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January 25, Peaks, Valleys and Thresholds: The art of segmenting real-time sensor data for tinyML .
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2022 fast is fast? Deeplite
February 22, * New Arm ML Quarterly Research Special *
. . . . Arm MLR h
2022 Federated Learning Based on Dynamic Regularization to Debias Model Updates m esearc

Visit: www.arm.com/techtalks
3 © 2021 Arm

arm



Presenter

* Contribute to enabling a successful developer
experience with Arm-based technology

* Demonstrated multiple applications using deep learning
focusing computer vision

* Enjoy working on hardware, software, and algorithms
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Koki Mitsunami

Staff Engineer @ Arm
Cambridge, UK
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Agenda

° |ntroduction

 Purpose of this talk
- PyTorch
- Android NNAPI

* PyTorch Mobile with NNAPI
- Workflow
- Benchmark Conditions
- Execution Time Comparison
- Profiling by Streamline

* Summary
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Purpose of this talk

* Introduce PyTorch Mobile with Android NNAPI

- One way of deploying ML models into mobile devices

* Provide examples on how ML models are executed
on mobile devices through PyTorch with NNAPI
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PyTorch

* PyTorch has become popular Deep Learning framework
- Wide range of supported operators
- Ease of writing
- A lot of activity for production

Paper Implementations grouped by framework

100%
75%

50%

Share of Implementations

25%
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Android Neural Networks APl (NNAPI)

* CAPI designed for running ML models
- Provide a base layer of functionality
- Perform hardware-accelerated inference
operations on supported devices

Machine Learning Framework/Library

v

* Typically used by ML frameworks

- Apps would not use NNAPI directly : :
- Apps would use ML frameworks Android Neural Networks Runtime

________ Android NNAPI |- - — _ _ _ _ __

Vendor NN Drivers
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Android NNAPI support is now available in Beta

Announced in PyTorch 1.10 Release
rone) s > suve

Prototype (Nov 2020) | ~> Beta (Oct 2021)

 NNAPI with the PyTorch framework e Additional operator types

* Android 10+ * Support for load-time flexible shapes
* Linear Convolution models * Run models on host for testing

e Multi-Layer Perceptron models

o © 2021 Arm https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/ a rm
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PyTorch Mobile

Mechanism to run ML models on mobile
- Provides end-to-end workflow within PyTorch ecosystem

- Support for Arm CPU/GPU and hardware accelerators
via XNNPACK/QNNPACK, Vulkan, and NNAPI

* TorchScript format

10

- Intermediate representation (IR) of a PyTorch model
— includes code, parameters, attributes, and debug information

- Can be run in a high-performance environment such as C++
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TorchScript example

Float(3, 10), %1 : Float(3, 20), %2 : Float(3, 2
Float(80, 10) %4 : Float(8e, 20),
Float(80), %6 : Float(80)) {

loat(10!, 80!) = aten::t(%3)

int[] = prim::ListConstruct(3, 80)

Float(3!, 80) = aten::expand(%5, %10, 1)
Float(3, 80) = aten::addmm(%12, %0, %7, 1, 1)
Float(20!, 80!) = aten::t(%4)

int[] = prim::ListConstruct(3, 80)

Float(3!, 80) = aten::expand(%6, %19, True)
Float(3, 80) = aten::addmm(%21, %1, %16, 1, 1)

: Float(3, 80) = aten::add(%15, %24, 1)

Dynamic[] = aten::chunk(%26, 4, 1)
Float(3!, 20), %31 : Float(3!, 20),
Float(3!, 20), %33 : Float(3!, 20) = prim::ListUng
Float(3, 20) = aten::sigmoid(%30)
Float(3, 20) = aten::sigmoid(%31)

: Float(3, 20) = aten::tanh(%32)
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Workflow for PyTorch Mobile with NNAPI

11

A o

Example)

Create/prepare a model in PyTorch
Quantization (optional)

Convert to TorchScript

Optimize for Mobile (optional)
Convert to NNAPI-compatible model

Save the model

- Treat as a TorchScript model

- For applications already using PyTorch Mobile,
no code changes are required

© 2021 Arm

Prepare a pre-trained quantized model

.mobilenet v2 \
(pretrained= , quantize=True)

Convert to TorchScript

input_tensor = input_tensor.contiguous\
(memory_format= .channels last)

input_tensor.nnapi_nhwc =

traced = .trace(model, input tensor)

Convert to NNAPI model

nnapi_model = . . . <\
convert_model_ to_nnapi(traced, input_tensor)

Save the model

nnapi_model. save_for_lite_interpreter\

( )

Deploy the model to mobile

arm



Experiments - PyTorch Mobile with NNAPI

MobileNet v2

Model Generation Flow

e ML Model PyTorch Model

- MobileNet v2
— CPU models with Float32 and Int8 o
— NNAPI models with Float32 and Int8 Quantization

A 4

Convert to TorchScript

* Mobile devices

- 8 mobile devices
— 2 for Android 11

- 6 for Android 10 l l
e Execution time Optimize for CPU Convert to NNAPI Model
« Avg time over 200 iter l l l

CPU Model

CPU Model
with Float32
12 © 2021 Arm a rm
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NNAPI Speed-up on Various Devices

* Speed increase varies from device to device

- Faster processing with the use of NNAPI on many devices 11.47
(As of April 2021)
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Profiling with Streamline Performance Analyzer

* Arm Streamline allows you to see CPU and GPU activity inside device
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Streamline Profiling with NNAPI Models (Device 1)

* NNAPI selects most performant hardware
« GPU is used for Float32, while multi-core CPU is used for Int8

NNAPI Model with Float32 NNAPI Model with Int8

B Timeline & Call Paths| ® Functions & Code % Log 1Code ¥ Log
NI & &S 100ms~ ¥ 14.881s

Os 3 5 55 5 5 5 9s 10s 11s

* CPU Activity (Cortex-A55) &=
@ User
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* CPU Activity (Cortex-AT7) &n
@ User
* System

* Cycles (Cortex-A55) an
@CPU Cycles

* Cycles (Cortex-A77) Ll
S CPU Cycles
Mali Core Cycles il
® Any active

@ Execution core active
©Fragment active

@ Fragment FPKB active
& Non-fragment active

Mali Core EE Instructions
# Diverged instructions

0 instiictions

Mali Core L2 Reads ol 2 rega-t
@ Load/store external read beats
@ Load/store L2 read beats

@ Texture external read beats

® Texture L2 read beats

Mali Core Load/Store Cycles il 3 meg
& Atomic access cycles
wi idle

* 3 speed_benchmark_torch #20350




Streamline Profiling with NNAPI Models (Device 2)

 The same model can work differently on different devices by using NNAPI
- NPU/DSP is used with Int8, which is not visible with Streamline

NNAPI Model with Float32

B Timeline| & Call Paths| ® Functions| & Code ¥ Log

Brnevs @ e soms ~ */[15513s M~ @
v v
55s s 655 s 75s Bs/8.455 [0.055] | 9s 955 10s 10.5s 11s 11.5s 12s 12.5s 13s 13.5s 14s 14.55 15s 15.5s
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® System
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Mali Core Cycles #u

® Compute active
© Execution core active
© Fragment active
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Mali Core EE Instructions il
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© Load/store L2 read beats

@ Texture external read beats
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NNAPI Model with Int8
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(As of April 2021)

Hardware selected by NNAPI

* Quantized models are more likely to benefit from specialized processors

- Int8 tends to have higher speed increase 11.47
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Arm NN and Arm Compute Library (ACL)

* Many Android devices have ML models
accelerated by underlying Arm NN and ACL

Machine Learning Framework/Library

e Superior Performance &
Arm Specific Optimization R
- Uses advanced network optimization techniques ~guisamas Android NNAPI |_ _ _ _ _ _ _ _.

- Quick adoption of new Arm technologies Android Neural Networks Runtime
e.g. Armv9-A features

Vendor NN Drivers

e o Arm CPU/GPU arm



Faster Machine Learning in Android 12

* More than halved inference call overhead by introducing improvements
- Such as padding, sync fences and reusable execution objects

 Made ML accelerator drivers updatable outside of platform releases

- Make it easier for developers to take advantage of the latest drivers
- ML performance improvements and bug fixes reach users faster than ever before

19 © 2021 Arm https://android-developers.googleblog.com/2021/04/android-12-developer-preview-3.html arm
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Summary

* Trends around PyTorch
- Increasing popularity, especially in research field
- Working to bridge the gap between research and production

* Advantage of NNAPI

- Provides a single set of APIs

- Select most performant hardware for running ML models for each device
— Including GPUs, DSPs, and NPUs

- Expected to support more and more in the future

e PyTorch with Android NNAPI

- Moved forward from Prototype phase to Beta phase
- Provides workflow that simplifies research to production within PyTorch ecosystem

Blog: https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/improve-pytorch-app-performance-with-android-nnapi-support-386430784
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