Pre-exascale Architectures: ARM Performance & Usability Assessment for French Scientific community

Christelle Piechurski
Chief HPC Project Officer
GENCI (GRAND EQUIPEMENT NATIONAL DE CALCUL INTENSIF)

Enabling scientific community in France and Europe

- 40PF+
- 5 partners
- 3 national centers Tiers 1
- 1 National center Tiers 0
- 3 supercomputers
- 100PB+ data
- x^2/y computing power
- >600 projects/yr

- Provides state-of-the-art, performant and mature computing resources to academic and industrial French Research Community

- Represents France into the European HPC ecosystem through PRACE
THE FUTURE IS, AT LEAST, CONVERGENCE DRIVEN

More complex scientific challenges & discovery dealing with data explosion

Science

Climat/météo
Modèles globaux à 1km
Ensembles multi physiques

Fusion par confinement
Simulation échelle 1 ITER
Dimensionnement, fonctionnement, sécurité, performances du futur réacteur

Sciences de la vie
Interactions protéines/médicaments & effets des mutations sur systèmes
> 200k atomes simulations sur plusieurs μs

Instrumental data

SKA 4 EB/Y
SWOT 1.5 EB/Y

Genomics
IoT – Edge computing

Our 1st step: Jean Zay, the largest converged machine in Europe production ready

900% oversubscription

Computationnel

Climate
Cosmology
Fusion
Reservoir modelling
A 10 YEARS PATH TO ARM BASED EXASCALE

Strong French involvement

2011
- co-design
 - 11 applications
 - Progammability
 - Define ARM ecosystem to assess maturity of the software ecosystem
 - Energy efficiency

2018
- co-design
 - 5 applications
 - Progammability
 - Vectorisation instruction best support, etc.
 - And even more… *Convergence HCP/AI*

2022-2023
- Exascale
 - Sustained performance driven
 - ARM readiness ecosystem
 - ARM EPI anticipated technology
ARM TECHNOLOGY WATCH

Enabling Future production

X86 Intel Skylake
KNL Intel
X86 AMD Rome (HDR)
NVIDIA V100 (HDR)

Ouessant – IDRIS - 2017
OPA – Power8 – GPU
P100
12 nodes bi-sockets
254 Tflops GPU only
Lead Jean Zay acquisition

Frioul – CINES - 2017
IB EDR - KNL based
48 nodes bi-sockets
146 TFlops
Lead to the first Joliot-Curie KNL deployment

MARVELL Thx3 (BXI)

Inti – CEA - 2019
IB EDR – ThX2
30 nodes bi-sockets
Lead to the acquisition of 2nd phase of Joliot-curie 2 ThX3 based

X86 Intel Cascade Lake
NVIDIA V100
OPA

X86 Intel Haswell
X86 Intel Broadwell
IB FDR

H2 2020
March 2019
APPLICATIONS DRIVEN PROCESS

When application owners, chip designer & maker and solution suppliers work together

- **2 hackatons (09/18 & 06/19)**
 - Single node performance
 - Comparison between ARM and x86 architecture
 - Application scalability

- **3rd hackaton (TBD – Dec.?)**
 - Software ecosystem (Gem5, ArmIE comp. etc.)
 - Feed EPI WP1
 - Attendees: Expert applications owners

- **GENCI open to higher involvement with similar initiatives**
 - Understand respective target(s)
 - Share best practises
 - Define topics to focus on per user’s groups
 - Hackaton all together
 - Regular synchronisation
SINGLE NODE PERFORMANCE

ThunderX2 speed-up versus Intel top bin SKU

- 2xCavium ThunderX2 (32cores@2.2GHz) vs 2xIntel Xeon Platinum 8168 (24cores@2.7GHz)

- 4 white boxes
- Marvell ThX2 – 32c/2.2Ghz
- Compiler ARM 18.4.2
- 15 diverse scientific applications
- Smooth code portability
- +25% increase performance for memory bound applications NEMO, Meso-NH, HYDRO compare to Intel SKL SP

AVBP	Dynamico	GROMACS	Hydro	MesoNH	NAMD	NEMO	PATMOS	PPKMHD	SMILEI	Specfem3D	Tokam3X	TRUST	Yale32	Mean
0.65 | 0.89 | 0.55 | 1.25 | 1.28 | 0.96 | 1.00 | 0.43 | 0.88 | 0.34 | 0.85 | 0.49 | 0.42 | 0.80 | 0.77

15/09/2019
ARM RESEARCH SUMMIT
MULTI NODES PERDFORMANCE

Strong scalability efficiency for NEMO, SPECFEM3D, GROMACS, AVBP, YALES2

- Results aligned with user’s expectations
- Conditions
 - ARM 19.2
 - NEMO (2 test cases)
 - SPECFEM3D
 - AVBP
 - ARM 18.4.2
 - NAMD
 - GROMACS
 - YALES2

Applications Scalability OpenMPI 2.0.4

- Gromacs
- Specfem3D-Globe
- NAMD
- AVBP
- NEMO (BENCH_1)
- NEMO (GYRO_PISCES_25)
- YALES2
- NEMO (BENCH_1) (110Mcells)
ARM COMPILERS IMPACT@SCALE

Specfem3D performance improvement due to arm compiler enhancement

- **ARM 18.X**
 - Better results than 19.0
 - Lower results than 19.2

- **ARM 19.2**
 - Single node
 - SPECFEM3D: +2%
 - AVBP: +11%
 - @Scale
 - SPECFM3D: +50%
 - NEMO benefits from 19.2

- **Next step**
 - ARM 19.3 (30/08)
 - ARM 20.0 later
Slighty better efficiency openMPI 4.0.1

![Scalability using OpenMPI 4.0.1 (green) and 2.0.4 (yellow)](image)

- **SPECFEM3D**
 - 4% improvement

- **GROMACS Test case B**
 - Prace UEABS
 - Slight improvement
STRENGTHENING & FASTENING A FUTURE MASSIVE ARM ADOPTION

ARM capabilities & plans

❑ Understanding the whole ecosystem
 ▪ Compute is important, Data & IO processing is even as important as compute

❑ HPC, AI -> HPC/AI convergence
 ▪ ARM+X ? Support NVIDIA and/or AMD GPU
 ▪ Ensure memory coherency between CPU and accelerators and beyond
 ▪ ARM involvement in CXL standard ?
 ▪ Understand HBM support programmability: Tiering & memory hierarchy

❑ SVE capabilities
 ▪ 3rd hackaton
 ▪ ArmIE
 ▪ GEM5 simulator (vector length, instructions nb, etc.)
SPECIAL danke merci gracias grazie thanks arigato...
Vector length influence

- compilation
 - Add -mcpu=native+sve
- run
 - srun armie -msve-vector-bits=512 -i libinscount_emulated.so -- xspecfem3D

- >512 bits
 - High overhead
 - Investigation in next hackaton