arm

How to Deploy PP-OCR
model on Arm Cortex-M
with Arm Virtual
Hardware

Kai Wang, Liliya Wu
Jan 17t , 2023

Welcome!

2

Tweet us: HArmTechTalks

View tech talks on-demand:
www.voutube.com/arm

Sign up for upcoming tech talks:

www.arm.com/techtalks

© 2023 Arm

arm

http://www.youtube.com/arm
http://www.arm.com/techtalks

Our upcoming Arm Tech Talks

Date Title Host
January 17t How to Deploy PP-OCR model on Arm Cortex-M with Arm Virtual Hardware
January 24t Getting Started with Matter with SparkFun and Silicon Labs Sparkfun & Silicon
Labs
January 31t Bringing Streaming Analytics to Arm-based Edge Devices Stream Analyze
February 7th Build Home Automation Services on a Matter Compliant Smart Home Hub Using Arm & Canonical
Python

3 © 2023 Arm q r m

arm

Senior product manager with Baidu-PaddlePaddle,
with a focus on the technical collaboration with Al
hardware companies. Kai collaborates with Al
hardware partner such as Arm, NVIDIA and drives
the work on PaddlePaddle Ecosystem Distributions,
e.g.,

. Prior to joining Baidu, Kai worked for
China Mobile and CGG (Houston, USA). He holds
a BSc from Peking University and an MSc degree
from The University of Texas at Austin.

© 2023 Arm

Kai Wang — Baidu
Senior Product Manager

https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH
https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH

arm

Liliya Wu

Liliya Wu is responsible for supporting the Arm
software strategy in the AloT field, as well as
carrying out technical evangelism work around
Arm-based solutions and software tool chains.
Liliya collaborates with ecosystem partners such as
Baidu and Alibaba and promotes the
implementation of Arm-based edge Al technology
cooperation. She is committed to

driving satisfaction with the existing arm tools and
platform technologies, improving developer
experience and assisting the larger developer
community to better understand how to
successfully use Arm tools and platform Liliya Wu - Arm

technologies. Software Engineer — Ecosystem Specialist

© 2023 Arm

arm

/
VOICES On 'arm
/

Overview

N o | —

Workflow of a Deep Learning Project

7

", Computer Vision (CV) Use Cases

Devices fleet

L i H
=1

: Such as:
Define Problem & P oUe .
© Igimt[?onim I Optical Character Recognition
: Detection
S , Classification Software
development
olool
Training data ==
C/ 1
@ o j:i C@ & — ZK/>|E > >
‘ ‘ @ i
| NN Design Trained NN Model Integration Binary Deployment
& Training Optimization Image
@ Monitor & data collection
Cloud
services

© 2023 Arm

arm

Typical Computer Vision Tasks

frame: 0 fpa: 0.65 num: 7

RN ERTA KA

455 SONTNTATA

LAF T 5
‘i 23040 " gt nl
SRR T o
(PE tiﬁﬂﬁiiﬁﬁﬁbﬂ’z}%}%ﬁlm

-

High precision real-time human detection

A k '.“L 0.4 o Srvs) " /|
‘ :) |
J rson b‘ y 3 . ')

191V

5 Lowia]
[aTIT0/m

[B0
[5.6110/n1
jal

|

L L

BE B 327 BA:

1: 10-08-0611: 23 FRETEEH: 10-08-0611
EREERERS %

Intensive face detection Fall detection Identification of test sheet

Object detection and its extended application Optical Character Recognition (OCR)

8 © 2023 Arm q r m

Challenges of Deep Learning Application Development

Multiple Multiple Multiple
hardware chips algorithm models application scenarios

|754N| | VGG |
| ResNet |
| YOLOv3 |

| ICNET |
| GRU4Rec | |$I

| Senta | | LAC |
| SimNet | | XLNet |
| DeepCTR |

|4|ERNIE | BERT |
| MobileNet |
| DeepSpeech2 |

. . E mezmy | Transformer | . v |
' | DeepLabv3+ | I

Complex adaptation Difficulties in

and deployment application development
9 © 2023 Arm qrm

arm

Overview of PaddlePaddle Open Source System

10

I — Development+Training -,
i Auxiliary tools
Paddle PALM FastDeploy
i * AutoDL
i PaddleSlim |
; | * VisualDL * PaddleFL
FleetAPI PaddleCloud : : Paddle Inference Paddle Lite Paddle.js
e Development Toolkits ... S Model Zoo
Pre-trained model E : PaddleDetection PaddleOCR PaddleClas PaddleSeg PaddleGAN PaddleVideo : ; ERNIE-Big Models
PaddleHub || | ERNIENLP ERNIE-CV
| PaddleNLp PaddleSpeech ERNIEKit PaddleRec PaddleTs paddiesp | | ERNIE:Cross Model
P i | | ERNIE-Bio-computin
Packaging tools b P puting
b i || ERNIE-Industry
PaddleX PARL PGL Paddle Quantum PaddleHelix ElasticCTR PLSC P

e —————————————————

© 2023 Arm

Core Technologies of PaddlePaddle

(@)
©) ©)
©) (©)
©)

Conveniently
developed deep
learning framework

e The first dynamic and static
unified framework in the
industry

e Dynamic diagram
programming debugging to
static diagram prediction
deployment

11 © 2023 Arm

Training technology of

large-scale deep
learning model

e The first general
heterogeneous
parameter server
architecture in the
industry

* End to end adaptive
distributed training
architecture

High Performance Inference
Engine Deployed on Multiple
Terminals and Platforms

* Ready to use .
e Support multi hardware

and multi operating

systems of end cloud .

Industry level

open-source Model Zoo

The total number of
algorithms exceeds
600

Including leading pre-
trained model

arm

Arm Virtual Hardware (AVH)
What is @ arm Virtual Hardware ?

12

Suitable for all 1oT workloads from MCUs through to Intelligent Edges

© 2023 Arm

- Virtual, functional representation of a physical hardware
- Cloud-native - runs and scales easily in the cloud

- No dependency on RTL or silicon availability

/’j Virtual k Virtual
Hardware Hardware

Other applications

Cloud infrastructure

arm

Arm Virtual Hardware (AVH)

Integration of PaddlePaddle and Arm Virtual Hardware sp

Software
development

]
- Q‘Q

arks an efficient MLOps

+ Cloud development

- Virtual targets can be encapsulated and managed
through cloud infrastructure

« Maximum scalability

- Can easily create 10-100-1000s different instances of
the same device thanks to cloud infrastructure

- Can more easily test complex multi-device
configurations

» Accelerate and simplify CI/CD flow

- Remove dependency on physical hardware

- Pre-silicon availability development

i
— s) —]

1
Binary Deployment Devices fleet
Image

Monitor & data collection

I
|
|
I
| : :
I .
L | NN I Arm Virtual
Trainin . :
datag ' 7/-’/J K2R Optimization | | Hardware
' o for Edge | :
| | |
ey | >, Software
, | ; development
1 I NN DeSIgn Trained NN I ! 0100
! & Trainin ' |
| g I : T
| P
I Performance Metrics A :/Jt | : @
: I_rlm el ; Integration
P . ardware_ , L _ T ___
13 © 2023 Arm

Cloud services

arm

What will you learn?
An end-to-end workflow to deploy PaddlePaddle model on Arm Virtual Hardware

| Export Compile Build &
.

Obtain trained Export trained Compile Paddle Build application and

model model to Paddle Inference model to run in Arm® Cortex®-
Inference model target machine M55 using Arm
code using TVM Virtual Hardware

- How to prepare a PaddlePaddle trained model with PaddleOCR(GitHub) dev kit
- How to export the PaddlePaddle trained model to PaddlePaddle inference model

- How to use TVMC to compile PaddlePaddle inference model for target device
- How to build the application and deploy/test it on Arm Cortex-M55 using AVH
14 © 2023 Arm qrm

https://github.com/PaddlePaddle/Paddle
https://github.com/PaddlePaddle/PaddleOCR

arm

/
VOICES On 'arm
J

PaddleOCR Overview

O]

arm

Content

-- Background Overview
- What is OCR?

- Typical industrial OCR application scenarios.

- Challenges of OCR application.

-- PaddleOCR Development Kit
- PaddleOCR Overview
- PP-OCRv3

-- Model Adaptation and Transfer
- Network adaptation
- Model training
« Model export
 Pre and post processing

© 2023 Arm

(

P E

A
7N

PaddleOCR

What is OCR?

OCR means Optical character recognition

-- Extract text from images.

-~ Free human beings from repetitive work.

Dive into OCR Dive into OCI

2. The end-side application requires that the OCR model is light enough and its recognition speed is fast
enough. OCR is often deployed on mobile terminals or embedded hardware. There are generally two modes

-side application requires that the OCR model is light enough and its recognition speed is fast

Eiot depToyel v sab [T fersloaly o sebpdisd Fardiase: Tiscg ece gane rally two modes

1:41

e direct recogaliion.

g that the

eIl T

o s RIgher Tequirement it the server Is under

ek pressure wIth Targe request volumes. and That there sy be Securlty FIsks In data tramalsslon. we hop 1o

Pdopt_the Tatter method. However, the storage space and compuling power of the terminal side are Iimited,

fire high requircments for the sizc and inforence spood of the OCK mod

fiode1
kpeed

[Figure 5: Tochnical chalenges of OCK applicatio]

3.2 OCR Cutting-edge Algorithms 8.2 OCR Cutting-edge Algorithms

Although OCR is relatively specific, it involves many aspects of vies, includi detection, text [FTShGI OCK T reTatively speeific, Tf Tnvolves many aspeets of technologies, Tneludlng Text deteetlon, text Tecomiilon
end-to-end text recognition, document analysis. 0 0 -ademic research on related technologies of OCR flou nd-to-end text recognition, document analysis. and so on. Academic research on related technologies of oCR fiot
part will briefly i in the OCR task: he following part will briefiy introduce some several key technologies in the OCK

3.2.1 Text Detection

B.2.1 Text Detection

‘The text detection task is to locate text regions of the input image. In recent years, there are much academic research i taztrdetont ioninsk turioslooateFinxtorag lonnrets thws Taput age o zovent yessar Hhareraremuclsacadonter]

pr_toxt dotection. A class of methods rogard fext detociion as a spec Tic scone in target dotection. and modily

rget deteciion algori thus Tor text deteciion For cxample. TextBoxes[1] is hased on one-siage largel detector
T 3

DBNei[7] and so on.

17 © 2023 Arm

HERERSEW voe

BiEs: T xHkkKdkkkkkk KKK DT

PRIE
ZEIGNAIE 0 X @
RN AY gﬁ@)&@?ifﬁiﬁiﬁﬁ

IRER AR 8]

2022-05-10 05:12:4
4

AEEMERER

AEFRES ERSEMSUNMRHENERIRERBRERN.

all 4G @)

11:41 146 c

BREE RS ER

’W 3 Tswsokokkodookokokokok) 7 ‘

FARE

B TH 0RO

BREWAE | (FERE¥RBXE |

B E 2022-05-10 05:12:4 |
E]

FHERATTRARE TR RE W |

ARTRESERZARBNNARENRAREATAFHA. |

arm

Typical Industrial Application Scenarios of OCR

Information extraction, entry and review of card, certificate and bill, factory automation,
electronization of hospital and other documents, online education, etc

18

((88. com

62G079301 i)E’C%

POI3F06A07THIL:00% | [B%F08F% |
EEa A | 616K p ?ﬁi
Egas | Bk | R

ShangllaillongQiao

¥553007C |

FIFX | S 50

EErL

T
610-0010-8206-08G0-7930-1 foik g

{8 LRI

[RS S LSGOFSIWBCHOBB44S
®
| &

455 SOMT2TATA

5 2.384L
| 2

Gl EHERPARD

ERIRFIRG: LSCOF53WSCH066445
EERF: SCHT2ATATA

PERESESHAETES SHITEATESLOHAR PEMBRoMNBE A BT RRANBELATR
CPRBITEM
TR TIRER XS SMETET (2016) 18 fTREMEES T FREMAT (2016) 1F
[THEE
m PRELS FERBENSH 5 E¥ FERRERTT
EZERBA (£ £ i 3
Z% T (maw) uy | M
HEBEEAXHEFROHAT K =
3 A N S
e (€ 3: D) e
T\ RENEREE) B FEARAREEREY ¥
+&: (BEARFFERRT F#: (PHFARAGEMRT

EEFETER Aot ¥
FoEE T

35048119

EEFE: 10-08-0711: 28 ﬁrmsﬂ-’.{

e B

[7: 10-08-0611: 23
o 5 B G I I

BERLCREZ RTINS

TEUL TR B &) GREHR (2012) 286
B8) . (FEBAREHLTX
FRTRRZCRILERFAR
FoRagEm) (MEHR

2011) 206%)
AT BT R
| HEBTAEENEER o
© 2023 Arm

arm

Typical Industrial Application Scenarios of OCR

-- Video scene (text in the video: subtitles, titles, advertisements, bullet screens, etc.)
- Text based content: subtitle translation, content security monitoring, etc.
- Combined with visual features: video understanding, video retrieval, etc.

1. Mk Video understanding

2. BIRAR : .

isilen Video retrlevc?ll |

4. BT, ANEEME—I30% LA EAOTIAR # Content monitoring
B ¢/NBEE R R i, TE S : i

2 I;:HMAE,O%J\;AL ik, IE RS subtitle translation

7. BREMN—

0 " L L d=

| D 7. A L !
this;round;isireallytheidecisive,oneiferboth

[Image Source: The picture is from the network]

19 © 2023 Arm q rm

Challenges of the Implementation of the OCR Industry

Difficult to Dliatenliyy i

Not applicable data

Can't find optimize too

Can't select to industrial many problems acquisition and

scenarios annotation

* Requirement: no Academic models * High cost of verifying * High data acquisition
open-source project mainly pursue model various optimization cost for specific
can be found accuracy methods scenarios

* [tem: no key e Lack of prediction * Frequently go astray * Intense presence of
algorithm can be time limits in practice from training to text in images
selected deployment

20 © 2023 Arm q r m

arm

Content

-- Background Overview
- What is OCR?

- Typical industrial OCR application scenarios.

- Challenges of OCR application.

-- PaddleOCR Development Kit
- PaddleOCR Overview
- PP-OCRv3

-- Model Adaptation and Transfer
- Network adaptation
- Model training
« Model export
 Pre and post processing

© 2023 Arm

(

P E

A
7N

PaddleOCR

PaddleOCR Panorama — Overview

Application

Deployment

Industrial
models and
solutions

Algorithms

22 © 2023 Arm

Training mode

« Watt hour meter
+ License plate

+ Forms
« Bills

Training Env.

PP-OCR: Ultra-lightweight OCR System &

« PP-OCRv3: detection + direction classifier +
recognition =17.0M

+ English & numbers model: applicable to scenarios
which only contain English and numbers.

« Multilingual models: support 80 languages
including Korean, Japanese, German, French, etc.

Text Detection Text Recognition End-to-end

EAST + CRNN PGNet
- DB + SRN
« SAST * NRTR
+ PSENet + SVIR
« FCENet « ABINet

« Handwriting
+ Formula

Compression

« laboratory test Community

report « Official discussion group

Inference and Deployment + Contributor Honor Wall

« Comprehensive OCR

PP-Structure: Structured Document technology

Analysis System &

+ Support layout analysis

« Support table recognition (support export
to Excel)

+ Support KIE (including semantic entity
recognition & relation extraction)

+ Support layout recovery

+ Support PDF to Word

I

I

I

I

I

I

: + Theory + Practice
I+ Notebook interactive
I

I learning

I

I

+ Teaching video

Data tools

« Semi-automatic data

Layout Analysis
+ Layoutparser

Key Information Extraction annotation tool:

« PP-Picodet « SDMGR PPOCRLabel
- + LayoutLM .

Table Recognition LayoutLMv2 + Data synthesis tool:

+ TableRec-RARE | LavoutXLM

+ TableMaster v Style-Text

. SLANet VI- LayoutXLM

B o o o - - - e . e - - - -

» Normal * Linux GPU/CPU + Pruning + Python/C++ Inference . Arm CPU + Regular season challenge
« Distributed + Linux DCU « Quantization =+ Python/C++ Serving . Jetson
+ Mixed Precision =+ Windows GPU/CPU - Distillation - OpenCL ARM GPU O
+ macOS + Paddle20ONNX E-book: Dive into OCR
+ PaddleCloud

PP-OCRv3 Framework

-~ Text detection

- LK-PAN: PAN structure of large receptive field

- DML: Teacher Model Mutual Learning Strategy

- RSE-FPN: FPN Structure of Residual Attention Mechanism

-~ Text recognition
SVTR_ LCNet: Lightweight Text Recognition Network
GTC: Attention guides CTC training strategy

) . .. Text Detection Detectlon Boxes Text Recognition T
TextConAug: Data Augmentation Strategy for Mining Text Context M"

ODM OEM

' | o | et
t .
Information Dot : Raw
) . . e o tming . Do Augmentation - Ut Bep Mt e
- TextRotNet: Self-supervised Pre-trained Model bk el e
Guided Training of CTC
. . Residual SE-FPN TextConAug
- UDML: Joint Mutual Learning Strategy L B g il mages ing
° U I IVI : u n Ia be I ed d ata m I n I ng SC h e m e PP-t(i):va3 + Uniform Quantization | « PACT Quantization

-- Model advantages

- High precision, 5% higher than PP-OCRv2 for Chinese scenes

- Fast inference speed with the single CPU taking 331ms.

- Small model, detection (3.6M)+direction classifier (1.4M)+recognition
(12M)=17.0M -> adaptive version recognition model 2.7M

23 © 2023 Arm q r’ m

arm

Content

-- Background Overview
- What is OCR?

- Typical industrial OCR application scenarios.

- Challenges of OCR application.

-- PaddleOCR Development Kit
- PaddleOCR Overview
- PP-OCRv3

-- Model Adaptation and Transfer
- Network adaptation
- Model training
« Model export
 Pre and post processing

© 2023 Arm

(

P E

A
7N

PaddleOCR

Model Adaptation

Configure to remove unsupported operators and retrain the model with the PaddleOCR kit

Operators and external libraries used in PP- Operators supported by CMSIS-NN

OCRv3 English text recognition model (updating)
-~ Backbone: -~ For more information, please visit
- Conv https://github.com/ARM-software/CMSIS-NN
’ FU”y ConneCted Cc C DSP DSP MVE MVE
. Operator
° Pool | ng int8 int16 int8 int16 int8 @ int16
° Soft maX Conv2D Yes Yes Yes Yes Yes Yes
° B N DepthwiseConv2D Yes Yes Yes Yes Yes Yes
N R e I u Fully Connected Yes Yes Yes Yes Yes Yes
| N k Add Yes Yes Yes Yes Yes Yes
| ecK: Mul Yes Yes Yes Yes Yes Yes
- LayerNorm (Not supported) .
MaxPooling Yes Yes Yes Yes Yes Yes
:k LSTM (NOt Supported) AvgPooling Yes Yes Yes Yes Yes Yes
note: Not su pported means the operators are S | e | Ve o .
not supported as front-end operators for TVM.
LSTM No No No No No No

25 © 2023 Arm a r m

https://github.com/ARM-software/CMSIS-NN

Model Adaptation

PaddleOCR uses configuration files to control network training & evaluation parameters.

Original configuration file — GitHub Adjusted configuration file — Blog

: MobileNetV1Enhance

o : MobileNetV1Enhance

()5

1 avg

: MultiHead

: SequenceEncoder

: reshape

: CTCHead
: 96
: 0.00002

26 © 2023 Arm q r m

https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml
https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/how-to-deploy-paddlepaddle-on-arm-cortex_2d00_m-with-arm-virtual-hardware

Model Optimization

The model optimization part uses BDA (Base Data Augmentation), which includes multiple
basic data enhancement methods such as random clipping, random fuzzy, random noise,
image color inversion, etc.

Original image Random clipping Random fuzzy

PAIN .0

Random noise Image color inversion

27 © 2023 Arm q r' m

Model Training

-- Dataset: Online open-source datasets MJSynth and SynthText (MJ+ST)

-~ Training Command:

python tools/train.py -c configs/rec/simple net.yml -o \

Global.save model dir=output/rec/ \
Train.dataset.name=LMDBDataSet \
Train.dataset.data dir=MJ ST \
Eval.dataset.name=LMDBDataSet \

Eval.dataset.data dir=EN eval
- Note: modify the dataset location and model file save location respectively based on your need.

-- Help Guide — Refer to the documents for more information on model training with
PaddleOCR development kit.

28 © 2023 Arm q rm

http://www.robots.ox.ac.uk/~vgg/data/text/
http://www.robots.ox.ac.uk/~vgg/data/scenetext/
https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/training.md

Model Export and Function Verfication

-- Export PaddlePaddle inference model
- We must export the trained text recognition model to a Paddle inference model that we can compile to
generate code which is suitable to run on a Cortex-M processor.
- Use the following command to export the Paddle inference model. We need manually modify the
output shape to [3,32,320].

python tools/export model.py -c configs/det/ch PP-OCRv3/ch PP-OCRv3 det student.yml -o \

Global.pretrained model=output/rec/best accuracy.pdparams \

Global.save inference dir=output/rec/infer

-- Verify the model inference effect on PC
« You can use PaddleOCR toolkit to verify the model inference effect. Visit the documents to learn how
to verify the results.

python3 tools/infer/predict rec.py \

—--image dir=./doc/imgs words/ch/word 4.jpg \

—--rec _model dir=output/rec/infer

29 © 2023 Arm q rm

https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.5/doc/doc_ch/inference_ppocr.md

Pre and Post Processing

-~ Pre-Processing
- To ensure the picture you use is in right shape,
you can refer to the script for pre-processing.

-~ Post-Processing

- Clanguage coding is required according to
specific tasks.

- For this example, the model is OCR English
recognition model, so only post-processing of
the recognition model is included.

- Post recognition processing: for the output of
the model, shape is B * W * N, Where W is the
maximum recognized character; N is the size of
the dictionary; B is the batch. Post-processing is
to find each recognized character on W.

30 © 2023 Arm

printf(“text: ");

for (int 1 = 0; i < char_nums; i++) {
int argmax_idx = 0;
float max_value = 0.0f;

for (int j = @; j < char_dict_nums; j++){
if (output[i * char_dict_nums + j] > max_value){
max_value = output[i * char_dict_nums + j];
argmax_idx = j;

}

}

Calculate the
characters of
each step.

if (argmax_idx > @ & (!(i > @ && argmax_idx == last_index))) {

score += max_value;
count += 1;

// printf("sd, %f, %c\n", argmax_idx, max_value, dict[argmax_idx]);

printf("sc", dict[argmax_idx]);
}
last_index = argmax_idx;
b
score /= count;
printf(", score: %f\n", score);

arm

https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH/blob/main/OCR-example/convert_image.py

arm

VOICES ON Gy

ﬂ -

Compile Model with
TVMC

MicroTVM: TVM on bare-metal

Learn more about Apache TVM at https://tvm.apache.org/

- TVM is an open-source Deep Learning Compiler Stack that closes the gap between the
productivity-focused deep learning frameworks, and the performance-oriented or
efficiency-oriented hardware backends.

= MicroTVM runs TVM models on bare-metal (such as 1oT) devices

@ [d <’ .
7°P &R TVM complier
e e e e e e e e e e e e e 1
L r~ | |
| : ;
Optimize Generate tvm | | Built together with
O _:_, iﬁ/lnoier!c » Operators » target library — application code
| P (Auto TVM) eg. ¢/llvm : 1
@] | L
l ! Y
| Relay Module Tensor IR Csource code | -
@ | (High-level IR) (Low-level IR) , Arm Virtual Hardware
[|
| |
|

32 © 2023 Arm q rm

Devices Fleet

https://tvm.apache.org/

PaddlePaddle as TVM Front-end

Refer to the guide to learn more about how to compile PaddlePaddle models using TVM

-~ PaddlePaddle is officially supported as TVM front-end in TVM v8.0 releasement!
- Support 120+ operators and 100+ models.

-~ Future Plan:

« Support 200+ operators.

- Support stream operator.

- Support models quantized by PaddleSlim.

import paddle import paddle

import paddle.vision.models as models from tvm import relay

model = models.renset50(pretrained=True) model = paddle.jit.load(“./inference/model”)

model.eval() mod, params = relay.frontend.from paddle(model)

save model as static model

input_spec = with tvm.transform.PassContext(opt_level=3):

paddle.static.InputSpec(dtype="float32", lib = relay.build(mod, target,
shape=[None, 3, 224, 224], name="image") params=params)

paddle.jit.save(model, "save dir/model",
[input_spec])

33 ©2023Am Export the model Compile the model with TVM IR (Relay) arm

https://tvm.apache.org/docs/how_to/compile_models/from_paddle.html

Offloading to CMSIS NN

Learn more about CMSIS NN at https://github.com/ARM-software/CMSIS-NN

-— CMSIS NN software library is a collection of efficient neural network kernels developed

to maximize the performance and minimize the memory footprint of neural networks

on Arm Cortex-M processors.
-- Using CMSIS NN with TVM

- TVM allows for partitioning and code
generation using an external compiler.

- Partitioned subgraphs containing operators
targeted to Cortex-M can then be translated
into the CMSIS NN C APIs.

-~ Learn more about CMSIS NN and TVM

integration details at GitHub.

- Supported operators(updating) can be found
in the script.

34 © 2023 Arm

TVM_DLL int32_t

tvmgen_detection_cmsis_nn_main_2(int8_t* input_, int8_t* filter_, int32_t* multiplier_,
int32_t* filter_scale_, int32_t* bias_, int32_t* input_scale_,
int32_t* shift_, int8_t* output_,
uint8_t* global_workspace_3_var) {

cmsis_nn_context context = {NULL, ©};

cmsis_nn_tile stride = {1, 1};

cmsis_nn_tile padding = {©, ©};

cmsis_nn_tile dilation = {1, 1};

cmsis_nn_activation activation = {-128, 127};

cmsis_nn_conv_params conv_params = {128, -128, stride, padding, dilation, activation};

cmsis_nn_per_channel_quant_params quant_params = {multiplier_, shift_};

cmsis_nn_dims input_dims = {1, 48, 48, 8};

cmsis_nn_dims filter_dims = {16, 1, 1, 8};

cmsis_nn_dims bias_dims = {1, 1, 1, 16};

cmsis_nn_dims output_dims = {1, 48, 48, 16};

arm_status status =

arm_convolve_wrapper_s8(&context, &conv_params, &quant_params, &input_dims, input_,
&filter_dims, filter_, &bias_dims, bias_, &output_dims, output_);
if (status != ARM_MATH_SUCCESS) {
return -1;

}

return ©;

arm

https://github.com/ARM-software/CMSIS-NN
https://github.com/apache/tvm-rfcs/blob/main/rfcs/0015_Arm_CMSIS-NN_Integration.md
https://github.com/apache/tvm/blob/f6f7feafb297993f5f035de7f814407a2b876967/python/tvm/relay/op/contrib/cmsisnn.py

TVMC -TVM Command Line Driver

-- TVMC is a Python application. When you install TVM using a Python package, you will
get TVMC as a command line application called tvmc that exposes TVM features such as

auto-tuning, compiling, profiling and execution of models through a command line
interface_ python3 -m tvm.driver.tvmc compile --target=cmsis-nn,c \

35

--target-cmsis-nn-mcpu=cortex-m55 \

Example — The command will: --target-c-mcpu=cortex-m55 \

--runtime=crt \

Offload operators to CMSIS-NN, falling back to C code. __executor=aot \

Set target device to Cortex-M55. --executor-aot-interface-api=c \

Use aot (Ahead Of Time compiltaion) as executor to --executor-aot-unpacked-api=1 \

compile the model. --pass-config tir.usmp.enable=1 \

The model file path is under ocr_en/inference.pdmodel --pass-config tir.usmp.algorithm=hill climb \
The model is in PaddlePaddle format --pass-config tir.disable_storage_rewrite=1 \

--pass-config tir.disable vectorize=1 \
ocr_en/inference.pdmodel \
--output-format=mlf \

The output format is Model Library Format (only for
microTVM targets)

The output package will be named as rec.tar under - -model-format=paddle \

current directory --module-name=rec \

For more descriptions of each parameter, use tvmc --input-shapes x:[1,3,32,320] \
compile --help to check. --output=rec.tar

© 2023 Arm q rm

https://discuss.tvm.apache.org/t/implementing-aot-in-tvm/9206

arm

VOICES ON Gy

Deployment on Arm
Virtual Hardware

Arm Virtual Hardware

Enabling Software-Hardware Co-Design to Accelerate loT and ML Development.
Multiple modeling technologies

-~ Arm Virtual Hardware (AVH) scales and fitting a variety of use cases
accelerates loT software development by Arm Virtual Hardware
virtualising popular loT development kits Corstone and CPUs

& POP P . ’ Cloud-based models of Corstone
Arm-based processors, and systems in and Cortex-M processors for
the cloud. software development. Available

via AWS.

-~ Itis an evolution of Arm’s modelling
technology that removes the wait for Arm Virtual Hardware 3rd
hardware and the complexity of building PR R ITE e

. . . Cloud-based models of popular loT

and configuring board farms for testing. Sevelama i, fmelue i

I . peripherals, sensors and board

~ It enables modern gglle software components that are already in
development practices, such as DevOps production. Available via

and MLOps workflows. hypervisor technology.
37 © 2023 Arm qrm

Arm Virtual Hardware Corstone and CPUs

View Product Overview document to unlock more use cases

-~ Based on Arm Fast Model technology developed alongside Arm’s processor IP

-~ Precisely simulates instruction and exception behaviors

-- Offers test interfaces for the Open-CMSIS-CDI standard

-~ Runs on local hosted development systems as well as cloud-based ClI/CD configurations
-~ Provides a scalable and extensible platform through SystemC

-- Products included:

Corstone platforms: Corstone-300, Corstone-310 and Corstone-1000
Cortex-M processors: Cortex-MO, Cortex-M0+, Cortex-M3, Cortex-M4, Cortex-M7, Cortex-M23,
Cortex-M33

Note: You can check all supported virtual hardware under /opt directory

38 © 2023 Arm q rm

https://arm-software.github.io/AVH/main/overview/html/index.html

Prerequisite

Reference steps to launch an Arm Virtual Hardware Amazon Machine Image (AMI) instance

Stepl. Visit AWS Marketplace or
AWS China Marketplace. Subscribe
to AVH and continue to configure.

Arm Virtual Hardware

© arm Viral Hordware By: Arm(& Latest Version: Version 1.3.0

Accelerate Arm loT software development

Linux/Unix

sohdkk 1 AWS review

Continue to Subscribe

I Save to List

© armvidl vadwee - Arm Virtual Hardware

Continue to Configuration

*Note: you will need an AWS/AWS
China account as the prerequisite.
Register an AWS account at
https://aws.amazon.com.

39 © 2023 Arm

Step2. Choose region to deploy
(server region) and continue to
launch.

Fulfillment option

Continue to Launch

64-bit (x86) Amazon Machine Image (AMI) v
Software version

Version 1.3.0 (Sep 22, 2022) v
Region

US East (N. Virginia) v

[

Step3. Choose Launch from

Website"(default).

Launch this software

Review the launch configuration details and follow the instructions to launch this software.

Configuration details

Fulfillment option 64-bit (x86) Amazon Machine Image (AMI)
Arm Virtual Hardware

Software version Version 1.3.0

Region US East (N. Virginia)

Choose Action

Choose this action to launch from this website
Launch from Website v

Step4. Choose instance type, SSH
key pair and launch. Then use ssh-i

key pair ubuntu@public_ip to log
into the instance remotely.

EC2 Instance Type

Memory: 4 GiB
¢S.large v CPU: 8 EC2 Compute Units (2 virtual cores with 4.0 Compute Units

each)

Storage: EBS storage only

Network Performance: Up to 10Gbps

Key Pair Settings

To ensure that no other person has access to your software, the software installs on an EC2 instance with an EC2 key pair

that you created.
Select a key pair v o

Create a key pair in EC2 ('
} ' ’ Launch
(Ensure you are in the region you wish to launch your software)

Note:

1. Generally, “c5.large” instance
type is recommended. For this
example, you can try “t2.micro”
which is free tier eligible.

Others default choice is ok.

If you don’t have a key pair,
click “create a key pair in EC2"

to create one.
arm

w N

https://aws.amazon.com/marketplace/pp/prodview-urbpq7yo5va7g
https://awsmarketplace.amazonaws.cn/marketplace/pp/prodview-2y7nefntbmybu
https://aws.amazon.com/

Deploy PP-OCR Text

Recognition Model on
Arm Virtual Hardware

Demo Walkthrough

Build the application and deploy on Corstone-300 Platform (Cortex-M55 included)

-~ Fork and clone the sample code from GitHub. Navigate to the code path.

$ git clone https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH.git
(or from https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/deploy/avh)
$ cd Paddle-examples-for-AVH/OCR-example/

-- The run demo.sh script automates the entire process. It takes the following 6 steps to
help you automatically build and execute the English text recognition application on

Corstone-300 platform with Arm Virtual Hardware.
Step 1. Set up running environment.
Step 2. Download PaddlePaddle inference model.
Step 3. Use TVMC to compile the model and generate code for the Arm Cortex-M processor.
Step 4. Process resources for building the application image.
Step 5. Use the Makefile to build the target application.
Step 6. Run application binary on Corstone-300 platform integrated in AVH.

Note: If you are not able to use AVH AMI hosted in AWS, you can use --enable FVP to 1 to make the application

run on local Corstone 300 FVP binary (./run_demo.sh --enable FVP 1).
41 © 2023 Arm qrm

https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH.git
https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/deploy/avh
https://github.com/ArmDeveloperEcosystem/Paddle-examples-for-AVH/blob/main/OCR-example/run_demo.sh

Results

-- Test image: word_116.png

-- Inference results on PC:

- Predicts of path_to_word_116.png:('QBHOUSE', 0.9867456555366516).

-- Inference results on AVH:

42

telnetterminal5: Listening for serial connection on port 5000
telnetterminal2: Listening for serial connection on port 5801
telnetterminall: Listening for serial connection on port 5002 [- -
telnetterminal®: Listening for serial connection on port 5603 I
Ethos-U rev 136b7d75 -— Feb 16 2022 15:47:15 | Starting ocr rec inference
(C) COPYRIGHT 2019-20822 Arm Limited text: Ciliya, score: 0.9084513
ALL RIGHTS RESERVED l EXITTHESIM
| Info: /OSCI/SystemC: Simulation stopped by user.
i i I [warning J[main@B][@®1 ns] Simulation stopped by user
ltext: QBHOUSE, score: 0.986746'
| -—— cpu_core statistics:
Info: /OSCI/SystemC: Simulation stopped by user. I Simulated time 1 76.456830s
[warning J[main@B][@1 ns] Simulation stopped by user User time T 99.472250s
| System time : 0.010264s
-—— cpu_core statistics: T wWall time : 101.906402s
Simulated time 1 76.450841s Performance index : 08.75
User time 1 99.0866565s | cpu_core.cpu@ : 19.21 MIPS (1911428761 Inst)
System time : 0.009091s |
Wall time : 100.220747s e e e e e e e e e e e e e e e Y Y Y Y Y Y Y Y o
Performance index : 0.76
6Au_cors.cpus 19.29 MIPS (1911271031 Inst) Inference results of rough handwriting(AVH)

© 2023 Arm

arm

Next Steps

Join us to unlock more interesting use cases of PaddleOCR & Arm Virtual Hardware!

— i
J

- -
oy

000
ol = CCD

Register for free AWS EC2 Try the sample code in the Get in touch to learn more
Credits: tech talk and explore more wangkai65@baidu.com
bit.ly/AWS-Credits use cases in Arm Virtual Liliya.wu@arm.com
Hardware.
Questions?

43 © 2023 Arm

arm

https://www.arm.com/company/contact-us/virtual-hardware?utm_source=webinar&utm_medium=webinar&utm_campaign=2022_embdev_mk18_arm_na_na_awa&utm_term=brighttalk&utm_content=webinar
mailto:wangkai65@baidu.com
mailto:Liliya.wu@arm.com

arm Thank You

Danke
Tweet us: #ArmTechTalks Gracias

IR
View tech talks on-demand: HLHES
www.youtube.com/arm

Asante

Merci

Sign up for upcoming tech talks: 7 |‘A|-'<'5F |_|
I =

www.arm.com/techtalks

© 2023 Arm

© 2023 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) i
the US and/or elsewhere. All rights reserved. All other mar
featured may be trademarks of their respective ow

www.arm.com/company/policies/tra

