
1

Armv8.5-A
Memory Tagging Extension

White Paper

Abstract — The Internet worm of 1988 took offline one
tenth of the fledgling network, and severely slowed down
the remainder [1]. Over 30 years later, two of the most
important classes of security vulnerability in code written
in C-like languages are still violations of memory safety.
According to a 2019 BlueHat presentation, 70% of all
security issues addressed in Microsoft products are caused
by violations of memory safety [2]. Similar figures have
been reported by Google for Android, where over 75%
of vulnerabilities are violations of memory safety [3]. While
many of these violations would be impossible in newer
languages, the base of in-use code written in C and C++
is vast. Debian Linux alone contains over half a billion
lines [4].
This paper introduces the Armv8.5-A Memory Tagging Extension (MTE). MTE aims to
increase the memory safety of code written in unsafe languages without requiring source
changes, and in some cases, without requiring recompilation. Easily deployable detections
of and mitigations against memory safety violations may prevent a large class of security
vulnerabilities from being exploitable.

Introduction
Violations of memory safety fall in to two main categories; spatial safety and temporal

safety. Exploitable violations form the first stage in attacks designed to deliver malicious

payloads or be chained with other types of vulnerabilities to gain control of a system

or leak privileged information.

2

Spatial safety is violated when an object is accessed outside of its true bounds. For

example, when a buffer on the stack is overflowed. This may be exploited to overwrite

the function’s return address, which can form the basis of several types of attack.

Temporal safety is violated when a reference to an object is used out of scope, typically

after the memory backing the object has been reallocated. For example, when a type

containing a function pointer of some kind is overwritten with malicious data, which

can also form the basis of several types of attack.

MTE provides a mechanism to detect both main categories of memory safety violation.

MTE assists the detection of potential vulnerabilities before deployment by increasing

the effectiveness of testing and fuzzing. MTE also assists detection of vulnerabilities

at scale after deployment.

With careful software design, sequential safety violations where memory is accessed

immediately before or after the true bounds can always be detected. ‘Wild’ violations to

arbitrary locations in the address space can be detected probabilistically.

Locating and fixing vulnerabilities before deployment reduces the attack surface of

deployed code. Detecting vulnerabilities at scale after deployment supports reactively fixing

vulnerabilities before they are widely exploited. Research into the economics of cybercrime

[5] shows it to be sensitive to scale. Prompt detection and reactive patching may be highly

effective at disrupting cybercrime at scale.

Threat Model
MTE is designed to provide robustness against attacks attempting to subvert

code processing malicious, attacker-provided, data. It does not address algorithmic

vulnerabilities or malicious software.

MTE is designed to detect memory safety violations and to increase robustness against

attacks that the violations enable. In dynamically linked systems, legacy code benefits

from MTE for heap allocations without recompilation.

Application of MTE to the stack requires recompilation. The MTE architecture is designed

with the assumption that the stack pointer is trustworthy. When deploying MTE for stack

allocations it is therefore important to combine the use of MTE with other features such

as Branch Target Identification (BTI) and Pointer Authentication Code (PAC) to reduce

the probability that a gadget exists that would allow an attacker to take control

of the stack pointer.

Memory safety with MTE
The Arm Memory Tagging Extension implements lock and key access to memory.

Locks can be set on memory and keys provided during memory access. If the key matches

the lock, the access is permitted. If it does not match, an error is reported.

3

Memory locations are tagged by adding four bits of metadata to each 16 bytes

of physical memory. This is the Tag Granule. Tagging memory implements the lock.

Pointers, and therefore virtual addresses, are modified to contain the key.

In order to implement the key bits without requiring larger pointers MTE uses the Top Byte

Ignore (TBI) feature of the Armv8-A Architecture. When TBI is enabled, the top byte of

a virtual address is ignored when using it as an input for address translation. This allows the

top byte to store metadata. In MTE four bits of the top byte are used to provide the key.

Figure 1 shows an

example of lock and key

access to memory.

MTE relies on the lock and the key being different to detect memory safety violations.

As there are a limited number of tag bits available, it cannot be guaranteed that two

memory allocations will have different tags for any specific execution. However, a memory

allocator can ensure that the tags of sequential allocations are always different and thus

ensure that the most common types of safety violations are always detected.

More generally, MTE supports random tag generation and pseudo-random tag generation

based on a seed. With a sufficient number of executions of a program, the probability that

at least one of them will detect the violation tends towards 100%.

Architectural Details
MTE adds a new memory type, Normal Tagged Memory, to the Arm Architecture. With

some exceptions, where it is possible to statically determine the safety of the access,

loads and stores to this new memory type perform an access where the tag present

in the top byte of the address register is compared with the tag stored in memory.

A mismatch between the tag in the address and the tag in memory can be configured

to cause a synchronous exception or to be asynchronously reported.

4

When mismatches are configured to be asynchronously reported, details are accumulated

in a system register. A control is provided to ensure that this register is updated on entry

to software running at a higher exception level. This enables the operating system kernel

to isolate the mismatch to a particular thread of execution and make decisions based

on this information.

A synchronous exception is precise in that it is possible to exactly determine which load

or store instruction caused the tag mismatch. Conversely, asynchronous reporting is

imprecise as it is only possible to isolate the mismatch to a particular thread of execution.

MTE adds instructions to the Armv8-A Architecture that are outlined below and grouped

into three different categories [6]:

Instructions for tag manipulation applicable to stack and heap tagging.

IRG

In order for the statistical basis of MTE to be valid, a source of random tags is required.

IRG is defined to provide this in hardware and insert such a tag into a register for use

by other instructions.

GMI

This instruction is for manipulating the excluded set of tags for use with the IRG instruction.

This is intended for cases where software uses specific tag values for special purposes

while retaining random tag behavior for normal allocations.

LDG, STG, and STZG

These instructions allow getting or setting tags in memory. They are intended for changing

tags in memory either without modifying the data or zeroing the data.

ST2G and STZ2G

These are denser alternatives to STG and STZG which operate on two granules of memory

when allocation size allows them to be used.

STGP

This instruction stores both tag and data to memory.

Instructions Intended for pointer arithmetic and stack tagging:

ADDG and SUBG

These are variants of the ADD and SUB instructions, intended for arithmetic on addresses.

They allow both the tag and address to be separately modified by an immediate value.

These instructions are intended for creating the addresses of objects on the stack.

SUBP(S)

This instruction provides a 56-bit subtract with optional flag setting which is required

for pointer arithmetic that ignores the tag in the top byte.

5

Instructions intended for system use:

LDGM, STGM, and STZGM

These are bulk tag manipulation instructions which are UNDEFINED at EL0. These are

intended for system software to manipulate tags for the purposes of initialization and

serialization. For example, they can be used to implement swapping of tagged memory

to a medium which is not tag-aware. The zeroing form can be used for efficient

initialization of memory.

In addition, MTE provides a set of cache maintenance operations designed for use

with tags. These provide efficient mechanisms operating on entire cache lines.

Deploying MTE at Scale
Arm anticipates that MTE will be deployed in different configurations at various stages

of product development and deployment.

Precise checks are intended to give the most information about the location of a failure.

Imprecise checks are intended to enable higher performance.

An OS kernel can choose whether to terminate a process that causes an exception due

to a tag mismatch or record the occurrence and allow the process to carry on.

Testing a product with MTE enabled can find many of its latent issues. In this phase it

is appropriate to detect and record as much information about as many issues as possible.

The system does not need to be protected against an attacker. It might be appropriate

to configure the system to:

 Perform precise checks.

 Accumulate data on tag mismatches rather than terminating processes.

This configuration allows the most information to be collected to support finding

the maximum number of defects via directed testing and fuzzing.

After releasing a product, it might be appropriate to configure MTE to:

 Perform imprecise checks.

 Terminate processes on tag mismatches.

This configuration provides a balance between performance and detecting memory safety

violations that might start exploits against the software.

After release, it might be appropriate to configure processes with high value to hackers,

such as cryptographic key stores, to perform precise checks so that accurate information

about the location of a check failure can be relayed back to its developers by bug reporting

and telemetry systems.

6

It might also be appropriate for a system to adaptively change its MTE configuration.

For example, if a process running with imprecise checks is terminated because of a tag-

check failure, the next time that process is started it could begin with precise checks

enabled to collect better diagnostic information for its developers. This deployment model

melds the performance benefits of imprecise checks with the benefits of precise checks

to provide better quality feedback.

Deploying MTE in Hardware
In order to support future Arm products that implement MTE, a new version of the AMBA

5 Coherent Hub Interface (CHI) specification is being developed which supports the

transport and coherency requirements of MTE [7].

Deploying MTE in Software
MTE is designed to support several levels of deployment.

Heap Tagging

In a dynamically linked system, it is possible to deploy a tagged heap without changing

existing binaries. Only OS kernel and C library code need to be altered.

Arm prototyped MTE by adding support to the Linux kernel. The following areas needed

to be altered:

 Ability to remove tags from user space pointers when they are used

 for address space management.

Figure 2 shows an

example MTE-

based system

7

 Making the clear_page and copy_page functions in the virtual memory

 system aware of tags.

 Adding support for handling faults caused by mismatched tags,

 resembling the way translation faults are handled as a SIGSEGV.

 Converting memory mappings which might be exposed to user-space

 processes to use Normal Tagged memory.

 Adding detection of the extension and system register configuration

 to enable the extension.

Arm is in the process of contributing Linux Kernel support upstream.

In the C library, Arm modified these memory-related functions:

 malloc

 free

 calloc

 realloc

In addition, memory copy and string related functions were modified to prevent them

overreading source buffers.

Stack Tagging

Tagging memory allocated on a run-time stack requires compiler support and kernel

support. Binaries must be recompiled. Many different strategies for stack tagging

are possible.

Our partners have prototyped a strategy of choosing a random tag, using the IRG

instruction, during function entry when a new stack frame is allocated. The compiler then

uses the ADDG and SUBG instructions to create tagged addresses for each stack slot

within the function, where the tag is offset from the initial random tag. The stack allocation

might be bulk-initialized using an appropriate tag store instruction but a compiler need not

initialize any slot that will be provably initialized before use by the function’s body code.

This strategy ensures that the statistical properties of MTE are valid for each call to

a function and ensures that adjacent objects on the stack have different tags and thus

sequential overflow and underflow will result in detections.

Protecting adjacent objects on the stack requires increasing the alignment of those objects

to the Tag Granule, which is to 16 bytes. In some programs, MTE causes an increase stack

usage because of this effect. Our benchmarking suggests that the increase is usually small.

To increase performance, memory accesses which use the immediate-offset from the

stack pointer addressing mode are unchecked under MTE. This is because a compiler

can statically prove them correct or issue a diagnostic at compile time.

8

Optimizing for MTE
MTE has been designed so that it requires no source code modifications to correct code.

However, MTE necessarily causes overhead, as tags must be fetched from and stored

to the memory system. This overhead is related to the size and lifetime of memory

allocations and whether tags and data are manipulated together or separately. Overhead

can be minimized in the following ways:

Write tags and initialize memory concurrently.

In many cases, memory must be initialized to zero and the tags set. For example, clearing

pages in an OS kernel before handing them to user space. Arm’s Linux-based prototype

used the STZGM instruction for this purpose.

Avoid over-allocating address space that never has data written to it.

In some cases, software allocates far more address space than it needs and only touches

a fraction of it before de-allocating. Using MTE, this is more expensive because even

if data is never written to the memory, tags might need to be.

Avoid excessive de-allocation and re-allocation.

Avoiding excessive de-allocation and re-allocation is good practice generally, regardless

of whether MTE is deployed. However, because the fixed cost of allocation and

de-allocation rises using MTE, existing performance issues might be amplified.

Avoid large fixed-size allocations on the stack.

Large, fixed-size allocations on the stack tend to be under used, for example, buffers

of fixed sizes such as PATH_MAX often contain relatively short strings. Avoiding such

allocations reduces the overhead of protecting the stack by reducing the amount of

unused memory tags must be written to.

9

Works Cited

[1] F. B. I. [Online]. Available: https://www.fbi.gov/news/stories/morris worm-30-

years-since-first-major-attack-on-internet-110218

[2] M. Miller, “Bluehat Abstracts,” [Online]. Available: https://msrnd-cdn-stor.

azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20

Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20

Vulnerability%20Mitigation%20Landscape.pdf

[3] “Google Queue Hardening,” [Online]. Available: https://security.googleblog.

com/2019/05/queue-hardening-enhancements.html

[4] Debian, “Stretch Statistics,” [Online]. Available: https://sources.debian.org/stats/

stretch

[5] “ACM,” [Online]. Available: https://dl.acm.org/citation.cfm?id=2654847

[6] “AArch64 Instructions,” [Online]. Available: https://developer.arm.com/docs/

ddi0596/latest/base-instructions-alphabetic-order

[7] “Architecture Reference Manual,” [Online]. Available: https://developer.arm.com/

docs/ddi0487/latest

https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
https://www.fbi.gov/news/stories/morris-worm-30-years-since-first-major-attack-on-internet-110218
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf.
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf.
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf.
https://msrnd-cdn-stor.azureedge.net/bluehat/bluehatil/2019/assets/doc/Trends%2C%20Challenges%2C%20and%20Strategic%20Shifts%20in%20the%20Software%20Vulnerability%20Mitigation%20Landscape.pdf.
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://sources.debian.org/stats/stretch
https://dl.acm.org/citation.cfm?id=2654847
https://developer.arm.com/docs/ddi0596/latest/base-instructions-alphabetic-order
https://developer.arm.com/docs/ddi0596/latest/base-instructions-alphabetic-order
https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/docs/ddi0487/latest

