

Build Arm Cortex-M voice assistant
with Google TensorFlow Lite
Non-Confidential Issue 03
Copyright © 2019-2020 Arm Limited (or its affiliates).
All rights reserved.

ARM062-948681440-3282

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 2 of 32

Build Arm Cortex-M voice assistant with Google TensorFlow Lite

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.

Release information

Document history

Issue Date Confidentiality Change

01 23 July 2019 Non-Confidential First release

02 01 May 2020 Non-Confidential Adds updates to the TensorFlow Lite codebase

03 30 November 2020 Non-Confidential Adds CMSIS-NN support

Confidential Proprietary Notice

This document is CONFIDENTIAL and any use by you is subject to the terms of the agreement between you
and Arm or the terms of the agreement between you and the party authorized by Arm to disclose this document
to you.

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information: (i) for the purposes of determining whether implementations infringe any
third party patents; (ii) for developing technology or products which avoid any of Arm's intellectual property; or
(iii) as a reference for modifying existing patents or patent applications or creating any continuation,
continuation in part, or extension of existing patents or patent applications; or (iv) for generating data for
publication or disclosure to third parties, which compares the performance or functionality of the Arm
technology described in this document with any other products created by you or a third party, without
obtaining Arm's prior written consent.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 3 of 32

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20348)

Confidentiality Status

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property
rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES
OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A
PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no
representation with respect to, and has undertaken no analysis to identify or understand the scope and content
of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,
ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure
that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.
Use of the word “partner” in reference to Arm's customers is not intended to create or refer to any partnership
relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement

http://www.arm.com/company/policies/trademarks

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 4 of 32

prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of this
document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited
(or its affiliates) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this
document may be the trademarks of their respective owners. Please follow Arm's trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349)

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by Arm and the party that Arm
delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

developer.arm.com

Progressive terminology commitment

This document includes terms that can be offensive. We will replace these terms in a future issue of this
document. If you find offensive terms in this document, please contact terms@arm.com.

http://www.arm.com/company/policies/trademarks
https://developer.arm.com/
mailto:terms@arm.com

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 5 of 32

Contents

1 Introduction ... 7

1.1 Product revision status ... 7

1.2 Intended audience .. 7

1.3 Conventions ... 7

1.3.1 Glossary .. 7

1.3.2 Typographical conventions ... 8

1.4 Feedback.. 9

1.4.1 Feedback on this product ... 9

1.4.2 Feedback on content ... 9

2 Overview ..10

2.1 About TensorFlow Lite ...10

2.1.1 TensorFlow Lite - video...10

3 Getting started ...11

3.1 Before you begin ...11

3.2 Getting started ..11

4 Download and build the sample application ...13

4.1 Install Arm toolchain and Mbed CLI ...13

4.2 Build and compile micro speech example...13

4.3 CMSIS-NN ...15

5 Project structure ..17

5.1 Convolutional neural networks ...17

5.2 Feature generation with Fast Fourier transform ..18

5.3 Recognition and windowing ..19

5.3.1 Interpreting the results ...19

6 Deploy the sample to your STM32F7 ..20

6.1 Test keyword spotting ..20

7 Retrain the machine learning model ..22

7.1 Convert the model..22

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 6 of 32

7.2 Modify the device code ...23

8 Troubleshooting ...26

8.1 Mbed CLI issues or Error: collect2: error: ld returned 1 exit status ...26

8.2 Error: Prompt wrapping around line ..26

8.3 Error: "Requires make version 3.82 or later (current is 3.81)" ...26

8.4 Error: -bash: mbed: command not found ..27

8.5 "sed" errors while generating micro speech project ..27

9 Next steps ...28

10 Supplementary information: model training ...29

10.1 Prepare to build TensorFlow ...29

10.2 Train the model ...30

10.3 Freeze the model ..30

10.4 Convert the model to the TensorFlow Lite format ..31

Appendix A Revisions ..32

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

1 Introduction

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 7 of 32

1 Introduction

1.1 Product revision status
The rxpy identifier indicates the revision status of the product described in this book, for example,
r1p2, where:

rx

 Identifies the major revision of the product, for example, r1.

Py

 Identifies the minor revision or modification status of the product, for example, p2.

1.2 Intended audience
This guide is intended for IoT developers who want to learn how to best perform machine learning
inferences on an Arm Cortex-M microcontroller.

1.3 Conventions
The following subsections describe conventions used in Arm documents.

1.3.1 Glossary

The Arm Glossary is a list of terms used in Arm documentation, together with definitions for those
terms. The Arm Glossary does not contain terms that are industry standard unless the Arm meaning
differs from the generally accepted meaning.

See the Arm Glossary for more information: https://developer.arm.com/glossary.

https://developer.arm.com/glossary

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

1 Introduction

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 8 of 32

1.3.2 Typographical conventions
Convention Use

italic Introduces citations.

bold Highlights interface elements, such as menu names. Denotes signal names. Also used for
terms in descriptive lists, where appropriate.

monospace Denotes text that you can enter at the keyboard, such as commands, file and program
names, and source code.

monospace bold Denotes language keywords when used outside example code.

monospace
underline

Denotes a permitted abbreviation for a command or option. You can enter the underlined
text instead of the full command or option name.

<and> Encloses replaceable terms for assembler syntax where they appear in code or code
fragments.

For example:
MRC p15, 0, <Rd>, <CRn>, <CRm>, <Opcode_2>

SMALL CAPITALS Used in body text for a few terms that have specific technical meanings, that are defined in
the Arm® Glossary. For example, IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC,
UNKNOWN, and UNPREDICTABLE.

This represents a recommendation which, if not followed, might lead to system failure or
damage.

This represents a requirement for the system that, if not followed, might result in system
failure or damage.

This represents a requirement for the system that, if not followed, will result in system
failure or damage.

This represents an important piece of information that needs your attention.

This represents a useful tip that might make it easier, better or faster to perform a task.

This is a reminder of something important that relates to the information you are reading.

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

1 Introduction

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 9 of 32

1.4 Feedback
Arm welcomes feedback on this product and its documentation.

1.4.1 Feedback on this product

If you have any comments or suggestions about this product, contact your supplier and give:

• The product name.

• The product revision or version.

• An explanation with as much information as you can provide. Include symptoms and diagnostic
procedures if appropriate.

1.4.2 Feedback on content

If you have comments on content, send an email to errata@arm.com and give:

• The title Build Arm Cortex-M voice assistant with Google TensorFlow Lite.

• The number ARM062-948681440-3282.

• If applicable, the page number(s) to which your comments refer.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Arm tests the PDF only in Adobe Acrobat and Acrobat Reader and cannot guarantee the quality of
the represented document when used with any other PDF reader.

mailto:errata@arm.com?subject=Feedback%20on%20content

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

2 Overview

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 10 of 32

2 Overview
As an IoT developer, you might think of machine learning as a server-side
technology. In the traditional view, sensors on your device capture data
and send it to the cloud, where Machine Learning (ML) models on hefty machines make sense of it. A
network connection is obligatory, and you are going to expect some latency, not to mention hosting
costs.

But more and more, developers want to deploy their ML models to the edge, on IoT devices
themselves. If you bring ML closer to your sensors, you remove your reliance on a network
connection, and you can achieve much lower latency without a round trip to the server.

This is especially exciting for IoT because less network utilization means lower power consumption.
Also, you can better guarantee the security and privacy of your users because it does not require you
to send data back to the cloud unless you know for sure that it is relevant.

In the following guide, you will learn how you can perform machine learning inference on an Arm
Cortex-M microcontroller with TensorFlow Lite for Microcontrollers.

2.1 About TensorFlow Lite
TensorFlow Lite is a set of tools for running machine learning models on-device. TensorFlow Lite
powers billions of mobile app installs, including Google Photos, Gmail, and devices made by Nest and
Google Home.

With the launch of TensorFlow Lite for Microcontrollers, developers can run machine learning
inference on extremely low-powered devices, like the Cortex-M microcontroller series. Watch the
following video to learn more about the announcement:

2.1.1 TensorFlow Lite - video

TensorFlow Lite (TF Dev Summit '19)

https://www.tensorflow.org/lite/microcontrollers/overview
https://www.tensorflow.org/lite
https://www.youtube.com/watch?v=DKosV_-4pdQ&feature=youtu.be&list=PLQY2H8rRoyvzoUYI26kHmKSJBedn3SQuB&t=1742

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

3 Getting started

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 11 of 32

3 Getting started

3.1 Before you begin
Here is what you require to complete the guide:

• A computer that supports Mbed CLI

• An STM32F7 discovery kit board

• A mini-USB cable

• Python 2.7. Using pyenv is recommended to manage Python versions.

• For Windows users, install Ubuntu 18.04 LTS in a VirtualBox. Refer to the following videos to set
up:

o How to install VirtalBox 6.0.10 on Windows 10

o How to install Ubuntu 18.04 on VirtualBox in Windows 10

3.2 Getting started
TensorFlow Lite for Microcontrollers supports several devices out of the box, and is relatively easy
to extend to new devices. For this guide, we focus on the STM32F7 discovery kit.

We deploy a sample application that uses the microphone on the STM32F7 and a TensorFlow
machine learning model to detect the words “yes” and “no”.

To do this, we show you how to complete the following steps:

1. Download and build the sample application

2. Deploy the sample to your STM32F7

3. Make some code changes to utilize the LCD display on the board

https://github.com/ARMmbed/mbed-cli
https://os.mbed.com/platforms/ST-Discovery-F746NG/
https://github.com/pyenv/pyenv#installation
https://www.youtube.com/watch?v=MTEefDP2Ofo&vl=en
https://www.youtube.com/watch?v=Mf_EergfWbE
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro#getting-started
https://os.mbed.com/platforms/ST-Discovery-F746NG/

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

3 Getting started

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 12 of 32

4. Use new trained models to recognize different words

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

4 Download and build the sample application

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 13 of 32

4 Download and build the sample
application

4.1 Install Arm toolchain and Mbed CLI
1. Download Arm cross compilation toolchain. Select the correct toolchain for the OS that your

computer is running. For Windows users, if you have already set up the Linux virtual environment,
install the toolchain there.

2. To build and deploy the application, we use the Mbed CLI. We recommend that you install Mbed
CLI with our installer. If you need more customization, you can perform a manual install. Although
this is not recommended.

If you do not already have Mbed CLI installed, download the installer:

Mac installer

3. After Mbed CLI is installed, tell Mbed where to find the Arm embedded toolchain using the
following command:

mbed config -G GCC_ARM_PATH <path_to_your_arm_toolchain>/bin

We recommend running the following commands from inside the Mbed CLI terminal that gets
launched with the Mbed CLI Application. This is because it is much quicker to set up, because it
resolves all your environment dependencies automatically.

4.2 Build and compile micro speech example
Navigate to the directory where you keep code projects. Run the following command to download
TensorFlow Lite source code.
git clone https://github.com/tensorflow/tensorflow.git

https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads
https://github.com/ARMmbed/mbed-cli
https://github.com/ARMmbed/mbed-cli-osx-installer/releases/tag/v0.0.10

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

4 Download and build the sample application

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 14 of 32

While you wait for the project to download, let us explore the project files on GitHub and learn how
this TensorFlow Lite for Microcontrollers example works.

The code samples audio from the microphone on the STM32F7. The audio is run through a Fast
Fourier transform to create a spectrogram. The spectrogram is then fed into a pre-trained machine
learning model. The model uses a convolutional neural network to identify whether the sample
represents either the command “yes” or “no”, silence, or an unknown input. We explore how this
works in more detail later in the guide.

The micro speech sample application is in the
tensorflow/lite/micro/examples/microspeech directory.

Here are descriptions of some interesting source files:

• disco_f746ng/audio_provider.cc captures audio from the microphone on the device.

• micro_features/micro_features_generator.cc: uses a Fast Fourier transform to create a
spectrogram from audio.

• micro_features/tiny_conv_micro_features_model_data.cc. This file is the machine learning model
itself, represented by a large array of unsigned char values.

• command_responder.cc is called every time a potential command has been identified.

• main.cc. This file is the entry point for the Mbed program, which runs the machine learning model
using TensorFlow Lite for Microcontrollers.

After the project has downloaded, you can run the following commands to navigate into the project
directory and build it:
cd tensorflow

make -f tensorflow/lite/micro/tools/make/Makefile TARGET=mbed TAGS="CMSIS-NN
disco_f746ng" generate_micro_speech_mbed_project

These commands create an Mbed project folder in
tensorflow/lite/micro/tools/make/gen/mbed_cortex-
m4/prj/micro_speech/mbed.

The micro speech source code of the generated Mbed project is in
tensorflow/lite/micro/tools/make/gen/mbed_cortex-
m4/prj/micro_speech/mbed/tensorflow/lite/micro/examples/micro_speech.If
you must make further changes to the source code after generating the Mbed project, change the
source code in the micro_speech folder.

If you encounter the error message "Tensorflow/lite/micro/tools/make/Makefile:2
*** “Require make version 3.82 or later (current 3.81)", please refer to the
Troubleshooting section.
cd tensorflow/lite/micro/tools/make/gen/mbed_cortex-m4/prj/micro_speech/mbed

mbed config root .

mbed deploy

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro/examples/micro_speech
https://developers.google.com/machine-learning/practica/image-classification/convolutional-neural-networks
https://github.com/uTensor/tf_microspeech/blob/master/disco_f746ng/audio_provider.cc
https://github.com/uTensor/tf_microspeech/blob/master/micro_features/micro_features_generator.cc
https://github.com/uTensor/tf_microspeech/blob/master/micro_features/tiny_conv_micro_features_model_data.cc
https://github.com/uTensor/tf_microspeech/blob/master/command_responder.cc
https://github.com/uTensor/tf_microspeech/blob/master/main.cc

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

4 Download and build the sample application

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 15 of 32

TensorFlow requires C++ 11, so you must update your profiles to reflect this. Here is a short Python
command that does that. Run it from the command line:
python -c 'import fileinput, glob;

for filename in glob.glob("mbed-os/tools/profiles/*.json"):

 for line in fileinput.input(filename, inplace=True):

 print line.replace("\"-std=gnu++98\"","\"-std=c++11\", \"-fpermissive\"")'

After that setting is updated, you can compile:
mbed compile -m DISCO_F746NG -t GCC_ARM

4.3 CMSIS-NN
In the example above, we compiled our project with a TAGS="cmsis-nn" flag, which enables kernel
optimization with CMSIS-NN library. Following are some CMSIS-NN acceleration techniques.

The CMSIS-NN library provides optimized neural network kernel implementations for all Arm
Cortex-M processors, ranging from Cortex-M0 to Cortex-M55. The library utilizes the capabilities of
the processor, such as DSP and M-Profile Vector (MVE) extensions, to enable the best possible
performance.

The STMicroelectronics F746NG Discovery board we use in the guide is powered by Arm Cortex-
M7, which supports DSP extensions. That enables the optimized kernels to perform multiple
operations in one cycle using SIMD (Single Instruction Multiple Data) instructions. Another
optimization technique used by the CMSIS-NN library is loop unrolling. These techniques combined
significantly accelerate kernel performance on Arm MCUs.

In the following example, we use the SIMD instruction, SMLAD (Signed Multiply with Addition),
together with loop unrolling to perform a matrix multiplication y = a * b, where
a = [1, 2]

and
b = [3, 5

 4, 6]

a, b are 8-bit values and y is a 32-bit value. With regular C, the code would look something like the
following code:
for (i=0; i<2; ++i)

 for (j=0; j<2; ++j)

 y[i] += a[j] * b[j][i]

However, using loop unrolling and SIMD instructions, the loop looks like the following code:
a_operand = a[0] | a[1] << 16 // put a[0], a[1] into one variable

for(i=0; i<2; ++i)

 b_operand = b[0][i] | b[1][i] << 16 // vice versa for b

 y[i] = __SMLAD(a_operand, b_operand, y[i])

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

4 Download and build the sample application

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 16 of 32

This code saves cycles due to fewer for-loop checks since __SMLAD performs two multiply and
accumulate operations in one cycle.

With CMSIS-NN enabled, we observed a 16x performance uplift in the micro speech inference time.

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

5 Project structure

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 17 of 32

5 Project structure

While the project builds, we can look in more detail at how it works.

5.1 Convolutional neural networks
Convolutional networks are a type of deep neural network. These networks are designed to identify
features in multidimensional vectors. The information in these vectors is contained in the
relationships between groups of adjacent values.

These networks are usually used to analyze images. An image is a good example of the
multidimensional vectors described previously, in which a group of adjacent pixels might represent a
shape, a pattern, or a texture. During training, a convolutional network can identify these features and
learn what they represent. The network can learn how simple image features, like lines or edges, fit
together into more complex features, like an eye, or an ear. The network can also learn, how those
features are combined to form an input image, like a photo of a human face. This means that a
convolutional network can learn to distinguish between different classes of input image, for example a
photo of a person and a photo of a dog.

While they are often applied to images, which are 2D grids of pixels, a convolutional network can be
used with any multidimensional vector input. In the example we build in this guide, a convolutional
network has been trained on a spectrogram that represents 1 second of audio bucketed into multiple
frequencies.

The following image is a visual representation of the audio. The network in our sample has learned
which features in this image come together to represent a "yes", and which come together to
represent a "no".

Spectrogram for

“yes”(data) Spectrogram for “no” (data)

To generate this spectrogram, we use an interesting technique that is described in the next section.

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/experimental/micro/examples/micro_speech/simple_features/yes_simple_features_data.cc
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/experimental/micro/examples/micro_speech/simple_features/no_simple_features_data.cc

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

5 Project structure

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 18 of 32

5.2 Feature generation with Fast Fourier transform
In our code, each spectrogram is represented as a 2D array, with 43 columns and 49 rows. Each row
represents a 30ms sample of audio that is split into 43 frequency buckets.

To create each row, we run a 30ms slice of audio input through a Fast Fourier transform. Fast Fourier
transform analyzes the frequency distribution of audio in the sample and creates an array of 256
frequency buckets, each with a value from 0 to 255. These buckets are averaged together into groups
of 6, leaving us with 43 buckets. The code in the file
micro_features/micro_features_generator.cc performs this action.

To build the entire 2D array, we combine the results of running the Fast Fourier transform on 49
consecutive 30ms slices of audio, with each slice overlapping the last by 10ms. The following diagram
should make this clearer:

You can see how the 30ms sample window moves forward by 20ms each time until it has covered the
full one-second sample. The resulting spectrogram is passed into the convolutional model.

https://github.com/uTensor/tf_microspeech/blob/master/micro_features/micro_features_generator.cc

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

5 Project structure

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 19 of 32

5.3 Recognition and windowing
The process of capturing one second of audio and converting it into a spectrogram leaves us with
something that our ML model can interpret. The model outputs a probability score for each category
it understands (yes, no, unknown, and silence). The probability score indicates whether the audio is
likely to belong to that category.

The model was trained on one-second samples of audio. In the training data, the word “yes” or “no” is
spoken at the start of the sample, and the entire word is contained within that one-second. However,
when this code is running, there is no guarantee that a user will begin speaking at the very beginning
of our one-second sample.

If the user starts saying “yes” at the end of the sample instead of the beginning, the model might not
be able to understand the word. This is because the model uses the position of the features within the
sample to help predict which word was spoken.

To solve this problem, our code runs inference as often as it can, depending on the speed of the
device, and averages all results within a rolling 1000ms window. The code in the file
recognize_commands.cc performs this action. When the average for a given category in a set of
predictions goes above the threshold, as defined in recognize_commands.h, we can assume a valid
result.

5.3.1 Interpreting the results

The RespondToCommand method in command_responder.cc is called when a command has been
recognized. Currently, this results in a line being printed to the serial port. Later in this guide, we
modify the code to display the result on the screen.

The arguments passed to RespondToCommand contain interesting information about the
recognition result. For example, score contains a number that indicates the probability that the result
is correct. You might want to modify the code so that the display varies based on this information.

https://github.com/uTensor/tf_microspeech/blob/master/recognize_commands.cc
https://github.com/uTensor/tf_microspeech/blob/master/recognize_commands.h
https://github.com/uTensor/tf_microspeech/blob/master/command_responder.cc

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

6 Deploy the sample to your STM32F7

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 20 of 32

6 Deploy the sample to your
STM32F7
In the previous section of this guide, we explained the build process for a keyword spotting example
application.

Now that the build has completed, we look in this section of the guide at how to deploy the binary to
the STM32F7 and test to see if it works.

First, plug in your STM32F7 board via USB. The board should show up on your machine as a USB
mass storage device. Copy the binary file that we built earlier to the USB storage.

If you have skipped the previous steps, download the binary file to proceed.

Use the following command:
cp ./BUILD/DISCO_F746NG/GCC_ARM/mbed.bin /Volumes/DIS_F746NG/

Depending on your platform, the exact copy command and paths can vary. When you have copied the
file, the LEDs on the board should start flashing, and the board eventually reboots with the sample
program running.

6.1 Test keyword spotting
The program outputs recognition results to its serial port. To see the output of the program, we must
establish a serial connection with the board at 9600 baud.

The USB UART of the board shows up as /dev/tty.usbmodemXXXXXXX. We can use ‘screen’ to
access the serial console. Although ‘screen’ is not installed on Linux by default, you can use apt-get
install screen to install the package.

Run the following command in a separate terminal:
screen /dev/tty.usbmodemXXXXXX 9600

Try saying the word “yes” several times. You should see some output like the following:
Heard yes (208) @116448ms

Heard unknown (241) @117984ms

Heard no (201) @124992ms

The LCD displays "Heard yes!", as you can see in the following image:

https://developer.arm.com/-/media/Files/downloads/Machine%20learning%20how-to%20guides/mbed.bin?revision=56e13639-c862-4124-ae31-f56980dce415&la=en

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

6 Deploy the sample to your STM32F7

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 21 of 32

Congratulations! You are now running a machine learning model that can recognize keywords on an
Arm Cortex-M7 microcontroller, directly on your STM32F7.

It is easy to change the behavior of our program, but is it difficult to modify the machine learning
model itself? The answer is no, and the next section of this guide, Retrain the machine learning
model, will show you how.

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-cortex-m-voice-assistant-with-google-tensorflow-lite/retrain-the-machine-learning-model
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-cortex-m-voice-assistant-with-google-tensorflow-lite/retrain-the-machine-learning-model

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

7 Retrain the machine learning model

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 22 of 32

7 Retrain the machine learning model
The model that we are using for speech recognition was trained on a dataset of one-second spoken
commands called the Speech Commands Dataset. The dataset includes examples of the following
ten different words:

yes, no, up, down, left, right, on, off, stop, go

While the model in this sample was originally trained to recognize “yes” and “no”, the TensorFlow Lite
for Microcontrollers source contains scripts that make it easy to retrain the model to classify any
other combination of these words.

We are going to use another pre-trained model to recognize “up” and “down”, instead. If you are
interested in the full workflow including the training of the model refer to the Supplementary
information: model training section of this guide.

To build our new ML application, we follow these steps:

1. Download a pretrained model that has been trained and frozen using TensorFlow.

2. Look at how the TensorFlow model gets converted to the TensorFlow Lite format.

3. Convert the TensorFlow Lite model into a C source file.

4. Modify the code and deploy to the device.

Building TensorFlow and training the model each takes a couple of hours on an typical computer.
We do not perform this build at this stage. For a full guide on how to do this, refer to
the Supplementary information: model training section in this guide.

7.1 Convert the model
Starting from the trained model to obtain a converted model that can run on the controller itself, we
must run a conversion script: the TensorFlow Lite converter. This tool uses clever tricks to make our
model as small and efficient as possible, and to convert it to a TensorFlow Lite FlatBuffer. To reduce
the size of the model, we used a technique called quantization. All weights and activations in the
model get converted from 32-bit floating point format to an 8-bit and fixed-point format, as you can
see in the following command:

This conversion does not only reduce the size of the network, but also avoids floating point
computations that are more computationally expensive.

To save time, we skip this step and instead download the tiny_conv.tflite.

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-cortex-m-voice-assistant-with-google-tensorflow-lite/supplementary-information-model-training
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-cortex-m-voice-assistant-with-google-tensorflow-lite/supplementary-information-model-training
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-cortex-m-voice-assistant-with-google-tensorflow-lite/supplementary-information-model-training
https://www.tensorflow.org/lite/convert
https://www.tensorflow.org/lite/performance/post_training_quantization
https://developer.arm.com/-/media/Files/downloads/Machine%20learning%20how-to%20guides/tiny_conv.tflite?revision=495eb362-4325-49b8-b3ba-3141df0c9b95&la=en

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

7 Retrain the machine learning model

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 23 of 32

The final step in the process is to convert this model into a C file that we can drop into our Mbed
project.

To do this conversion, we use a tool called xxd. Issue the following command:
xxd -i tiny_conv.tflite > tiny_conv_micro_features_model_data.cc

Next, we must update tiny_conv_micro_features_model_data.cc so that it is compatible with
our code. First, open the file. The top two lines should look similar to the following code, although the
exact variable name and hex values may be different:
unsigned char tiny_conv_tflite[] = {

 0x18, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x0e, 0x00,

You must add the include from the following snippet and change the variable declaration without
changing the hex values:
#include
"tensorflow/lite/micro/examples/micro_speech/micro_features/tiny_conv_micro_features_mo
del_data.h"

const unsigned char g_tiny_conv_micro_features_model_data[] = {

 0x18, 0x00, 0x00, 0x00, 0x54, 0x46, 0x4c, 0x33, 0x00, 0x00, 0x0e, 0x00,

Next, go to the very bottom of the file and find the unsigned int variable.
unsigned int tiny_conv_tflite_len = 18216;

Change the declaration to the following code, but do not change the number assigned to it, even if
your number is different from the one in this guide.
const int g_tiny_conv_micro_features_model_data_len = 18216;

Finally, save the file, then copy the tiny_conv_micro_features_model_data.cc file into
the tensorflow/tensorflow/lite/micro/tools/make/gen/mbed_cortex-
m4/prj/micro_speech/mbed/tensorflow/lite/micro/examples/micro_speech/micro_fea
tures directory.

7.2 Modify the device code
If you build and run your code now, your device should respond to the words “up” and “down”.
However, the code was written to assume that the words are “yes” and “no”. Let us update the
references and the user interface so that the appropriate words are printed.

First, go to the following directory:
tensorflow/lite/micro/examples/micro_speech/

and open the file:

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

7 Retrain the machine learning model

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 24 of 32

micro_features/micro_model_settings.cc

You see the following category labels:
const char* kCategoryLabels[kCategoryCount] = {

 "silence",

 "unknown",

 "yes",

 "no",

 };

The code uses this array to map the output of the model to the correct value. Because we specified
our wanted_words as “up, down”in the training script, we should update this array to reflect these
words in the same order. Edit the code so it appears as follows:
const char* kCategoryLabels[kCategoryCount] = {

 "silence",

 "unknown",

 "up",

 "down",

 };

Next, we update the code in command_responder.cc to reflect these new labels, modifying the if
statements and the DisplayStringAt call:
void RespondToCommand(tflite::ErrorReporter* error_reporter,

 int32_t current_time, const char* found_command,

 uint8_t score, bool is_new_command) {

 if (is_new_command) {

 error_reporter->Report("Heard %s (%d) @%dms", found_command, score,

 current_time);

 if(strcmp(found_command, "up") == 0) {

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

7 Retrain the machine learning model

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 25 of 32

 lcd.Clear(0xFF0F9D58);

 lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard up", CENTER_MODE);

 } else if(strcmp(found_command, "down") == 0) {

 lcd.Clear(0xFFDB4437);

 lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard down", CENTER_MODE);

 } else if(strcmp(found_command, "unknown") == 0) {

 lcd.Clear(0xFFF4B400);

 lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard unknown", CENTER_MODE);

 } else {

 lcd.Clear(0xFF4285F4);

 lcd.DisplayStringAt(0, LINE(5), (uint8_t *)"Heard silence", CENTER_MODE);

 }

 }

 }

Now that we have updated the code, go back to the mbed directory:
cd <path_to_tensorflow>/tensorflow/lite/micro/tools/make/gen/mbed_cortex-
m4/prj/micro_speech/mbed

and run the following command to rebuild the project:
mbed compile -m DISCO_F746NG -t GCC_ARM

Finally, copy the binary to the USB storage of the device, using the same method that you used earlier.
You should now be able to say “up” and “down” to update the display.

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

8 Troubleshooting

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 26 of 32

8 Troubleshooting

We have found some common errors that users face and have listed them here to help you get
started with your application as quickly as possible.

8.1 Mbed CLI issues or Error: collect2: error: ld returned 1
exit status
Purge the cache with the following command:
mbed cache purge

You probably also have a stale BUILD folder. Clean up your directory and try again:
rm -rf BUILD

8.2 Error: Prompt wrapping around line
If your terminal wraps your text as shown here:

In your terminal type:
export PS1='\u@\h: '

For a more minimalist approach, type:
export PS1='> '

8.3 Error: "Requires make version 3.82 or later (current is
3.81)"
If you encounter this error, install the brew and make by typing the following code:
ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"

brew install make

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

8 Troubleshooting

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 27 of 32

On a Mac, you might have to use gmake instead of make, to run your commands.

8.4 Error: -bash: mbed: command not found
If you encounter this error, try the following fixes.

For Mac:

We recommend using the installer and running the downloaded Mbed CLI App. This app
automatically launches a shell with all the dependencies solved for you.

If installed manually, make sure to follow these instructions.

8.5 "sed" errors while generating micro speech project
If you encounter the following error while in the Build and compile micro speech example section
while generating micro speech project:
sed: 1: "tensorflow/lite/micro/t ...": undefined label
'ensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/RTOS2/Include/cmsis_os2.h'

sed: 1: "tensorflow/lite/micro/t ...": undefined label
'ensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/RTOS2/Include/os_tick.h'

sed: 1: "tensorflow/lite/micro/t ...": undefined label
'ensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/RTOS2/Source/os_tick_gtim.c'

sed: 1: "tensorflow/lite/micro/t ...": undefined label
'ensorflow/lite/micro/tools/make/downloads/cmsis/CMSIS/RTOS2/Source/os_systick.c'

 add "LC_CTYPE=C" tag when compiling the project:
LC_CTYPE=C make -f tensorflow/lite/micro/tools/make/Makefile TARGET=mbed
TAGS="disco_f746ng" generate_micro_speech_mbed_project

https://github.com/ARMmbed/mbed-cli-osx-installer/releases/tag/v0.0.10
https://os.mbed.com/docs/mbed-os/v5.12/tools/macos.html

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

9 Next steps

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 28 of 32

9 Next steps
Until recently, AI on tiny microcontrollers was deemed impossible. Now, thanks to tools like Mbed
and TensorFlow Lite for Microcontrollers, it is not only possible, it is easy and within the reach of
every open-source software developer, maker, and start-up.

Soon, more optimized low-level kernels will be available as part of the CMSIS-NN open-source
project. These kernels allow developers to leverage Single Instruction Multiple Data (SIMD)
instructions and receive an uplift in performance. SIMD instructions are available in Arm Cortex-M4,
Cortex-M7, Cortex-M33, and Cortex-M35P processors.

Now that you have implemented your first machine learning application on a microcontroller, it is
time to get creative.

To keep learning about ML with Arm and TensorFlow, here are some additional resources:

• View another in-depth end-to-end TensorFlow from training to deployment guide

• Read a white paper on CMSIS-NN: Machine learning on Arm Cortex-M Microcontrollers

• Learn how to use the OpenMV camera for ML applications

• Explore Arm NN for ML on other Arm processors and GPUs

Share your projects using the hashtag #TinyML, and tag @Arm.

https://github.com/ARM-software/CMSIS_5/
https://developer.arm.com/architectures/instruction-sets/dsp-extensions/dsp-for-cortex-m
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimental/micro/examples/hello_world
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/white-papers
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/deploying-a-caffe-model-on-openmv-using-cmsis-nn/next-steps
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

10 Supplementary information: model training

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 29 of 32

10 Supplementary information:
model training

10.1 Prepare to build TensorFlow
The code that we used to train our voice model currently depends on some experimental operations
that are only available when building TensorFlow from source. We must build TensorFlow.

The easiest way to build TensorFlow from source is to use Docker. Docker is a tool that enables you
to run tasks on a virtual machine that is isolated from the rest of your computer, which makes
dependency management easier. TensorFlow provides a custom docker image that can be used to
build the toolchain from source.

The first step is to follow the instructions to install Docker.

When Docker is installed, run the following command to test that it works:
docker run hello-world

You should see a message starting with “Hello from Docker!”.

When you have installed Docker, use the following command to install the latest TensorFlow
development Docker image. This contains the TensorFlow source:
docker pull tensorflow/tensorflow:devel

Visit TensorFlow Docker images for more information.

Now, run the following command to connect to your Docker instance and open a shell:
docker run -it -w /tensorflow_src -v $PWD:/mnt tensorflow/tensorflow:devel bash

You should now be on the command line of the TensorFlow Docker image, in the directory that
contains the TensorFlow source code. You must issue the following commands to fetch the very latest
code and install some required Python dependencies:
git fetch

git rebase origin master

pip install -U --user pip six numpy wheel setuptools mock tensorflow_estimator

pip install -U --user keras_applications==1.0.6 --no-deps

pip install -U --user keras_preprocessing==1.0.5 --no-deps

We must now configure the build. Running the following command from the root of the TensorFlow
repo starts configuration. You are asked several questions. Just hit return at every prompt to accept
the default option.
./configure

https://docs.docker.com/install/
https://www.tensorflow.org/install/docker

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

10 Supplementary information: model training

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 30 of 32

Once configuration is done, we are ready to go.

10.2 Train the model
The following command builds TensorFlow from source and starts training.

The build takes several hours. To save time, you can download the tiny_conv.pb and skip to the
following Convert the model to the TensorFlow Lite format section.

bazel run -c opt --copt=-mavx2 --copt=-mfma tensorflow/examples/speech_commands:train -
- --model_architecture=tiny_conv --window_stride=20 --preprocess=micro --
wanted_words="up,down" --silence_percentage=25 --unknown_percentage=25 --quantize=1

Notice how the wanted_words argument contains the words “up” and “down”. You can add any
words that you like from the available ten to this field, separated by commas.

On older CPUs, you can leave out the --copt arguments. These arguments are there to accelerate
training on chips that support the extensions.

The process takes a couple of hours. While you wait, you can look at a more detailed overview of
the speech model that we are training.

10.3 Freeze the model
We must perform a few extra steps to be able to run the model directly on our microcontroller. With
your trained model, you should run the following command to create a single “frozen graph” file that
represents the trained model.

We must provide our wanted_words argument again.

bazel run tensorflow/examples/speech_commands:freeze -- --
model_qqqcarchitecture=tiny_conv --window_stride=20 --preprocess=micro --
wanted_words="up,down" --quantize=1 --output_file=/tmp/tiny_conv.pb --
start_checkpoint=/tmp/speech_commands_train/tiny_conv.ckpt-18000

You now have a file, /tmp/tiny_conv.pb, that represents the model. This is great, but because we
deploy the model on a tiny device, we must do everything that we can to make it as small and simple as
possible.

https://developer.arm.com/-/media/Files/downloads/Machine%20learning%20how-to%20guides/tiny_conv.pb?revision=9d523fc3-b540-417c-8930-1e04bff7154b&la=en
https://www.tensorflow.org/tutorials/sequences/audio_recognition

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

10 Supplementary information: model training

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 31 of 32

10.4 Convert the model to the TensorFlow Lite format
To obtain a converted model that can run on the microcontroller, we must run a conversion
script, TensorFlow Lite converter. This tool uses clever tricks to make our model as small and
efficient as possible and to convert it to a TensorFlow Lite FlatBuffer. To reduce the size of the model,
we used a technique called quantization. All weights and activations in the model get converted from
32-bit floating point format to an 8-bit and fixed-point format. This conversion does not only reduce
the size of the network, but also avoids floating-point computations, that are more computationally
expensive.

Run the following command to perform the conversion:
bazel run tensorflow/lite/toco:toco -- --input_file=/tmp/tiny_conv.pb --
output_file=/tmp/tiny_conv.tflite --input_shapes=1,49,40,1 --input_arrays=Reshape_1 --
output_arrays='labels_softmax' --inference_type=QUANTIZED_UINT8 --mean_values=0 --
std_values=9.8077

You should now have a /tmp/tiny_conv.tflite file. We now must copy this file from our Docker
instance to the host machine. To do this, run the following command:
cp /tmp/tiny_conv.tflite /mnt

This command places the file in the directory that you were in when you first ran the command to
connect to Docker. For example, if you ran the command from ~/Desktop, the file is
at ~/Desktop/tiny_conv.tflite.

To leave the Docker instance and get back to your regular command line, type the following:
exit

https://www.tensorflow.org/lite/convert
https://www.tensorflow.org/lite/performance/post_training_quantization

Build Arm Cortex-M voice assistant with Google
TensorFlow Lite

ARM062-948681440-3282
Issue 03

Appendix A Revisions

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights reserved.
Non-Confidential

Page 32 of 32

Appendix A Revisions
This appendix describes the technical changes between released issues of this document.

Table A-1 Issue 01

Change Location Affects

First release All All

Table A-2 Differences between issue 01 and issue 02

Change Location Affects

Adds updates to the TensorFlow Lite codebase Download and build
the sample
application and
Project structure

All

Table A-3 Differences between issue 02 and issue 03

Change Location Affects

Adds CMSIS-NN support Download and build
the sample
application and
Troubleshooting

All

	1 Introduction
	1.1 Product revision status
	1.2 Intended audience
	1.3 Conventions
	1.3.1 Glossary
	1.3.2 Typographical conventions

	1.4 Feedback
	1.4.1 Feedback on this product
	1.4.2 Feedback on content

	2 Overview
	2.1 About TensorFlow Lite
	2.1.1 TensorFlow Lite - video

	3 Getting started
	3.1 Before you begin
	3.2 Getting started

	4 Download and build the sample application
	4.1 Install Arm toolchain and Mbed CLI
	4.2 Build and compile micro speech example
	4.3 CMSIS-NN

	5 Project structure
	5.1 Convolutional neural networks
	5.2 Feature generation with Fast Fourier transform
	5.3 Recognition and windowing
	5.3.1 Interpreting the results

	6 Deploy the sample to your STM32F7
	6.1 Test keyword spotting

	7 Retrain the machine learning model
	7.1 Convert the model
	7.2 Modify the device code

	8 Troubleshooting
	8.1 Mbed CLI issues or Error: collect2: error: ld returned 1 exit status
	8.2 Error: Prompt wrapping around line
	8.3 Error: "Requires make version 3.82 or later (current is 3.81)"
	8.4 Error: -bash: mbed: command not found
	8.5 "sed" errors while generating micro speech project

	9 Next steps
	10 Supplementary information: model training
	10.1 Prepare to build TensorFlow
	10.2 Train the model
	10.3 Freeze the model
	10.4 Convert the model to the TensorFlow Lite format

	Appendix A Revisions

