

arm

Optimizing Power and Performance for Machine Learning at the Edge:

Model Deployment Overview

Arm

Lingchuan Meng, Principal Engineer, Arm Naveen Suda, Principal Engineer, Arm

_ October 20, 2020

Al Virtual Tech Talks Series

Date	Title	Host			
October 20, 2020	Optimizing Power and Performance For Machine Learning at the Edge - Model Deployment Overview	Arm			
November 3, 2020					
November 17, 2020	The Smart City in Motion - AI in intelligent transportation	Clever Devices, NXP Semiconductor, Arcturus			

Presenters

Lingchuan Meng, Principal Engineer, Arm

Naveen Suda, Principal Engineer, Arm

ML on the Edge - Challenges

- Edge device constraints for deploying ML algorithms
 - Limited memory
 - Flash (32 kB few MB)
 - SRAM (16 kB 512 kB)
 - Limited compute capability (100 MHz 1 GHz)
- Hardware/software features
 - Compression HW: pruning, clustering, etc.
 - Mixed precision: 8-bit, 16-bit, etc.
 - Algorithmic: Winograd, etc.
 - Layer fusion: conv-add-pool-relu, etc.

ML solutions = Model Optimization \rightarrow Software \rightarrow Hardware

End-to-end Technology Exploration

Model Deployment Optimizations

Deployment Optimization Flow

Overview of Technologies

Optimization Results

Model	Sparsity	Accuracy Δ			
Inception V3	50%	+0.1%			
ResNet 50	50%	+0.7%			
VGG 16	50%	+1.6%			
MobileNet V1	50%	-0.9%			
Wav2Letter	50%	-1.34%			
DS-CNN Large	80%	-0.5%			

unstructured pruning

Lingchuan Meng, et al. "Neural Network Optimizations for On-Device AI" Embedded World Conference (2020).

Overview of Pruning Techniques

Magnitude Pruning

Song Han, et al. "Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding" arXiv: 1510.00149 (2015).

Channel Pruning

Yihui He, et al. "Channel Pruning for Accelerating Very Deep Neural Networks" <u>arXiv: 1707.06168</u> (2017).

Structured Pruning

Sajid Anwar, et al. "Structured Pruning of Deep Convolutional Neural Networks" arXiv: 1512.08571 (2015). Jeff Pool, "Accelerating Sparsity in the Nvidia Ampere Architecture" GTC 2020

Pruning

- Inducing sparsity to overly-parametrized models
 - Improve model compression and computation efficiency
- Structure
 - Unstructured: irregular locations of zeros
 - Structured: pre-defined patterns of zeros
- Spatial granularity
 - Layer / filter / kernel / weight
 - Compressibility vs. acceleration
- Techniques
 - Magnitude / Variational dropout / Regularization
- Challenges
 - Accuracy degradation
 - High sparsity → better performance?

Pruning – Key Concepts

Pruning schedule

- Pruning induces damages to model
- Increase sparsity gradually
- Strategies: inverse power/linear/cosine

Distribution of sparsity

- Not all layers are equal
- Uniform: same sparsity for all layers
- Reinforcement-learning (RL)

Hardware-aware hyper-parameter tuning

- Tuning for a single optimization
- Joint tuning for multiple optimizations

model

Hyper-Parameter Tuning

Deterministic

- Uniform
 - Same sparsity for all prunable layers
- Heuristic
 - Per-layer target sparsity: $\alpha \cdot \log |var_i|$

$$\alpha = \frac{pr \cdot \sum |var_i|}{\sum (|var_i| \cdot \log |var_i|)}$$

Dynamically increase pruning ratio during training

$$\overline{pr} = pr \cdot (1 - \left(1 - \frac{t - t_0}{n\Delta t}\right)^3)$$

Michael Zhu, et al. "To prune, or not to prune: exploring the efficacy of pruning for model compression" arXiv: 1710.01878 (2017).

Jiaxiang Wu, et al. "PocketFlow: An Automated Framework for Compressing and Accelerating Deep Neural Networks" https://openreview.net/pdf?id=H1fWoYhdim (2018)

Reinforcement Learning

Yihui He, et al. "AMC: AutoML for Model Compression and Acceleration on Mobile Devices" arXiv: 1802.03494 (2018).

Hardware-Aware Hyper-Parameter Tuning

- Optimizing for accuracy + hardware metrics
 - HW metrics: latency, compression, bandwidth ...
 - Multi-objective reward/fitness functions
 - Joint tuning for multiple optimizations
 - Larger search space and better results

Convolution with Sparse Tensors

- Accelerating sparse matrix multiply
 - Sparse weights + dense activations
 - Dense math primitives → sparse primitives
 - Vector loads of activations
 - Randomly-accessed values cached in L1
 - Prefetching activations to reduce cache misses
 - Block-structured sparsity for additional speedup

	Model	Width	Top-1	Mega FLOPs	Mega Params	Time SD835	Time SD670	Time Wasm
MBv1	Dense Sparse	1.0	70.9 72.0	1120 268	4.30 2.28	125 58	106 64	271 97
MBv1	Dense Sparse	.75 1.0	68.4 68.4	636 146	2.59 1.48	73 31	64 34	170 56

Erich Elsen, et al. "Fast Sparse ConvNets" arXiv: 1911.09723 (2019).

Algorithmic Optimizations

Complex-domain Winograd

	VGG 16	ResNet 18	GoogleNet	SqueezeNet
Speedup vs NCNN 2x2	94.55%	21.13%	12.82%	8.86%

- Lingchuan Meng, et al. "Efficient Winograd Convolution via Integer Arithmetic" arXiv: 1901.01965
- NCNN: https://github.com/Tencent/ncnn

8-bit Winograd

Quantization

- Storing and computing with tensors at lower bitwidths
 - Typically FP32 -> INT8: $x_{FP32} = scale \cdot (x_{INT8} zero_point)$
 - 4x savings in model size and memory bandwidth
 - Inference speedup: 2-4x
 - More aggressive quantization in active research
- Granularity: per-layer vs. per-channel
- Symmetric vs. asymmetric
 - Weights: symmetric with zero_point=0
 - Activations: asymmetric
- Finding optimal quantization ranges
 - Balancing range vs. resolution
 - Techniques: minimize Quantization error, KL-divergence, etc.

Quantization Workflow

Quantizing Activation Nodes

- Simulate quantization in forward pass.
- Straight-through-estimator (STE) in backward pass during QAT.

Mixed-Precision Quantization

- Some layers are less sensitive to aggressive quantization.
- How to find the optimal bit-width per layer?
- A solution: Sensitivity-based mixed precision quantization
 - Find lowest bit-width without significant accuracy drop.
 - Consider the cascaded effect of quantization error from layer-to-layer.
 - Start from the largest layer, so it is compressed the most.

Mobilenet V2

- Average bitwidth: 4.5 bits
- 2% accuracy drop (without retraining)
- Fine-tuning recovered 1.5% accuracy

Clustering: Non-Uniform Quantization

- Non-uniform quantization yields smaller quantization error than uniform quantization.
- Better weight compression especially for large layers.
- K-means clustering algorithm to find initial cluster centroids.
- Fine-tune the cluster centroids with clustering constraints in the graph.
- Preserve sparsity during fine-tuning using sparsity masks.

Collaborative Optimizations

Model Architecture Optimizations

Efficient Network Building Blocks

- Arithmetic reduction by operator decomposition/approximation
 - Depthwise convolution Mobilenet-V1
 - Inverted bottleneck with residual Mobilenet-V2
- Operator sparsification
 - sparsity → performance?
 - Replace dense ops with sparse ops
- Asymptotically-faster operators
 - Winograd convolution
 - FFT

Efficiency is Target-Specific

- Hardware utilization matters!
 - Inverted bottleneck conv block
 - Fused inverted bottleneck conv block
 - 1x1 conv + 3x3 depthwise -> 3x3 conv
 - More trainable parameters
 - Better HW utilization (hence a good latency-accuracy trade-off)
 - 3x3 vs. 5x5 convolution
 - 5x5 convolution leads to 2.78x
 increase of MACs and parameters
 - Only a 35% runtime increase
 - Good trade-off for more trainable parameters at a marginal latency cost

Gupta, Suyog, and Berkin Akin. "Accelerator-aware Neural Network Design using AutoML." *arXiv preprint arXiv:2003.02838* (2020).

Efficiency is More than Conv/FC

- Layer normalization and Gaussian Error
 LU (GELU) impact latency
- Layer normalization replaced by elementwise linear transform
 - $NoNorm(h) = \gamma \circ h + \beta$
- GELU replaced by ReLU

	#Porome #FI OPS		LOPS Latency	CoLA	SST-2	MRPC	STS-B	QQP	MNLI-m/mm	QNLI	RTE	CLUE
	πi ai ailis	#FLOIS	Latency	8.5k	67k	3.7k	5.7k	364k	MNLI-m/mm 393k	108k	2.5k	GLUE
MobileBERT _{TINY}	15.1M	3.1B	40 ms	46.7	91.7	87.9	80.1	68.9	81.5/81.6	89.5	65.1	75.8
MobileBERT	25.3M	5.7B	62 ms	50.5	92.8	88.8	84.4	70.2	83.3/82.6	90.6	66.2	77.7
MobileBERT w/o OPT	25.3M	5.7B	192 ms	51.1	92.6	88.8	84.8	70.5	84.3/ 83.4	91.6	70.4	78.5

Lower is better

Higher is better

© 2020 Arm Limited

Hardware-aware Neural Architecture Search (NAS)

- Diversity in ML Hardware CPUs, GPUs and NPUs
 - Different programming models, compute capabilities, memory organization
 - Same neural network architecture cannot map efficiently across multiple HW
- Awareness of the target HW architecture by NN architectures
 - Hand tuning model architectures
 - Automated neural architecture search (NAS)
- Search objectives
 - Latency proxies: # MACs, # parameters (NASNet)
 - Hardware performance model (MNASNet, ProxylessNAS, FBNet)
- State-of-the-art models searched by NAS
 - MobileNet v3, FBNet, EfficientNet, MobileBERT

NAS – Key Concepts

Search space

- Chain-structured
- Architecture template
- Cell-based
- Search strategy
 - Reinforcement learning
 - Gradient-based methods
 - Evolutionary algorithms
 - Random search with rejection sampling
- Performance estimation
 - Accuracy estimation
 - Latency estimation

NAS Search Space

Chain-structured

Architecture template

Cell-based

arm

Summary

- Resource constraints and diverse SW + HW features require co-development
- Model optimizations bridge the gap between models + SW + HW
- Efficient building blocks and architectures for higher accuracy and performance
- NAS efficiently navigates in design spaces to automate model design
- New opportunities in joint optimization of NAS, pruning, and quantization

Questions?

Thank you!

Tweet us: <u>@ArmSoftwareDev</u>

Check out our Arm YouTube <u>channel</u> and our Arm Software Developers
 YouTube <u>channel</u>

Signup now for our next Al Virtual Tech Talk here

Don't forget to fill out our survey to be in with a chance of winning an Arduino

Nano 33 BLE board

arm

Thank You Danke Merci 谢谢 ありがとう Gracias

> * Kiitōs ·사합니다 धन्यवाद

> > شکِرًا

תודה