
DRAFT

Reduced Virtual Interrupt
Controller specification

Document number ARM-DEN-0103

Document quality ALP

Document version 00alp1

Document confidentiality Non-confidential

Document build information a7fcf39 doctool 0.49.0

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.

Reduced Virtual Interrupt Controller (RVIC) specification

Quality Status: Alpha (ALP)
Alpha quality status has a particular meaning to Arm of which the recipient must be aware. This
document is for review purposes only and should not be used for any implementation, because

significant changes are likely.

DRAFT

Reduced Virtual Interrupt Controller specification

Release information

Date Version Changes

2020/Sep/02 00alp1 • Change to non-confidential license
• Clarify distinction between Trusted and Untrusted interrupts
• Correct rules regarding guarantee of interrupt delivery
• Clarify sequence of events required to change the target of an interrupt
• Add rules on notification of pending interrupts
• Clarify that PSTATE.I is PE architectural state
• Align error codes between RVIC and RVID

2020/Jul/31 00alp0 • Initial version

ii

DRAFT

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of Arm. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has
undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers
is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to this document
at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/
trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349 version 21.0

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iii

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

DRAFT

Contents

Reduced Virtual Interrupt Controller specification

Reduced Virtual Interrupt Controller specification . ii
Release information . ii
Non-Confidential Proprietary Notice . iii

Preface
Conventions . vi

Typographical conventions . vi
Numbers . vi

Rules-based writing . vii
Content item classes . vii
Identifiers . viii
Examples . viii

Additional reading . ix
Feedback . ix

Feedback on this book . ix
Open issues . x

Chapter 1 Introduction
1.1 Components . 12
1.2 Versioning . 12

Chapter 2 Reduced Virtual Interrupt Controller (RVIC)
2.1 RVIC overview . 14
2.2 RVIC architecture version . 14
2.3 RVIC functional description . 15

2.3.1 Instance enablement status . 15
2.3.2 Trusted and untrusted interrupts . 15
2.3.3 Interrupt mask status . 16
2.3.4 Interrupt life-cycle . 16
2.3.5 Trigger modes . 18
2.3.6 Signaling . 18
2.3.7 Multiple pending interrupts . 19
2.3.8 INTID assignments . 19
2.3.9 Interrupt routing . 20
2.3.10 Notification of pending interrupts . 20

2.4 RVIC programming interface . 22
2.4.1 AArch64 hypercall interface . 22
2.4.2 RVIC types . 23
2.4.3 RVIC commands . 25

2.4.3.1 RVIC.Version . 25
2.4.3.2 RVIC.Info . 26
2.4.3.3 RVIC.Enable . 27
2.4.3.4 RVIC.Disable . 28
2.4.3.5 RVIC.SetMasked . 29
2.4.3.6 RVIC.ClearMasked . 30
2.4.3.7 RVIC.IsPending . 31
2.4.3.8 RVIC.Signal . 32
2.4.3.9 RVIC.ClearPending . 33
2.4.3.10 RVIC.Acknowledge . 34

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

iv

DRAFT

Contents
Contents

2.4.3.11 RVIC.Resample . 35

Chapter 3 Reduced Virtual Interrupt Distributor (RVID)
3.1 RVID introduction . 37
3.2 RVID architecture version . 37
3.3 RVID functional description . 38
3.4 RVID programming interface . 39

3.4.1 AArch64 hypercall interface . 39
3.4.2 RVID types . 40
3.4.3 RVID commands . 42

3.4.3.1 RVID.Version . 42
3.4.3.2 RVID.Map . 43
3.4.3.3 RVID.Unmap . 44

Glossary

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

v

DRAFT

Preface

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology, and denotes citations.

monospace

Used for command names and numerical values.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document
• A URL, for example http://developer.arm.com

Numbers

Numbers are normally written in decimal. Hexadecimal numbers are prefixed by by 0x. The prefix and the
associated value are written in a monospace font, for example 0xFFFF0000.

vi

http://developer.arm.com

DRAFT

Rules-based writing

This specification consists of a set of individual content items. Content items are classified into the following types:

• Declaration
• Rule
• Information
• Rationale
• Software usage
• Implementation note

Declarations and Rules are normative statements. An implementation which is compliant with this specification
must conform to all of the Declarations and Rules in this specification.

Declarations and Rules must not be read in isolation. Where a particular feature is specified by multiple Declarations
and Rules, these are grouped into sections and subsections to provide context. Where appropriate, these sections
begin with a short introduction to aid the reader.

Arm strongly recommends that implementers read all chapters and sections of this document to ensure that an
implementation is compliant.

Content items other than Declarations and Rules are informative statements. These are provided purely as an aid to
understanding this specification.

Content item classes

Declaration
A Declaration is a statement which either

• introduces the meaning of a concept or term, or
• describes the structure or encoding of data.

A Declaration does not describe behaviour.

A Declaration is identified by the letter D.

Rule
A Rule is a statement which describes the behaviour of a compliant implementation.

A Rule does not define concepts or terminology.

A Rule is identified by the letter R.

Information
An Information statement provides additional information and guidance as an aid to understanding the specification.

An Information statement is identified by the letter I.

Rationale
A Rationale statement explains why the specification was specified as it was.

A Rationale statement is identified by the letter X.

Implementation note
An Implementation note provides guidance on implementation of the specification.

An Implementation note is identified by the letter U.

vii

DRAFT

Preface
Rules-based writing

Software usage
A Software usage statement provides guidance on how software can make use of the features defined by the
specification.

A Software usage statement is identified by the letter S.

Identifiers

Each content item may have an associated identifier which is unique within the context of this specification.

When the document is prior to beta status:

• Content items are assigned numerical identifiers, in ascending order through the document (0001, 0002, . . .).
• Identifiers are volatile: the identifier for a given content item may change between versions of the document.

After the document reaches beta status:

• Content items are assigned random alphabetical identifiers (HJQS, PZWL, . . .).
• Identifiers are preserved: a given content item has the same identifier across versions of the document.

Examples

Below are examples showing the appearance of each type of content item.

D This is a Declaration.

R This is a Rule.

RX001 This is a Rule with an identifier.

X This is a Rationale statement.

I This is an Information statement.

U This is an Implementation note.

S This is a Software usage statement.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

viii

DRAFT

Additional reading

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Arm Generic Interrupt Controller Architecture Specification v3 and v4. (Arm IHI 0069 F) Arm Ltd.

[2] Arm Architecture Reference Manual for Armv8-A architecture profile. (ARM DDI 0487 B) Arm Ltd.

[3] Arm Server Base System Architecture version 6.0. (ARM DEN 0029 C) Arm Ltd.

[4] Arm SMC Calling Convention. (ARM DEN 0028 B) Arm Ltd.

[5] Arm Power State Coordination Interface. (ARM DEN 0022 D) Arm Ltd.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to errata@arm.com. Give:

• The title (Reduced Virtual Interrupt Controller specification).
• The number (ARM-DEN-0103 00alp1).
• The page numbers to which your comments apply.
• The rule identifiers to which your comments apply, if applicable.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Note

Arm tests PDFs only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the appearance or behavior
of any document when viewed with any other PDF reader.

ix

DRAFT

Open issues

The following table lists known open issues in this version of the document.

Key Description

- Consider whether prioritization of interrupts should be supported.

x

DRAFT
Chapter 1
Introduction

This document is the specification of the Reduced Virtual Interrupt Controller architecture.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

11

DRAFT

Chapter 1. Introduction
1.1. Components

1.1 Components

This specification consists of the following components:

• Reduced Virtual Interrupt Controller (RVIC)

A Para-virtualized (PV) interrupt controller architecture which provides basic interrupt support for
virtual machines (VMs).

• Reduced Virtual Interrupt Distributor (RVID)

A PV interrupt distributor which allows software in a VM to map virtual interrupts generated by virtual
sources, such as an emulated I/O device, to specific Virtual Processing Elements (VPEs).

See also:

• Chapter 2 Reduced Virtual Interrupt Controller (RVIC)
• Chapter 3 Reduced Virtual Interrupt Distributor (RVID)

1.2 Versioning

The version of this document is 00alp1.

Each component of this specification has its own version, which is reported via the appropriate
[Component].Version command. This allows the ABI of each component to be developed independently.

See also:

• 2.2 RVIC architecture version
• 3.2 RVID architecture version

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

12

DRAFT
Chapter 2
Reduced Virtual Interrupt Controller (RVIC)

The Reduced Virtual Interrupt Controller (RVIC) is a PV interrupt controller architecture which provides basic
interrupt support for VMs.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

13

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.1. RVIC overview

2.1 RVIC overview

The RVIC architecture supports a variety of hypervisor designs, including both monolithic hypervisors and
split-mode hypervisors. Split-mode hypervisors are implemented across two or more levels of privilege (different
Exception levels in the same security state, or different security states), resulting in the hypervisor functionality
being divided into trusted and untrusted parts. This specification uses the term Trusted hypervisor to refer to the
trusted part of the hypervisor and the term Untrusted hypervisor to refer to the untrusted part of the hypervisor. For
monolithic hypervisor designs, these two terms refer to the same software component.

The RVIC architecture aims to provide the minimum required functionality to support virtual interrupts in VMs.
A key design goal of the RVIC architecture is to allow the RVIC implementation to be small and simple, and
therefore suitable to be part of the Trusted hypervisor. Functionality which does not need to be in the Trusted
hypervisor is moved into either the VM or the Untrusted hypervisor.

There is one RVIC instance per VPE.

An RVIC instance delivers interrupts by signaling its VPE, which generates a virtual IRQ exception. When
handling the virtual exception, the VPE can query its RVIC instance to determine which interrupt caused the
exception. Each interrupt in each RVIC instance is represented by a unique number, the Interrupt ID (INTID).

The RVIC architecture supports two classes of interrupts:

• Trusted interrupts

Can only be generated by the Trusted hypervisor

• Untrusted interrupts

Can be generated by the Untrusted hypervisor

Each RVIC instance has its own separate state. Therefore, the RVIC architecture provides no mechanism allowing
in-VM software to request a desired target VPE for an Untrusted interrupt (known as interrupt routing). Routing of
Untrusted interrupts can be performed using a separate component such as the Reduced Virtual Interrupt Distributor
(RVID), which is implemented outside the Trusted hypervisor.

X0001 Avoiding shared state across all VPEs reduces the complexity of an RVIC implementation and allows the number
of supported interrupts in a VM to scale naturally with the number of VPEs.

See also:

• 2.3.2 Trusted and untrusted interrupts
• 2.3.8 INTID assignments
• 2.3.9 Interrupt routing
• Chapter 3 Reduced Virtual Interrupt Distributor (RVID)

2.2 RVIC architecture version

I0002 The version of the RVIC architecture is 0.3.

I0003 The ABI is binary compatible across minor version number changes but not necessarily across major version
number changes.

See also:

• 2.4.3.1 RVIC.Version

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

14

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

2.3 RVIC functional description

2.3.1 Instance enablement status

D0004 The enablement status of an RVIC instance is either Enabled or Disabled.

R0005 If an RVIC instance is Disabled:

• No interrupts are signaled to the VPE.
• No interrupts become Pending on the VPE.
• Interrupts cannot be acknowledged.
• Interrupts can still be masked / unmasked.
• The Pending state of an interrupt can be cleared.

X0006 In-VM software must have the ability to reset and quiesce the interrupt controller state by disabling the interrupt
controller, masking interrupts, and clearing their Pending state.

R0007 When an RVIC instance is reset, it becomes Disabled.

See also:

• 2.3.3 Interrupt mask status
• 2.3.4 Interrupt life-cycle
• 2.4.3.3 RVIC.Enable
• 2.4.3.4 RVIC.Disable

2.3.2 Trusted and untrusted interrupts

D0008 A Trusted interrupt is generated by the Trusted hypervisor.

I0009 There are two categories of Trusted interrupts:

• Software-generated interrupts (SGIs) are sent from a VPE to itself, or to another VPE managed by the Trusted
hypervisor.

• Peripherals managed by the Trusted hypervisor can generate Trusted interrupts. For example, per-VPE Arm
Generic Timer instances managed by the Trusted hypervisor can generate Trusted interrupts to ensure timer
signals are delivered to the VM when it is executed after the timer condition is met.

D0010 An Untrusted interrupt is generated on request of the Untrusted hypervisor.

I0011 For example, a virtual peripheral such as a PV network device generates Untrusted interrupts.

I0012 Trusted and untrusted interrupts have separate INTID spaces.

X0013 Trusted interrupts cannot be generated by software outside the VM’s Root of Trust (RoT). In-VM software can
therefore trust that an incoming interrupt was actually generated by a source VPE. Similarly, in-VM software can
trust that an incoming interrupt from a VPE-local peripheral is the result of that peripheral asserting an output
signal.

I0014 The number of implemented Trusted and Untrusted interrupts is IMPLEMENTATION DEFINED.

I0015 The number of implemented Trusted and Untrusted interrupts can be discovered via the RVIC.Info command.

I0016 Both Trusted and Untrusted interrupts are guaranteed to be delivered when they are Pending and Unmasked at the
time the VPE is entered.

I0017 The RVIC architecture does not guarantee delivery of interrupts within any limit in real time.

X0018 Scheduling of VPEs is not handled by the RVIC implementation and the RVIC architecture cannot assume that
scheduling of CPU resources is performed in the Trusted hypervisor.

See also:

• 2.3.6 Signaling

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

15

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

• 2.3.8 INTID assignments
• 2.4.3.2 RVIC.Info

2.3.3 Interrupt mask status

D0019 The mask status of an interrupt is either Masked or Unmasked.

I0020 Mask status is a per-VPE, per-interrupt control.

I0021 Mask status is distinct from the PE architectural PSTATE.I bit.

R0022 If an interrupt is Masked, it is not signaled to the VPE.

I0023 A Masked interrupt is not signaled to the VPE even if it is Pending.

R0024 When the status of an interrupt changes from Masked to Unmasked, if it is Pending then it is signaled to the VPE.

R0025 When an RVIC instance is reset, all interrupts become Masked.

See also:

• 2.3.4 Interrupt life-cycle
• 2.4.3.5 RVIC.SetMasked
• 2.4.3.6 RVIC.ClearMasked

2.3.4 Interrupt life-cycle

D0026 The life-cycle state of an interrupt is either Idle or Pending.

R0027 When the source of an interrupt signals an event, the interrupt becomes Pending.

I0028 When the VPE acknowledges an interrupt, the interrupt becomes Idle.

I0029 When the VPE acknowledges an interrupt, the interrupt becomes Masked.

I0030 Following acknowledgement, an interrupt must be Unmasked before it can signal the VPE again.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

16

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

Unmasked and Idle

Unmasked and Pending

 RVIC.Signal
or external signal

Masked and Idle

RVIC.Acknowledge

RVIC.ClearMasked

Figure 2.1: Typical interrupt life cycle

I0031 A typical cycle is shown in Figure 2.1:

1. Initial state: Interrupt is Unmasked and Idle
2. Interrupt signal (RVIC.Signal, or external signal): Interrupt is Unmasked and Pending
3. Interrupt acknowledge (RVIC.Acknowledge): Interrupt is Masked and Idle
4. Interrupt unmask (RVIC.ClearMasked): Interrupt is Unmasked and Idle

X0032 Automatically masking an interrupt on acknowledgement guarantees forward progress if an OS wants to consume
all Pending interrupts by calling RVIC.Acknowledge in a loop. It also simplifies threaded interrupt handling,
because in-VM software running on the handling VPE (which may be interrupted in a critical operation) does not
have to explicitly mask the interrupt before assigning the work of processing the interrupt to a separate thread.

I0033 The RVIC architecture does not define an active state for interrupts like the Arm GIC architecture does.

X0034 Handling an active state complicates both the specification and implementation of the interrupt controller, especially
when considering semantics for re-targeting interrupts from one VPE to another.

X0035 The active state in the GIC architecture provides support for threaded interrupt handling in that it allows the PE
which takes an interrupt to clear PSTATE.I and take additional interrupts while a thread (running on any PE)
finishes processing the first interrupt and eventually clears the active state. The same is achieved in the RVIC
architecture by automatically masking the interrupt, but without two separate hardware states.

S0036 In-VM software must manage additional metadata to distinguish between:

• interrupts which are Masked because they were acknowledged, and
• interrupts which are Masked because software has disabled the interrupt.

See also:

• GIC [1]
• 2.4.3.6 RVIC.ClearMasked
• 2.4.3.8 RVIC.Signal
• 2.4.3.10 RVIC.Acknowledge

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

17

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

2.3.5 Trigger modes

D0037 Interrupt signals from interrupt sources are either edge-triggered or level-triggered.

I0038 An edge-triggered signal is generated instantaneously when an event occurs.

I0039 A level-triggered signal represents the internal state of the source.

I0040 All interrupts in the RVIC architecture are edge-triggered.

I0041 The RVIC architecture supports level-triggered signals by providing a re-sample operation that the interrupt
controller driver can call after processing an interrupt from a source which uses level-triggered semantics for its
interrupt signal.

S0042 Software should always re-sample interrupt signals for level-triggered sources before completing the interrupt
service routine and after re-programming the source. For example, the Arm Generic Timer specifies that the
interrupt signal is asserted while the timer condition is met, and de-asserted otherwise. After processing a timer
interrupt, the in-VM timer driver should re-sample the interrupt signal to generate an additional interrupt signal if
the timer condition is still met.

I0043 In rare situations, an RVIC instance might generate spurious interrupt signals from sources with level-triggered
signals. This can occur if the source asserted and subsequently de-asserted its signal and the VPE did not
acknowledge the interrupt before the source de-asserted the signal.

S0044 Device drivers in VMs must be able to tolerate spurious interrupt signals from sources with level-triggered
signals. For example, if a timer’s condition is met and the interrupt signal is asserted, but the in-VM timer driver
re-programs the timer and causes its condition to no longer be met without acknowledging the original interrupt,
then the RVIC instance associated with the timer still signals an interrupt even though the timer condition is no
longer met.

X0045 It is much simpler to implement the RVIC architecture when all interrupts are edge-triggered. The complexity
of implementing a re-sample operation is trivial, compared with supporting multiple interrupt life-cycle flows.
Generation of spurious interrupts from level-triggered sources is expected to be extremely rare, and device drivers
are commonly written to tolerate spurious interrupt signals. Existing VMs and virtual device semantics use almost
exclusively edge-triggered semantics, with the exception of timers and PMUs.

I0046 There is no need for the RVIC to provide interface for configuring which Trusted interrupts are level-triggered,
because interrupt assignments are already described to the OS via firmware tables (such as ACPI or device tree)
and device drivers are written with an understanding of the semantics of the signals generated by sources.

R0047 Untrusted interrupts can only be used for sources which generate signals with edge-triggered semantics.

X0048 While it would be possible to support level-triggered Untrusted interrupts, this would require additional complexity
to re-sample the signal level with the Untrusted hypervisor, which is undesirable. Arm is not aware of a requirement
for level-triggered interrupts from the Untrusted hypervisor, or for level-triggered interrupts from the Trusted
hypervisor, which is not satisfied by edge-triggered interrupts with a resample operation.

I0049 Resampling of Untrusted interrupts is not supported.

See also:

• 2.4.3.11 RVIC.Resample

2.3.6 Signaling

R0050 If an RVIC instance is Enabled and has one or more interrupts which are both Unmasked and Pending, it signals an
interrupt to the VPE.

U0051 On AArch64 systems the RVIC implementation can set HCR_EL2.VI to generate a virtual IRQ exception. The VPE
will observe the virtual IRQ exception according to the rules in [2]. Correspondingly, the RVIC implementation
clears HCR_EL2.VI when either the RVIC instance is disabled or when there are no further Unmasked and Pending
interrupts.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

18

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

X0052 An alternative would be to design the RVIC architecture such that interrupts could be presented using the GIC List
Registers (LRs) and the GIC virtual CPU interface. However, that approach would have the following drawbacks:

• It would imply either the use of an active state, or using only INTIDs in the GIC LPI number space.
• Managing the LRs has shown to be error-prone and complex in some hypervisor implementations due to the

duplicated and disconnected state in both the LRs and the virtual interrupt controller memory data structures.
• Supporting virtual level-triggered interrupts with the GIC LRs relies on receiving EOI maintenance interrupts

which cannot necessarily be processed by the Trusted hypervisor unless it has built-in support for physical
interrupt handling with the GIC, or can bear the performance cost of switching to the Untrusted hypervisor
before re-sampling a level-triggered signal.

See also:

• GIC [1]
• 2.3.4 Interrupt life-cycle
• 2.3.5 Trigger modes

2.3.7 Multiple pending interrupts

I0053 A single interrupt can be acknowledged at a time.

I0054 If more than one interrupt is Unmasked and Pending, the order in which interrupts are presented upon
acknowledgement is IMPLEMENTATION DEFINED.

Issue Consider whether prioritization of interrupts should be supported.

2.3.8 INTID assignments

I0055 INTIDs must be assigned such that the entity generating an interrupt uses the same ID as expected by in-VM
software and without multiple sources using the same ID for different events.

R0056 The INTID number space is defined as follows:

• Trusted INTIDs: 0 to NR_TRUSTED_INTERRUPTS - 1 (inclusive)
• Untrusted INTIDs: NR_TRUSTED_INTERRUPTS to
NR_TRUSTED_INTERRUPTS + NR_UNTRUSTED_INTERRUPTS - 1 (inclusive)

R0057 NR_TRUSTED_INTERRUPTS is a non-zero multiple of 32.

R0058 NR_UNTRUSTED_INTERRUPTS is a non-zero multiple of 32.

R0059 NR_TRUSTED_INTERRUPTS + NR_UNTRUSTED_INTERRUPTS is less than or equal to 2048.

R0060 All RVIC instances in a VM return the same value for NR_TRUSTED_INTERRUPTS via the RVIC.Info command.

R0061 All RVIC instances in a VM return the same value for NR_UNTRUSTED_INTERRUPTS via the RVIC.Info

command.

R0062 Trusted interrupts generated by the Trusted hypervisor use Trusted INTIDs between 16 and 31 (inclusive).

R0063 Trusted interrupts generated by per-VPE peripherals use statically assigned INTIDs compliant with the PPI
assignments in the Arm SBSA.

R0064 Trusted interrupts generated by VPEs (SGIs) use Trusted INTIDs allocated by in-VM software by choosing IDs
that are not used by per-VPE peripherals.

S0065 Arm recommends that Trusted INTIDs are used to signal SGIs.

S0066 Arm recommends that RVIC.Signal is only used for Untrusted INTIDs when moving interrupt state between
RVIC instances, for example when changing the target of an Untrusted interrupt.

I0067 INTIDs between 0 and 15 (inclusive) are reserved for software use for SGIs.

R0068 Untrusted interrupts use Untrusted INTIDs allocated by the Untrusted hypervisor.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

19

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

I0069 The Untrusted hypervisor can inform in-VM software of its INTID assignments via virtual firmware tables such as
ACPI or device tree.

R0070 Interrupt signals generated by the Untrusted hypervisor which use INTIDs outside the supported Untrusted INTID
range do not change the state of any interrupts.

X0071 Arm is not aware of a reason to allow dynamic assignment of INTIDs for specific peripherals.

See also:

• SBSA [3]
• 2.3.9 Interrupt routing
• 2.4.3.2 RVIC.Info

2.3.9 Interrupt routing

In-VM software may need to change the destination RVIC for selected interrupts, for example to balance interrupt
processing across several VPEs or to move interrupts away from a VPE when powering down that VPE. Selecting
the target VPE of an interrupt is referred to as interrupt routing.

I0072 The RVIC architecture does not define any mechanism to configure interrupt routing. The mechanism used to
re-program interrupt sources to specify a target VPE and target INTID is IMPLEMENTATION DEFINED. The
Reduced Virtual Interrupt Distributor (RVID) can be used for this purpose.

I0073 The RVIC architecture allows in-VM software to use interrupt masking to enforce the requested routing, when the
interrupt source configuration mechanism is implemented in the Untrusted hypervisor.

S0074 When in-VM software changes the target of an Untrusted interrupt from VPE A to VPE B, it is expected to follow
a sequence of actions similar to the following:

1. Mask the interrupt on VPE A’s RVIC instance (RVIC.SetMasked).
2. Configure the source to signal the interrupt to VPE B (IMPLEMENTATION DEFINED).
3. Read the interrupt Pending status on VPE A (RVIC.IsPending).
4. If the interrupt is Pending, re-trigger the interrupt on VPE B by signaling the interrupt to VPE B

(RVIC.Signal).
5. Unmask the interrupt on VPE B’s RVIC instance (RVIC.ClearMasked).

I0075 Masking an interrupt on a VPE that should not receive the interrupt, and unmasking the interrupt on the VPE that
should receive the interrupt, ensures that software can trust the configured interrupt routing because the interrupt
masking mechanism is implemented in the Trusted hypervisor.

X0076 Software outside the Trusted hypervisor can choose to ignore the desired routing and signal RVIC instances that
are not configured to receive an interrupt, but these interrupts will never be signaled to the VM because they are
Masked, and the end result is no different from the case where the Untrusted hypervisor never signals the interrupt.
The RVIC architecture does not aim to provide mitigations against missing interrupt signals from untrusted sources.

See also:

• 2.4.3.5 RVIC.SetMasked
• 2.4.3.6 RVIC.ClearMasked
• 2.4.3.7 RVIC.IsPending
• 2.4.3.8 RVIC.Signal
• Chapter 3 Reduced Virtual Interrupt Distributor (RVID)

2.3.10 Notification of pending interrupts

There are situations where executing a command on VPE A’s RVIC instance causes interrupts to become Pending
and Unmasked on VPE B’s RVIC instance. In such situations, the Trusted hypervisor may have to notify the
Untrusted hypervisor that there are Pending and Unmasked interrupts on VPE B’s RVIC instance. For example,
scheduling of VPEs may be implemented only in the Untrusted hypervisor, and whether or not a VPE has any
Pending and Unmasked interrupts may affect scheduling decisions.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

20

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.3. RVIC functional description

I0077 Interrupts can become Pending and Unmasked on VPE B’s RVIC instance when executing one of the following
commands on VPE A’s RVIC instance:

• RVIC.ClearMasked

• RVIC.Signal

R0078 An RVIC implementation in split-mode hypervisors must provide a notification mechanism which allows the
Trusted hypervisor to inform the Unstrusted hypervisor that there are Pending and Unmasked interrupts on a VPE’s
enabled RVIC instance.

R0079 The notification mechanism must uniquely identify which VPE has Pending and Unmasked interrupts.

I0080 The notification mechanism is not required to identify the INTID of Pending and Unmasked interrupts.

I0081 The RVIC architecture does not specify the details of a notification interface from the Trusted to the Untrusted
hypervisor.

See also:

• 2.4.3.6 RVIC.ClearMasked
• 2.4.3.8 RVIC.Signal

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

21

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4 RVIC programming interface

I0082 The RVIC is programmed from within the VM using a hypercall interface.

I0083 The RVIC exposes an external signaling interface via which the Untrusted hypervisor can signal Untrusted
interrupts.

I0084 The external signaling interface provides a mechanism to raise an Untrusted interrupt using a specified INTID.

I0085 Other aspects of the external signaling interface are IMPLEMENTATION DEFINED.

2.4.1 AArch64 hypercall interface

I0086 The RVIC hypercall interface is compliant with the SMC Calling Convention (SMCCC) and uses the SMC64 or
HVC64 calling convention.

R0087 A call to SMCCC_ARCH_FEATURES with RVIC.Version returns:

• NOT_SUPPORTED (-1) if RVIC is not implemented.
• SUCCESS (0) if RVIC is implemented.

S0088 If RVIC is implemented, a VM can call RVIC.Version to establish the implemented RVIC architecture version
and make use of other commands defined in this specification.

I0089 On return from a command, the value in X0 is a return code which indicates command success or failure.

I0090 Conditions which can cause a command to fail are listed under “Failure conditions”.

R0091 Failure conditions are observed to be checked in the order in which they are listed.

R0092 If a failure condition is violated, the corresponding error code is returned in X0.

R0093 If a command succeeds, the values listed under “Output value” are returned.

R0094 If a command succeeds, the conditions listed under “Success conditions” are observable.

I0095 Command Function IDs are in the SMC64 Standard Hypervisor Service Calls range.

See also:

• SMCCC [4]
• 2.4.2.1 CommandReturnCode
• 2.4.3.1 RVIC.Version

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

22

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.2 RVIC types

This section defines data types which are used by RVIC commands.

See also:

• 2.4.3 RVIC commands

2.4.2.1 CommandReturnCode

I0096 The CommandReturnCode type is used to report the result of an RVIC command.

index

31 8

status

7 0

D0097 The fields of the CommandReturnCode structure are shown in the following table.

Name Range Description

index [31:8] Index which identifies the reason for a command failure

status [7:0] StatusCode of the command

2.4.2.2 InfoKey

I0098 The InfoKey enumeration identifies a value which can be queried from the RVIC implementation.

D0099 The values of the InfoKey enumeration are shown in the following table.

Value Name Description

0 NR_TRUSTED_INTERRUPTS Number of Trusted interrupts

1 NR_UNTRUSTED_INTERRUPTS Number of Untrusted interrupts

See also:

• 2.3.2 Trusted and untrusted interrupts
• 2.3.8 INTID assignments
• 2.4.3.2 RVIC.Info

2.4.2.3 InterfaceVersion

I0100 The InterfaceVersion type is used to report the version of an RVIC implementation.

RES0

63 32

3131

major

30 16

minor

15 0

RES0

D0101 The fields of the InterfaceVersion structure are shown in the following table.

Name Range Description

major [30:16] Major version

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

23

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

Name Range Description

minor [15:0] Minor version

See also:

• 2.4.3.1 RVIC.Version

2.4.2.4 StatusCode

I0102 The StatusCode enumeration is used to report the success or failure of an RVIC command.

D0103 The values of the StatusCode enumeration are shown in the following table.

Value Name Description

0 STATUS_SUCCESS The command succeeded

1 STATUS_ERROR_PARAMETER An argument is invalid

2 STATUS_INVALID_VPE A target VPE argument does not match the MPIDR of any
VPE

3 STATUS_DISABLED The target RVIC instance is Disabled

4 STATUS_NO_INTERRUPT No interrupt is pending on the target RVIC instance

2.4.2.5 VPEId

I0104 The VPEId type is used to identify the VPE targeted by an RVIC command.

RES0

63 40

Aff3

39 32

RES0

31 24

Aff2

23 16

Aff1

15 8

Aff0

7 0

D0105 The fields of the VPEId structure are shown in the following table.

Name Range Description

[63:40] Must be zero

Aff3 [39:32] Aff3 of target core MPIDR

[31:24] Must be zero

Aff2 [23:16] Aff2 of target core MPIDR

Aff1 [15:8] Aff1 of target core MPIDR

Aff0 [7:0] Aff0 of target core MPIDR

X0106 The VPEId structure matches the target_cpu parameter used in PSCI.

See also:

• PSCI [5]

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

24

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3 RVIC commands

2.4.3.1 RVIC.Version
Returns the version of the RVIC implementation.

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

None

Failure conditions

None

Output arguments

Name Register Type Description

version X1 InterfaceVersion Version of the the RVIC implementation

Success conditions

None

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

25

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.2 RVIC.Info
Returns information about the RVIC implementation.

Given a key, this command returns the value for that key.

See also:

• 2.3.2 Trusted and untrusted interrupts
• 2.3.8 INTID assignments

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

key X1 InfoKey Selects the value to be queried

Failure conditions

Priority Condition Return code

1 key is invalid { STATUS_ERROR_PARAMETER, 0 }

Output arguments

Name Register Type Description

value X1 Unsigned integer Value selected by key

Success conditions

None

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

26

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.3 RVIC.Enable
Enables the RVIC instance for the current VPE.

See also:

• 2.3.1 Instance enablement status
• 2.4.3.4 RVIC.Disable

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

None

Failure conditions

None

Output arguments

None

Success conditions

• The RVIC instance for the current VPE is Enabled.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

27

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.4 RVIC.Disable
Disables the RVIC instance for the current VPE.

See also:

• 2.3.1 Instance enablement status
• 2.4.3.3 RVIC.Enable

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

None

Failure conditions

None

Output arguments

None

Success conditions

• The RVIC instance for the current VPE is Disabled.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

28

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.5 RVIC.SetMasked
Masks an interrupt on an RVIC instance.

See also:

• 2.3.3 Interrupt mask status
• 2.4.3.6 RVIC.ClearMasked

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

vpe X1 VPEId Target VPE

intid X2 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 vpe is not a valid MPIDR encoding { STATUS_ERROR_PARAMETER, 0 }

2 intid is not a valid INTID { STATUS_ERROR_PARAMETER, 1 }

3 vpe does not match a VPE { STATUS_INVALID_VPE, 0 }

Output arguments

None

Success conditions

• The target interrupt on the target RVIC instance is Masked.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

29

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.6 RVIC.ClearMasked
Unmasks an interrupt on an RVIC instance.

See also:

• 2.3.3 Interrupt mask status
• 2.4.3.5 RVIC.SetMasked

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

vpe X1 VPEId Target VPE

intid X2 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 vpe is not a valid MPIDR encoding { STATUS_ERROR_PARAMETER, 0 }

2 intid is not a valid INTID { STATUS_ERROR_PARAMETER, 1 }

3 vpe does not match a VPE { STATUS_INVALID_VPE, 0 }

Output arguments

None

Success conditions

• The target interrupt on the target RVIC instance is Unmasked.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

30

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.7 RVIC.IsPending
Queries whether an interrupt is Pending on an RVIC instance.

I0107 The value returned is independent of whether the interrupt is Masked or Unmasked.

See also:

• 2.3.4 Interrupt life-cycle

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

vpe X1 VPEId Target VPE

intid X2 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 vpe is not a valid MPIDR encoding { STATUS_ERROR_PARAMETER, 0 }

2 intid is not a valid INTID { STATUS_ERROR_PARAMETER, 1 }

3 vpe does not match a VPE { STATUS_INVALID_VPE, 0 }

Output arguments

Name Register Type Description

status X1 Bit Activity status of the target interrupt on the target RVIC
instance

• 0 : Idle
• 1 : Pending

Success conditions

None

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

31

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.8 RVIC.Signal
Signal an interrupt to an RVIC instance.

I0108 This command can be used with any valid INTID.

I0109 This command can be used to implement SGIs.

S0110 Arm strongly recommends that software does not use INTIDs used for any other purpose (such as virtual
peripherals) because the RVIC architecture does not provide a mechanism to disambiguate which source generated
a signal.

See also:

• 2.3.4 Interrupt life-cycle
• 2.3.6 Signaling

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

vpe X1 VPEId Target VPE

intid X2 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 vpe is not a valid MPIDR encoding { STATUS_ERROR_PARAMETER, 0 }

2 intid is not a valid INTID { STATUS_ERROR_PARAMETER, 1 }

3 vpe does not match a VPE { STATUS_INVALID_VPE, 0 }

4 Target RVIC instance is Disabled { STATUS_DISABLED, 0 }

Output arguments

None

Success conditions

• The target interrupt on the target RVIC instance is Pending.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

32

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.9 RVIC.ClearPending
Clears the Pending state of an interrupt on an RVIC instance.

See also:

• 2.3.4 Interrupt life-cycle

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

vpe X1 VPEId Target VPE

intid X2 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 vpe is not a valid MPIDR encoding { STATUS_ERROR_PARAMETER, 0 }

2 intid is not a valid INTID { STATUS_ERROR_PARAMETER, 1 }

3 vpe does not match a VPE { STATUS_INVALID_VPE, 0 }

Output arguments

None

Success conditions

• The target interrupt on the target RVIC instance is Idle.

I0111 Observability of the Idle status is not guaranteed.

X0112 The Idle status may not be observable if the target interrupt is signaled concurrently with execution of this
command.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

33

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.10 RVIC.Acknowledge
Acknowledge a pending interrupt.

See also:

• 2.3.4 Interrupt life-cycle
• 2.3.7 Multiple pending interrupts

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

None

Failure conditions

Priority Condition Return code

1 There are no interrupts which are both Unmasked and
Pending on the RVIC instance for the current VPE

{ STATUS_NO_INTERRUPTS, 0 }

2 RVIC instance for the current VPE is Disabled { STATUS_DISABLED, 0 }

I0113 STATUS_NO_INTERRUPTS may result from either:

• A Pending interrupt was Masked after the RVIC instance signaled an interrupt to the VPE.
• A VPE processes multiple interrupts on a single IRQ exception by calling this command in a loop until there

are no further Unmasked and Pending interrupts.

Output arguments

Name Register Type Description

intid X1 Unsigned integer INTID of an Unmasked and Pending interrupt

Success conditions

• The interrupt identified by intid is Idle.
• The interrupt identified by intid is Masked.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

34

DRAFT

Chapter 2. Reduced Virtual Interrupt Controller (RVIC)
2.4. RVIC programming interface

2.4.3.11 RVIC.Resample
Resample the signal of an interrupt.

S0114 A VPE processing a Pending level-triggered interrupt should perform this call after programming the source of the
interrupt to determine whether the interrupt signal is still asserted.

See also:

• 2.3.2 Trusted and untrusted interrupts
• 2.3.5 Trigger modes
• 2.3.8 INTID assignments

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

intid X1 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 intid is not a Trusted INTID { STATUS_ERROR_PARAMETER, 0 }

Output arguments

None

Success conditions

• If the source interrupt signal is asserted, the interrupt on the RVIC instance of the calling VPE is Pending.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

35

DRAFT
Chapter 3
Reduced Virtual Interrupt Distributor (RVID)

The Reduced Virtual Interrupt Distributor (RVID) is a PV interrupt distributor which allows software in a VM to
map virtual interrupts generated by virtual sources (such as an emulated I/O device) to specific VPEs.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

36

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.1. RVID introduction

3.1 RVID introduction

The RVID architecture supports a variety of hypervisor designs, including both monolithic hypervisors and
split-mode hypervisors. Split-mode hypervisors are implemented across two or more levels of privilege (different
Exception levels in the same security state, or different security states), resulting in the hypervisor functionality
being divided into trusted and untrusted parts. This specification uses the term Trusted hypervisor to refer to the
trusted part of the hypervisor and the term Untrusted hypervisor to refer to the untrusted part of the hypervisor. For
monolithic hypervisor designs, these two terms refer to the same software component.

The RVID is designed to be implemented in the Untrusted hypervisor when using a split-mode hypervisor design,
and relies on additional controls in the Trusted hypervisor to further enforce the routing requested by in-VM
software.

The RVID is designed to work in conjunction with the Reduced Virtual Interrupt Controller (RVIC), but can work
with any virtual interrupt controller architecture which allows injection of interrupts to a specific VPE.

The RVID allows in-VM software to control the mapping from a signal produced by an interrupt source (described
to the VM via firmwware description tables such as ACPI or device tree) to a destination VPE and VPE-local
Interrupt ID (INTID) value.

See also:

• Chapter 2 Reduced Virtual Interrupt Controller (RVIC)

3.2 RVID architecture version

I0115 The version of the RVID architecture is 0.3.

I0116 The ABI is binary compatible across minor version number changes but not necessarily across major version
number changes.

See also:

• 3.4.3.1 RVID.Version

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

37

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.3. RVID functional description

3.3 RVID functional description

D0117 An Input is a signal which can be produced by an interrupt source.

D0118 A Target is the tuple of a VPE and an INTID value.

I0119 The RVID exposes a hypercall interface which allows in-VM software to map an Input to a Target, or to unmap an
Input from a Target.

I0120 An Input is either:

• unmapped, or
• mapped to exactly one Target

I0121 When an Input signal arrives at the the RVID, if the Input is unmapped, the event is ignored and neither recorded
nor signaled to any entity.

R0122 When an Input signal arrives at the the RVID, if the Input is mapped, the RVID signals the Target.

I0123 An Input which is already mapped to a Target can be mapped to a different Target without losing interrupt signals.

I0124 When an Input is signaled concurrently with changing the Target, it is either signaled to the old Target or to the
new Target.

I0125 The RVID is a separate component from the per-VPE virtual interrupt controller and does not maintain states of
interrupts.

I0126 Changing the Target of an interrupt which has already been signaled does not cause the interrupt to be signaled to
the new Target.

X0127 It is complicated to support automatic re-signaling of interrupts and in-VM software cannot rely on this functionality
when the RVID implementation is in the Untrusted hypervisor. Instead, in-VM software can detect that the interrupt
is in the Pending state on the old Target after changing the Target, and re-trigger the interrupt on the new Target.
This paradigm is used by other (hardware) interrupt controllers.

R0128 When an Input signal arrives at the RVID after changing the Target, the RVID signals the new Target irrespective
of the state of the interrupt on the previous Target. This means that an interrupt can be in the Pending state on two
VPEs at the same time.

S0129 In-VM software must handle the possibility of an interrupt being in the Pending state on two VPEs at the same
time through the use of synchronization mechanisms and the features of the virtual interrupt controller.

R0130 When a VM is created or reset, all Inputs become unmapped from it.

S0131 Arm strongly recommends that software never creates a mapping from two separate Inputs to the same Target.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

38

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.4. RVID programming interface

3.4 RVID programming interface

I0132 The RVIC is programmed from within the VM using a hypercall interface.

I0133 The RVIC exposes an external signaling interface via which devices can generate interrupts.

I0134 The signaling interface is IMPLEMENTATION DEFINED and can be tightly integrated with the hypervisor component
where the RVID is implemented.

I0135 The signaling interface provides a mechanism for other software components, such as emulated peripherals, to
raise interrupt signals to the RVID.

I0136 The presence of the RVID is described in firmware tables (such as ACPI or device tree).

3.4.1 AArch64 hypercall interface

I0137 The RVID hypercall interface is compliant with the SMC Calling Convention (SMCCC) and uses the SMC64 or
HVC64 calling convention.

I0138 On return from a command, the value in X0 is a status code which indicates command success or failure.

I0139 Conditions which can cause a command to fail are listed under “Failure conditions”.

R0140 Failure conditions are observed to be checked in the order in which they are listed.

R0141 If a failure condition is violated, the corresponding error code is returned in X0.

R0142 If a command succeeds, the values listed under “Output value” are returned.

R0143 If a command succeeds, the conditions listed under “Success conditions” are observable.

I0144 Command Function IDs are in the SMC64 Standard Hypervisor Service Calls range.

See also:

• SMCCC [4]
• 3.4.2.1 CommandReturnCode

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

39

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.4. RVID programming interface

3.4.2 RVID types

This section defines data types which are used by RVID commands.

See also:

• 3.4.3 RVID commands

3.4.2.1 CommandReturnCode

I0145 The CommandReturnCode type is used to report the result of an RVID command.

index

31 8

status

7 0

D0146 The fields of the CommandReturnCode structure are shown in the following table.

Name Range Description

index [31:8] Index which identifies the reason for a command failure

status [7:0] StatusCode of the command

3.4.2.2 InterfaceVersion

I0147 The InterfaceVersion type is used to report the version of an RVID implementation.

RES0

63 32

3131

major

30 16

minor

15 0

RES0

D0148 The fields of the InterfaceVersion structure are shown in the following table.

Name Range Description

major [30:16] Major version

minor [15:0] Minor version

See also:

• 3.4.3.1 RVID.Version

3.4.2.3 StatusCode

I0149 The StatusCode enumeration is used to report the success or failure of an RVID command.

D0150 The values of the StatusCode enumeration are shown in the following table.

Value Name Description

0 STATUS_SUCCESS The command succeeded

1 STATUS_ERROR_PARAMETER An argument is invalid

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

40

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.4. RVID programming interface

Value Name Description

2 STATUS_INVALID_VPE A target VPE argument does not match the MPIDR of any
VPE

3.4.2.4 VPEId

I0151 The VPEId type is used to identify the VPE targeted by an RVID command.

RES0

63 40

Aff3

39 32

RES0

31 24

Aff2

23 16

Aff1

15 8

Aff0

7 0

D0152 The fields of the VPEId structure are shown in the following table.

Name Range Description

[63:40] Must be zero

Aff3 [39:32] Aff3 of target core MPIDR

[31:24] Must be zero

Aff2 [23:16] Aff2 of target core MPIDR

Aff1 [15:8] Aff1 of target core MPIDR

Aff0 [7:0] Aff0 of target core MPIDR

X0153 The VPEId structure matches the target_cpu parameter used in PSCI.

See also:

• PSCI [5]

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

41

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.4. RVID programming interface

3.4.3 RVID commands

3.4.3.1 RVID.Version
Returns the version of the RVID implementation.

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

None

Output arguments

Name Register Type Description

version X1 InterfaceVersion Version of the the RVID implementation

Failure conditions

None

Success conditions

None

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

42

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.4. RVID programming interface

3.4.3.2 RVID.Map
Maps an Input to a Target.

See also:

• 3.4.3.3 RVID.Unmap

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

input_intid X1 Unsigned integer Input INTID, as specified to in-VM software via
firmware tables

target_vpe X2 VPEId Target VPE

target_intid X3 Unsigned integer Target INTID

Failure conditions

Priority Condition Return code

1 input_intid is not a valid RVID input INTID { STATUS_ERROR_PARAMETER, 0 }

2 target_vpe is not a valid MPIDR encoding { STATUS_ERROR_PARAMETER, 1 }

3 target_vpe does not match a VPE { STATUS_INVALID_VPE, 0 }

4 target_intid is not a valid INTID on the interrupt
controller belonging to target_vpe

{ STATUS_ERROR_PARAMETER, 2 }

Output arguments

None

Success conditions

• If the specified Input was previously mapped, the mapping to the old Target is removed.
• The specified Input is mapped to the specified Target.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

43

DRAFT

Chapter 3. Reduced Virtual Interrupt Distributor (RVID)
3.4. RVID programming interface

3.4.3.3 RVID.Unmap
Unmaps an Input.

See also:

• 3.4.3.2 RVID.Map

FID

Provisional

Encodings will be added when the specification reaches Beta.

Input arguments

Name Register Type Description

input_intid X1 Unsigned integer Input INTID, as specified to in-VM software via
firmware tables

Failure conditions

Priority Condition Return code

1 input_intid is not a valid RVID input INTID { STATUS_ERROR_PARAMETER, 0 }

Output arguments

None

Success conditions

• The specified Input is not mapped to any Target.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

44

DRAFT

Glossary

ABI

Application Binary Interface

ACPI

Advanced Configuration and Power Interface

EOI

End Of Interrupt

FID

Function Identifier

GIC

Generic Interrupt Controller [1]

INTID

Interrupt Identifier

IRQ

Interrupt ReQuest

LPI

Locality-specific Peripheral Interrupt

OS

Operating System

PMU

Performance Management Unit

PPI

Private Peripheral Interrupt

PSCI

Power State Coordination Interface [5]

PV

Para-virtualized

RoT

Root of Trust

RVIC

Reduced Virtual Interrupt Controller

RVID

Reduced Virtual Interrupt Distributor

SBSA

45

DRAFT

Glossary

Server Base System Architecture [3]

SGI

Software-generated Interrupt

SMCCC

Secure Monitor Call (SMC) Calling Convention [4]

VM

Virtual Machine

VPE

Virtual Processing Element.

ARM-DEN-0103
00alp1

Copyright © 2020 Arm Limited or its affiliates. All rights reserved.
Non-confidential

46

	Reduced Virtual Interrupt Controller specification
	Release information
	Non-Confidential Proprietary Notice

	Contents
	Preface
	Conventions
	Typographical conventions
	Numbers

	Rules-based writing
	Content item classes
	Declaration
	Rule
	Information
	Rationale
	Implementation note
	Software usage

	Identifiers
	Examples

	Additional reading
	Feedback
	Feedback on this book

	Open issues

	1 Introduction
	1.1 Components
	1.2 Versioning

	2 Reduced Virtual Interrupt Controller (RVIC)
	2.1 RVIC overview
	2.2 RVIC architecture version
	2.3 RVIC functional description
	2.3.1 Instance enablement status
	2.3.2 Trusted and untrusted interrupts
	2.3.3 Interrupt mask status
	2.3.4 Interrupt life-cycle
	2.3.5 Trigger modes
	2.3.6 Signaling
	2.3.7 Multiple pending interrupts
	2.3.8 INTID assignments
	2.3.9 Interrupt routing
	2.3.10 Notification of pending interrupts

	2.4 RVIC programming interface
	2.4.1 AArch64 hypercall interface
	2.4.2 RVIC types
	2.4.2.1 CommandReturnCode
	2.4.2.2 InfoKey
	2.4.2.3 InterfaceVersion
	2.4.2.4 StatusCode
	2.4.2.5 VPEId

	2.4.3 RVIC commands
	2.4.3.1 RVIC.Version
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.2 RVIC.Info
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.3 RVIC.Enable
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.4 RVIC.Disable
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.5 RVIC.SetMasked
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.6 RVIC.ClearMasked
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.7 RVIC.IsPending
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.8 RVIC.Signal
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.9 RVIC.ClearPending
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.10 RVIC.Acknowledge
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	2.4.3.11 RVIC.Resample
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	3 Reduced Virtual Interrupt Distributor (RVID)
	3.1 RVID introduction
	3.2 RVID architecture version
	3.3 RVID functional description
	3.4 RVID programming interface
	3.4.1 AArch64 hypercall interface
	3.4.2 RVID types
	3.4.2.1 CommandReturnCode
	3.4.2.2 InterfaceVersion
	3.4.2.3 StatusCode
	3.4.2.4 VPEId

	3.4.3 RVID commands
	3.4.3.1 RVID.Version
	FID
	Input arguments
	Output arguments
	Failure conditions
	Success conditions

	3.4.3.2 RVID.Map
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	3.4.3.3 RVID.Unmap
	FID
	Input arguments
	Failure conditions
	Output arguments
	Success conditions

	Glossary

