. Using Arm’s System
IP and processors, partners can build heterogeneous platforms
that seamlessly blend access to compute, IO and acceleration for
virtualized workloads. Drivers for Arm System IP are supported
on open-source Linux platform enabling fast deployment and
guaranteed interoperability across various system implementations.

For more information on the Arm System MMU and GIC
product line, please go to the system controllers’ webpage:
https://developer.arm.com/products/system-ip/system-controllers
Additional details on Arm subsystems can be found on https://
developer.arm.com/products/system-design/subsystems and https://
developer.arm.com/products/system-design/system-guidance
handled by ACPI. The OS must be able to use ACPI to configure the
platform hardware and provide basic operations. The ACPI tables
are passed, via UEFI, into the OS to drive the OSPM (Operating
System-directed Power Management).

Details about Arm Server system architecture and compliance
can be found at: https://developer.arm.com/products/architecture/
system-architecture/server-system-architecture

More information on Linaro can be found on https://www.linaro.org/.

Trademarks

The trademarks featured in this document are registered and/or
unregistered trademarks of Arm Limited (or its subsidiaries) in the
EU and/or elsewhere. All rights reserved. All other marks featured
may be trademarks of their respective owners. For more information,
visit Arm.com/about/trademarks.

https://developer.arm.com/products/system-ip/system-controllers
https://developer.arm.com/products/system-ip/system-controllers
https://developer.arm.com/products/system-design/subsystems
https://developer.arm.com/products/system-design/subsystems
https://developer.arm.com/products/system-design/system-guidance
https://developer.arm.com/products/system-design/system-guidance
https://developer.arm.com/products/architecture/system-architecture/server-system-architecture
https://developer.arm.com/products/architecture/system-architecture/server-system-architecture
https://www.linaro.org/
https://www.linaro.org/.

http://www.arm.com/about/trademarks
https://developer.arm.com/products/system-ip/system-controllers
https://developer.arm.com/products/system-ip/system-controllers

