
© 2022 Arm

Securing IoT with
PARSEC and AWS
Greengrass

Guest: Darragh Grealish – 56K.Cloud

21st February 2023

2 © 2023 Arm2 © 2022 Arm

Welcome!

Tweet us: #ArmTechTalks

View tech talks on-demand:
www.youtube.com/arm

Sign up for upcoming tech talks:
www.arm.com/techtalks

http://www.youtube.com/arm
http://www.arm.com/techtalks

3 © 2023 Arm3 © 2022 Arm

www.arm.com/embedded-world

4 © 2023 Arm4 © 2022 Arm

Date Title Host

Our Upcoming Arm Tech Talks

Date Title Host

Feb 21st Securing IoT with Cloud Native Tooling, PARSEC and AWS Greengrass 56k Cloud

Feb 28th How to reduce Friction at the Edge and Bootstrap Your IoT Projects Eurotech

Mar 7th Fast Development of Noise Detection ML Models: Qeexo AutoML and Arm Virtual
Hardware

Qeexo

March 14th: Embedded World

© 2022 Arm

PLACE IMAGE OF SPEAKER HERE

Darragh Grealish

CTO – 56K.Cloud

Speaker: Darragh Grealish
Working at 56K.Cloud as CTO

ARM Ambassador Program,

Docker Captain
twitter.com/grealish

darragh@56k.cloud

mailto:Darragh@56k.cloud

6 © 2023 Arm6 © 2022 Arm6 © 2022 Arm

Challenges Currently
Security is difficult and limited use cases doing it properly!

Problems with doing in right Easy way out (what we see today)

Ecosystem is broad and scattered

Limited languages available, mostly limited to
C/embedded C

Siloed into low-level implantation based on
specific platform

Know how is limited and very specific

Various properties, vendors specific

Securing the Operating system (jail locking)

RoT is used in limited scope, /dev/tpm the
application might own

Fusing firmware but the OS is unsecure,

Application owns just TPM or USB HSM*

Securing point of entry is “good enough”

Security is someone else's problem

7 © 2023 Arm7 © 2022 Arm

Amazon Web Services – (AWS) Greengrass IoT
What is AWS Greengrass and IoT offering

A core component and services to support communication and management
of both application lifecycle and data on devices*

*not limited to!

Ref: AWS Website

8 © 2023 Arm8 © 2022 Arm

What is Parsec?
Security Solution for Cloud Native Development at the Edge

Any Platform, Any Architecture, Any Hardware

Cloud-Native Applications, Any Programming Language, Any Runtime, Any Orchestration

Discrete TPM Firmware TPM Local HSM Remote HSM
Trusted
Services

Custom

9 © 2023 Arm9 © 2022 Arm

How does Parsec add value?

Simplifies security: Parsec exposes cloud native functions
to applications and deals with connecting to the Root of
Trust (RoT) in your system.

Enables portability: With a common interface for security,
you can move your code to any device and connect to the
RoT without changing a line of code in your applications.

Isolates applications: Parsec brokers access to hardware
and provides isolated key stores.

Accelerates Development: Developed and maintained by a
community of security experts who leverage the service in
production.

Application Code

Native, shim-free integrations
(continuously maintained and improved)

Diverse Platform Hardware/RoT

Convenient API in any language

10 © 2023 Arm10 © 2022 Arm

Who is involved in the project?

11 © 2023 Arm11 © 2022 Arm

PARSEC is part of Arm Cassini
Arm is actively engaging with partners to make Parsec the defacto standard for
Cloud Native security

Hardware, firmware specifications
Certification program

Cloud Native Stacks

Security framework & independent
certification

Cassini Edge Solution Reference
Implementations

Aligning with SIPs, ODMs and
OEMs

Open API for cross-platform security
services

https://www.arm.com/solutions/infrastruct
ure/edge-computing/project-cassini

12 © 2023 Arm12 © 2022 Arm

Securing the Stack
Example of a typical connected software stack on a device

Make Best use of:

- Common HW platform

- Decoupled stack

- Firmware based Trusted Platform
Module (fTPM)

- Build on existing ecosystem
(UEFI/EDK + SR)

- Multi-tenet secure element

- Secure GG Provisioning

12

Secure Edge Stack

Vendor Board (SMARC)

UEFI Firmware (Secure fTPM / SE)

OS (Ubuntu Core / Fedora IoT / Yocto)

MCU

Docker Containers/Function
(Greengrass Components)

AWS Greengrass
Agent

(Device SDK)

Recovery
Ctrl

Customer Edge Services

Sy
st

em
R

ea
d

y

TPM

fTPM

fTPM fTPM

P
ro

d
u

ct
 F

o
cu

se
d

Ed
ge

 T
o

o
lin

g

13 © 2023 Arm13 © 2022 Arm

What is available today?
Key Creation

Asymmetric Encryption

Symmetric Encryption

Sign/Verify Hash

Key Import/Export

AEAD

Random Numbers

Sign/Verify Message

KDF/Key Agreement

Hashing

HMAC

TPM 2.0

PKCS#11

Mbed TLS

CryptoAuthLib

Trusted Services in
OPTEE

Peer Credentials

SPIFFE Identity

Unix Domain Socket

Shared Memory

TCP Socket

Blob Storage

Key Source Attestation

Available Coming Soon In Discussion

Client
Authentication

Wire Transport
API

Back-end
ProvidersClient Interfaces

Linux

Windows

RTOS/Specialized

OS Support

Rust Client

Go Client

C Client (PSA)

Java Client

Python Client

Enhanced/Smart
Clients With Simplified

Interfaces

Shell/CLI Tool

Other Languages

14 © 2023 Arm14 © 2022 Arm

Connect devices to GG service
securely with certificate exchange.

Private key never leaves the RoT

Perform data collection and analysis
securely in Edge devices.

Provision keys with Parsec
directly in the device HW

Root of Trust (RoT)

How PARSEC supports AWS Greengrass
Providing a simplified path to Hardware based security

mTLS

15 © 2023 Arm15 © 2022 Arm

Example of Device Deployment
Inherits certification, device, lifecycle management from AWS (ACM/ Private CA)​

Customer/Custom Components allow (/w GG SDK) to build on MQTT and mTLS HTTP​

Can be building into as part of Internal SDK

Uses Cloud-Native Components (PARSEC), (Containers, larger devices)

AWS IoT Greengrass – Managed Device AWS Cloud

AWS Provided Components

Customer/Custom Components

HW RoT

(Device

Independent)

Internal
SDK Pack Cert Lifecycle

PARSEC

Security Plugin Greengrass v2

Application Specific Edge Workloads

IO/MQTT/HTTP

TPM/RoT
Private Certificate

Store/CSR

IoT
Core

Greengrass

Another Device (Device2Device)

Jobs
A

B

A

A

B
C

D

D

16 © 2023 Arm16 © 2022 Arm

Demo Hardware

Macchiatobin – Marvel Armada 8040:

A Solid-Run SBC focused on Network Applications

ARM SystemReady ES Certified (July 2021)

Large community across firmware and OS support (EDKII, UEFI, Fedora)

Spec: CPU Marvel ARMADA 8040 Quad core Cortex-A72, 16GB RAM,

Interfaces: Dual x2 10GbE SPF+, 1x 2.5GbE SPF+, 1x 1GbE,

Storage: microSD Card, eMCC, 3x SATA,

OS: Fedora 35, OpenWRT, Ubuntu

17 © 2023 Arm17 © 2022 Arm

Two Core Elements
Full Turn-key Program

AWS Greengrass
Ecosystem

(PARSEC + Community
Components, Documentation,

Workshops, Developer
Community)

Faster turn-
key solutions
Built on solid
foundation

PARSEC +
SystemReady

(Security Abstraction,
Embedded Developer Friendly,

Compatibility)

18 © 2023 Arm18 © 2022 Arm

How do I get started ?
Available as a supported package…

How to Install

[admin@fedora ~] $> sudo dnf install parsec

[admin@fedora ~] $> sudo dnf install parsec-tool

[admin@fedora ~] $> sudo systemctl start parsec

[admin@fedora ~] $> parsec-tool ping

[INFO] Pinging Parsec service...

[SUCCESS] Service wire protocol version is 1.0.

• Part of a recipe…

• Or build from source on any Linux.

© 2022 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

To find out more:

https://aws.amazon.com/greengrass/

https://56k.cloud/

https://parsec.community/

Greengrass DEMO

https://github.com/56kcloud/parsec-workshop

https://aws.amazon.com/greengrass/
https://56k.cloud/
https://parsec.community/
https://github.com/56kcloud/parsec-workshop

20 © 2023 Arm20 © 2022 Arm

AWS Greengrass
How it’s structured

Built on-top of parsec-java-client library

parsec-jca-provider packages this

greengrass-parsec-jca-provider acts as a Greengrass plugin at
runtime

Build Steps (in order)

- Build the AWS-C-IO Module

- Build AWS CRT (Common Runtime)

- Build the AWS Device SDK Modules

- Build Parse Java Client build in Maven Central

- Package and Publish to parsec-jca plugin

- to Maven Central / Docs / Workshop

21. Februar 2023

20

AWS
CRT
Java

Parsec Java Client

AWS
IoT-Device
SDK-Java

Three Branches with pending changes:
- https://github.com/awslabs/aws-c-io/tree/key-op-prototype
- https://github.com/awslabs/aws-crt-java/tree/key-op-prototype
- https://github.com/aws/aws-iot-device-sdk-java-v2/tree/key-op-prototype

Greengrass
Parsec
Plugin*

AWS-C-IO (IO/TLS)

awslabs

Greengrass
Customer

Component(s)

Greengrass
nucleus*

2.7.1+

Java Cryptography Architecture
(JCA)

https://github.com/awslabs/aws-c-io/tree/key-op-prototype
https://github.com/awslabs/aws-crt-java/tree/key-op-prototype
https://github.com/aws/aws-iot-device-sdk-java-v2/tree/key-op-prototype

21 © 2023 Arm21 © 2022 Arm

Potential AWS Device Qualified + SystemReady Cert

Example of some of secured IoT hardware

Nvidia Jetson TX2
Nvidia Jetson Nano NXP LX2160 /

Marvel 8040

NXP IMX8 x8 core
4GB 8GB

1~5TB SSD

NXP IMX.8 / RB5 / Rock
2GB``8GB
1~5TB SSD

22 © 2023 Arm22 © 2022 Arm

How Parsec Simplifies Hardware Security
Offloading complexity and decoupling from a fragmented ecosystem

Application Code

Vendor-specific libraries, shims and tools

PKCS#11 Standard

Diverse Platform Hardware/RoT

Application Code

Native, shim-free integrations
(continuously maintained and improved)

Diverse Platform Hardware/RoT

Convenient API in any language

The Legacy World
The historical prevalence of the PKCS#11 standard has led to a variety of

libraries and shims. Application code needs to directly link and be tested
against various libraries on different platforms.

The Parsec World
The Parsec microservice runs as part of the platform, meaning that application

code has only a single component to interact with. Parsec handles the variety
of integrations needed for different platforms and is maintained by an expert

community.

Requires C language or foreign code layer

23 © 2023 Arm23 © 2022 Arm

How does it work?

Parsec is a Microservice built with modular blocks

Applications

Root of Trust

Parsec Client
Interface

Parsec Service

Back-end
Provider

Access
Control

Listener

Cloud-native
delivery/orchestration

Common API

Edge Device

Step 1: Pick the Parsec Client
Interface that matches

your Programming language Step 2: Pick a Parsec Back-End
Provider module to match your

system RoT

Step 3: Start using Parsec and
leverage the ongoing efforts of the

community

IPC

24 © 2023 Arm24 © 2022 Arm

Demo

Summary:

• Greengrass Installs and Provisions (register as “Thing”)

• Keys are Provisioned and Private Key stored in Parsec (External Workflow)

• Observe: Parsec security agnostic interface is running, Greengrass Service

• In the AWS Console we see the device (“Thing”), and trigger a deployment

• Observe: Greengrass Nucleus will use the private keys in the security backend provided by

Parsec: MQTT and HttpClient We see in the logs and the Web Console

• Show Parsec service running and log output

25 © 2023 Arm25 © 2022 Arm

Why Parsec?

To enable a secure Cloud Development Experience at the EdgeCloud Endpoint
Edge

• Rich Workloads

• Cloud-Native Development
• Multi-Tenant

• Increased Threat Landscape
• Variety of Platforms
• Device-specific RoT

TPM HSM SE

Rich Edge Computing
Occupies the middle ground in between two engineering paradigms: cloud and
endpoint (embedded). For rich edge applications, a cloud-native development
experience is desirable, but the diversity of platforms means that security is a

challenge.

26 © 2023 Arm26 © 2022 Arm

PARSEC Client Library

Github Repo consists of the following:

Java Client Library

Java Protobuf Interface (Sources the Parsec Operations repo)

Java JCA (Java Cryptography Architecture)

Parsec Java test client implementation (TestContainers)

Maven Build script

Build pipeline using Github actions

Location: https://github.com/parallaxsecond/parsec-client-java

http://Lochttps:/github.com/parallaxsecond/parsec-client-java

27 © 2023 Arm27 © 2022 Arm

Notes – core content of slides / objectives

- Why Security? and even validated security for that matter, (PSA Certified)

- What’s the problem today, or the non-existent of proper security , (look at AWS
Greengrass) / this stuff is hard! And no one is talking about, how to do it!

- Lets look at how that's been solved in the Project Cassini – SystemReady Program with
PSA certified expectation

- PARSEC: what is it, how does it help in this context

- What is AWS IoT Greengrass, how does Security help in this case, what's required? ?

- How to get started, where to go, what's the plan (CTA / Actions to address in EW32)

- Meet us at Embedded World 2023 (56K.Cloud / AWS / ARM)

