arm Al

Running Machine Learning on Arm's Ethos-U55 NPU

Arm

George Gekov 2nd November 2021

Welcome!

* Tweet us: <u>@ArmSoftwareDev</u> -> #AIVTT

Check out our Arm Software Developers YouTube <u>channel</u>

*Signup now for our next AI Virtual Tech Talk: developer.arm.com/techtalks

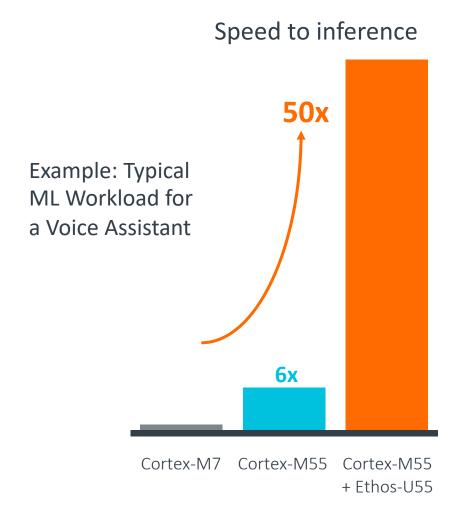
Our upcoming Arm AI Tech Talks

Date	Title	Host
November 2 nd	Getting started with running Machine Learning on Arm Ethos-U55	Arm
November 16 th	Hands-on workshop with the Arm ML Embedded Evaluation kit for Ethos-U55	Arm
November 30 th	Getting started with Arm NN on Android, in just 5 minutes	Arm
December 14 th	Improve PyTorch App Performance with Android NNAPI Support	Arm

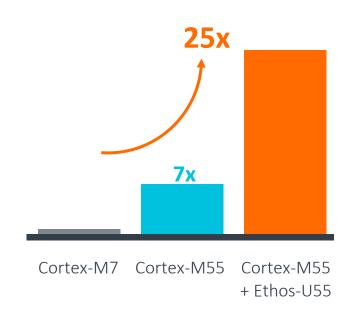
Presenter

George Gekov

- Software engineer in Arm's Machine Learning team
- Develop ML applications on Arm silicon
- Previously, part of Arm's IoT team


Does anybody enjoy their ML software running slowly?

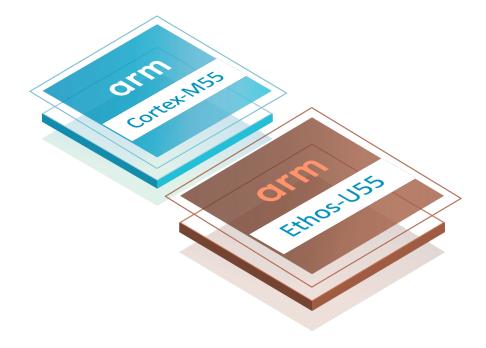
Agenda


- What is the Arm Ethos-U55 microNPU?
- What software stack to use on the Ethos-U55?
- How to optimise a neural network ?
- Demo!

Ethos-U55: First microNPU for Cortex-M CPUs

- √ Faster responses
- ✓ Smaller form-factors
- ✓ Improved accuracy

Latency and energy spent for all tasks listed combined: voice activity detection, noise cancellation, two-mic beamforming, echo cancellation, equalizing, mixing, keyword spotting, OPUS decode, and automatic speech recognition.

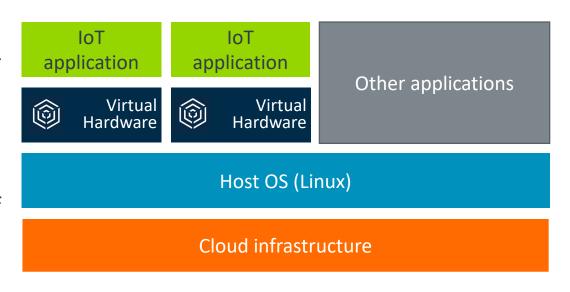

Develop for the Arm Ethos-U55 without a development board!

How to create software applications when NPU silicon is not commercially available yet?

Arm Virtual Hardware

- Fixed Virtual Platform(FVP) digital twin of a development board with Ethos-U55 & Cortex-M55
- Corstone-300(sse-300), available as part of Arm Virtual Hardware
- MAC = Multiply Accumulate
 - Ethos-U55 supports 32,64,128,256 MACs

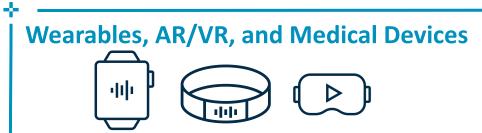
Arm Cortex-M55 and Arm Ethos-U55

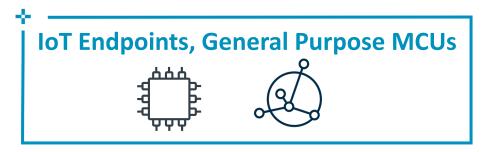


What's Arm Virtual Hardware?

Virtual Hardware Targets are the IoT equivalent of Virtual Machines

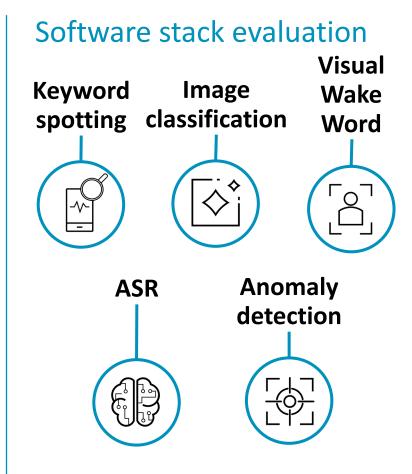
- An Arm Virtual Hardware Target is a functionally accurate representation of a physical SoC, simulating its software-visible behavior
- Runs as a simple application in a Linux environment for easy scalability in the cloud
- Remove dependency from RTL or silicon availability
- Available as a public beta for multiple configurations of the Arm Corstone-300 subsystem, incorporating the Cortex-M55 CPU and Ethos-U55 uNPU.


ML embedded evaluation kit


Open-source, Apache 2.0

• https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ml-embedded-evaluation-kit

Ready to use applications for Arm Ethos-U55

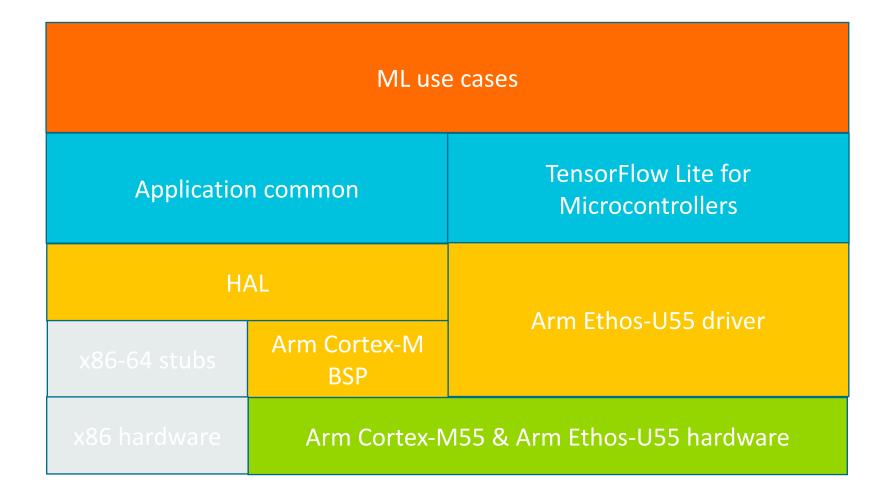


Why use the ML embedded evaluation kit?

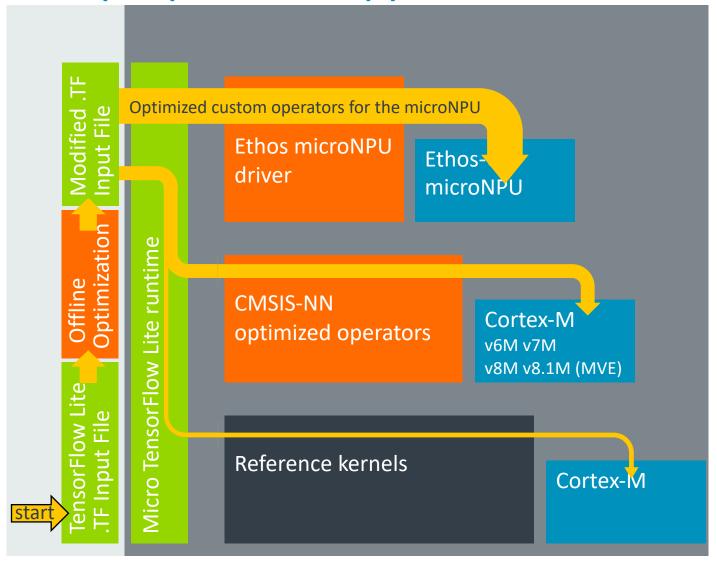
Three main benefits

Performance evaluation

- Number of NPU cycles
- Amount of memory transactions


Custom workflow

- Test custom NN performance on the Ethos-U55
- Framework to implement new ML use-cases



Software stack evaluation

TFLμ Operator Support – CMSIS-NN and Ethos-U NPU

Supported operators

Abs, Add, Average_Pool_2D, Concatenation, Conv_2D, Depthwise_Conv_2D, Fully_Connected, Leaky_ReLu, Logistic, Maximum, Max_Pool_2D, Minimum, Mul, Pack, Quantize, ReLu, ReLu6, ReLu_N1_to_1, Reshape, Resize_Bilinear, Slice, SoftMax, Split, Split_V, Squeeze, Strided_Slice, Sub, TanH, Transpose_Conv, Unpack and others. See SUPPORTED_OPS.md (generated from vela)

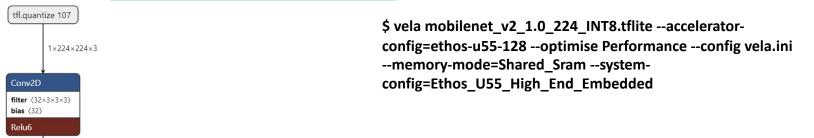
Optimized operators

The library has a roadmap of Quarterly releases to expand scope and improve performance

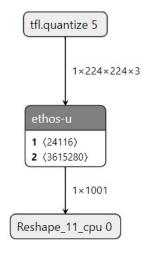
Fallback to reference kernels

Vela compiler

- Open source python tool: https://review.mlplatform.org/admin/repos/ml/ethos-u/ethos-u-vela
- Pypi: https://pypi.org/project/ethos-u-vela/
 pip3 install ethos-u-vela
- Top level functionality:
 - Parses a model
 - Optimises the graph
 - Tensor allocation
 - Command stream generation
 - Saves optimised model
- Configurable behaviour: https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela/+/refs/heads/master/OPTIONS.md
- Supported ops: https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela/+/refs/heads/master/SUPPORTED_OPS.md


Vela workflow

Initial model


Vela configuration

Call Vela

Optimised model

- Input: tflite file & vela configuration
- Output: tflite file
- Input model:
 - Can run on CPU (with CMSIS kernels if possible),
 - Cannot run on microNPU
- Output model:
 - "Ethos-u" op cannot run on CPU but can run on microNPU
 - All fallback ops run on CPU (with CMSIS kernels if possible)

Vela model

1×112×112×32

1×112×112×32

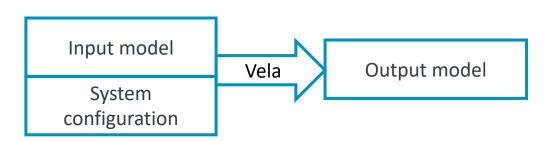
DepthwiseConv2D

weights (1×3×3×32)

bias (32)

Conv2D

filter $\langle 16 \times 1 \times 1 \times 32 \rangle$ bias $\langle 16 \rangle$


Initial model

Relu6

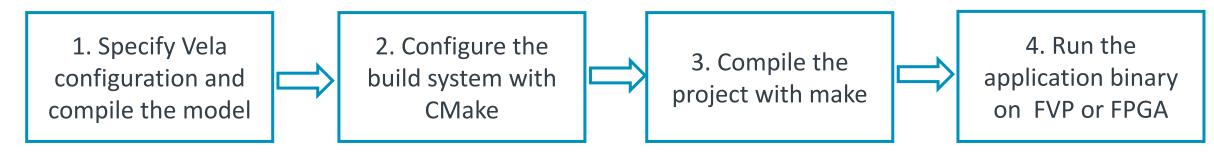
Vela configuration

What needs to be configured?

- Memory latencies and bandwidths (Deeply embedded, high-end,..)
- microNPU configuration(32,64,128,256 MACs)
- Memory mode
- Example configuration file:
 - https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u-vela/+/refs/heads/master/vela.ini


```
; System Configuration

; Ethos-U55 High-End Embedded: SRAM (4 GB/s) and Flash (0.5 GB/s)
[System_Config.Ethos_U55_High_End_Embedded]
core_clock=500e6
axi0_port=Sram
axi1_port=OffChipFlash
Sram_clock_scale=1.0
Sram_burst_length=32
Sram_read_latency=32
Sram_write_latency=32
OffChipFlash_clock_scale=0.125
OffChipFlash_burst_length=128
OffChipFlash_read_latency=64
OffChipFlash_write_latency=64
```



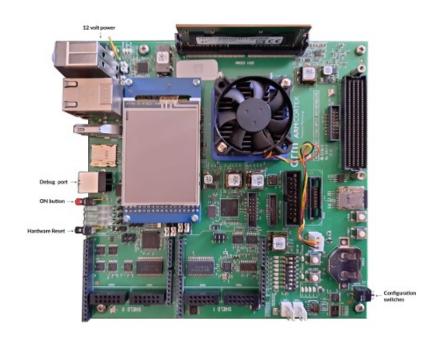
Run one of the available applications on the Ethos-U55 microNPU

Quick way to run an application & how to do a non-default build

For a default build – use build_default.py script

For a non-default build

What is cycle accurate & what is not cycle accurate?


Fixed Virtual Platform(Arm Virtual Hardware)

- Arm Ethos-U55: cycle approximate
- Arm Cortex-M55: functionally accurate

MPS3 FPGA

- Arm Ethos-U55: cycle accurate
- Arm Cortex-M55: cycle accurate

arm

Demo time

Summary

- What is the Arm Ethos-U55 microNPU?
- What software stack to use?
- How can you optimise a neural network for the Arm Ethos-U55 microNPU?
- How can you run an application on the Arm Ethos-U55 microNPU?

Try it yourself!

- Download the source code
- Try running an application yourself
- If you have a custom neural network, try running it on the Ethos-U55 and tell us how you get on https://discuss.mlplatform.org/c/ml-embedded-evaluation-kit/
- Access Arm Virtual Hardware (AVH) on AWS marketplace as Amazon Machine Image www.arm.com/virtual-hardware
 - Attend AI Tech Talk on Nov 16th for hands-on workshop with AVH
 - 100hrs of free AWS EC2 CPU credits for first 1,000 qualified users

+ + + Q&A

Thank You

Danke

Gracias

谢谢

ありがとう

Asante

Merci

धन्यवाद

Kiitos شکرًا

ধন্যবাদ

תודה

⁺The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks