
AI Virtual Tech Talks Series

James Conroy
8 September 2020

Running accelerated ML
applications on mobile and

embedded devices using Arm NN
Arm

© 2020 Arm Limited2

Presenter and Moderator

James Conroy
Software Engineer

Galway, Ireland

Jim Flynn
Arm NN Engineering Manager

Galway, Ireland

© 2020 Arm Limited3

AI Virtual Tech Talks Series

Date Title Host

September
20, 2020 How To Reduce AI Bias with Synthetic Data for Edge Applications Dori AI

October 22,
2020

Optimizing Power and Performance For Machine Learning at the Edge - Model Deployment
Overview Arm

Visit: developer.arm.com/solutions/machine-learning-on-arm/ai-virtual-tech-talks

© 2020 Arm Limited4

Agenda
• Why Arm NN?
• Arm NN Overview

• Arm NN Flows
• Direct to Arm NN
• Parsers e.g. TF Lite, ONNX, PyTorch
• Android NN API

• Backends

• PyArmNN

• Future Development

• How to get involved

AI Virtual Tech Talks Series Why Arm NN?

© 2020 Arm Limited6

Why Arm NN?

• NN Framework Translation
• Parsers enable rapid application development through the support of commonly used

frameworks such as TF Lite, ONNX, PyTorch and Caffe

• Android NNAPI Support
• Arm NN interfaces with Google's Android NN using the HAL Driver to target Arm IP

• Efficient Targeting of Arm IP
• Using Arm Compute Library and Ethos-N Driver Stack

© 2020 Arm Limited7

Why Arm NN?
Performance Improvements on Arm IP

• Arm NN shows
what’s possible for
inference network
optimizations on
Arm IP

• Arm works with
Partners to improve
Arm hardware
performance for
other software
libraries

x Faster

*Mean performance improvements of Arm NN relative to up to six different industry software libraries

Arm NN performance improvements*

3.1

3.8

2.7

3.9

3.0

2.1

3.3

3.0

3.7

3.1

4.2

2.3

1.8

2.5

1.8

1.6

1.4

1.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

OVERALL MEAN

VGG-16

SqueezeNet v1.1

ResNet 50

MobileNet 1.0 224

Inception v3 big Cortex-A
LITTLE Cortex-A

Mali GPU

AI Virtual Tech Talks Series Arm NN Overview

© 2020 Arm Limited9

Arm NN Overview
• ML inference API for Linux written in C++ 14

• API to access many different NN accelerated devices

• Developed as open source and external contributions are always
welcome

• Android NN HAL driver provides access to
Arm NN for Android applications

• Arm NN provides the backends for the lower
level libraries and hardware drivers

• Third-party partners can add their own backends for Arm NN

• Backends can be dynamically loaded to Arm NN during the
runtime’s start-up

• Arm Compute Library (ACL)

• Arm Cortex-A CPU with NEON acceleration (ARMv7 and v8x)

• Arm Mali GPU with OpenCL acceleration (Midgard and Bifrost
architectures)

NN Application

Android NN

HAL Driver

Arm NN
NEON

Backend
OpenCL
Backend

NPU
Backend

Partner
Backend

NPU
Driver

Partner
IP Driver

Cortex-A
CPU Mali GPU Ethos-N

Processor
Partner

IP

High level NN
libraries

TF Lite, ONNX,
PyTorch etc.

Arm Compute Library

© 2020 Arm Limited10

Arm NN Components
• Parsers

• TensorFlow Lite

• ONNX

• PyTorch via ONNX

• Caffe

• Android NN API
• HAL Driver

• Core
• Graph Builder API
• Optimizer

• Runtime

Tensorflow

TF Lite
Parser

Android NN

Caffe
Parser ONNX ParserHAL

Driver

C++ Graph Builder API Application Code

Internal Graph Representation

Scheduler
Target

Optimizations
Graph

Optimizations
CustomOpenCL

TFLite Caffe ONNX

Direct API

Optimizer
Runtime

Memory
Manager

NEON NPUFile

Arm Compute Library

Reference

NPU
Support
Library

NPU
Driver
Library

Ethos
NPU

OpenCL
Driver

Mali
GPU

Cortex-A
CPU

Backends

Parsers

© 2020 Arm Limited11

Arm NN Use Cases

• Image Classification

• Object Recognition

• Super Resolution

• Speech Recognition

© 2020 Arm Limited12

Arm NN is Open Source
• Currently released under an MIT license

• Arm NN started as quarterly release, to Arm NN and Android NN Driver on GitHub
• Release schedule, from late 2018, at end of Feb, May, Aug, Nov each year

• Arm Compute Library (ACL) releases at same time, to Compute Library on GitHub.
• ACL provides hardware acceleration for Arm CPU and Mali GPU

• Moved to continuously integrated development model for both Arm NN and ACL
• When accepted into Linaro as part the official Artificial Intelligence Initiative
• Every commit to master is publicly available on review.mlplatform.org

• Note: we are planning to change license from MIT to Apache 2.0 to provide clarity over patents to both contributors and users

https://github.com/ARM-software/armnn
https://github.com/ARM-software/android-nn-driver
https://github.com/ARM-software/ComputeLibrary
https://www.linaro.org/engineering/artificial-intelligence/
https://review.mlplatform.org/plugins/gitiles/ml/armnn

© 2020 Arm Limited13

Release Process
• The master branch from review.mlplatform.org is automatically mirrored to GitHub

• Releases are still made to GitHub every quarter as follows:
1. Release candidate branch created on mlplatform.org
2. Release testing and qualification done on mlplatform.org until candidate is certified
3. Once certified, the release process is kicked-off to generate documentation, release notes etc.
4. Final stage of release is to mirror the release branch to GitHub and announce public availability

http://review.mlplatform.org/

AI Virtual Tech Talks Series Arm NN Flows

Use Arm NN interfaces directly
Arm NN Parsers

Android NN API Integration

© 2020 Arm Limited15

Use Arm NN interfaces directly

Describe a
new layer

Done?

Connect
layer

Add layer

Optimize

• Load the network and execute inference
• Create an Arm NN IRuntime interface
• Set options on it such as preferred backends
• Load the optimized network
• Construct input and output tensors
• Run the inference

• Describe network and optimize it
• Using the INetwork interface, construct the layers and

connections between them
• Call the network optimizer to allow Arm NN to apply a

known set of static optimizations to network

© 2020 Arm Limited16

Arm NN Parsers
• The parsers are a way to integrate with common ML frameworks

• The created network can now be optimized, and inferences executed

• We deliver a test tool, ExecuteNetwork, to load and execute models

ITfLiteParser::TfLiteParserOptions options;
ITfLiteParserPtr parser(ITfLiteParser::Create(armnn::Optional<ITfLiteParser::TfLiteParserOptions>(options)));
armnn::INetworkPtr network = parser->CreateNetworkFromBinaryFile("TestFile.tflite");

./ExecuteNetwork -model-format tflite-binary -model-path TestModel.tflite -input-name my_input -output-name
output_layer -input-tensor-data input_data.snpy -compute CpuAcc,CpuRef -write-outputs-to-file results.snpy

© 2020 Arm Limited17

Android NN API Integration
• The Arm NN HAL Driver interfaces with Google’s Android Neural Networks API

• Once the driver is loaded and registered with Android, requests will be translated
through the Arm NN interface to execute code optimized for Arm IP

• In user code the NN API must be enabled. For TF Lite this is a flag on the interpreter.

/vendor/bin/hw/android.hardware.neuralnetworks@1.2-service-armnn -v -c CpuAcc,GpuAcc -n arm-armnn &

std::unique_ptr<tflite::Interpreter> interpreter;
interpreter->UseNNAPI(1);

AI Virtual Tech Talks Series Backends

© 2020 Arm Limited19

Backend Overview
• A backend is an abstraction that maps the layers of a network graph to the hardware

that is responsible for executing those layers

• Support one, or more, layers from the graph

• Create backend-specific workloads for the layers they support

• Each layer will be executed using a workload

• A workload is used to enqueue a layer for computation

• Execute the workloads they create

• Arm NN allows statically linked and/or dynamically loaded backends

© 2020 Arm Limited20

Custom Backends
• Used to accelerate using specific hardware

• Arm NN allows adding custom backends through the pluggable backend mechanism

• All backends must be uniquely identified by a BackendId

• Each backend can have backend optimization

• Implement memory management to optimize memory usage

• Backend Context notifies when a network is loaded or unloaded

• Custom backends can also be loaded at runtime through the dynamic backend interface

More information:
https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/src/backends/README.md

https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/src/dynamic/README.md

https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/src/backends/README.md
https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/src/dynamic/README.md

AI Virtual Tech Talks Series PyArmNN

© 2020 Arm Limited22

PyArmNN
• A Python extension for Arm NN SDK
• Interface is similar to Arm NN C++ API
• Built around public headers of Arm NN
• All operations are delegated to the Arm NN library
• Uses SWIG to generate the Arm NN python shadow classes and C wrapper

Available at:
https://github.com/ARM-software/armnn/tree/branches/armnn_20_08/python/pyarmnn

https://github.com/ARM-software/armnn/tree/branches/armnn_20_08/python/pyarmnn

© 2020 Arm Limited23

PyArmNN

• More information on PyArmNN:
https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/python/pyarmnn/README.md

• Examples can be found at:
https://github.com/ARM-software/armnn/tree/branches/armnn_20_08/python/pyarmnn/examples

https://github.com/ARM-software/armnn/blob/branches/armnn_20_08/python/pyarmnn/README.md
https://github.com/ARM-software/armnn/tree/branches/armnn_20_08/python/pyarmnn/examples%E2%80%8B

AI Virtual Tech Talks Series Future
Development

© 2020 Arm Limited25

Planned for End Of November Release (20.11)
• Usability

• Debian Package (verified for deployment on the Odroid N2+ board, Rasberry Pi 4)
• TensorFlow Lite Delegate
• Updated website and documentation with many more examples across a range of

problem domains

• Performance
• Fastmath option (Winograd Convolution)
• Operator Fusing/Folding

AI Virtual Tech Talks Series How to get involved

© 2020 Arm Limited27

Contributing code to Arm NN
• All code reviews are performed on Linaro ML Platform Gerrit
• GitHub account credentials are required for creating an account on ML Platform
• Setup Arm NN git repo

• git clone https://review.mlplatform.org/ml/armnn
• cd armnn
• git config user.name "FIRST_NAME SECOND_NAME"
• git config user.email your@email.address

• Commit using sign-off and push patch for code review
• git commit -s
• git push origin HEAD:refs/for/master

• Patch will appear on ML Platform Gerrit here
• The Contributor Guide contains details of copyright notice and developer certificate

of origin sign off

https://review.mlplatform.org/
https://review.mlplatform.org/q/is:open+project:ml/armnn+branch:master
https://review.mlplatform.org/plugins/gitiles/ml/armnn/+/HEAD/ContributorGuide.md%E2%80%8B

© 2020 Arm Limited28

Reviewing code
• Core contributors can give +2/-2

reviews and submit code
• All contributors can give +1/0/-1 code

reviews
• All patches require +1 Verified from CI

testing and verification
• See Gerrit Review UI docs for more

information

https://gerrit-review.googlesource.com/Documentation/user-review-ui.html

© 2020 Arm Limited29

Reporting Issues
• Issues are reported via GitHub at https://github.com/ARM-software/armnn/issues

https://github.com/ARM-software/armnn/issues

© 2020 Arm Limited30

Arm NN Tutorials
• Configuring Arm NN

• TF Lite: Configuring the Arm NN SDK build environment for TensorFlow Lite
• ONNX: Configuring the Arm NN SDK build environment for ONNX

• Deployment Examples
• Quantized TF Lite: Deploying a quantized TensorFlow Lite MobileNet v1 model
• Style Transfer on Android: Implementing a neural style transfer on Android
• Text-to-Speech: Creating a Text-to-speech engine with Tesseract and Arm NN on Raspberry Pi
• PyArmNN: Accelerating ML Inference on Raspberry Pi with PyArmNN

• Customization
• Custom backends: Building Arm NN custom backend plugins

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/configuring-the-arm-nn-sdk-build-environment-for-tensorflow-lite/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/configuring-the-arm-nn-sdk-build-environment-for-onnx/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-quantized-tensorflow-lite-mobilenet-v1-model-using-the-arm-nn-sdk
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/implement-a-neural-style-transfer-on-android-with-arm-nn-apis
https://www.codeproject.com/Articles/5264315/Creating-a-Text-to-speech-engine-with-Google-Tesse
https://dzone.com/articles/accelerating-ml-inference-on-raspberry-pi-with-pya
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-nn-custom-backend-plugins

Copyright © 2020 Arm DevSummit. All rights reserved.

Join us at Arm
DevSummit
Oct 6 - 8 l Virtual Conference
Register here https://devsummit.arm.com/arm-ai-ml

https://devsummit.arm.com/arm-ai-ml

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

AI Virtual Tech Talks Series

AI Virtual Tech Talks Series Backup Slides

© 2020 Arm Limited34

Graph Builder
• Provides step-by-step API for building a complete model

• Sometimes also called the model builder

• Layers are connected via the IConnectableLayer interface using a slot mechanism

• Each layers has [0-n] input slots and [0-n] output slots

• Number of input/output slots depends on the layer type

• Most are fixed but some can be variable (e.g. Merger/Splitter layer)

• Output slots are connected to 1 or more input slots

• Input slots are connected to only 1 output slot

Layer1

Layer3

InputSlot1

OutputSlo
t0

InputSlot0

InputSlot0

OutputSlo
t1

Layer2

© 2020 Arm Limited35

Optimizer
• Performs basic validation of the input network

• Modifies the network graph

• Inserts FP32/FP16 conversion layers if necessary (specified in OptimizerOptions)

• Adds debug layers, if required (specified in OptimizerOptions)

• Performs backend-independent optimizations
• Removes redundant operations

• Optimizes permutes/reshapes where possible (inverse permutes, permutes as reshapes,
consecutive reshapes, …)

© 2020 Arm Limited36

Optimizer
• Decides which backend to assign to each layer

• If the layer is not supported, it asks the next preferred backend, and so on...
• Runs backend-specific optimizations

• For each selected backend, extracts the subgraphs that can be executed on that
backend

• For each subgraph, call OptimizeSubGraph on the selected backend

• To ensure the backend is assigned to a layer, it must be the first BackendId in the list of
preferred backends

© 2020 Arm Limited37

Runtime

• Loads an optimized network

• Creates the input and output tensors

• Manages runtime memory

• Executes inference/predictions through backends

Sample app: armnn/samples/SimpleSample.cpp

© 2020 Arm Limited38

Workloads

• Each layer will be executed using a workload

• A workload is used to enqueue a layer for computation

• Each workload is created by a WorkloadFactory

• Each backend needs its own WorkloadFactory

• Creates workloads specific to each layer

© 2020 Arm Limited39

Conceptual Architecture of PyArmNN

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش
הדות

AI Virtual Tech Talks Series

