
© 2023 Arm

How to Deploy PP-OCR
model on Arm Cortex-M
with Arm Virtual
Hardware

Kai Wang, Liliya Wu
Jan 17th , 2023

2 © 2022 Arm2 © 2023 Arm

Welcome!

Tweet us: #ArmTechTalks

View tech talks on-demand:
www.youtube.com/arm

Sign up for upcoming tech talks:
www.arm.com/techtalks

http://www.youtube.com/arm
http://www.arm.com/techtalks

3 © 2022 Arm3 © 2023 Arm

Our upcoming Arm Tech Talks

Date Title Host
January 17th How to Deploy PP-OCR model on Arm Cortex-M with Arm Virtual Hardware Baidu

January 24th Getting Started with Matter with SparkFun and Silicon Labs Sparkfun & Silicon
Labs

January 31st Bringing Streaming Analytics to Arm-based Edge Devices Stream Analyze

February 7th Build Home Automation Services on a Matter Compliant Smart Home Hub Using
Python

Arm & Canonical

© 2023 Arm

Kai Wang
Senior product manager with Baidu-PaddlePaddle,
with a focus on the technical collaboration with AI
hardware companies. Kai collaborates with AI
hardware partner such as Arm, NVIDIA and drives
the work on PaddlePaddle Ecosystem Distributions,
e.g., PaddlePaddle Examples for Arm Virtual
Hardware. Prior to joining Baidu, Kai worked for
China Mobile and CGG (Houston, USA). He holds
a BSc from Peking University and an MSc degree
from The University of Texas at Austin.

Kai Wang – Baidu
Senior Product Manager

https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH
https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH

© 2023 Arm

Liliya Wu
Liliya Wu is responsible for supporting the Arm
software strategy in the AIoT field, as well as
carrying out technical evangelism work around
Arm-based solutions and software tool chains.
Liliya collaborates with ecosystem partners such as
Baidu and Alibaba and promotes the
implementation of Arm-based edge AI technology
cooperation. She is committed to
driving satisfaction with the existing arm tools and
platform technologies, improving developer
experience and assisting the larger developer
community to better understand how to
successfully use Arm tools and platform
technologies.

Liliya Wu - Arm
Software Engineer – Ecosystem Specialist

© 2023 Arm

Overview

7 © 2022 Arm7 © 2023 Arm

Workflow of a Deep Learning Project

NN Design
& Training

Deployment

Monitor & data collection

Training data

Trained NN

Software
development

Model
Optimization

Binary
Image

Integration

Devices fleet

Cloud
services

Define Problem &
Solutions

Computer Vision (CV) Use Cases
Such as:
Optical Character Recognition
Detection
Classification

8 © 2022 Arm8 © 2023 Arm

Typical Computer Vision Tasks

Optical Character Recognition （OCR）

High precision real-time human detection

Intensive face detection

End side real-time vehicle tracking

Fall detection

Object detection and its extended application

Nameplate identification

Identification of test sheet

9 © 2022 Arm9 © 2023 Arm

Challenges of Deep Learning Application Development

Multiple
hardware chips

Multiple
algorithm models

YOLOv3

MobileNet

ResNet

ICNET

VGGTSN

DeepCTR

GRU4Rec

Transformer

DeepLabv3+

ERNIE

SimNet

UNet

LAC

XLNet

BERT

Senta

DeepSpeech2

DQN

Multiple
application scenarios

Intelligent
Agriculture

Intelligent
Manufacturing

Intelligent
Inspection

Intelligent
Remote Sensing

Intelligent
Logistics

Intelligent Health
Treatment

Intelligent
Education

Intelligent
Quality Control

Intelligent
Security Intelligent City

Complex adaptation
and deployment

Difficulties in
application development

10 © 2022 Arm10 © 2023 Arm

Overview of PaddlePaddle Open Source System

11 © 2022 Arm11 © 2023 Arm

Core Technologies of PaddlePaddle

Training technology of
large-scale deep
learning model

High Performance Inference
Engine Deployed on Multiple

Terminals and Platforms

Conveniently
developed deep

learning framework

Industry level
open-source Model Zoo

• The first general
heterogeneous
parameter server
architecture in the
industry

• End to end adaptive
distributed training
architecture

• The first dynamic and static
unified framework in the
industry

• Dynamic diagram
programming debugging to
static diagram prediction
deployment

• Ready to use
• Support multi hardware

and multi operating
systems of end cloud

• The total number of
algorithms exceeds
600

• Including leading pre-
trained model

12 © 2022 Arm12 © 2023 Arm

Arm Virtual Hardware (AVH)
What is arm Virtual Hardware ?

Virtual, functional representation of a physical hardware
Cloud-native - runs and scales easily in the cloud
Suitable for all IoT workloads from MCUs through to Intelligent Edges
No dependency on RTL or silicon availability

Other applications
Virtual

Hardware
Virtual

Hardware

IoT application IoT application

Cloud infrastructure

13 © 2022 Arm13 © 2023 Arm

Arm Virtual Hardware (AVH)
Integration of PaddlePaddle and Arm Virtual Hardware sparks an efficient MLOps

Software
development

NN Design
& Training

Deployment

Training
data

Trained NN

Software
development

NN
Optimization

for Edge

Binary
Image

Integration

Devices fleet

Cloud services

Performance Metrics

Monitor & data collection

Arm Virtual
Hardware

Arm Virtual
Hardware

• Cloud development
- Virtual targets can be encapsulated and managed
through cloud infrastructure
• Maximum scalability
- Can easily create 10-100-1000s different instances of
the same device thanks to cloud infrastructure
- Can more easily test complex multi-device
configurations
• Accelerate and simplify CI/CD flow
- Remove dependency on physical hardware
- Pre-silicon availability development

14 © 2022 Arm14 © 2023 Arm

What will you learn?
An end-to-end workflow to deploy PaddlePaddle model on Arm Virtual Hardware

How to prepare a PaddlePaddle trained model with PaddleOCR(GitHub) dev kit
How to export the PaddlePaddle trained model to PaddlePaddle inference model
How to use TVMC to compile PaddlePaddle inference model for target device
How to build the application and deploy/test it on Arm Cortex-M55 using AVH

Training
Export
Model

Compile
Model

Build &
Run

Obtain trained
model

Export trained
model to Paddle
Inference model

Compile Paddle
Inference model to

target machine
code using TVM

Build application and
run in Arm® Cortex®-

M55 using Arm
Virtual Hardware

https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/PaddleOCR

© 2023 Arm

PaddleOCR Overview

© 2023 Arm

Content
Background Overview
• What is OCR?
• Typical industrial OCR application scenarios.
• Challenges of OCR application.

PaddleOCR Development Kit
• PaddleOCR Overview
• PP-OCRv3

Model Adaptation and Transfer
• Network adaptation
• Model training
• Model export
• Pre and post processing

17 © 2022 Arm17 © 2023 Arm

What is OCR?
OCR means Optical character recognition

Extract text from images.
Free human beings from repetitive work.

18 © 2022 Arm18 © 2023 Arm

Typical Industrial Application Scenarios of OCR

Information extraction, entry and review of card, certificate and bill, factory automation,
electronization of hospital and other documents, online education, etc

19 © 2022 Arm19 © 2023 Arm

Typical Industrial Application Scenarios of OCR

Video scene (text in the video: subtitles, titles, advertisements, bullet screens, etc.)
• Text based content: subtitle translation, content security monitoring, etc.
• Combined with visual features: video understanding, video retrieval, etc.

Video understanding
Video retrieval
Content monitoring
subtitle translation
…

[Image Source: The picture is from the network]

20 © 2022 Arm20 © 2023 Arm

Challenges of the Implementation of the OCR Industry

Can't find
Can't select

Not applicable
to industrial

scenarios

Difficult to
optimize too

many problems

Difficulty in
data

acquisition and
annotation

• High cost of verifying
various optimization
methods

• Frequently go astray
from training to
deployment

• High data acquisition
cost for specific
scenarios

• Intense presence of
text in images

• Requirement: no
open-source project
can be found

• Item: no key
algorithm can be
selected

• Academic models
mainly pursue model
accuracy

• Lack of prediction
time limits in practice

© 2023 Arm

Content
Background Overview
• What is OCR?
• Typical industrial OCR application scenarios.
• Challenges of OCR application.

PaddleOCR Development Kit
• PaddleOCR Overview
• PP-OCRv3

Model Adaptation and Transfer
• Network adaptation
• Model training
• Model export
• Pre and post processing

22 © 2022 Arm22 © 2023 Arm

PaddleOCR Panorama – Overview

23 © 2022 Arm23 © 2023 Arm

PP-OCRv3 Framework

Text detection
• LK-PAN: PAN structure of large receptive field
• DML: Teacher Model Mutual Learning Strategy
• RSE-FPN: FPN Structure of Residual Attention Mechanism

Text recognition
• SVTR_ LCNet: Lightweight Text Recognition Network
• GTC: Attention guides CTC training strategy
• TextConAug: Data Augmentation Strategy for Mining Text Context

Information
• TextRotNet: Self-supervised Pre-trained Model
• UDML: Joint Mutual Learning Strategy
• UIM: unlabeled data mining scheme

Model advantages
• High precision, 5% higher than PP-OCRv2 for Chinese scenes
• Fast inference speed with the single CPU taking 331ms.
• Small model, detection (3.6M)+direction classifier (1.4M)+recognition

(12M)=17.0M -> adaptive version recognition model 2.7M

© 2023 Arm

Content
Background Overview
• What is OCR?
• Typical industrial OCR application scenarios.
• Challenges of OCR application.

PaddleOCR Development Kit
• PaddleOCR Overview
• PP-OCRv3

Model Adaptation and Transfer
• Network adaptation
• Model training
• Model export
• Pre and post processing

25 © 2022 Arm25 © 2022 Arm25 © 2023 Arm

Model Adaptation
Configure to remove unsupported operators and retrain the model with the PaddleOCR kit

Operators and external libraries used in PP-
OCRv3 English text recognition model

Operators supported by CMSIS-NN
(updating)

Backbone:
• Conv
• Fully Connected
• Pooling
• Softmax
• Bn
• Relu

Neck:
• LayerNorm (Not supported)
• LSTM (Not supported)
* note: Not supported means the operators are
not supported as front-end operators for TVM.

For more information, please visit
https://github.com/ARM-software/CMSIS-NN

https://github.com/ARM-software/CMSIS-NN

26 © 2022 Arm26 © 2022 Arm26 © 2023 Arm

Model Adaptation
PaddleOCR uses configuration files to control network training & evaluation parameters.

Original configuration file – GitHub Adjusted configuration file – Blog

https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/how-to-deploy-paddlepaddle-on-arm-cortex_2d00_m-with-arm-virtual-hardware

27 © 2022 Arm27 © 2023 Arm

Model Optimization

The model optimization part uses BDA (Base Data Augmentation), which includes multiple
basic data enhancement methods such as random clipping, random fuzzy, random noise,
image color inversion, etc.

Original image Random clipping Random fuzzy

Random noise Image color inversion

28 © 2022 Arm28 © 2023 Arm

Model Training

Dataset: Online open-source datasets MJSynth and SynthText (MJ+ST)
Training Command:

• Note: modify the dataset location and model file save location respectively based on your need.

Help Guide – Refer to the documents for more information on model training with
PaddleOCR development kit.

http://www.robots.ox.ac.uk/~vgg/data/text/
http://www.robots.ox.ac.uk/~vgg/data/scenetext/
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/training.md

29 © 2022 Arm29 © 2023 Arm

Model Export and Function Verfication

Export PaddlePaddle inference model
• We must export the trained text recognition model to a Paddle inference model that we can compile to

generate code which is suitable to run on a Cortex-M processor.
• Use the following command to export the Paddle inference model. We need manually modify the

output shape to [3,32,320].

Verify the model inference effect on PC
• You can use PaddleOCR toolkit to verify the model inference effect. Visit the documents to learn how

to verify the results.

https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/inference_ppocr.md

30 © 2022 Arm30 © 2023 Arm

Pre and Post Processing

Pre-Processing
• To ensure the picture you use is in right shape,

you can refer to the script for pre-processing.

Post-Processing
• C language coding is required according to

specific tasks.
• For this example, the model is OCR English

recognition model, so only post-processing of
the recognition model is included.

• Post recognition processing: for the output of
the model, shape is B * W * N, Where W is the
maximum recognized character; N is the size of
the dictionary; B is the batch. Post-processing is
to find each recognized character on W.

Calculate the
characters of
each step.

https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH/blob/main/OCR-example/convert_image.py

© 2023 Arm

Compile Model with
TVMC

32 © 2022 Arm32 © 2023 Arm

MicroTVM: TVM on bare-metal
Learn more about Apache TVM at https://tvm.apache.org/

TVM is an open-source Deep Learning Compiler Stack that closes the gap between the
productivity-focused deep learning frameworks, and the performance-oriented or
efficiency-oriented hardware backends.
MicroTVM runs TVM models on bare-metal (such as IoT) devices

…

Model
import

Optimize
Operators

(Auto TVM)

Devices Fleet

Arm Virtual Hardware

Relay Module
(High-level IR)

Tensor IR
(Low-level IR)

Generate tvm
target library

eg. c/llvm

C source code

TVM complier

Built together with
application code

https://tvm.apache.org/

33 © 2022 Arm33 © 2023 Arm

PaddlePaddle as TVM Front-end
Refer to the guide to learn more about how to compile PaddlePaddle models using TVM

PaddlePaddle is officially supported as TVM front-end in TVM v8.0 releasement!
• Support 120+ operators and 100+ models.

Future Plan:
• Support 200+ operators.
• Support stream operator.
• Support models quantized by PaddleSlim.
import paddle
import paddle.vision.models as models

model = models.renset50(pretrained=True)
model.eval()
save model as static model
input_spec =
paddle.static.InputSpec(dtype="float32",

shape=[None, 3, 224, 224], name="image")
paddle.jit.save(model, "save_dir/model",
[input_spec])

import paddle
from tvm import relay

model = paddle.jit.load(“./inference/model”)
mod, params = relay.frontend.from_paddle(model)

with tvm.transform.PassContext(opt_level=3):
lib = relay.build(mod, target,

params=params)

Export the model Compile the model with TVM IR (Relay)

https://tvm.apache.org/docs/how_to/compile_models/from_paddle.html

34 © 2022 Arm34 © 2023 Arm

Offloading to CMSIS NN
Learn more about CMSIS NN at https://github.com/ARM-software/CMSIS-NN

CMSIS NN software library is a collection of efficient neural network kernels developed
to maximize the performance and minimize the memory footprint of neural networks
on Arm Cortex-M processors.
Using CMSIS NN with TVM
• TVM allows for partitioning and code

generation using an external compiler.
• Partitioned subgraphs containing operators

targeted to Cortex-M can then be translated
into the CMSIS NN C APIs.

Learn more about CMSIS NN and TVM
integration details at GitHub.
• Supported operators(updating) can be found

in the script.

https://github.com/ARM-software/CMSIS-NN
https://github.com/apache/tvm-rfcs/blob/main/rfcs/0015_Arm_CMSIS-NN_Integration.md
https://github.com/apache/tvm/blob/f6f7feafb297993f5f035de7f814407a2b876967/python/tvm/relay/op/contrib/cmsisnn.py

35 © 2022 Arm35 © 2023 Arm

TVMC – TVM Command Line Driver

TVMC is a Python application. When you install TVM using a Python package, you will
get TVMC as a command line application called tvmc that exposes TVM features such as
auto-tuning, compiling, profiling and execution of models through a command line
interface.
Example – The command will:

python3 -m tvm.driver.tvmc compile --target=cmsis-nn,c \
--target-cmsis-nn-mcpu=cortex-m55 \
--target-c-mcpu=cortex-m55 \
--runtime=crt \
--executor=aot \
--executor-aot-interface-api=c \
--executor-aot-unpacked-api=1 \
--pass-config tir.usmp.enable=1 \
--pass-config tir.usmp.algorithm=hill_climb \
--pass-config tir.disable_storage_rewrite=1 \
--pass-config tir.disable_vectorize=1 \
ocr_en/inference.pdmodel \
--output-format=mlf \
--model-format=paddle \
--module-name=rec \
--input-shapes x:[1,3,32,320] \
--output=rec.tar

• Offload operators to CMSIS-NN, falling back to C code.
• Set target device to Cortex-M55.
• Use aot (Ahead Of Time compiltaion) as executor to

compile the model.
• The model file path is under ocr_en/inference.pdmodel
• The model is in PaddlePaddle format
• The output format is Model Library Format (only for

microTVM targets)
• The output package will be named as rec.tar under

current directory
• For more descriptions of each parameter, use tvmc

compile --help to check.

https://discuss.tvm.apache.org/t/implementing-aot-in-tvm/9206

© 2023 Arm

Deployment on Arm
Virtual Hardware

37 © 2022 Arm37 © 2023 Arm

Arm Virtual Hardware
Enabling Software-Hardware Co-Design to Accelerate IoT and ML Development.

Arm Virtual Hardware (AVH) scales and
accelerates IoT software development by
virtualising popular IoT development kits,
Arm-based processors, and systems in
the cloud.
It is an evolution of Arm’s modelling
technology that removes the wait for
hardware and the complexity of building
and configuring board farms for testing.
It enables modern agile software
development practices, such as DevOps
and MLOps workflows.

Arm Virtual Hardware
Corstone and CPUs
Cloud-based models of Corstone
and Cortex-M processors for
software development. Available
via AWS.

Arm Virtual Hardware 3rd
Party Hardware
Cloud-based models of popular IoT
development kits, including
peripherals, sensors and board
components that are already in
production. Available via
hypervisor technology.

Multiple modeling technologies
fitting a variety of use cases We use

this
type in
today’s
talk

38 © 2022 Arm38 © 2023 Arm

Arm Virtual Hardware Corstone and CPUs
View Product Overview document to unlock more use cases

Based on Arm Fast Model technology developed alongside Arm’s processor IP
Precisely simulates instruction and exception behaviors
Offers test interfaces for the Open-CMSIS-CDI standard
Runs on local hosted development systems as well as cloud-based CI/CD configurations
Provides a scalable and extensible platform through SystemC

Products included:
• Corstone platforms: Corstone-300, Corstone-310 and Corstone-1000
• Cortex-M processors: Cortex-M0, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23,

Cortex-M33
• Note: You can check all supported virtual hardware under /opt directory

https://arm-software.github.io/AVH/main/overview/html/index.html

39 © 2022 Arm39 © 2023 Arm

Prerequisite
Reference steps to launch an Arm Virtual Hardware Amazon Machine Image (AMI) instance

Step1. Visit AWS Marketplace or
AWS China Marketplace. Subscribe
to AVH and continue to configure.

Step2. Choose region to deploy
(server region) and continue to
launch.

Step3. Choose "Launch from
Website"(default).

*Note: you will need an AWS/AWS
China account as the prerequisite.
Register an AWS account at
https://aws.amazon.com.

Step4. Choose instance type, SSH
key pair and launch. Then use ssh-i
key_pair ubuntu@public_ip to log
into the instance remotely.

Note:
1. Generally, “c5.large” instance

type is recommended. For this
example, you can try “t2.micro”
which is free tier eligible.

2. Others default choice is ok.
3. If you don’t have a key pair,

click “create a key pair in EC2”
to create one.

https://aws.amazon.com/marketplace/pp/prodview-urbpq7yo5va7g
https://awsmarketplace.amazonaws.cn/marketplace/pp/prodview-2y7nefntbmybu
https://aws.amazon.com/

40 © 2022 Arm40 © 2023 Arm

Demo

41 © 2022 Arm41 © 2023 Arm

Demo Walkthrough
Build the application and deploy on Corstone-300 Platform (Cortex-M55 included)

Fork and clone the sample code from GitHub. Navigate to the code path.
$ git clone https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH.git
(or from https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/deploy/avh)
$ cd Paddle-examples-for-AVH/OCR-example/

The run_demo.sh script automates the entire process. It takes the following 6 steps to
help you automatically build and execute the English text recognition application on
Corstone-300 platform with Arm Virtual Hardware.
• Step 1. Set up running environment.
• Step 2. Download PaddlePaddle inference model.
• Step 3. Use TVMC to compile the model and generate code for the Arm Cortex-M processor.
• Step 4. Process resources for building the application image.
• Step 5. Use the Makefile to build the target application.
• Step 6. Run application binary on Corstone-300 platform integrated in AVH.
Note: If you are not able to use AVH AMI hosted in AWS, you can use --enable_FVP to 1 to make the application
run on local Corstone 300 FVP binary (./run_demo.sh --enable_FVP 1).

https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH.git
https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/deploy/avh
https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH/blob/main/OCR-example/run_demo.sh

42 © 2022 Arm42 © 2023 Arm

Results

Test image: word_116.png
Inference results on PC:
• Predicts of path_to_word_116.png:('QBHOUSE', 0.9867456555366516).

Inference results on AVH: word_116.png

Inference results of rough handwriting(AVH)

43 © 2022 Arm43 © 2023 Arm

Next Steps
Join us to unlock more interesting use cases of PaddleOCR & Arm Virtual Hardware!

Register for free AWS EC2
Credits:
bit.ly/AWS-Credits

Try the sample code in the
tech talk and explore more
use cases in Arm Virtual
Hardware.

Get in touch to learn more
wangkai65@baidu.com
Liliya.wu@arm.com

Questions?

https://www.arm.com/company/contact-us/virtual-hardware?utm_source=webinar&utm_medium=webinar&utm_campaign=2022_embdev_mk18_arm_na_na_awa&utm_term=brighttalk&utm_content=webinar
mailto:wangkai65@baidu.com
mailto:Liliya.wu@arm.com

© 2023 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

Tweet us: #ArmTechTalks

View tech talks on-demand:
www.youtube.com/arm

Sign up for upcoming tech talks:
www.arm.com/techtalks

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

