

Image recognition on Arm Cortex-M
with CMSIS-NN

 Version 1.0

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 17

Image recognition on Arm Cortex-M with CMSIS-NN

Machine Learning Guide

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Release Information

Document History

Version Date Confidentiality Change

1.0 01 April 2019 Non-Confidential First release

Non-Confidential Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this document
may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or
implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to
identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion
thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to
this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes
the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree
that if there is any conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
33Thttp://www.arm.com/company/policies/trademarks 33T.

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 17

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

33Thttp://www.arm.com 33T

http://www.arm.com/
http://www.arm.com/

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 17

Contents

1 Overview .. 5

2 Before you begin .. 6

3 Define the problem and the model ... 7

4 Set up environment ... 8

5 Build basic camera application .. 9

6 Transform pre-trained Caffe model... 10

7 Build image recognition application .. 11

8 CMSIS-NN .. 13

9 Deploy transformed model on an Arm Cortex-M processor ... 14

10 Troubleshooting .. 15

11 Next steps .. 17

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

1 Overview

This guide shows you how to perform real-time image recognition on a low-power Arm Cortex-M7 processor, using the
Arm CMSIS-NN library, version CMSIS 5.7.0. The Cortex-M7 processor is found in a range of solutions from various
microcontroller vendors.

Watch a video demo of the steps in this guide here.

Increased compute performance in the smallest Cortex-M-based devices is enabling more data processing to move to the edge.
Machine learning (ML) no longer needs to take place in the cloud or only on advanced application processors. Now, you can take
advantage of the benefits afforded by edge computing, such as reduced bandwidth and time-to-decision, increased privacy and
reliability, all without relying on an internet connection.

ML at the edge offers new possibilities for new real-time decision-making applications, from voice recognition for smart
speakers to facial detection for surveillance cameras.

http://www.keil.com/pack/doc/CMSIS_Dev/NN/html/index.html
https://www.youtube.com/watch?v=EkYp0glSenE

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

2 Before you begin

To complete this guide, you'll need some equipment and to download some software for building the final code that runs on the
board:

Hardware

• STM32F746G-DISCO discovery board (Cortex-M7)
• STM32F4DIS-CAM Camera module

Note: All the steps can be easily adapted for a different board. We have chosen a specific board to demonstrate the full workflow
of how to set up, deploy, and run the code.

Software

• Ubuntu 16.04
• Python 2.7.12
• Caffe
• GNU Arm Embedded Toolchain. Recommended version: gcc-arm-none-eabi-7-2017-q4-major

https://os.mbed.com/platforms/ST-Discovery-F746NG/
https://uk.farnell.com/stmicroelectronics/stm32f4dis-cam/module-1-3mp-camera-f4-discovery/dp/2250206?CMP=i-ddd7-00001003
https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://developer.arm.com/-/media/developer/technologies/Machine%20learning%20on%20Arm/Tutorials/Image%20recognition%20on%20Arm%20Cortex-M%20with%20CMSIS-NN/gcc-arm-none-eabi-7-2017-q4-major-linux.tar.bz2?revision=09f5c905-fb63-4870-85fb-b5b911c0304c&la=en

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

3 Define the problem and the model
Our objective here is to find the best way to have your embedded device run image recognition, in order to make your edge
device more responsive, reliable, energy efficient and secure by ensuring that your data is processed on the device, rather than
in the cloud.

Neural networks (NN) are a class of machine learning (ML) algorithms that have demonstrated good accuracy on image
classification, object detection, speech recognition and natural language processing applications. The most popular types of
neural networks are multi-layer perceptron (MLP), convolutional neural networks (CNN) and recurrent neural networks (RNN).

In this case we have chosen to use a CNN, provided in the Caffe examples, for CIFAR-10 image classification task, where the
input image passes through the CNN layers to classify it into one of the 10 output classes. Typical CNN models have different
types of layers to process the input data, below you can see the ones in the chosen CNN:

The input to the model is a 32x32 pixel color image, which will be classified into 10 classes (cat, deer, dog, horse, etc.) by the
CNN. The classification is obtained by having the data flow through the following layers:

• Convolution layer - responsible for extracting features from the image.
• Pooling layer - responsible to progressively reduce the spatial size of the model reducing the number of parameters and

the amount of computation in the network, and hence also controlling overfitting. Read more about Pooling on this
article.

• Rectified Linear Unit (ReLU) - the activation function responsible for introducing non-linearity in the model. The
function returns 0 if it receives any negative input, but for any positive value x it returns that value back. Read this ReLU
article for a more thorough explanation.

• Inner product (Inp) or fully connected layer.
• Softmax is used to classify the output into one of the categories, by producing a probability.

For this guide we have pretrained the NN with Caffe, and it can be found on GitHub. If you wish to learn how to train the model
on your own you can follow this tutorial. Below you can see the topology of the pretrained network that we will be using for the
rest of this tutorial. Note: that this model is not very accurate we have chosen it only for simplicity.

The above image has been generated using this online tool.

http://www.cs.toronto.edu/%7Ekriz/cifar.html
http://cs231n.github.io/convolutional-networks/
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://www.kaggle.com/dansbecker/rectified-linear-units-relu-in-deep-learning
https://github.com/ARM-software/ML-examples/tree/master/cmsisnn-cifar10/models
http://christopher5106.github.io/deep/learning/2015/09/04/Deep-learning-tutorial-on-Caffe-Technology.html
http://ethereon.github.io/netscope/quickstart.html

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

4 Set up environment
The first step is to install the Arm Mbed CLI:

sudo pip install mbed-cli

Next, create the work space we will be using for the rest of the tutorial:

In your <home> directory (cd ~)
mkdir CMSISNN_Webinar
cd CMSISNN_Webinar
Create new Mbed project
The --mbedlib flag picks Mbed-os version 2.0
mbed new cmsisnn_demo --mbedlib

If you are using the Mbed tools for the first time, install the Mbed CLI prerequisites as shown here, otherwise skip this step:

cd cmsisnn_demo/.temp/tools/
sudo pip install -r requirements.txt

You also need to install these tools:

sudo pip install jsonschema
sudo pip install pyelftools
sudo apt-get install mercurial

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

5 Build basic camera application
On your Linux machine:

cd ~/CMSISNN_Webinar/cmsisnn_demo
mbed add http://os.mbed.com/teams/ST/code/BSP_DISCO_F746NG/
mbed add http://os.mbed.com/teams/ST/code/LCD_DISCO_F746NG

To change to a stable Mbed build, open the mbed.bld file and replace the first line with this line:

https://mbed.org/users/mbed_official/code/mbed/builds/e95d10626187

Get all the required Mbed libraries:

mbed deploy

Clone the Arm Github repository that also contains the example camera application:

cd ~/CMSISNN_Webinar/
git clone https://github.com/ARM-software/ML-examples.git

Let's test the image acquisition application:

cd cmsisnn_demo/
mbed compile -m DISCO_F746NG -t GCC_ARM --source . --source ../ML-examples/cmsisnn-
cifar10/camera_demo/camera_app/

Copy the generated .bin file to the board, directly by dragging and dropping into the board that will appear as a USB device.

If these steps are successful, the board display will look like this:

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

6 Transform pre-trained Caffe model
In order to have a version of our NN that will be deployable on an Arm Cortex-M microcontroller you will have to follow the
steps below.

Quantize the model

Once you have a trained model you will need to optimize it for your microcontroller. To do this you can use Arm's quantization
script to convert the Caffe model weights and activations from 32-bit floating point to an 8-bit and fixed point format. This will
not only reduce the size of the network, but also avoid floating point computations, that are more computationally expensive.

In the previously cloned ML-examples repository, you will find the NN quantizer script that works by testing the network and
figuring out the best format for the dynamic 8-bit fixed-point representation ensuring minimal loss in accuracy on the test
dataset. The output of this script is a serialized Python pickle(.pkl) file which includes the network's model, quantized weights
and activations, and the quantization format of each layer. Running the following command generates the quantized model:

Run command in the ML-examples/cmsisnn-cifar10 directory
cd ~/CMSISNN_Webinar/ML-examples/cmsisnn-cifar10
Note: To enable GPU for quantization sweeps, use '--gpu' argument
python nn_quantizer.py --model models/cifar10_m7_train_test.prototxt --weights
models/cifar10_m7_iter_300000.caffemodel.h5 --save models/cifar10_m7.pkl

Convert the model

Now that you have a more optimized network you should take care of converting it to a C++ file that you will then be able to
include in your camera application.

Run command in the ML-examples/cmsisnn-cifar10 directory
python code_gen.py --model models/cifar10_m7.pkl --out_dir code/m7

This script gets the quantization parameters and network graph connectivity from the previous step and generates the code
consisting of NN function calls. Note: that at this stage the supported layers are convolution, innerproduct, pooling
(max/average) and relu. The output is a series of files:

• nn.cpp and nn.h are the files to be included to run the NN on the device
• weights.h and parameter.h consist of quantization rangesHTML

https://github.com/ARM-software/ML-examples/blob/master/cmsisnn-cifar10/nn_quantizer.py
https://github.com/ARM-software/ML-examples/blob/master/cmsisnn-cifar10/nn_quantizer.py

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

7 Build image recognition application
The last step is for you to include the neural network in the image acquisition application we have built earlier.

In order to achieve this, we need to make some modifications to ML-examples/cmsisnn-
cifar10/camera_demo/camera_app/camera_app.cpp

In ML-examples/cmsisnn-cifar10/camera_demo/camera_app/
Rename the camera application
mv camera_app.cpp camera_with_nn.cpp

First let's include the code that we have just generated through the previous code_gen.py in the camera_with_nn.cpp file.

#include "nn.h"

Add classification capabilities

We need to start by defining a few variables:

1. Label variable in order to convert our final prediction into something meaningful.
2. Output data, as the array that will contain the output of the NN.

const char* cifar10_label[] = {"Plane", "Car", "Bird", "Cat", "Deer", "Dog", "Frog",
"Horse", "Ship", "Truck"};
q7_t output_data[10]; //10-classes

We will also need a function to obtain our top prediction out of the softmax:

int get_top_prediction(q7_t* predictions)
{
 int max_ind = 0;
 int max_val = -128;
 for(int i=0;i<10;i++) {
 if(max_val < predictions[i]) {
 max_val = predictions[i];
 max_ind = i;
 }
 }
 return max_ind;
}

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

Modify main function in camera_with_nn.cpp

It’s now time to add the neural network function call that has been generated by the code_gen.py.

// run neural network
run_nn((q7_t*)resized_buffer, output_data);
// Softmax: to get predictions
arm_softmax_q7(output_data,IP1_OUT_DIM,output_data);

We also need to identify which one of the classes has the highest probability and for this we add the following:

int top_ind = get_top_prediction(output_data);

Finally, to test the output add code to print the prediction and the confidence:

sprintf(lcd_output_string," Prediction: %s ",cifar10_label[top_ind]);
lcd.DisplayStringAt(0, LINE(8), (uint8_t *)lcd_output_string, LEFT_MODE);
sprintf(lcd_output_string," Confidence: %.1f%% ",(output_data[top_ind]/127.0)*100.0);
lcd.DisplayStringAt(0, LINE(9), (uint8_t *)lcd_output_string, LEFT_MODE);

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

8 CMSIS-NN
To fully take advantage of the capabilitites of our microcontroller, we use the CMSIS-NN optimized libraries, available open
source on GitHub. This tutorial uses version CMSIS 5.7.0. You will make use of CMSIS-NN, a collection of efficient neural
network kernels developed to maximize the performance and minimize the memory footprint of neural networks on Arm
Cortex-M processor cores.

Neural network inference based on CMSIS-NN kernels achieves 4.6X improvement in runtime/throughput and 4.9X
improvement in energy efficiency. For a more detailed overview of all the optimizations refer to this article. To use the
optimizations in the code you must clone the repository as follows:

cd ~/CMSISNN_Webinar
git clone https://github.com/ARM-software/CMSIS_5.git

The functions being called in the run_nn(input, output) function in the nn.cpp file is calling functions being defined in the
CMSIS-NN library. Here are some examples:

arm_convolve_HWC_q7_RGB(input_data, CONV1_IN_DIM, CONV1_IN_CH, conv1_wt, CONV1_OUT_CH,
CONV1_KER_DIM, CONV1_PAD, CONV1_STRIDE, conv1_bias, CONV1_BIAS_LSHIFT, CONV1_OUT_RSHIFT,
buffer1, CONV1_OUT_DIM, (q15_t*)col_buffer, NULL);
arm_maxpool_q7_HWC(buffer1, POOL1_IN_DIM, POOL1_IN_CH, POOL1_KER_DIM, POOL1_PAD,
POOL1_STRIDE, POOL1_OUT_DIM, col_buffer, buffer2);
arm_relu_q7(buffer2, RELU1_OUT_DIM*RELU1_OUT_DIM*RELU1_OUT_CH);

Now that we have optimized the model and built the complete application it's time to move on to the final step.

https://github.com/ARM-software/CMSIS_5
https://arxiv.org/abs/1801.06601

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

9 Deploy transformed model on an Arm
Cortex-M processor
The last thing to do before being able to actually run your image recognition application on your device is to compile the files we
have just created.

Let's test the image acquisition application:

cd cmsisnn_demo/
mbed compile -m DISCO_F746NG -t GCC_ARM --source . --source ../ML-examples/cmsisnn-
cifar10/code/m7 --source ../ML-examples/cmsisnn-cifar10/camera_demo/camera_app/ --source
../CMSIS_5/CMSIS/NN/Include --source ../CMSIS_5/CMSIS/NN/Source --source
../CMSIS_5/CMSIS/DSP/Include --source ../CMSIS_5/CMSIS/DSP/Source --source
../CMSIS_5/CMSIS/Core/Include -j8

Copy the generated .bin file to the board, directly by dragging and dropping into the board that will appear as a USB device.

Note: that this model is very easily affected by changes in light conditions, we have chosen it only for simplicity.

This is what you should see:

Note: The image classification is being done on the resized image. For this reason, make sure to keep the image you are trying to
classify centred in the small square.

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

10 Troubleshooting
Here are some tips to help you troubleshoot some common issues.

Mbed CLI issues

Purge the cache with the following command:

mbed cache purge

No module named caffe

ImportError: No module named caffe

Check if it has been appended in pythonpath properly by typing

python >>> import sys >>> sys.path ['', '/home/embedded/caffe/python',
'/usr/lib/python2.7', '/usr/lib/python2.7/plat-x86_64-linux-gnu',
'/usr/lib/python2.7/lib-tk', '/usr/lib/python2.7/lib-old', '/usr/lib/python2.7/lib-
dynload', '/home/embedded/.local/lib/python2.7/site-packages',
'/usr/local/lib/python2.7/dist-packages', '/usr/lib/python2.7/dist-packages']

if /caffe/python is not there

>>> exit()

export PYTHONPATH=/caffe/python

Check failed: mdb_status == 0 (2 vs. 0) No such file or directory

Check failed: mdb_status == 0 (2 vs. 0) No such file or directory

Open the file:

gedit ~/CMSISNN_Webinar/ML-examples/cmsisnn-cifar10/models/cifar10_m7_train_test.prototxt

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

and check that the mean_file and source are pointing to the files in caffe/examples/cifar10/directory as shown below

The following lines will have to be updated.# Note: You will have to replace with the
path where you have cloned the Caffe repositorymean_file:
"/caffe/examples/cifar10/mean.binaryproto"source:
"/caffe/examples/cifar10/cifar10_train_lmdb"source:
"/caffe/examples/cifar10/cifar10_test_lmdb/"

Image recognition on Arm Cortex-M with CMSIS-NN ARM062-948681440-2887
Version 1.0

11 Next steps
Now that you have implemented real-time Machine Learning (ML) on a Cortex-M device, what other ML applications can you
deploy using this approach with CMSIS-NN?

To recap, your models need to be small, pre-trained, and optimized for your input data.

CMSIS-NN is optimized for Convolutional Neural Networks (CNNs) and makes use of SIMD instructions. SIMD is only available in
Arm Cortex-M4, Cortex-M7, Cortex-M33 and Cortex-M35P processors. Although it is possible to run CMSIS-NN on earlier
processors, such as the Cortex-M0, you won't see the same performance benefits that are on offer with Cortex-M4, Cortex-M7,
Cortex-M33 and Cortex-M35P based devices.

To keep learning about ML with Arm, here are some resources related to this guide:

• Find out what the Arm Innovators are up to - DevDay: Explore AI on Arm

• Read how to add intelligent vision to your next embedded product

• Learn more by reading the latest white paper on CMSIS-NN

• Read how to do keyword spotting using CMSIS-NN

• Learn more about how to use the OpenMV camera for ML applications

• Explore more about Arm NN

GitHub Repositories

You can find more code examples and resources for performing ML with Arm technologies on our GitHub pages:

• Arm ML example GitHub

• CMSIS-NN GitHub

• KWS GitHub

This guide shows that you don’t need a high-spec machine or cloud-based engine to do real-time Machine Learning (ML) tasks.
Thanks to the recent advancements in Arm hardware and software, you can now do machine learning fast and efficiently on
embedded devices, taking advantage of all the benefits of data processing at the edge.

Given the exponential growth in the number of IoT devices being deployed, and considering that the majority of them have an
Arm Cortex-M microprocessor at their heart, it is only natural to want to make sure that these are running ML workloads
efficiently. Now you know the steps required for deploying a trained Caffe model on an Arm Cortex-M based microcontroller
device and how to optimize your neural network functions using the CMSIS-NN library.

https://pages.arm.com/devday-resources.html
https://pages.arm.com/embedded-intelligent-vision.html
https://developer.arm.com/-/media/developer/technologies/Machine%20learning%20on%20Arm/Tutorials/Image%20recognition%20on%20Arm%20Cortex-M%20with%20CMSIS-NN/Arm%20ML%20on%20Cortex-M%20Microcontrollers.pdf?revision=53b94af8-36b3-4010-9572-a51754d72430&la=en
https://arxiv.org/abs/1711.07128
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-caffe-model-on-openmv-using-cmsis-nn/next-steps
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn
https://github.com/ARM-software/ML-examples
https://github.com/ARM-software/CMSIS_5/
https://github.com/ARM-software/ML-KWS-for-MCU/

	1 Overview
	2 Before you begin
	3 Define the problem and the model
	4 Set up environment
	5 Build basic camera application
	6 Transform pre-trained Caffe model
	7 Build image recognition application
	8 CMSIS-NN
	9 Deploy transformed model on an Arm Cortex-M processor
	10 Troubleshooting
	11 Next steps

