
© 2021 Arm

Koki Mitsunami
December 14th, 2021

Arm AI Virtual Tech Talk

Improve PyTorch App 
Performance with 

Android NNAPI Support



© 2021 Arm

Welcome!

Tweet us: @ArmSoftwareDev -> #AIVTT

Check out our Arm Software Developers YouTube channel

Signup now for our next AI Virtual Tech Talk: www.arm.com/techtalks

https://twitter.com/ArmSoftwareDev
https://www.youtube.com/channel/UCHUAckhCfRom2EHDGxwhfOg
http://www.arm.com/techtalks


3 © 2021 Arm

Our upcoming Arm AI Tech Talks
Date Title Host

December 
14th 

Improve PyTorch App Performance with Android NNAPI Support Arm

January 11, 
2022

Qeexo AutoML on Arm Cortex-M0+: Bringing TinyML to the tiniest Arm MCUs Qeexo

January 25, 
2022

Peaks, Valleys and Thresholds: The art of segmenting real-time sensor data for tinyML
classification, regression and anomaly detection

Reality AI

February 8, 
2022

Faster time-to-production for computer vision AI on Arm powered edge devices, but just how 
fast is fast?

Deeplite

February 22, 
2022

* New Arm ML Quarterly Research Special * 
Federated Learning Based on Dynamic Regularization to Debias Model Updates 

Arm ML Research

Visit: www.arm.com/techtalks



4 © 2021 Arm

Presenter

• Contribute to enabling a successful developer 
experience with Arm-based technology

• Demonstrated multiple applications using deep learning 
focusing computer vision 

• Enjoy working on hardware, software, and algorithms

Koki Mitsunami
Staff Engineer @ Arm

Cambridge, UK



5 © 2021 Arm

Agenda

• Introduction
• Purpose of this talk
• PyTorch
• Android NNAPI

• PyTorch Mobile with NNAPI
• Workflow
• Benchmark Conditions
• Execution Time Comparison
• Profiling by Streamline

• Summary



6 © 2021 Arm

Purpose of this talk

• Introduce PyTorch Mobile with Android NNAPI
• One way of deploying ML models into mobile devices

• Provide examples on how ML models are executed
on mobile devices through PyTorch with NNAPI



7 © 2021 Arm

PyTorch

• PyTorch has become popular Deep Learning framework
• Wide range of supported operators 
• Ease of writing
• A lot of activity for production

Source: https://paperswithcode.com/trends



8 © 2021 Arm

Android Neural Networks API (NNAPI)

• C API designed for running ML models 
• Provide a base layer of functionality
• Perform hardware-accelerated inference 

operations on supported devices

• Typically used by ML frameworks
• Apps would not use NNAPI directly
• Apps would use ML frameworks

Android Application

Machine Learning Framework/Library

Android Neural Networks Runtime

Vendor NN Drivers

Cortex-A
CPU

Mali
GPU

DSP NPU

Android NN API

3rd Party
GPU

Arm CPU/GPU



9 © 2021 Arm

Android NNAPI support is now available in Beta
Announced in PyTorch 1.10 Release

Prototype (Nov 2020)

• NNAPI with the PyTorch framework

• Android 10+

• Linear Convolution models

• Multi-Layer Perceptron models

Beta (Oct 2021)

• Additional operator types

• Support for load-time flexible shapes

• Run models on host for testing

Prototype Beta Stable

PyTorch Feature Classification

https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/
https://pytorch.org/blog/pytorch-1.10-released/#beta-android-nnapi-support-in-beta

https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/
https://pytorch.org/blog/pytorch-1.10-released/#beta-android-nnapi-support-in-beta


10 © 2021 Arm

PyTorch Mobile

• Mechanism to run ML models on mobile
• Provides end-to-end workflow within PyTorch ecosystem
• Support for Arm CPU/GPU and hardware accelerators

via XNNPACK/QNNPACK, Vulkan, and NNAPI

• TorchScript format
• Intermediate representation (IR) of a PyTorch model

– includes code, parameters, attributes, and debug information

• Can be run in a high-performance environment such as C++
TorchScript example



11 © 2021 Arm

nnapi_model = torch.backends._nnapi.prepare. \
convert_model_to_nnapi(traced, input_tensor)

Workflow for PyTorch Mobile with NNAPI

1. Create/prepare a model in PyTorch

2. Quantization (optional)

3. Convert to TorchScript

4. Optimize for Mobile (optional)

5. Convert to NNAPI-compatible model

6. Save the model
• Treat as a TorchScript model
• For applications already using PyTorch Mobile, 

no code changes are required

model = torchvision.models.quantization. \
mobilenet.mobilenet_v2 \
(pretrained=True, quantize=True)

input_tensor = input_tensor.contiguous\
(memory_format=torch.channels_last)

input_tensor.nnapi_nhwc = True
traced = torch.jit.trace(model, input_tensor)

nnapi_model._save_for_lite_interpreter\
("mobilenetv2-nnapi.pt")

Example)

Deploy the model to mobile

Prepare a pre-trained quantized model

Convert to TorchScript

Convert to NNAPI model

Save the model



12 © 2021 Arm

Experiments - PyTorch Mobile with NNAPI

• ML Model
• MobileNet v2

– CPU models with Float32 and Int8 
– NNAPI models with Float32 and Int8

• Mobile devices
• 8 mobile devices

– 2 for Android 11
– 6 for Android 10

• Execution time
• Avg time over 200 iter

NNAPI Model
with Float32

NNAPI Model
with Int8

Optimize for CPU

CPU Model
with Float32

CPU Model
with Int8

MobileNet v2
PyTorch Model

Quantization

Convert to NNAPI Model

Convert to TorchScript

(PyTorch 1.8.0.dev + torchvision 0.9.0.dev)

Model Generation Flow



13 © 2021 Arm

NNAPI Speed-up on Various Devices

1 1 1 1 1 1 1 1 1 1 1 1 1 1 11.03

2.18

1.25

2.19
2.73

0.95 0.96

2.19

4.35

1.3

6.44

0.7 0.97

1.88

0

1

2

3

4

5

6

7

8

9

10

A B C D E F G H A B C D E F G H

Sp
ee

d
-u

p

Mobile Devices

CPU NNAPI

Float32 Int8

11.47

No 
Data

• Speed increase varies from device to device
• Faster processing with the use of NNAPI on many devices 

(As of April 2021)



14 © 2021 Arm

Profiling with Streamline Performance Analyzer

• Arm Streamline allows you to see CPU and GPU activity inside device

Screenshot 
from
Streamline



15 © 2021 Arm

Streamline Profiling with NNAPI Models (Device 1)

Cortex-A CPU Activity

Mali GPU Activity

NNAPI Model with Float32

Mali GPU Activity

NNAPI Model with Int8

Cortex-A CPU Activity

• NNAPI selects most performant hardware
• GPU is used for Float32, while multi-core CPU is used for Int8



16 © 2021 Arm

Streamline Profiling with NNAPI Models (Device 2)

• The same model can work differently on different devices by using NNAPI
• NPU/DSP is used with Int8, which is not visible with Streamline

NNAPI Model with Float32 NNAPI Model with Int8

Cortex CPUs Activity

Mali GPU ActivityMali GPU Activity

Cortex CPUs Activity



17 © 2021 Arm

Hardware selected by NNAPI

1 1 1 1 1 1 1 1 1 1 1 1 1 1 11.03

2.18
1.25

2.19
2.73

0.95 0.96

2.19

4.35

1.3

6.44

0.7 0.97

1.88

0
1
2
3
4
5
6
7
8
9

10

A B C D E F G H A B C D E F G H

Sp
ee

d
-u

p

Mobile Devices

CPU NNAPI

Float32 Int8

11.47

No 
Data

(As of April 2021)

CPU

GPU

NPU/DSP

• Quantized models are more likely to benefit from specialized processors
• Int8 tends to have higher speed increase



18 © 2021 Arm

Arm NN and Arm Compute Library (ACL)

• Many Android devices have ML models 
accelerated by underlying Arm NN and ACL

• Superior Performance & 
Arm Specific Optimization
• Uses advanced network optimization techniques
• Quick adoption of new Arm technologies

e.g. Armv9-A features

Android Application

Machine Learning Framework/Library

Android Neural Networks Runtime

Vendor NN Drivers

Cortex-A
CPU

Mali
GPU

DSP NPU

Android NN API

3rd Party
GPU

Arm CPU/GPU

Arm NN

ACL



19 © 2021 Arm

Faster Machine Learning in Android 12

• More than halved inference call overhead by introducing improvements
• Such as padding, sync fences and reusable execution objects

• Made ML accelerator drivers updatable outside of platform releases
• Make it easier for developers to take advantage of the latest drivers
• ML performance improvements and bug fixes reach users faster than ever before

https://android-developers.googleblog.com/2021/04/android-12-developer-preview-3.html

https://android-developers.googleblog.com/2021/04/android-12-developer-preview-3.html


20 © 2021 Arm

Summary

• Trends around PyTorch
• Increasing popularity, especially in research field
• Working to bridge the gap between research and production

• Advantage of NNAPI
• Provides a single set of APIs
• Select most performant hardware for running ML models for each device

– Including GPUs, DSPs, and NPUs

• Expected to support more and more in the future

• PyTorch with Android NNAPI
• Moved forward from Prototype phase to Beta phase
• Provides workflow that simplifies research to production within PyTorch ecosystem

Blog: https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/improve-pytorch-app-performance-with-android-nnapi-support-386430784

https://community.arm.com/arm-community-blogs/b/ai-and-ml-blog/posts/improve-pytorch-app-performance-with-android-nnapi-support-386430784


Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا

תודה

AI Virtual Tech Talks Series



The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm



© 2021 Arm

Welcome!

Tweet us: @ArmSoftwareDev -> #AIVTT

Check out our Arm Software Developers YouTube channel

Signup now for our next AI Virtual Tech Talk: www.arm.com/techtalks

https://twitter.com/ArmSoftwareDev
https://www.youtube.com/channel/UCHUAckhCfRom2EHDGxwhfOg
http://www.arm.com/techtalks

