
1Copyright © 2018 Trustonic Ltd. All rights reserved.

Secure IoT With
Microchip and Kinibi-M

Richard Hayton & Mehdi Oukacha
Trustonic Ltd.

Deck updated for those who did not attend.
Lab materials are available and URLS are in this PPT
You will need to buy a SAM L11 Pro developer board

What skills you need (or will help!)

C coding / debug in Atmel Studio (Visual Studio-esk)

! ōƛǘ ƻŦ WŀǾŀ ǳǎŜŘ ƻƴ ƭŀǇǘƻǇ όŘƻƴΩǘ ƴŜŜŘ ǘƻ ǿǊƛǘŜ ŀƴȅύ

Some exposure to security coding (not essential)

¢ƻ ƘŀǾŜ ǎŜǘ ǳǇ ȅƻǳǊ ƭŀǇǘƻǇǎ ŀƭǊŜŀŘȅΧ

Be Prepared

(Hopefully you have done this already)

Ingredients

SAM L11 Explain Pro
(https://www.microchip.com/
DevelopmentTools/ProductDe
tails/PartNO/DM320205)

Windows PC
Micro USB Cable

[ƻǘǎ ƻŦ ǎƻŦǘǿŀǊŜΧ

https://www.microchip.com/DevelopmentTools/ProductDetails/PartNO/DM320205

Download resources for lab

Prerequisite Instructions

Step by step screenshots for each lab

Code snippets (to save typing)

Full solutions

https://www.trustonic.com/iotresources

https://www.trustonic.com/iotresources

Software (for PC)

ÅAtmel Studio
ÅKinibi SDK including Atmel Studio Extension
ÅPython 2.7 (for build tools)

Plus some extras for labs
ÅJava JDK
ÅSerial port for java (http://fizzed.com/oss/rxtx-for-java)
ÅRun AtmelPathUpdate.py (from

https://www.trustonic.com/iotresources)

http://fizzed.com/oss/rxtx-for-java
https://www.trustonic.com/iotresources

ǒ One time board setup. Donôt forget!

Prepare Board

You can re-run this
to reset you board
back to a state
(with Kinibi-M)
if you get stuck

Climbing the security mountain

Code Isolation

Reduce attack surface and protect

software on device by isolating

critical parts

Encryption & Key Establishment

Protecting critical data so only your

service can read it

Connecting to the cloud

Putting it all together

Under the surface

Under the surface
Security Features

Encryption, isolation, é

Secure Provisioning

Flashing, update, attestation

Secure Foundation

Secure boot, power management,

secure interrupts, debug, data flash, MPU

control, tamper detection, é

Security at large and small scale

Cortex A53 Processor
High Power (lots of cores)

External RAM/Flash (unconstrained)
Relatively expensive / power hungry

Cortex M23 Processor
Low Power (single core)

Everything on SOC (constrained)
Relatively cheap / low power

Secure Applications

Trustonic Kinibi / Kinibi-M
Trusted Execution Environment

Arm TrustZone®
Hardware isolation for security

Using a MCU ς

¢ƘŜǊŜ ƛǎ ŀ ƭƻǘ ƳƻǊŜ ŦƭŜȄƛōƛƭƛǘȅ ǘƘŀǘ ȅƻǳ Ƴŀȅ ōŜ ǳǎŜŘ ǘƻΧ

bŜŜŘ ǘƻ ŎƻƴŦƛƎǳǊŜ ǘƘŜ ŘŜǾƛŎŜ όΨŦǳǎŜǎΩύ ǘƻ ǎŀȅ Ƙƻǿ ƘŀǊŘǿŀǊŜ ǿƻǊƪǎ

And then flash code into the right location so that it runs when
device is started

Atmel Studio & Kinibi SDK will help!

What makes this MCU Secure??

Supports Arm TrustZone®
Å This means there are two memory regions ςone for normal

code and one for secure code

Other hardware isolation
Å Memory Protection Unit (x2) allowing fine grain control
Å Tamper detection
Å Flash scrambling
Å Crypto accelerator
Å Χ

SAM L11 Memory

! ǎŜŎǳǊŜ άh{έ ςKinibi-M

This is a kernel to manage all the security functions

{ǳǇǇƻǊǘǎ ƳǳƭǘƛǇƭŜ άǎŜŎǳǊŜ ƳƻŘǳƭŜǎέ ŜŀŎƘ ƻŦ ǿƘƛŎƘ ƛǎ ƛǎƻƭŀǘŜŘ

Provides key and crypto features

Allows data, interrupts, pins etc to be assigned to modules.

Plus utilities like printf over serial / flash storage etc.

άYƛƴƛōƛ-aέ

Kernel
(Secure Partition Manager)

Trusted
Module

Trusted
Module Trusted

Module

Trusted
Module

Storage

interrupt

PIN

Clock

Regular
Code

ά{ŜŎǳǊŜ ²ƻǊƭŘέ άbƻǊƳŀƭ ²ƻǊƭŘέ

SAM L11 XplainedPro

Minimal Normal
World

Hello World Module
(call print module)

km_print (UART
Output)

Java app to echo output from serial

Java SerialBridge

Laptop

Provided in SDK as Samples\HelloWorld

Lab #1

Steps

Phase 1 (run using debugger)
Create project, add code, set dependencies, compile.
Reset board, set fuse (=configure where SWD memory ends),
set breakpoints, run

Phase 2 (output to serial)
Copy over km_print. Modify code. Compile
Set fuse, Run terminal emulator. run

CƛǊǎǘΣ ǎƻƳŜ ŎƻŘŜΧ

WARNING

Code in ppt may have bugs / been trimmed for clarity
(e.g. error handling omitted)

All the real code is provided as source code and screenshots
for you to inspect / crib from as you need

Calling modules

TEEC_InvokeCommand(moduleID,commandID,operation)

Operation is a structure

op.paramTypesƛƴŘƛŎŀǘŜǎ ǘƘŜ ǘȅǇŜ ŦƻǊ ŜŀŎƘ ΨǎƭƻǘΩ ό.ǳŦŦŜǊ ƻǊ ǾŀƭǳŜΣ ƛƴΣ inout or out)

op.param[i] is a union
op.param[i].tmpref.buffer
op.param[i].tmpref.size

op.param[i].value.a
op.param[i].value.b

For memory buffers

For integer values

Being called as a module

__attribute__ ((section (". sessionEntry ")))
TEE_Result invoke_entry (uint32_t commandID,

TEEC_Operation * operation)
{

switch (commandID)
{

case TEE_DEBUG_PRINTF_STRING:
REQUIRE_TEEC_PARAMETERS(TEEC_MEMREF_TEMP_INPUT,0, 0, 0);
ƛ

Code Snippits

Normal World Code

Secure World (Module) Code

Lets go!

Useful stuff

https://www.trustonic.com/iotresources

Unzip to PC

https://www.trustonic.com/iotresources

Phase 1: Setup project & run debugger

Create project
add code
set dependencies
compile.
set fuse (=configure where SWD memory ends),
set breakpoints
run

Plug in board

ǒ Run atmel studio

