
White Paper

A sneak peek into SVE and VLA programming
Francesco Petrogalli

February 2020

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 1 of 19

White Paper

Contents

Contents 2

Introduction 2

1 SVE: an overview 3
New architectural registers . 3
Instruction families . 3
Vector Length Agnostic (VLA) programming . 4
More on predication . 8

Merging and zeroing predication . 9
Gather loads . 10

2 Implementing string.h routines 11
Copying strings . 12
Comparing strings . 13

3 Conclusions 15

Appendix 16
Optimal use of the �rst faulting mechanism . 16

Changelog 18

Trademarks 19

Introduction
The Scalable Vector Extension (SVE) is an extension of the ARMv8-A A64 instruction set, recently announced by ARM.
Following the announcement at Hot Chips 281, a few articles describing what people think SVE is have appeared on the
Internet. It is now our turn to give a more detailed description of some of the key features that the ISA provides.

In this whitepaper I will introduce you to some of the new architectural features included in SVE, providing code
examples that will show how to use them.

SVE is not an extension of NEON2, but a new set of vector instructions developed to target HPC workloads. Some
of the examples will show how SVE enables vectorization of loops which for NEON would either be impossible or not
bene�cial to vectorize. A prior knowledge of NEON is recommended, but not required as I will explain the examples along
the way.

This white paper is divided into two parts. The �rst one is an overview of SVE, that covers the new registers, the new
instructions, the Vector Length Agnostic (VLA) programming technique, and some examples of vector code showing VLA
in action. In the second part I will show how SVE can be used to vectorize strcmp and strcpy from the standard C
library.

As a �nal note, this is not a complete list of the features that SVE provides. A full architectural speci�cation of SVE
with detailed instruction descriptions and other resources on SVE are available on developer.arm.com3.

1http://www.hotchips.org
2https://developer.arm.com/technologies/neon
3https://developer.arm.com/products/software-development-tools/hpc/documentation/introducing-scalable-vector-extension-sve

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 2 of 19

http://www.hotchips.org
https://developer.arm.com/technologies/neon
https://developer.arm.com/products/software-development-tools/hpc/documentation/introducing-scalable-vector-extension-sve

White Paper

1 SVE: an overview

New architectural registers

Let’s start by having a look at the architectural registers introduced by SVE.
The instruction set operates on a new set of vector and predicate registers:

• 32 Z registers, z0, z1, . . . , z31;
• 16 P registers, p0, p1, . . . , p15;
• 1 FFR register.

The Z registers are data registers. The architecture speci�es that their size in bits must be a multiple of 128, from a
minimum of 128 bits to an implementation-de�ned maximum of up to 2048 bits. Data in these registers can be interpreted
as 8-bit bytes, 16-bit halfwords, 32-bit words or 64-bit doublewords. For example, a 384-bit implementation of SVE can
hold 48 bytes, 24 halfwords, 12 words, or 6 doublewords of data. It is also important to mention that the low 128 bits of
each Z register overlap the corresponding NEON registers of the Advanced SIMD extension and therefore also the scalar
�oating-point registers - see �gure �gure 1.1.

Figure 1.1: Register overlapping.

The P registers are predicate registers, which are unique to SVE, and hold one bit for each byte available in a Z register.
For example, an implementation providing 1024-bit Z registers provides 128-bit predicate registers.

The FFR register is a special predicate register that di�ers from regular predicate registers by way of being used
implicitly by some dedicated instructions, called �rst faulting loads.

Individual predicate bits encode a boolean true or false, but a predicate lane, which contains between one and eight
predicate bits is either active or inactive, depending on the value of its least signi�cant bit.

Similarly, in this document the terms active or inactive lane will be used qualify the lanes of data registers under the
control of a predicate register.

Instruction families

SVE introduces a variety of instructions that operate on the data and predicate registers. I will present now a rough
classi�cation of the instructions that are available in SVE. I will describe some of them in detail in the subsequent
sections.

The �rst dichotomy separates predicated instructions from unpredicated instructions, that is instructions that use
a predicate register to control the lanes they operate on, versus those that do not have predication. In a predicated
instruction, only the active lanes of vector operands are processed and can generate side e�ects - such as memory
accesses and faults, or numeric exceptions.

Across these two main classes, one can �nd data processing instructions, that operate on Z registers (e.g. addition),
predicate generation instructions, such as numeric comparisons that operate on data registers and produce predicate
registers, or predicate manipulation instructions, that mostly cover predicate generation or logical operations on predicates.

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 3 of 19

White Paper

Regarding the data manipulation instructions, most of the operations cover both �oating point (FP) and integer
domains, with some notable FP functionality brought by the ordered horizontal reductions, which provide cross-lane
operations that preserve the strict C/C++ rules on non-associativity of �oating-point operations.

Other interesting aspects of FP in SVE are the instructions to accelerate the calculation of vector sin(), cos() and
exp(), and the ability to perform a four-operand fused multiply-accumulate.

A big chunk of the new instruction set is dedicated to the vector load/store instructions, which can perform signed or
unsigned extension or truncation of the data, and that come with a wide range of new addressing modes that improve the
e�ciency of SVE code.

Vector Length Agnostic (VLA) programming

Unlike traditional SIMD architectures, which de�ne a �xed size for their vector registers, SVE only speci�es a maximum
size. This freedom of choice is done to enable di�erent ARM architectural licensees to develop their own implementation,
targeting speci�c workloads and technologies which could bene�t from a particular vector length.

A key goal of SVE is to allow the same program image to be run on any implementation of the architecture (yes, which
might implement di�erent vector lengths!), so it includes instructions which permit vector code to adapt automatically
to the current vector length at runtime.

These features require a new programming style, called Vector Length Agnostic (VLA) programming.
Suppose you want to vectorize the loop inside the function example01 of listing 1.1. With a traditional SIMD architecture,

the user (or the compiler) knows how many elements the vector loop can process in one iteration. For example, the
vectorized version of example01 can be rewritten as example_01_neon in listing 1.2, using ARM NEON4 (C intrinsics5).
Here the loop operates on four elements, i.e. as many 32-bit ints as a NEON vector register can hold. Moreover, as
in the case of other traditional unpredicated SIMD architectures, the programmer (or the compiler) needs to add an
additional loop, called loop tail, that is responsible for processing those iterations at the end of the loop that do not �t in
a full vector length.

Listing 1.1 Simple C loop processing integers.

1 void example01(int *restrict a, const int *b, const int *c, long N)
2 {
3 long i;
4 for (i = 0; i < N; ++i)
5 a[i] = b[i] + c[i];
6 }

With SVE the �xed-width approach is not appropriate. In listing 1.3 an assembly version of example01 is shown, with
SVE instructions. The assembly code is equivalent to the pseudo-C code presented in listing 1.5, where the loop_body
section is repeated so long as the condition cond is true. The condition is tested on the predicate register p0 that is
created using the whilelt instruction. Let’s see in detail how it works.

In the assembly code, x3 corresponds to the value of the loop induction variable i and x4 is the loop bound variable
N. The assembly line whilelt p0.s, x3, x4 is �lling the predicate register p0 by setting each lane as p0.s[idx] :=
(x3 + idx) < x4 (x3 and x4 hold i and N respectively), for each of the indexes idx corresponding to 32-bit lanes of
a vector register. For example, listing 1.4 shows the content of p0 that whilelt generates in case of a 256-bit SVE
implementation for N=7.

In building the predicate p0 the whilelt also sets the condition �ags. The branching instruction b.first following
whilelt reads those �ags and decides whether or not to branch to the loop_body label. In this speci�c case, b.first

4https://developer.arm.com/technologies/neon
5http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0073-/index.html

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 4 of 19

https://developer.arm.com/technologies/neon
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0073-/index.html

White Paper

Listing 1.2 Vectorized version of listing 1.1, using NEON C intrinsics.

1 void example01_neon(int *restrict a, const int *b,
2 const int *c, long N)
3 {
4 long i;
5 // vector loop
6 for (i = 0; i < N - 3; i += 4) {
7 int32x4_t vb = vld1q_s32(b + i);
8 int32x4_t vc = vld1q_s32(c + i);
9 int32x4_t va = vaddq_s32(vb, vc);

10 vst1q_s32(a + i, va);
11 }
12 // loop tail
13 for (; i < N; ++i)
14 a[i] = b[i] + c[i];
15 }

Listing 1.3 VLA SVE code for listing 1.1.

1 # x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'i', x4 is 'N'
2 mov x3, 0 # set 'i=0'
3 b cond # branch to 'cond'
4 loop_body:
5 ld1w z0.s, p0/z, [x1, x3, lsl 2] # load vector z0 from address 'b + i'
6 ld1w z1.s, p0/z, [x2, x3, lsl 2] # same, but from 'c + i' into vector z1
7 add z0.s, p0/m, z0.s, z1.s # add the vectors
8 st1w z0.s, p0, [x0, x3, lsl 2] # store vector z0 at 'a + i'
9 incw x3 # increment 'i' by number of words in a vector

10 cond:
11 whilelt p0.s, x3, x4 # build the loop predicate p0, as p0.s[idx] = (x3+idx) < x4
12 # it also sets the condition flags
13 b.first loop_body # branch to 'loop_body' if the first bit in the predicate
14 # register 'p0' is set
15 ret

checks whether the �rst (LSB) lane of p0.b is set to true, i.e. whether there are any further elements to process in the
next iteration of the loop. Notice that the concept of lanes refers to the element size speci�er used in the condition
setting instruction, as per example in listing 1.4. SVE provides many conditions that can be used to check the condition
�ags. For example, b.none checks if all the predicate lanes have been set to false, b.last checks if the last lane (MSB)
is set to true, b.any if any of the lanes of the predicate are set to true. Notice that concepts like �rst and last in the
vector requires the introduction of an ordering which in case of SVE is mapped to LSB (or lowest numbered element) and
MSB (or highest numbered element) respectively. The list of instructions that can be used to test the condition �ags set
by SVE instructions is shown in table 1.1.

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 5 of 19

White Paper

Listing 1.4 Example of predicate register with 32-bit lanes view.

MSB LSB
P0 = [0000 0001 0001 0001 0001 0001 0001 0001]

7 6 5 4 3 2 1 0 32-bit lanes 'idx'

Table 1.1: SVE branching instruction testing condition �ags.

Branch instruction SVE interpretation

b.none No active elements are true.
b.any An active element is true.
b.nlast The last active element is not true.
b.last The last active element is true.
b.first The �rst active element is true.
b.nfirst The �rst active element is not true.
b.pmore An active element is true but not the last element.
b.plast The last active element is true or none are true.
b.tcont Scalarized CTERM loop termination not detected.
b.tstop Scalarized CTERM loop termination detected.

The assembly example in listing 1.3 is equivalent to listing 1.5.

Listing 1.5 C pseudo code for the blocks in listing 1.3.

while(/* cond */) {
/* loop */

}

The loop body is also vector length agnostic. In each iteration, the operations performed are:

• load two vectors of data from b and c respectively, with ld1w. Here the loads are using register plus register
addressing mode, where the index register x4 is being left shifted by two bits to scale the index by 4, corresponding
to the size of the scalar data;

• add the values into another register with the add instruction;
• store the value computed into a with st1w (same register plus register addressing as ld1w).
• increment the index x4 by as many words as a vector can store with incw.

All the instructions in the loop_body are predicated with p0, meaning that inactive 32-bit lanes are not accessed by
the instruction, so that the scalar loop tail is not needed.

The incw instruction is an important VLA feature used in the code. This loop will execute correctly on any
implementation of SVE, as incw will take care of increasing the loop iterator according to the current SVE vector length.

For the purpose of comparison, an assembly version of the NEON code in listing 1.2 is shown in listing 1.6, showing
both the vector body and the loop tail blocks.

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 6 of 19

White Paper

Listing 1.6 NEON assembly code generated from the C intrinsics in listing 1.2.

1 # x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x8 is the loop induction variable 'i'
2 mov x8, xzr
3 subs x9, x3, 3 # x9 = N -3
4 b.ls .loop_tail_preheader # jump to loop tail if N <= 3
5 .vector_body:
6 ldr q0, [x1, x8, lsl 4] # load 4 elements from 'b+i'
7 ldr q1, [x2, x8, lsl 4] # load 4 elements from 'c+i'
8 add v0.4s, v1.4s, v0.4s # add the vector
9 str q0, [x0, x8, lsl 4], # store 4 elements in 'a+i'

10 add x8, x8, 4 # increment 'i' by 4
11 cmp x8, x9 # compare i with N - 3
12 b.lo .vector_body # keep looping if i < N-3
13 .loop_tail_preheader:
14 cmp x8, x3 # compare the loop counter with N
15 b.hs .function_exit # if greater or equal N, terminate
16 .loop_tail:
17 ldr w12, [x1, x8, lsl 2]
18 ldr w13, [x2, x8, lsl 2]
19 add w12, w13, w12
20 str w12, [x0, x8, lsl 2]
21 cmp x8, x3
22 b.lo .loop_tail # keep looping until no elements remain
23 .function_exit:
24 ret

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 7 of 19

White Paper

More on predication

Predication can also be used to vectorize loops with control �ow in the loop body. The if statement of listing 1.7 is
executed in the vector loop-body of the code in listing 1.8 by setting the predicate p1 with the cmpgt instruction, which
tests for compare greater than. This operation produces a predicate that selects which lanes have to be operated by the
if-guarded instruction. The loads and the stores of the data in a, b and c arrays are performed by instructions that use
the predicate p1, so that the only elements in memory that are modi�ed correspond to those modi�ed by the original C
code.

Listing 1.7 a loop with conditional execution.

1 void example02(int *restrict a, const int *b, const int *c, long N,
2 const int *d)
3 {
4 long i;
5 for (i = 0; i < N; ++i)
6 if (d[i] > 0)
7 a[i] = b[i] + c[i];
8 }

Listing 1.8 SVE vector version of listing 1.7. Notice that the comments in the assembly code relate only to the predication
speci�c behavior that is being shown.

1 # x0 is 'a', x1 is 'b', x2 is 'c', x3 is 'N', x4 is 'd', x5 is 'i'
2 mov x5, 0 # set 'i = 0'
3 b cond
4 loop_body:
5 ld1w z4.s, p0/z, [x4, x5, lsl 2] # load a vector from 'd + i'
6 cmpgt p1.s, p0/z, z4.s, 0 # compare greater than zero
7 # p1.s[idx] = z4.s[idx] > 0
8 # from now on all the instructions depending on the 'if' statement are
9 # predicated with 'p1'

10 ld1w z0.s, p1/z, [x1, x5, lsl 2]
11 ld1w z1.s, p1/z, [x2, x5, lsl 2]
12 add z0.s, p1/m, z0.s, z1.s
13 st1w z0.s, p1, [x0, x5, lsl 2]
14 incw x5
15 cond:
16 whilelt p0.s, x5, x3
17 b.ne loop_body
18 ret

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 8 of 19

White Paper

Merging and zeroing predication

Some of the data processing instructions have two di�erent kinds of predication, merging and zeroing. The former is
indicated by the /m quali�er attached to the instruction’s governing predicate, as in add z0.s, p1/m, z0.s, z1.s;
the latter by the /z quali�er, as in cmpgt p1.s, p0/z, z4.s, 0.

Merging and zeroing predication di�er in the way the instruction operates on inactive lanes. Zeroing sets the inactive
lanes to zero, while merging leaves the inactive lanes unchanged.

The examples in listing 1.9 and listing 1.10 show how merging predication can be used to perform a conditional
reduction.

Listing 1.9 a reduction.

1 int example02(int *a, int *b, long N)
2 {
3 long i;
4 int s = 0;
5 for (i = 0; i < N; ++i)
6 if (b[i])
7 s += a[i];
8 return s;
9 }

Listing 1.10 SVE vector version of listing 1.9.

1 mov x5, 0 # set 'i = 0'
2 mov z0.s, 0 # set the accumulator 's' to zero
3 b cond
4 loop_body:
5 ld1w z4.s, p0/z, [x1, x5, lsl 2] # load a vector
6 # at 'b + i'
7 cmpne p1.s, p0/z, z4.s, 0 # compare non zero
8 # into predicate 'p1'
9 # from now on all the instructions depending on the 'if' statement are

10 # predicated with 'p1'
11 ld1w z1.s, p1/z, [x0, x5, lsl 2]
12 add z0.s, p1/m, z0.s, z1.s # the inactive lanes
13 # retain the partial sums
14 # of the previous iterations
15 incw x5
16 cond:
17 whilelt p0.s, x5, x3
18 b.first loop_body
19 ptrue p0.s
20 saddv d0, p0, z0.s # signed add words across the lanes of z0, and place the
21 # scalar result in d0
22 mov w0, v0.s[0]
23 ret

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 9 of 19

White Paper

Gather loads

Another important feature introduced with SVE is the gather load / scatter store set of instructions, which allow it to
operate on non contiguous arrays of memory, like the code shown in listing 1.11.

Listing 1.11 loading data from an array of addresses.

1 void example03(int *restrict a, const int *b, const int *c,
2 long N, const int *d)
3 {
4 long i;
5 for (i = 0; i < N; ++i)
6 a[i] = b[d[i]] + c[i];
7 }

The vector code in listing 1.12 uses a special version of the ld1w instruction to load the data at b[d[i]], ld1w z0.s,
p0/z, [x1, z1.s, sxtw 2]. The values stored in z1.s are interpreted as 32-bit scaled indices, and sign extended
(sxtw) to 64-bit before being left shifted by 2 and added to the base address x4. This addressing mode is called scalar
plus vector addressing mode. This code shows only one example of it. To account for many other situations that occur
in real world code, other addressing modes support a 32-bit unsigned index or a 64-bit index, with and without scaling.

Listing 1.12 SVE vectorized version of listing 1.11.

1 mov x5, 0
2 b cond
3 loop:
4 ld1w z1.s, p0/z, [x4, x5, lsl 2]
5 ld1w z0.s, p0/z, [x1, z1.s, sxtw 2] # load a vector
6 # from 'x1 + sxtw(z1.s) << 2'
7 ld1w z1.s, p0/z, [x2, x5, lsl 2]
8 add z0.s, p0/m, z0.s, z1.s
9 st1w z0.s, p0, [x0, x5, lsl 2]

10 incw x5
11 cond:
12 whilelt p0.s, x5, x3
13 b.first loop
14 ret

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 10 of 19

White Paper

2 Implementing string.h routines6

In the �nal part of this article I will show how to implement custom versions of strcpy and strcmp from the C runtime
library, using SVE. Of course, both examples can be written in vector form using NEON - adding proper runtime checks
for the array boundaries, and taking care of leftovers in the loop tail.

For each of the examples, I will point out which particular feature is novel compared to NEON (and traditional SIMD in
general).

SVE includes a status register, called First Faulting Register (FFR), that addresses one of the problems of runtime
checks, speci�cally how to speculatively vectorize a loop when the bounds are unknown in advance.7

The FFR is an additional predicate register. Regular SVE instructions cannot access it. Instead, some special instructions
are used to read or initialize it. There is setffr, which initializes all FFR elements to true, and rdffr - both in the
predicated and unpredicated version - that copies the content of the FFR into a regular predicate register.

This register is only useful in conjunction with the �rst faulting load class of instructions. These speculatively load
data from memory without raising any software visible fault other than for the element in the �rst lane. For example,
loading a full vector from a span of memory that crosses your object boundaries might result in a runtime error in
traditional SIMD architecture - what we sometimes call a segmentation fault. Using the SVE �rst faulting loads this does not
happen. Instead, the load proceeds until the fault is detected, but instead of delivering a signal, the instruction completes
without errors. What the instruction does instead is to set the FFR so that the predicate lanes which correspond to the
successfully loaded lanes are active, while the subsequent predicate lanes starting from the �rst fault are marked as
inactive, and the corresponding lanes of data are not loaded.

The segmentation fault behavior is not totally removed. If the �rst active element in a �rst faulting load would cause
a segmentation fault then the segmentation fault will be raised, because this corresponds to a bug in the original scalar
code.

As shown below, instructions are provided that allow the user to write loops so if the loop does not terminate, then
after a detected fault the next iteration of the loop will continue from the faulting address. This technique ensures that
the signal that is delivered by SVE code is identical to the signal that scalar code would deliver.

In �gure 2.1, an example of �rst faulting load behavior is shown. This arti�cial example is looping through a 7 element
array and loads data from it into vector registers.

Figure 2.1: First faulting load mechanism.

Each of the iteration in the graphic shows the data and FFR output of a �rst faulting load, issued with the governing
predicate and FFR initialised to have all lanes active.

First iteration The data is fully loaded, and the FFR is set to all true.
6As of September 2018 I became aware of a performance problem with the SVE code presented in this chapter, that uses the �rst faulting load

mechanism. The original code is left here for completeness, and provides a functional introduction to the FFR register and related instructions. In a
dedicated section in the appendix I describe how to avoid the performance degradation from suboptimal use of the FFR register.

7It doesn’t solve other runtime check problems (like overlapping arrays, for example).

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 11 of 19

White Paper

Second iteration The full vector crosses the boundary of the valid memory. Elements beyond the boundary are
discarded, the failing lane is set to false in the FFR, and the failure propagates to the subsequent lanes. The FFR
can be combined with the main predicate of the loop to avoid processing lanes which correspond to scalar loop
iterations subsequent to the �rst fault.

Third iteration The �nal iteration restarts from the last failure (the invalid address), but this time, since the invalid
address now corresponds to the �rst element, a segmentation fault is raised.

Copying strings

The �rst use of the FFR I will present is in the string copy routine, strcpy. The C code is presented in listing 2.1: the
while statement is performed until a string terminator character is found when dereferencing src.

In this section we need to present another innovative aspect introduced with SVE, the concept of loops operating on a
dynamic vector partition (as opposed to a whole vector). A vector partition is what you get from instructions that produce
a predicate (e.g. a while instruction) in response to dynamic values such as the loop counter, loop bound and vector
length. You can also generate a partition from a vector compare instruction if you can’t use a simple monotonic counter.
You narrow the current partition in response to other dynamic conditions such as memory faults using instructions that
read the FFR and then data-dependent loop termination conditions using other partitioning instructions.

The need for dynamic partition is well illustrated by code shown in listing 2.1. One way of vectorizing this loop is to
provide a set of instructions that are able is to determine which lanes represent iterations prior to a break condition and
which follow it, like SVE does with the brka/b family of instructions.

Listing 2.1 Custom strcpy-like routine, C code. In this custom version, the routine does not return a copy of the original
value of the dst argument.

1 void strcpy(char *restrict dst, const char *src)
2 {
3 while (1) {
4 *dst = *src;
5 if (*src == '\0') break;
6 src++; dst++;
7 }
8 }

The SVE assembly in listing 2.2 is split in three parts: a header , a loop body, and the function exit. The header
prepares the data needed before entering the loop body. There is an implicit loop counter x2, set to zero, and a predicate
register p2 whose elements are all set to true with ptrue.

The loop body performs the following sequence of actions:

1. Initializes the FFR to all true with setffr. This operation is needed because elements in FFR are only changed by
ld1ff as the result of a fault.

2. Attempts to speculatively load a full vector of data from src, plus the current o�set in the implicit loop counter
x2, using the �rst-faulting ‘ld�1b’ instruction.

3. Copy the content of the FFR into p0. At this point p0 holds the information about which elements in the src vector
contain valid data.

4. Now that we have loaded a chunk of the src vector, we need to copy it, up to the terminating zero byte. To �nd
this point, we can use the cmpeq instruction, which tells us in which lanes of z0 there is a zero byte. A key point
here is that the comparison condition �ags are set according to the governing predicate of the cmpeq instruction,
i.e. ignoring the value of lanes which were marked as faulty in FFR.

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 12 of 19

White Paper

5. We use brka - break after to clear out those lanes in the predicate that we don’t want to copy, e�ectively partitioning
the vector in two. This instruction operates on a predicate register, setting lanes up to and including the �rst true
comparison to be active, and then all subsequent lanes to be inactive. The predicate it builds, p0, accounts for
conditions 1) the data is valid (thanks to the �rst-faulting mechanism), and 2) the data is only part of src (through
the cmpeq instruction).

6. Now we can store the data loaded from src into dst using st1b with the predicate obtained in the previous step
(the counter x2 is used as an o�set from the base address of dst).

7. Increment the implicit counter x2, using incpwhich increments its general purpose register operand by the count
of active lanes in the predicate operand.

8. The condition �ags set by cmpeq are read by b.none to decide whether none of the src bytes are zero, and keep
looping or else exit the routine with ret.

Listing 2.2 SVE assembly implementing strcpy in listing 2.1.

1 sve_strcpy: # header
2 mov x2, 0
3 ptrue p2.b
4 loop: #loop body
5 setffr
6 ldff1b z0.b, p2/z, [x1, x2]
7 rdffr p0.b, p2/z
8 cmpeq p1.b, p0/z, z0.b, 0
9 brka p0.b, p0/z, p1.b

10 st1b z0.b, p0, [x0, x2]
11 incp x2, p0.b
12 b.none loop
13 ret # function exit

The correctness of this particular algorithm relies in the combined use of the �rst-faulting mechanism, the brka and
incp instructions. The increment of the loop counter with the length of the partition, i.e. brka + incp, guarantees that
the computation is performed without leaving holes between subsequent iterations.

The code in listing 2.2 is quite simple. With NEON, the programmer (or the compiler) would have had to:

1. add some tricks to make sure that the loads cannot cross the allocated memory for src;
2. process whatever tail elements are left in an additional loop_tail block.

Comparing strings

The last example I am going to present is an SVE implementation of the strcmp routine de�ned in the C runtime library.
This time the C code shown in listing 2.3 is compatible with the de�nition in the standard8.

The SVE assembly code shown in listing 2.4 uses the FFR, and has a structure similar to one of the previous example
strcpy: a loop header followed by a loop body and a post-loop block that terminates the procedure.

As before, the loop header sets an implicit loop counter x2 and a predicate p0 with all bits set to active.
We need to speculatively load data from lhs and rhs to perform the comparisons in the while condition, so we

need to make sure that both associated loads are reading data from valid addresses. In the loop body, this is achieved
by chaining the two ldff1b instructions: the FFR accumulates the faults from each ld1ffb instruction so that rdffr

8http://en.cppreference.com/w/c/string/byte/strcmp

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 13 of 19

http://en.cppreference.com/w/c/string/byte/strcmp

White Paper

Listing 2.3 An implementation of strcmp.

1 int strcmp(const char *lhs, const char *rhs)
2 {
3 while (*lhs == *rhs && *lhs != 0)
4 lhs++, rhs++;
5 return (int) ((unsigned int) *lhs - (unsigned int) *rhs);
6 }

returns a (partition) predicate indicating which lanes were successfully loaded from both lhs and rhs. The implicit loop
counter x2 is incremented by the number of active lanes in FFR following the speculative load.

From now on, p1 becomes the main predicate for the loop. Two compare instructions - cmpeq (equal) and cmpne (not
equal) - build the predicates p2 and p3 needed to test *lhs == *rhs and *lhs != 0, respectively.

The �nal predicate p2 is built with a nands instruction, that checks not(p2 and p3), and sets the condition �ags. If
none of the lanes of p2 are true, the branch instruction b.none jumps back to the start of the loop.

The terminate block �nalizes the comparison:

1. The brkb (break before) splits the comparison result predicate p2 by setting lanes in p2 up to but not including the
�rst true comparison (the �rst mismatch or the end of both strings) to be active, and then all subsequent lanes to
be inactive.

2. The lasta instructions extract the lane of the input vectors z0 and z1 where a mismatch or a terminating '\0'
was found, and place them in w0 and w1 respectively.

3. A �nal sub computes the di�erence of the two unsigned values.

Listing 2.4 SVE implementation of strcmp in listing 2.3.

1 mov x2, 0 # loop header
2 ptrue p0.b
3 loop: # loop body
4 setffr
5 ldff1b z0.b, p0/z, [x0, x2]
6 ldff1b z1.b, p0/z, [x1, x2]
7 rdffr p1.b, p0/z
8 incp x2, p1.b
9 cmpeq p2.b, p1/z, z0.b, z1.b

10 cmpne p3.b, p1/z, z0.b, 0
11 nands p2.b, p1/z, p2.b, p3.b
12 b.none loop
13 terminate: # post-loop block
14 brkb p2.b, p1/z, p2.b
15 lasta w0, p2, z0.b
16 lasta w1, p2, z1.b
17 sub w0, w0, w1
18 ret

A NEON version of this routine has to take care of the same additional runtime checks and loop tail blocks as
the strcpy in the example before, plus a mechanism to extract the correct element from the result vector - which is
performed with lasta in SVE.

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 14 of 19

White Paper

3 Conclusions
In this whitepaper we have explained some of the key features that are introduced by the new Scalable Vector Extension
for AArch64, and shown some examples of how loops can be speculatively vectorized using the Vector Length Agnostic
approach.

Although the instruction set will only be publicly released at the beginning of 2017, a set of patches in the GNU
binutils9 repository already provide assembler functionality for building SVE-enabled programs.

Moreover, both gcc10 and clang11 will provide full SVE support soon, which will allow programmers to write VLA code
in SVE assembly language, or using the SVE ACLE C intrinsics, or by enabling the new auto-vectorization capabilities
which ARM is contributing to these compilers to support SVE.

Happy SVE hacking!

9http://sourceware.org/binutils/
10https://gcc.gnu.org/
11http://clang.llvm.org/

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 15 of 19

http://sourceware.org/binutils/
https://gcc.gnu.org/
http://clang.llvm.org/

White Paper

Appendix

Optimal use of the �rst faulting mechanism

As I have shown in the section on the string routines, the �rst faulting mechanism ensures that data can be loaded across
page boundaries. In the case of the strcpy routine in example listing 2.2, the FFR is used to force the SIMD processing
instructions to operate only on non-faulting lanes, and to recover computation from the last position of valid memory.

However, as soon as we are dealing with relatively large strings, the probability of processing partial vectors due to
attempted accesses to invalid memory locations becomes lower than the probability of processing full vectors. This
means that it is better to separate the code into two blocks, one that processes full vectors, the full-vector block,
with no dependencies on the value of the FFR, and one that takes care of �xing up the partial vector loop iteration in
case a fault happens, the fixup block.

By removing the dependency on the governing predicate in the full-vector block and the FFR in the load block,
an out-of-order processor can speculate on subsequent iterations of the full-vector block in advance, and rewind the
computation of the speculated iterations in the rare case of a faulting event.

For the implementation of strcpy in listing 2.2, an equivalent (but better) version is shown in �gure listing 3.2. Notice
that the use of the setffr instruction is further optimized by making sure that once the FFR is set at function entry, it
is re-set only when the �xup block is executed.

The implementation of strcmp in listing 2.4 can be optimized with the same technique. The code of the new
optimized version is shown in listing 3.2.

Listing 3.1 Optimal use of the FFR in strcpy.

1 sve_strcpy_optimized:
2 mov x2, 0
3 ptrue p2.b
4 setffr
5 loop:
6 ldff1b z0.b, p2/z, [x1, x2] # load block
7 rdffrs p0.b, p2/z #
8 b.nlast fixup #
9

10 cmpeq p1.b, p2/z, z0.b, 0 # full-vector block
11 brka p3.b, p2/z, p1.b #
12 st1b z0.b, p3, [x0, x2] #
13 incb x2 #
14 b.none loop #
15

16 ret
17 fixup:
18 cmpeq p1.b, p0/z, z0.b, 0 # fixup block
19 brka p3.b, p0/z, p1.b #
20 st1b z0.b, p3, [x0, x2] #
21 incp x2, p0.b #
22 setffr #
23 b.none loop #
24

25 ret

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 16 of 19

White Paper

Listing 3.2 Optimal use of the FFR in strcmp.

1 sve_strcmp_optimized: // @sve_strcmp_optimized
2 mov x2, 0
3 ptrue p0.b
4 setffr
5 loop:
6 ldff1b z0.b, p0/z, [x0, x2] # load block
7 ldff1b z1.b, p0/z, [x1, x2] #
8 rdffrs p1.b, p0/z #
9 b.nlast fixup #

10

11 cmpeq p2.b, p0/z, z0.b, z1.b # full-vector block
12 cmpne p3.b, p0/z, z0.b, 0 #
13 nands p2.b, p0/z, p2.b, p3.b #
14 incb x2, all #
15 b.none loop #
16 terminate:
17 brkb p2.b, p1/z, p2.b
18 lasta w0, p2, z0.b
19 lasta w1, p2, z1.b
20 sub w0, w0, w1
21 ret
22 fixup:
23 cmpeq p2.b, p1/z, z0.b, z1.b # fixup block
24 cmpne p3.b, p1/z, z0.b, 0 #
25 nands p2.b, p1/z, p2.b, p3.b #
26 b.any terminate #
27 incp x2, p1.b #
28 setffr #
29 b loop #

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 17 of 19

White Paper

Changelog
February 2020 Fix register to variable mappings in listing 1.3. Defect reported by Nicholas Dingle.

September 2018 List of changes:

• Added appendix, with a section on optimal use of the �rst faulting mechanism.
• Address C11 compliancy for the strcmp function in listing 2.3. Feedback provided by Richard Henderson.

November 2016 Initial release.

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 18 of 19

White Paper

Trademarks
The trademarks featured in this document are registered and/or unregistered trademarks of ARM Limited (or its
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their
respective owners. For more information, visit ARM website12.

12arm.com/about/trademarks

Copyright © 2016-2020 ARM Limited or its a�liates. All right reserved.
Page 19 of 19

arm.com/about/trademarks

	Contents
	Introduction
	SVE: an overview
	New architectural registers
	Instruction families
	Vector Length Agnostic (VLA) programming
	More on predication
	Merging and zeroing predication

	Gather loads

	Implementing string.h routines
	Copying strings
	Comparing strings

	Conclusions
	Appendix
	Optimal use of the first faulting mechanism

	Changelog
	Trademarks

