
© 2022 Arm

Bringing Streaming
Analytics to Arm-based
Edge Devices

Johan Risch Lead Developer

January 31st 2023

2 © 2022 Arm2 © 2022 Arm

Welcome!

Tweet us: #ArmTechTalks

View tech talks on-demand:
www.youtube.com/arm

Sign up for upcoming tech talks:
www.arm.com/techtalks

http://www.youtube.com/arm
http://www.arm.com/techtalks

3 © 2022 Arm3 © 2022 Arm

Date Title Host

Our Upcoming Arm Tech Talks

Date Title Host

January 31st Bringing Streaming Analytics to Arm-based Edge Devices Stream Analyze

February 7th Build Home Automation Services on a Matter Compliant Smart Home Hub Using
Python

Arm & Canonical

February 14th Shifting IoT Software Development to the Cloud with Arm Virtual Hardware
enabled GitHub Actions

GitHub

February 21st Securing IoT with Cloud Native Tooling, PARSEC and AWS Greengrass 56k Cloud

February 28th How to reduce Friction at the Edge and Bootstrap Your IoT Projects Eurotech

March 7th Fast development of noise detection ML models: Qeexo AutoML and Arm Virtual
Hardware

Qeexo

© 2022 Arm

PLACE IMAGE OF SPEAKER HERE

Johan Risch

Lead Developer

Stream Analyze
Johan has extensive experience in software
development and implementation of AI solutions.
Johan is a lead developer for the Stream Analyze
platform and work on developing the core of SA
Engine, implementation of AI models including
Neural Networks, the cloud-based version of the
platform and much more.

© 2022 Arm

SA Engine

6 © 2022 Arm6 © 2022 Arm

SA Engine

Built in

• Main Memory Database.

• Data Stream Management System (DSMS).

• Computation engine.

• Inference engine.

Footprint

• 20kB – 6MB RAM.

• Bare metal, RTOS, OS.

7 © 2022 Arm7 © 2022 Arm7 © 2022 Arm

SA Engine
capabilities

Allow you to query data streams in real-time on any connected device

Also run completely autonomous when needed

Use the built-in main memory database to update models and queries without
changing the firmware

Allow you to use the best and most advanced query language there is for streaming
data and running advanced analytical, ML and DL models

Just-In-Time compile your queries into machine code to run on the edge device.

Use any available inference runtime to run DL models (SA.NN, tflite, OpenVINO, etc.)

Change the way you look at, and approach, edge analytics.*

SA Engine will

SA Engine will not Create a highly optimized and quantized neural network.

Update the device firmware using FOTA.

Only do (NN) inference.

8 © 2022 Arm8 © 2022 Arm

SA Engine + Arm

The only viable architecture for implementing Edge Analytics at scale.

• From the embedded edges to the cloud orchestration – Arm excels at every level.

SA Engine has a long history of running on Arm processors.

• First port was back in 2015 on an industrial Android device.

• Today we have run SA Engine on edge-devices with Arm processors from:
Cortex-M3 to Cortex-A715.

• Our scaling tests utilize the 2x Ampere Altra Q80 to simulate ~25 000 edges.

Arm is the obvious choice for us.

9 © 2022 Arm9 © 2022 Arm

Lower the bar for entry into Edge Analytics

1. Complex to implement analytical models (programming)

2. Resource constrained device.

3. Time consuming or risky to update target.

1. High level query language which is declarative. → allows for a much larger user-base
than regular programming languages.

2. Optimize query and finally JIT compile it to machine code → Can even beat C
implementations.

3. Deploy analytics directly onto running system → No firmware updates needed during
analytical process.

10 © 2022 Arm

Software Cyle vs Analytics Cycle

© 2022 Arm

SEND + MORE = MONEY

12 © 2022 Arm12 © 2022 Arm

SEND+MORE=MONEY

Verbal arithmetic - Each letter is a digit. No two letters can be the same digit. The leading

digit of a multi-digit number must not be zero.

We will compare the performance of:

• SA Engine - https://gist.github.com/johanrisch/db6d4ad7a0ba931814a2dfc1468cbd38

• C - https://gist.github.com/jeremieroy/584216655d60eac06ae3

• Python - https://programmingpraxis.com/2012/07/31/send-more-money-part-1/ posted by Catalin Cristu

• Gecode - Built-in example

• PostgreSQL - https://gist.github.com/johanrisch/5a7b8b64d255cc89cb7e5f56ef9d9dbb

https://en.wikipedia.org/wiki/Verbal_arithmetic
https://gist.github.com/johanrisch/db6d4ad7a0ba931814a2dfc1468cbd38
https://gist.github.com/jeremieroy/584216655d60eac06ae3
https://programmingpraxis.com/2012/07/31/send-more-money-part-1/
http://twitter.com/catalin_c
https://gist.github.com/johanrisch/5a7b8b64d255cc89cb7e5f56ef9d9dbb

© 2022 Arm

DEMO TIME

14 © 2022 Arm14 © 2022 Arm

Problem
fomulation

SA Engine(s) C(s) Python(s) Gecode(s) PostgreSQL(s)

Regular 0.005 0.01 2 2e-5 5.642

M=1 5e-4 N/A 0.2 2e-5 0.863

Linear algebra 8e-5 N/A N/A 2e-5 0.354

SEND+MORE=MONEY results

© 2022 Arm

Going from a Query to
running on an Arm
Cortex-M4

16 © 2022 Arm

Running a query in SA Engine16

select x

from Real x,

Integer i

where i in range(10)

and x = sin(i)

(CREATE-FUNCTION *SELECT*

(-> (REAL X+))

(LOCALS: (INTEGER I))

DO (AND (CALL #[extpred \"IOTA--+\"]

(IOTA 1 10 I+))

(FUNCALL FUNCTION:SIN

(SIN I- X+))))

Query Optimizer

SLOG Execution
plan

SLOG: Streamed LOGic

17 © 2022 Arm

Running a query in SA Engine17

(CREATE-FUNCTION *SELECT*

(-> (REAL X+))

(LOCALS: (INTEGER I))

DO (AND (CALL #[extpred \"IOTA--+\"]

(IOTA 1 10 I+))

(FUNCALL FUNCTION:SIN

(SIN I- X+))))

Query Compiler

(CREATE-FUNCTION *SELECT*

(-> (REAL X+))

DO (CALL-SLAP \"

.code16 ; ARMv7 thumb-2 VFPv4

.thumb

L0: push {r3, r4, r5, r6, r7, lr}

L2: mov r4, r0

L4: mov r5, r1

L6: movs r6, #1

L8: movs r7, #0

L10: bl L30

…

L48: ldr r3, [r4, #96] ; SIN

L50: blx r3

L52: vmov.f64 d2, d0

L56: vstr d2, [r5, #8]

L60: mov r0, r5

L62: ldr r3, [r4, #0] ; CONTFN

…

L68: pop {r3, r4, r5, r6, r7, pc}

end

X+))

SLAP: Streaming Logic Assembly Program
SLOG+SLAP

Execution plan

18 © 2022 Arm

Running a query in SA Engine18

SLOG Runtime

Query Results

0.841470984807897

0.909297426825682

0.141120008059867

-0.756802495307928

-0.958924274663138

-0.279415498198926

0.656986598718789

0.989358246623382

0.412118485241757

-0.54402111088937

(CREATE-FUNCTION *SELECT*

(-> (REAL X+))

DO (CALL-SLAP \"

.code16 ; ARMv7 thumb-2 VFPv4

.thumb

L0: push {r3, r4, r5, r6, r7, lr}

L2: mov r4, r0

L4: mov r5, r1

L6: movs r6, #1

L8: movs r7, #0

L10: bl L30

…

L48: ldr r3, [r4, #96] ; SIN

L50: blx r3

L52: vmov.f64 d2, d0

L56: vstr d2, [r5, #8]

L60: mov r0, r5

L62: ldr r3, [r4, #0] ; CONTFN

…

L68: pop {r3, r4, r5, r6, r7, pc}

end

X+))

19 © 2022 Arm

19

Local database

On SAME54 – Full interactivity.

Relay Process
Off chip

sa.studio

R
S2

3
2

Se
n

so
rs

SLOG+SLAP
Execution plan

Results from
Execution plan.

Query Optimizer

Query Compiler

SLOG Runtime

Running a query in SA Nanocore
on an Arm Cortex-M4

20 © 2022 Arm

20

sa.microkernel
SLOGaLisp

sa.storage

Local database

SAME54 – Canned models

Foreign
functions

(in C)Se
n

so
rs Precompiled

Execution
plan in ROM

Program executing precompiled query using C-api and
managing output as you choose

ohandle callback(bintype env, ohandle data) {
… User defined callback…
}

void main() {
sa_evaluate(PRECOMPILED_QUERY_STR, &callback);

}

21 © 2022 Arm21 © 2022 Arm21 © 2022 Arm

Running SA Nanocore on an MCU
Memory Requirements in detail.

General footprint of SA Nanocore Minimal memory to boot SA Nanocore

RAM

FLASH

Image 67 kB

5kB < Image <= 32kB

Static Memory SA
5 kB

C-stack
Depending on model

From 9kB and up

SA Engine Text+Data
204kB

RAM

FLASH

Image 67 kB

5kB Image

Static Memory SA
5 kB

C-stack
Depending on model

From 9kB

SA Engine Text+Data
204kB

© 2022 Arm

DEMO TIME

23 © 2022 Arm23 © 2022 Arm

What’s next?

We are continuously working on compiling more and more SLOG to SLAP.
• The latest addition made it possible to define convolutions over images in OSQL almost fully

compiled.

Optimize SA Nanocore on flash size.
• We have not yet trimmed the c-code flash size for SA Nanocore.

Add more off the shelf H/W platforms for users to test.
• 10 more platforms in the coming two years.

Improve UX by making the setup easier to configure.

Generate Canned C-programs from a model defined in OSQL.

© 2022 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

Tweet us: #ArmTechTalks

View tech talks on-demand:
www.youtube.com/arm

Sign up for upcoming tech talks:
www.arm.com/techtalks

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: Bringing Streaming Analytics to Arm-based Edge Devices
	Slide 2: Welcome!
	Slide 3: Our Upcoming Arm Tech Talks
	Slide 4: Stream Analyze
	Slide 5: SA Engine
	Slide 6: SA Engine
	Slide 7: SA Engine
	Slide 8: SA Engine + Arm
	Slide 9: Lower the bar for entry into Edge Analytics
	Slide 10: Software Cyle vs Analytics Cycle
	Slide 11: SEND + MORE = MONEY
	Slide 12: SEND+MORE=MONEY
	Slide 13: DEMO TIME
	Slide 14: SEND+MORE=MONEY results
	Slide 15: Going from a Query to running on an Arm Cortex-M4
	Slide 16: Running a query in SA Engine
	Slide 17: Running a query in SA Engine
	Slide 18: Running a query in SA Engine
	Slide 19: Running a query in SA Nanocore on an Arm Cortex-M4
	Slide 20
	Slide 21: Running SA Nanocore on an MCU
	Slide 22: DEMO TIME
	Slide 23: What’s next?
	Slide 24
	Slide 25

