~Arm Al Vi_rtual-_Tech Talk

Improve PyTorch App
it Performance with
Andrmd NNAPI Support . |

Koki Mitsunami
December 14", 2021

armm = Welcome!

Tweet us: @ArmSoftwareDev -> #AIVTT

Check out our.Arm Software Developers YouTube channel -

Signup now for our next Al Virtual Tech Talk: www.arm.com/techtalks .

© 2021 Arm

https://twitter.com/ArmSoftwareDev
https://www.youtube.com/channel/UCHUAckhCfRom2EHDGxwhfOg
http://www.arm.com/techtalks

Our upcoming Arm Al Tech Talks

Date Title

Host

December

14th Improve PyTorch App Performance with Android NNAPI Support

January 11,

2022 Qeexo AutoML on Arm Cortex-MO+: Bringing TinyML to the tiniest Arm MCUs Qeexo
January 25, Peaks, Valleys and Thresholds: The art of segmenting real-time sensor data for tinyML .
e : : Reality Al
2022 classification, regression and anomaly detection

February 8, |Faster time-to-production for computer vision Al on Arm powered edge devices, but just how

2022 fast is fast? Deeplite
February 22, * New Arm ML Quarterly Research Special *
. . . . Arm MLR h
2022 Federated Learning Based on Dynamic Regularization to Debias Model Updates m esearc

Visit: www.arm.com/techtalks
3 © 2021 Arm

arm

Presenter

* Contribute to enabling a successful developer
experience with Arm-based technology

* Demonstrated multiple applications using deep learning
focusing computer vision

* Enjoy working on hardware, software, and algorithms

¥ ‘:‘;:\ ’ /
v
"4

Koki Mitsunami

Staff Engineer @ Arm
Cambridge, UK

4 © 2021 Arm a r’m

Agenda

° |ntroduction

 Purpose of this talk
- PyTorch
- Android NNAPI

* PyTorch Mobile with NNAPI
- Workflow
- Benchmark Conditions
- Execution Time Comparison
- Profiling by Streamline

* Summary

5 © 2021 Arm a r’m

Purpose of this talk

* Introduce PyTorch Mobile with Android NNAPI

- One way of deploying ML models into mobile devices

* Provide examples on how ML models are executed
on mobile devices through PyTorch with NNAPI

6 © 2021 Arm 0 rm

PyTorch

* PyTorch has become popular Deep Learning framework
- Wide range of supported operators
- Ease of writing
- A lot of activity for production

Paper Implementations grouped by framework

100%
75%

50%

Share of Implementations

25%

R
eD

7 © 2021 Arm Repository Creation Date a r m

Source: https://paperswithcode.com/trends

N

Q@éq@qq ©
X

Q N Q
" " .3 v v
“\’3\ \0\ (OK’JQ $6\ \’é‘ “\é

&

o
)

”
<7
T ‘_.3)
4 ‘_-)J
”

Y N M

Android Neural Networks APl (NNAPI)

* CAPI designed for running ML models
- Provide a base layer of functionality
- Perform hardware-accelerated inference
operations on supported devices

Machine Learning Framework/Library

v

* Typically used by ML frameworks

- Apps would not use NNAPI directly : :
- Apps would use ML frameworks Android Neural Networks Runtime

________ Android NNAPI |- - — _ _ _ _ __

Vendor NN Drivers

8 © 2021 Arm Arm CPU/GPU a rm

Android NNAPI support is now available in Beta

Announced in PyTorch 1.10 Release
rone) s > suve

Prototype (Nov 2020) | ~> Beta (Oct 2021)

 NNAPI with the PyTorch framework e Additional operator types

* Android 10+ * Support for load-time flexible shapes
* Linear Convolution models * Run models on host for testing

e Multi-Layer Perceptron models

o © 2021 Arm https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/ a rm

https://pytorch.org/blog/pytorch-1.10-released/#beta-android-nnapi-support-in-beta

https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/
https://pytorch.org/blog/pytorch-1.10-released/#beta-android-nnapi-support-in-beta

PyTorch Mobile

Mechanism to run ML models on mobile
- Provides end-to-end workflow within PyTorch ecosystem

- Support for Arm CPU/GPU and hardware accelerators
via XNNPACK/QNNPACK, Vulkan, and NNAPI

* TorchScript format

10

- Intermediate representation (IR) of a PyTorch model
— includes code, parameters, attributes, and debug information

- Can be run in a high-performance environment such as C++

© 2021 Arm

graph(%0 :
%3 :
%5

%7 : F
%10 :
%12 :
%15 :
%16 :
%19 :
%21 :
%24 :
%26
%29 :
%30 :

%32 :

%34 :
%35 :
%36

a7 .

TorchScript example

Float(3, 10), %1 : Float(3, 20), %2 : Float(3, 2
Float(80, 10) %4 : Float(8e, 20),
Float(80), %6 : Float(80)) {

loat(10!, 80!) = aten::t(%3)

int[] = prim::ListConstruct(3, 80)

Float(3!, 80) = aten::expand(%5, %10, 1)
Float(3, 80) = aten::addmm(%12, %0, %7, 1, 1)
Float(20!, 80!) = aten::t(%4)

int[] = prim::ListConstruct(3, 80)

Float(3!, 80) = aten::expand(%6, %19, True)
Float(3, 80) = aten::addmm(%21, %1, %16, 1, 1)

: Float(3, 80) = aten::add(%15, %24, 1)

Dynamic[] = aten::chunk(%26, 4, 1)
Float(3!, 20), %31 : Float(3!, 20),
Float(3!, 20), %33 : Float(3!, 20) = prim::ListUng
Float(3, 20) = aten::sigmoid(%30)
Float(3, 20) = aten::sigmoid(%31)

: Float(3, 20) = aten::tanh(%32)

Elaasld MM - atanssicdamadidiana)

m

Workflow for PyTorch Mobile with NNAPI

11

A o

Example)

Create/prepare a model in PyTorch
Quantization (optional)

Convert to TorchScript

Optimize for Mobile (optional)
Convert to NNAPI-compatible model

Save the model

- Treat as a TorchScript model

- For applications already using PyTorch Mobile,
no code changes are required

© 2021 Arm

Prepare a pre-trained quantized model

.mobilenet v2 \
(pretrained= , quantize=True)

Convert to TorchScript

input_tensor = input_tensor.contiguous\
(memory_format= .channels last)

input_tensor.nnapi_nhwc =

traced = .trace(model, input tensor)

Convert to NNAPI model

nnapi_model = . . . <\
convert_model_ to_nnapi(traced, input_tensor)

Save the model

nnapi_model. save_for_lite_interpreter\

()

Deploy the model to mobile

arm

Experiments - PyTorch Mobile with NNAPI

MobileNet v2

Model Generation Flow

e ML Model PyTorch Model

- MobileNet v2
— CPU models with Float32 and Int8 o
— NNAPI models with Float32 and Int8 Quantization

A 4

Convert to TorchScript

* Mobile devices

- 8 mobile devices
— 2 for Android 11

- 6 for Android 10 l l
e Execution time Optimize for CPU Convert to NNAPI Model
« Avg time over 200 iter l l l

CPU Model

CPU Model
with Float32
12 © 2021 Arm a rm

(PyTorch 1.8.0.dev + torchvision 0.9.0.dev)

with Int8

NNAPI Speed-up on Various Devices

* Speed increase varies from device to device

- Faster processing with the use of NNAPI on many devices 11.47
(As of April 2021)
10
9 B CPU m NNAPI
8
U 6.44
S 6
9 5
)
2 4
3 2.18 2.19 - 2.19
2 /103 11.25 . Lo)
1 096 097
‘mrdrL s |I| | |.|||

A B C D E F EI A B G H
Mobile Devices

\ J\ J
I I

13 ©2021Am Float32 Int8 a rm

Profiling with Streamline Performance Analyzer

* Arm Streamline allows you to see CPU and GPU activity inside device

RPoI§E & 1ms ~ ?1[19.227s ©® M3 40
—
. I1|2|.|5I3|sI L I1 IZI.I5I4ISI . I1|2|.|5l5|sI " .1.2.'|5.6.s. L I1 IZI.I5ITISI . .1.2'5.85 . I1|2|.|5|9|sI L I‘!IZI(::S: " .1.2.'F.1 IsI . .1.2.'?.2.5. L I1 .2.'?.3.5. . .1.2.'?:4.5. . 1-2.'?.5.5. . I1 IZI.PI(JISI . .1.2.'?.?.5. " .1.2.'?.8.5. . I1 IZI.PIQISI . .1..2|-{S: . 12|.;.f|1|sI L I1 IZI.;IIZISI . .1.2.'?
l l 1 5 [0 3
» CPU Activity (Cortex-A55) el 1000 =
@ User activity
@ System activity . 3
» CPU Activity (Cortex-A77) * =
@ User activity
@ System activity .
» CPU Cycles (Cortex-A55) * =
(et
» CPU Cycles (Cortex-A77) * =
Mali GPU Usage =
® GPU active ®34.5 mega-cycles
@ Non-fragment queue active ©324.1 mega-cycles
@ Fragment queue active \ O [g AR o
@ Tiler active : 0.2 mega-cycles
-) 3.5 mega-cycles
@ GPU interrupt active \/ \
Mali GPU Utilization % m
@ Non-fragment queue utilization
@ Fragment queue utilization
@ Tiler utilization
@ Interrupt utilization
Mali Memory Bandwidth &=

@ Read bytes
@ \Write bytes
wl idle
» p| com.arm.arfilter #£29533

14 © 2021 Arm
Ml /Heat Map [H]

¥ |Row Filter

Annotation Filter

CPU Activity

Screenshot
from
Streamline

arm

Streamline Profiling with NNAPI Models (Device 1)

* NNAPI selects most performant hardware
« GPU is used for Float32, while multi-core CPU is used for Int8

NNAPI Model with Float32 NNAPI Model with Int8

B Timeline & Call Paths| ® Functions & Code % Log 1Code ¥ Log
NI & &S 100ms~ ¥ 14.881s

Os 3 5 55 5 5 5 9s 10s 11s

* CPU Activity (Cortex-A55) &=
@ User
*5ystem

* CPU Activity (Cortex-AT7) &n
@ User
* System

* Cycles (Cortex-A55) an
@CPU Cycles

* Cycles (Cortex-A77) Ll
S CPU Cycles
Mali Core Cycles il
® Any active

@ Execution core active
©Fragment active

@ Fragment FPKB active
& Non-fragment active

Mali Core EE Instructions
Diverged instructions

0 instiictions

Mali Core L2 Reads ol 2 rega-t
@ Load/store external read beats
@ Load/store L2 read beats

@ Texture external read beats

® Texture L2 read beats

Mali Core Load/Store Cycles il 3 meg
& Atomic access cycles
wi idle

* 3 speed_benchmark_torch #20350

Streamline Profiling with NNAPI Models (Device 2)

 The same model can work differently on different devices by using NNAPI
- NPU/DSP is used with Int8, which is not visible with Streamline

NNAPI Model with Float32

B Timeline| & Call Paths| ® Functions| & Code ¥ Log

Brnevs @ e soms ~ */[15513s M~ @
v v
55s s 655 s 75s Bs/8.455 [0.055] | 9s 955 10s 10.5s 11s 11.5s 12s 12.5s 13s 13.5s 14s 14.55 15s 15.5s

* CPU Activity (Cortex-A55) L
®User
@ System

* CPU Activity (Cortex-A77) #u
® User
® System

* Cycles (Cortex-A55) # =g
@CPU Cycles

* Cycles (Cortex-A7T) au
SCPU Cycles
Mali Core Cycles #u

® Compute active
© Execution core active
© Fragment active
@ Fragment FPKB active

Mali Core EE Instructions il
® Diverged instructions

Mali Core L2 Reads S
@ Load/store external read beats

© Load/store L2 read beats

@ Texture external read beats

® Texture L2 read beats

Mali Core Load/Store Cycles L .
@ Atomic access cydes
¥l idle

* vl speed_benchmark_torch #2...

NNAPI Model with Int8

®||7.950s M "M
L v
Os 05s 1s 155 25 25s 3s 355 ds 455 55 555 6s 65s Ts T5s

ans| i Code | % Log

0 beats

(As of April 2021)

Hardware selected by NNAPI

* Quantized models are more likely to benefit from specialized processors

- Int8 tends to have higher speed increase 11.47
10
9
8 | EmCPU m NNAPI
o / 6.44
2 6
8 5 4.35
L 4
v 3 2.18 2.19 273 2.19 188
% 1 ! 1 095 o 096 =1 . ! 1 lo7 097 1
0 i 1 1 Nk B Data i 1 1 K K = I B
Mobile Devices A B C D E F G H A B C D E F G H
CPU 4
NPU/DSP 4 & 7 %

\ J
17 © 2021 Arm | \ | W
Float32

Int8

Arm NN and Arm Compute Library (ACL)

* Many Android devices have ML models
accelerated by underlying Arm NN and ACL

Machine Learning Framework/Library

e Superior Performance &
Arm Specific Optimization R
- Uses advanced network optimization techniques ~guisamas Android NNAPI |_ _ _ _ _ _ _ _.

- Quick adoption of new Arm technologies Android Neural Networks Runtime
e.g. Armv9-A features

Vendor NN Drivers

e o Arm CPU/GPU arm

Faster Machine Learning in Android 12

* More than halved inference call overhead by introducing improvements
- Such as padding, sync fences and reusable execution objects

 Made ML accelerator drivers updatable outside of platform releases

- Make it easier for developers to take advantage of the latest drivers
- ML performance improvements and bug fixes reach users faster than ever before

19 © 2021 Arm https://android-developers.googleblog.com/2021/04/android-12-developer-preview-3.html arm

https://android-developers.googleblog.com/2021/04/android-12-developer-preview-3.html

Summary

* Trends around PyTorch
- Increasing popularity, especially in research field
- Working to bridge the gap between research and production

* Advantage of NNAPI

- Provides a single set of APIs

- Select most performant hardware for running ML models for each device
— Including GPUs, DSPs, and NPUs

- Expected to support more and more in the future

e PyTorch with Android NNAPI

- Moved forward from Prototype phase to Beta phase
- Provides workflow that simplifies research to production within PyTorch ecosystem

Blog: https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/improve-pytorch-app-performance-with-android-nnapi-support-386430784

20 © 2021 Arm a r' m

https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/improve-pytorch-app-performance-with-android-nnapi-support-386430784

armA

Al Virtual Tech Talks Series

- Thank You
Danke

- Merci
157159

- HYMNED
Gracias

- Kiitos
FAFREL| CF
Y-Udlq

) 58

N TIN

© 2021 Arm

*The Arm trademarks featured in thi$ presentation are registéred
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

armm = Welcome!

Tweet us: @ArmSoftwareDev -> #AIVTT

Check out our.Arm Software Developers YouTube channel -

Signup now for our next Al Virtual Tech Talk: www.arm.com/techtalks .

© 2021 Arm

https://twitter.com/ArmSoftwareDev
https://www.youtube.com/channel/UCHUAckhCfRom2EHDGxwhfOg
http://www.arm.com/techtalks

