THE NEXT PHASE OF ARM HPC DEPLOYMENTS

Daniel Ernst, PhD
Distinguished Technologist
Advanced Technology

dje@cray.com
@ernstdj
linkedin.com/in/danernst
FORWARD LOOKING STATEMENTS

This presentation may contain forward-looking statements that involve risks, uncertainties and assumptions. If the risks or uncertainties ever materialize or the assumptions prove incorrect, the results of Hewlett Packard Enterprise Company and its consolidated subsidiaries (“Hewlett Packard Enterprise”) may differ materially from those expressed or implied by such forward-looking statements and assumptions. All statements other than statements of historical fact are statements that could be deemed forward-looking statements, including but not limited to any statements regarding the expected benefits and costs of the transaction contemplated by this presentation; the expected timing of the completion of the transaction; the ability of HPE, its subsidiaries and Cray to complete the transaction considering the various conditions to the transaction, some of which are outside the parties’ control, including those conditions related to regulatory approvals; projections of revenue, margins, expenses, net earnings, net earnings per share, cash flows, or other financial items; any statements concerning the expected development, performance, market share or competitive performance relating to products or services; any statements regarding current or future macroeconomic trends or events and the impact of those trends and events on Hewlett Packard Enterprise and its financial performance; any statements of expectation or belief; and any statements of assumptions underlying any of the foregoing. Risks, uncertainties and assumptions include the possibility that expected benefits of the transaction described in this presentation may not materialize as expected; that the transaction may not be timely completed, if at all; that, prior to the completion of the transaction, Cray’s business may not perform as expected due to transaction-related uncertainty or other factors; that the parties are unable to successfully implement integration strategies; the need to address the many challenges facing Hewlett Packard Enterprise’s businesses; the competitive pressures faced by Hewlett Packard Enterprise’s businesses; risks associated with executing Hewlett Packard Enterprise’s strategy; the impact of macroeconomic and geopolitical trends and events; the development and transition of new products and services and the enhancement of existing products and services to meet customer needs and respond to emerging technological trends; and other risks that are described in our Fiscal Year 2018 Annual Report on Form 10-K, and that are otherwise described or updated from time to time in Hewlett Packard Enterprise’s other filings with the Securities and Exchange Commission, including but not limited to our subsequent Quarterly Reports on Form 10-Q. Hewlett Packard Enterprise assumes no obligation and does not intend to update these forward-looking statements.
Seattle, WA – November 13, 2017 – Global supercomputer leader Cray Inc. (Nasdaq: CRAY) today announced the Company is creating the world’s first production-ready, Arm®-based supercomputer with the addition of Cavium (Nasdaq: CAVM) ThunderX2™ processors, based…
Arm is Boring

“My goal with Arm was always to make it exactly as boring as x86. […] You get adoption if it feels exactly the same and familiar. Boring sells.”

– Jon Masters
RedHat, NuVia

“Porting to Arm was boring.”

– Prof. Simon McIntosh-Smith
University of Bristol / GW4

“Worst hackathon ever!”

– Heidi Poxon
Cray Programming Tools
Figure 3. CloverLeaf scaling results up to 64 nodes for Broadwell, Skylake and ThunderX2 systems.
“THE FUTURE IS SELDOM THE SAME AS THE PAST.”

SEYMOUR CRAY
Enabling the Future of HPC Systems

“Me Too” isn’t good enough!

In coming “Cambrian Explosion” of Exascale Era architectures, HPC will need purpose-built solutions!

Cray has been working to develop the ecosystem of HPC-relevant technologies
Partnership on Future Architectures

- Cray contributed to the development of the Arm Scalable Vector Extension (SVE)
 - Leverages ISA elements pioneered by Cray
 - Provided guidance on compiler-friendliness of ISA

- SVE instruction set has many features familiar to Cray’s compiler such as wider vector widths, predication, gather/scatter, etc.

- Partnered with DOE to understand impact on end-user applications
 - Application-driven architecture requires understanding!
DOE FF2: Prototyping SVE Compiler Support

• First pass: Transliteration of Cray X2
 • Low overhead for experimentation
 • Cases where mappings are inexact are painful

• Capabilities:
 • SVE Vectors
 • Predicated execution, with various predication schemes
 • Widths from 128 bits to 2048 bits
 • OpenMP 4.0 capabilities, including SIMD directives
 • Explicit memory hierarchy support

• Followed by prototype of native SVE CCE
Data Movement Optimized Computing

• Explored HPC-relevance of a broad range of memory technologies
• Worked to make sure HBM standard was appropriate for HPC
• Characterized apps in terms of memory behavior
• Explored system-level design space
Introducing the Cray CS500 - Fujitsu A64FX Arm Server

• Next generation Arm® solution

• Cray Fujitsu Technology Agreement

• Supported in Cray CS500 infrastructure

• Cray Programming Environment

• Leadership performance for many memory intensive HPC applications

• GA in mid-2020
Technical Overview

• 2U chassis supporting 4 blades
 • Each blades has 2 single socket nodes
 • 8 single socket nodes in 2U

• A64FX Processor
 • First implementation of Armv8-A SVE architecture
 • 1024 GB/s memory bandwidth per socket
 • 48 Cores with SVE 512-bit wide SIMD
 • >2.7 Tflops per socket
Cray Developer Environment for A64FX

Programming Languages
- Fortran
- C
- C++
- Chapel

Programming Models
- Distributed Memory
 - MVAPICH (or MPICH)
- Shared Memory
 - OpenMP

Programming Environments
- PrgEnv-
 - Cray Compiling Environment PrgEnv-cray
 - GNU PrgEnv-gnu

3rd Party compilers
- PrgEnv-Allinea*

Optimized Libraries
- Scientific Libraries
 - BLAS
 - LAPACK
 - ScaLAPACK
 - Iterative Refinement Toolkit
 - FFTW
 - I/O Libraries
 - NetCDF
 - HDF5

Cray Developed
- Cray Compiling Environment
- PrgEnv-
- MVAPICH (or MPICH)

Cray added value to 3rd party
- 3rd Party compilers
- PrgEnv-Allinea*

3rd party package
- MVAPICH
- UPC Fortran coarrays
- Coarray C++
- Chapel

Licensed ISV SW
- TotalView**
- DDT*

Tools
- Environment setup
 - Modules
 - Tool Enablement (Spack, CMake, EasyBuild, etc.)
- Performance Analysis
 - CrayPAT
 - Cray Apprentice^2
 - Porting
 - Reveal
 - CCDB

Tools Interface
- CTI

Debuggers
- gdb4hpc*

* Depending on gdb and compiler availability from Allinea / arm
** Depending on availability from RogueWave
Come See Us!

See the Cray CS500 Fujitsu A64FX on the SC’19 show floor:

HPE booth #1325
Cray booth #625
Looking Forward

• The next phase of HPC Arm deployments will be *purpose-built*

• Cray has been working to enable the ecosystem to take on HPC challenges

• A64FX is the first step into purpose-built Arm HPC solutions
 • Will prove out value of both SVE and HBM