
1

Power and Performance
Management using Arm®
SCMI Specification

White Paper

2

Abstract
This white paper provides an overview of the Arm System Control and Management

Interface (SCMI) specification. It describes how an SCMI-enabled system optimizes

power and performance management through a combination of abstraction and division

of responsibilities between the operating system and a system controller.

Introduction

Providing efficient power and performance management through an interface that

an operating system (OS) can use is a huge challenge. There are a wide variety of Arm-

based system-on-chip (SoC) designs as vendors strive for differentiation. This variety

creates a huge amount of complexity for the OS developer, as there are too many

systems to manage in a single, generic kernel. Different SoCs use different methods

to achieve similar aims in power and performance management, and it is difficult for

an OS developer to judge how to deploy the different controls available. As newer,

high performance processors and other compute engines such as accelerators or

GPUs evolve, there is an increasing variety of these controls. There is great complexity

to manage for not only OS developers, but also for silicon vendors who must provide

support for multiple operating systems.

Arm recently introduced the Arm System Control and Management Interface (SCMI) [1]

specification. The SCMI specification describes an OS-agnostic generic interface for power

and performance management. This white paper details how an SCMI-enabled system

offers improved overall system management in modern SoCs and provides a simple and

effective solution for stakeholders such as OS developers and silicon vendors. This white

paper is organized into five sections:

Section 1 provides a brief overview of the SCMI specification and its key aspects.

Section 2 describes recent challenges in SoC designs, and provides motivations for

platform abstraction. There is also a description of how platform abstraction can

help achieve improved power and performance management through delegation of

responsibilities to a system controller. Section 3 provides an overview of power and

performance management frameworks in the Linux Operating System, and the role

that SCMI plays in enabling these frameworks. Section 4 describes other standards

in the industry that are commonly deployed, and SCMI’s interoperability with these

standards. Section 5 provides a summary.

1. Overview of SCMI

The SCMI specification provides a standardized interface for power, performance,

and resource management on a SoC. The low-level management actions are performed

by a system controller that directly controls the SoC hardware or platform. The system

controller provides SCMI interfaces to its clients. A typical example of an SCMI client

is an operating system kernel running on the Application Processors (AP). The SCMI

3

specification refers to clients as agents. This document refers to the system controller

as the System Control Processor (SCP), and the code it runs as the SCP firmware [2]
or, simply, the firmware.

The SCMI interface comprises a set of protocols. Agents communicate with the SCP using

these protocols. The SCMI specification defines protocols for standard platform services

such as power management, performance management, and reading SoC sensors. Each

protocol comprises a set of messages. Messages that are issued by agents to request

services are called commands. An example of a command is a request to set the power

state of a power domain. The SCP can also send messages to agents. These messages are

called notifications. Notifications are typically used to inform the agent of a system-level

event. Messages are exchanged over an underlying transport. Figure 1 provides a broad

overview of an SCMI-based system.

2. Motivation

Arm systems have an embedded legacy which has led to designs where the OS kernel

is the only entity that manages the platform. The rationale for this is that the OS was the

only entity in the system that could manage the use of resources based on the behavior

Figure 1: High-

level overview of

an SCMI-enabled

System.

*NOTE: PSCI is

described in detail

in [10]

4

and needs of workloads that it runs. Consequently, the OS directly controlled the platform’s

power and performance hardware to match the demands of the workload.

However, it is hard to create and maintain a single, generic OS kernel that can

support a wide variety of systems from multiple vendors, as each system has its own

implementation-specific power, performance and system resource control mechanisms.

In addition, modern SoCs can involve complex constraints arising from hardware

and environmental conditions. For example, the platform can be subjected to thermal

throttling if the temperature exceeds a threshold. These constraints impose additional

safety and security requirements which might be too complex for the OS to manage

while simultaneously attempting to optimize workload performance.

This gives rise to the motivation in the industry to break away from the traditional

OS-based, centralized control paradigms, in favor of a delegation-based model. In the

new model, the SCP firmware has sole access to the platform power and performance

hardware. As before, the OS continues to be responsible for assessing the performance

needs of workloads and translates them to desired performance levels. The OS sends

requests to the SCP, which in turn sets the selected performance levels in the hardware.

Independently from the OS, the SCP can autonomously monitor the platform for conditions

that warrant enforcement of constraints. The SCP configures a net performance level

that best satisfies the requests from the OS whilst meeting any imposed constraints.

Abstraction

Workload performance is typically equated to CPU clock frequency, and a corresponding

voltage to drive the clock at the selected frequency. A CPU core or cluster of CPU cores

can operate at one or more {frequency, voltage} pairs. Each such pair is called an Operating

Performance Point (OPP), and the related performance management scheme is referred

to as Dynamic Voltage and Frequency Scaling (DVFS) or Dynamic Clock and Voltage Scaling

(DCVS). This framework allows workload performance to be set and measured in terms

of distinct and discrete OPPs. This requires the OS kernel to possess full knowledge of

the OPP values that the platform supports, and recognize how they are read and set. Each

SoC offers different methods for reading and setting OPPs. Furthermore, some SoCs offer

additional means of controlling performance, which have similar power and performance

tradeoffs, such as CPU throttling.

An alternative to the OPP-based DVFS approach is to view performance as a continuum

of performance levels in an abstract, linear scale. The SCP can map individual OPPs to

equivalent performance levels in this scale, and then exposes the performance scale and

levels to the OS. The DVFS framework in the OS can then be built on top of this abstract

scale making the OS code platform-agnostic. This facilitates kernel code development,

generalization, distribution, maintenance, and porting. Specifically:

A generic, platform-agnostic OS kernel can be maintained, which works seamlessly

on different platform implementations.

5

Complex platform-specific constraints that are not visible to the OS kernel can

be enforced and handled by the SCP. One example is limiting the availability

of higher performance levels under thermal or electrical constraints.

Platform-specific tuning and differentiation can be implemented in firmware

instead of the generic OS kernel, allowing for overall improvement in performance

without modifying the OS kernel.

Safe Hardware Operation

A challenge in SoC design is providing cost-effective power supplies that can meet peak

power demands of all the compute engines within the SoC. To achieve this, the power

supplies are not always provisioned for maximum possible current draw. Therefore,

hardware and firmware solutions are required to manage current consumption. Another

common contingency that requires mitigation in real-time is thermal excursion.

Table 1 shows the typical reaction times of hardware, firmware and kernel solutions

in reacting to platform contingencies.

Some power delivery issues require sub 100us reaction times and can only be solved

in hardware. There are also other power delivery issues that require less stringent reaction

times but are still in the sub 1 ms range. For such issues, the kernel is too slow. Moreover,

the kernel might not even have visibility of all the factors that affect the safe operation

of the system when these problems do arise. As a result, these issues can be mitigated

by the SCP firmware. The SCP has a better reaction time than the kernel and can thus

provide platform safety guarantees. The SCP can also have full visibility of the current

state of the SoC hardware, which allows it to make optimized decisions for resolving

specific issues. This approach maintains the simplicity of the kernel implementation

and keeps it platform-agnostic.

Security

The CLKsCREW attack [3] exposed security vulnerabilities in energy management

implementations where untrusted software had direct access to clock and voltage

hardware controls. In this attack, the malicious software was able to place the platform

into unsafe overclocked or undervolted configurations. Such configurations then

enabled the injection of predictable faults to reveal secrets.

Many Arm-based systems today implement voltage regulator and clock frameworks

in the kernel. These frameworks allow callers to independently manipulate frequency

and voltage settings. Such implementations can render systems susceptible to this

form of attack.

Table 1: Typical

reaction times

of various

components in

the system

6

Attacks such as CLKsCREW can be mitigated if the following requirements are met:

The kernel must not have direct and independent control of clock and voltage.

A trusted entity, such as the SCP firmware, must be able to perform sanity

checking on the requested performance levels, thereby preventing any attempted

malicious programming.

These requirements can be met with a kernel implementation that delegates

the management of these controls to the platform through an abstracted interface.

SCMI enables such an implementation.

3. OS Power management using SCMI

Introduction

Using the Linux OS as an example, this section describes how SCMI supports frameworks

such as Energy Aware Scheduling (EAS) [4], and Intelligent Power Allocation (IPA) [5].
These frameworks enable OS task scheduling and thermal management based on power

consumption feedback. SCMI enables these frameworks by supplying:

Information that aids the discovery of power and performance domains

in the platform.

Commands for configuring performance levels and power states at runtime.

An interface that the OS can use to obtain sensor information from the SCP.

Figure 2 illustrates how an SCMI-aware, IPA governor implementation can use the SCMI

specification. Firstly, the governor utilizes the SCMI sensor protocol interfaces to obtain

Figure 2:

Linux power

and performance

management

architecture

and SCMI

7

instantaneous temperature data of the SoC to compute the current thermal headroom.

It then converts the thermal headroom into a power budget, in accordance with the core

IPA control algorithm. Next, by combining utilization and priority information, it determines

how available power budget must be divided between the domains that allow DVFS

control. The domain power budgets are then converted to available performance levels

using power costs provided by the SCMI Performance Management protocol.

If the current performance level of a domain exceeds the budget, it is restricted to

a calculated maximum performance level. This level is then requested through the

SCMI Performance Management protocol.

Energy model

The EAS implementation in Linux kernel [6] gives the scheduler the ability to predict the

impact of its decisions on the energy consumed by the CPUs. Like IPA, EAS relies on CPU

power and performance information to select an energy-efficient CPU for each task, with

a minimal impact on throughput. Since there are multiple consumers of this information

in the kernel, Linux has an Energy Model (EM) framework [7] for holding the information.

The EM information can be delivered through description data such as a device tree.

As an alternative, an SCMI-enabled SCP can provide direct power information though

a standard SCMI protocol interface. The interface enables discovery of the available

performance levels for each performance domain in the platform, and their associated

power costs. The power cost can be expressed in milliwatts or in an abstract linear scale.

SCMI thus enables vendors and kernel developers to work towards maintaining generic,

portable, and platform-agnostic power-management frameworks in the OS kernel.

Performance levels

In Linux, the cpufreq governor decides the performance level needed for each CPU

performance domain. Similarly, devfreq governors decide the performance levels

needed for device performance domains. These decisions are based on characteristics

of the system and the governors’ own internal policies.

For example, in the case of cpufreq, the governor executes its internal policy to select

an appropriate performance level for a given performance domain. When implemented

with SCMI support, the cpufreq driver invokes the SCMI Performance Management

protocol, and in turn, the SCP sets the selected performance level.

As already noted in the preceding sections, the SCP can only make a best-case effort

to fulfil the request. In most cases the SCP delivers the requested performance. However,

there might be prevailing conditions that cause the SCP to enforce constraints and modify

the OS request. With high-performance CPUs, the hardware and firmware are better

equipped for managing platform constraints because they can provide mitigation in real-

time to ensure that the platform always operates within safe limits.

8

Performance Feedback

Operating systems need to understand what performance is being delivered by a platform

at any point in time. Firmware or hardware can provide this feedback in different forms.

In the firmware-based approach, the SCP can send SCMI performance level change

notifications. The OS can register for these notifications to become aware of a change

in the performance level of a domain that the OS itself did not request. SCMI allows

the SCP to report the identity of the agent that caused this performance change. This

helps the OS become aware of performance level changes that were caused by platform

constraints. However, notifications can be disruptive since they are delivered as interrupts

to the OS. In addition, SCMI also supports providing current performance information

through a statistics table.

In the hardware-based approach, free-running performance counters can be deployed

in hardware. For instance, the Armv8.4-A architecture introduces the Arm Activity Monitors

Extension (AMU) [8]. This optional extension can be used to obtain performance feedback.

The AMU feature provides activity monitors that track delivered CPU clock frequency.

The AMU also provides additional counters for measuring instructions retired and memory

stall cycles. The OS can collect and correlate all this information to gain full insights into

delivered CPU performance. The Activity Monitors Extension provides a system register

interface to the activity monitors counters. It also supports an optional memory-mapped

interface that allows the SCP to directly access performance information from the CPUs.

4. SCMI and ACPI

ACPI is an industry standard that provides interfaces for power and performance

management [9]. In particular, ACPI provides platform abstraction that allows for

generalization of ACPI-based operating systems.

Although used extensively in other markets, ACPI is not commonly deployed in mobile

and embedded. For these markets, SCMI can provide platform abstraction, thus allowing

for generalization of the OS kernel. Though the abstractions differ, SCMI and ACPI

have a high degree of compatibility. Therefore, it is possible to provide SCMI-based

SCP implementations that support ACPI based operating systems.

5. Conclusion

This white paper introduces the SCMI specification, which provides platform-agnostic

interfaces for power, performance and system management in a SoC. The SCMI interfaces

allow SoC vendors to provide a single firmware solution that supports multiple OS kernels,

and OS vendors to develop a platform-agnostic OS kernel that runs seamlessly on multiple

platforms. This contrasts with the current situation in the Arm ecosystem, where the

SoC vendors must develop a custom firmware for each supported OS kernel, and where

9

the OS kernel must be customized to support each SoC. The white paper presents key

motivations and industrial trends leading to the requirement for delegation of performance

and power management duties to a system controller running an SCMI-aware firmware.

Finally, the white paper provides illustrative examples based on the Linux kernel power

and performance management frameworks to showcase SCMI supporting them in

a standardized manner.

Arm recommends that silicon designers, OS vendors, and kernel developers contributing

to the Arm ecosystem adopt the SCMI-based design approach outlined in this white paper.

For further information on SCMI, please see the Arm SCMI specification [1].

6. References

[1] Arm® System Control and Management Interface.

[2] SCP firmware.

https://github.com/ARM-software/SCP-firmware

[3] CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management, A. Tang, S.
Sethumadhavan, and S. Stolfo, Columbia University, Proceedings of the USENIX Security
Conference, 2017.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/
tang

[4] Energy Aware Scheduling (EAS).

https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/
energy-aware-scheduling

[5] Intelligent Power Allocator (IPA).

https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/
intelligent-power-allocation

[6] Energy Aware Scheduling: Linux kernel implementation.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/
scheduler/sched-energy.txt?h=v5.1.6

[7] Energy models of CPUs and the Energy Model Framework.

https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/
power/energy-model.txt?h=v5.1.6

[8] Arm® Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile.

https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf?_
ga=2.64170153.706104037.1551267858-1587319438.1538587147

[9] Advanced Configuration and Power Interface, Version 6.3.

https://uefi.org/specifications

[10] Arm ® Power State Coordination Interface, Version D.

https://developer.arm.com/architectures/system-architectures/software-standards/psci

https://developer.arm.com/docs/den0056/latest/arm-system-control-and-management-interface-platform-design-document
https://github.com/ARM-software/SCP-firmware
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/tang
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/energy-aware-scheduling
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/energy-aware-scheduling
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/intelligent-power-allocation
https://developer.arm.com/tools-and-software/open-source-software/linux-kernel/intelligent-power-allocation
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/scheduler/sched-energy.txt?h=v5.1.6
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/scheduler/sched-energy.txt?h=v5.1.6
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/power/energy-model.txt?h=v5.1.6
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/tree/Documentation/power/energy-model.txt?h=v5.1.6
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf?_ga=2.64170153.706104037.1551267858-1587319438.1538587147
https://static.docs.arm.com/ddi0487/da/DDI0487D_a_armv8_arm.pdf?_ga=2.64170153.706104037.1551267858-1587319438.1538587147
https://uefi.org/specifications
https://developer.arm.com/architectures/system-architectures/software-standards/psci

