q rm Build Arm NN custom backend plugins

Version 1.1

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

Build Arm NN custom backend plugins
Copyright © 2019 - 2020 Arm Limited (or its affiliates). All rights
reserved. Release Information

Document History

Version Date Confidentiality Change
1.0 31 October 2019 Non-Confidential First release.
1.1 25 August 2020 Non-Confidential e Updates the description of the Arm NN branch in the

Before you begin section.

e New version of the ArmNNPluginFramework.zip file.

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information
contained in this document may be protected by one or more patents or pending patent applications. No part of this document
may be reproduced in any form by any means without the express prior written permission of Arm. No license, express or
implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS 1S”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR APARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has undertaken no analysis to
identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES,
HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion
thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s
customers is not intended to create or refer to any partnership relationship with any other company. Arm may make changes to
this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written
agreement covering this document with Arm, then the click through or signed written agreement prevails over and supersedes
the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree
that if there is any conflict between the English version of this document and any translation, the terms of the English version of
the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its
subsidiaries) inthe US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the
trademarks of their respective owners. Please follow Arm'’s trademark usage guidelines at
btp://www.arm.com/company/policies/trademarks.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 2 of 18

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1
Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in
accordance with the terms of the agreement entered into by Arm and the party that Arm delivered this document to.

Unrestricted Access is an Arm internal classification.

Product Status

The information in this document is Final, that is for a developed product.

Web Address

Ww.arm.com

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 30of 18

http://www.arm.com/

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

Contents

1 Overview 5
2 Before you begin 6
3 What is an Arm NN backend? 7
4 Build the example plugin 9
5 How the custom backend works 10
6 Write your own Arm NN backend plugin 13
6.1. 1dentify and regISEEr YOUF PIUGIN ...t e s e e s e e e seeeeoen 14
6.2. Implement the IBackendINTErNal INTEITACE. ... s eene s 14
6.3. Memory management: CreateMeEmMOIrYMANAZEI() ..o 15
6.4. Workload factories: Creat@WorKIOadFACtOrY()....... ..o oo 15
6.5. Backend context: CreateBaCKENAC ONTEXE(). ... oo e ee e e eeee e eeeseseeeeeeseeseeeseee e se e e eseee e eseeeeees e sess e eseseeeeseeeseesereseeeeeeseeeeeeseeseeeraees

6.6. Optimization: OptimizeSubGraph(SubGraph) ...

7 Next steps 18

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 4 of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

1 Overview

Arm NN is an inference middleware for CPUs, GPUs, and NPUs. Arm NN bridges the gap between existing NN frameworks and the underlying
IP. Arm NN enables efficient translation of existing neural network frameworks, like TensorFlow and Caffe. Arm NN allows these neural
networks to run efficiently, without modification, across Arm Cortex-A CPUs, Arm Mali GPUs, and the Arm Machine Learning NPU processor.

Arm NN provides backends to allow workloads to run on Cortex-A CPUs, Mali-GPUs, and Arm ML processors.

Arm NN also lets you write your own custom backends to interface with third-party devices, as shown in the following diagram:

NN Application

High NN libraries Android NN
TensorFlow, Caffe,... I
X
I |

Arm NN
Partner
backend
v v I I I I

Compute Library
| |

Cortex-A . Partner

This guide shows you how to write a custom backend for Arm NN, providing an example custom backend to illustrate the process. First, the
guide takes you through the steps that are required to compile the custom plugin with Arm NN. Next, the guide explains how to run the tests to
check that the plugin is working correctly. Finally, the guide explores the custom backend and shows how to write your own plugin.

Partner

IP driver
Fy

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 50f 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

2 Before you begin

This guide assumes that you have a working Arm NN installation that is configured for TensorFlow. If not, refer to the instructions in Configure
the Arm NN SDK build environment for TensorFlow.

These instructions require that you use the latest release branch of the Arm NN git repository. Other branches cannot be guaranteed to

work with the example backend.

This guide only requires the tools that are identified in Configure the Arm NN SDK build environment for TensorFlow.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights

reserved.
Page 6 of 18

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/configuring-the-arm-nn-sdk-build-environment-for-tensorflow/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/configuring-the-arm-nn-sdk-build-environment-for-tensorflow/single-page
https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/configuring-the-arm-nn-sdk-build-environment-for-tensorflow/single-page

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

3 What is an Arm NN backend?

The Arm NN backend is an abstraction that maps the layers of a network graph to the hardware that is responsible for executing those layers.
Arm NN provides ready-made backends to allow workloads to run on Cortex-A CPUs, Mali GPUs, and Arm ML processors. Arm NN also
provides an interface so that you can write your own custom backends to interface with third-party devices.

Backends support one or more layers from the network graph, creating backend-specific workloads for the layers that they support, and then
executing those workloads.

Each backend identifies the layers that it can process. The Arm NN then divides the original graph into several subgraphs to be assigned to the
different backends. For example, in the following diagram, Arm NN divides the graph into three subgraphs. Arm NN does this by selecting the
largest contiguous set of layers that can be processed by a single backend.

Subgraph 2

Subgraph 3

Qutput

I HHQ I‘

Arm NN subgraph and layers
When we look at this diagram, we can see that:

e layers1and 2 can be executed by the samebackend.

e layers4and 5 can be executed by the same backend. This may be the same backend as Layers 1 and 2, or it may be a different
backend.

e layer 3requiresadifferent backend from all the otherlayers.

All backends must:

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 7 of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

e implement the IBackendInternal interface

e identify themselves with a string that must be unique across all of thebackends

e register themselves with BackendRegistry, so that Arm NN knows aboutthem

e implement the ILayerSupportinterface for the layers the backend intends to support

e implement the IWorkloadFactoryinterface, sothat Arm NN can execute layers on the backend

You can learn more about backends in Write your own Arm NN backend plugin.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 8 of 18

o . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

4 Build the example plugin

The example backend implements a simple custom plugin to help show how you can write your own custom plugins. The example backend
simulates optimizing addition layers by substituting them with a pre-compiled layer. This pre-compiled layer includes a pre-compiled object
that represents an optimized alternative to the addition layer in Arm NN. This pre-compiled object is an instance of a
CustomPreCompiledObject.

Follow these steps to integrate the example custom plugin with your existing Arm NN build:
1. Download the ArmNNPluginFramework.zip file containing the example plugin to a temporary location, for example /tmp.
2. Extract the contents of the zipfile:

cd /tmp
unzip ArmNNPluginFramework.zip

3. Copy the example plugin to the src/backendsfolder in your Arm NN installation:

cp -r /tmp/custom <armnn_install_dir>/armnn/src/backends/

4. Re-run CMake to produce the new makefiles that are needed to build the exampleplugin:
cd <armnn_install_dir>/armnn/build
cmake .. -DBOOST_ROOT=<boost_lib_dir>
5. Compile using the make command:
make -j32
6. Runallthe Arm NN unit tests, including those supplied with the exampleplugin:
cd <armnn_install_dir>/armnn/build
-/UnitTests
The output should be:

Running 1204 test cases. ..
*** No errors detected

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 9 of 18

https://developer.arm.com/-/media/Arm%20Developer%20Community/Images/Tutorial%20Guide%20Diagrams%20and%20Screenshots/Machine%20Learning/Build%20Arm%20NN%20custom%20backend%20plugins/ArmNNPluginFramework.zip?revision=b5f17291-7319-4b63-b08c-81b1be3da736&la=en&hash=9F75F95F0FDC044FC415DD662BD541BA95D78CC0

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

5 How the custom backend works

The unit tests that are included in the example custom plugin illustrate how the custom plugin works.
To see how it works, we will look at the AdditionToPreCompi ledTest() example in the CustomEndToEndTests - cpp file.

The AdditionToPreCompiledTest() function:

creates aninitial graph with an addition layer, performing element-wise addition ofvectors

e optimizesthe graph. Inthe example, optimizing the graph substitutes the addition layer with a precompiled layer
e runstheinference onthe optimized graph with some testvalues

e checksthattheresultsarecorrect

Follow these steps to understand how the custom backend works.

1. Create an empty modelobject:

INetworkPtr net(INetwork: :Create());

2. Add layersto the model:

net->AddInputLayer(0);
net->AddInputLayer(l);
net->AddAdditionLayer();
net->AddOutputLayer(0);

IConnectablelLayer* inputl
IConnectablelLayer* input2
IConnectableLayer* add

IConnectablelLayer* output

3. Createtherequired connections between thelayers:

inputl->GetOutputSlot(0) -Connect(add->GetlnputSlot(0));
input2->GetOutputSlot(0) -Connect(add->GetlnputSlot(1));
add->GetOutputSlot(0).Connect(output->GetlnputSlot(0));

The following diagram shows the connections between the layers:

inputl->GetOutputSlot(0).Connect (add->GetInputSlot(0));
input2->GetOutputSlot(0).Connect(add->GetInputSlot(1l));

add->GetOutputSlot(0).Connect (output->GetInputsSlot(0));

—
.

Click here to view the the animated gif diagram.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights

reserved.
Page 10 of 18

https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/build-arm-nn-custom-backend-plugins/how-the-custom-backend-works

ARM062-948681440-3321

Build Arm NN custom backend plugins Version 1.1

4

Set the tensor information for each of theoutputs:

TensorInfo tensorlinfo(TensorShape({3, 4}), DataType::Float32);
inputl->GetOutputSlot(0) .SetTensorInfo(tensorinfo);
input2->GetOutputSlot(0) -SetTensor Info(tensorinfo);
add->GetOutputSlot(0).SetTensorInfo(tensorinfo);

Optimize the completed network using the Optimize() function:

10ptimizedNetworkPtr optimizedNet = Optimize(*net, defaultBackends,
runtime->GetDeviceSpec());

The Optimize() function has the following specification:

10ptimizedNetworkPtr Optimize(INetwork, {Backendld, ... }, IDeviceSpec,
OptimizerOptions, errMessages)

The Optimize() function:

e performs basic validation of the input network
e modifies the graph for correctness by:
0 inserting copy layers between backends
o0 inserting FP32/FP16 conversion layers if necessary (specified in OptimizerOptions)
0 addingdebug layers, if necessary (specified inOptimizerOptions)
e performs backend-independent optimizationsby:
0 removing redundant operations
0 optimizing all permutes and reshapes where possible
e decides whichbackend to assignto each layerby:
0 usingthe Is<x>LayerSupported() functioninthe ILayerSupport interface to identify the preferred backend
e runsbackend-specific optimizationsby:
o foreachselected backend, extracting the subgraphs that can be executed onthat backend
o foreach subgraph, callingOptimizeSubGraph() on the selected backend

Create and configure the runtime object:

IRuntime: :CreationOptions options;
IRuntimePtr runtime(lRuntime::Create(options));

Load the optimized network:

Networkld networkld;
runtime->LoadNetwork(networkld, std::move(optimizedNet));

The LoadNetwork() function:

e createsaloadedNetworkobject and adds it to the runtime
e createsallist of workloads, one per layer, using the backend’s IWorkl oadFactoryobject
e returnsanetwork identifier, networkld, to use later for running the optimized network

Create sample input and output datastructures:
std: :vector<float> inputlData

1.f, 2.f, 3.f, 4.f, 5.f, 6.F, 7.F, 8.F, 9.F, 10.f, 11.f, 12.f
}:

std: :vector<float> input2Data

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 110of 18

https://github.com/ARM-software/armnn/blob/1cd451cdd818e7df83cf60935abc54345fbc40e6/include/armnn/INetwork.hpp#L518
https://github.com/ARM-software/armnn/blob/1cd451cdd818e7df83cf60935abc54345fbc40e6/include/armnn/INetwork.hpp#L518
https://github.com/ARM-software/armnn/blob/1cd451cdd818e7df83cf60935abc54345fbc40e6/include/armnn/INetwork.hpp#L518
https://github.com/ARM-software/armnn/blob/1cd451cdd818e7df83cf60935abc54345fbc40e6/include/armnn/INetwork.hpp#L490
https://github.com/ARM-software/armnn/blob/1cd451cdd818e7df83cf60935abc54345fbc40e6/include/armnn/INetwork.hpp#L490
https://github.com/ARM-software/armnn/blob/master/include/armnn/ILayerSupport.hpp

o . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

100.f, 200.f, 300.f, 400.f, 500.f, 600.f, 700.f, 800.Ff, 900.f, 1000.f, 1100.f, 1200.F
};
std: :vector<float> outputData(l2);

InputTensors inputTensors

{ 0, ConstTensor(runtime->GetlnputTensoriInfo(networkld, 0), inputlData.data()) },
{ 1, ConstTensor(runtime->GetlnputTensorInfo(networkld, 0), input2Data.data()) }
};

OutputTensors outputTensors

{ 0, Tensor(runtime->GetOutputTensorInfo(networkld, 0), outputData.data()) }
};

9. Runtheinference:
runtime->EnqueueWorkload(networkld, inputTensors, outputTensors);

The networkldistheonethat is returned by the earlier call to LoadNetwork().

The EnqueueWorkload () function executes all workloads sequentially on the assigned backends and places the result in the
output tensor buffers.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 12 of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

6 Write your own Arm NN backend plugin

The example custom plugin provides a useful template for writing your own backend. We will look at the different things that you need to do
when writing your own backend. We will use the code from the example plugin to illustrate the process.

6.1. Build system integration

Before you can build your custom plugin, you will need to integrate the plugin with the Arm NN build system. Arm NN uses the CMake build
management system.

Follow these steps to write your own Arm NN backend plugin:

1. Createadirectory for your custom plugin in armnn/src/backends, for examplecustom

mkdir <armnn_install_dir>/armnn/src/backends/custom

2. Create abackend. cmake file to specify what needs to be built. The backend . cmake file in the example plugin contains:

add_subdirectory (${PROJECT_SOURCE_DIR}/src/backends/custom)
list(APPEND armnnLibraries armnnCustomBackend)

list(APPEND armnnLibraries armnnCustomBackendWorkloads)
list(APPEND armnnUnitTestLibraries armnnCustomBackendUnitTests)

3. CreateCMakeLists.txt filesineachdirectory to specify therules to build the new build targets. For example, here is the
CMakeLists.txt filein the top-level customdirectory:

1ist(APPEND armnnCustomBackend_sources
CustomBackend . cpp
CustomBackend . hpp
CustomBackendUti ls.cpp
CustomBackendUti ls._hpp
CustomLayerSupport.cpp
CustomLayerSupport.hpp
CustomPreCompi ledObject.cpp
CustomPreCompi ledObject.hpp
CustomWorkloadFactory .cpp
CustomWorkloadFactory . hpp

)

add_library(armnnCustomBackend OBJECT ${armnnCustomBackend_sources})
target_include_directories(armnnCustomBackend PRIVATE ${PROJECT_ SOURCE_DIR}/src/armnn)
target_include_directories(armnnCustomBackend PRIVATE ${PROJECT_SOURCE_DIR}/src/armnnUtils)
target_include_directories(armnnCustomBackend PRIVATE ${PROJECT_SOURCE_DIR}/src/backends)

add_subdirectory(workloads)

if(BUILD_UNIT_TESTS)
add_subdirectory(test)
endifQ)

4. Createabackend.mk file to specify the source files. This file is used for Android builds:

BACKEND_SOURCES :=
CustomBackend.cpp \
CustomBackendUtils.cpp \

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 13 0of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

CustomLayerSupport.cpp \

CustomPreCompi ledObject.cpp \
CustomWorkloadFactory.cpp \
workloads/CustomAdditionWorkload.cpp \
workloads/CustomPreCompi ledWorkload.cpp

BACKEND_TEST_SOURCES := \

test/CustomCreateWorkloadTests.cpp \
test/CustomEndToEndTests.cpp

6.2. Identify and register your plugin
All backends must identify themselves with a unique Backend I d.
Here is the code in CustomBackend . cpp that provides the unique ID:

const Backendld& CustomBackend::GetldStatic()
{

static const Backendld s_l1d{"'Custom'"};
return s_Id;

Plugins must also register with the BackendRegi stry. A helper structure, BackendRegistry: :StaticRegistrylnitializer,is
provided to register the backend:

static BackendRegistry::StaticRegistrylnitializer g_RegisterHelper

{
BackendRegistrylnstance(),
CustomBackend: :GetldStatic(),
E]()
return IBackendInternalUniquePtr(new CustomBackend());
}
};

6.3. Implement the IBackendInternal interface

All backends need to implement the IBackend Internal interface. Here are the interface functions to implement:
e IMemoryManagerUniquePtr CreateMemoryManager()

e IWorkloadFactoryPtr CreateWorkloadFactory(IMemoryManagerSharedPtr)
o Thereturned IWorkloadFactoryobject is used to create the workload layer computation units.

e IBackendContextPtr CreateBackendContext(IRuntime: :CreationOptions)

e lLayerSupportSharedPtr GetLayerSupport()
o Duringoptimization, Arm NN needs to decide which layers are supported by thebackend.
o0 IsLayer<x>Supported() functionsindicate whether the backend supports the specified layer.

e OptimizationViews OptimizeSubGraph(SubGraph)
0 Thesubgraphto optimize is passed as the input to thisfunction.
0 Thefunction returns an object containing a list of subgraph substitutions, a list of failed subgraph optimizations, and a list of
untouched subgraphs.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 14 of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

The following sections look at each of these functions in more detail, as seen in CustomBackend . cpp.

6.4. Memory management: CreateMemoryManager()

The purpose of memory management is to minimize memory usage by allocating memory just before it is needed, and releasing it when the
memory is no longer required.

All backends must support the IBackendInternal interface CreateMemoryManager () method, which returns a unique pointer to an
IMemoryManager object:

IBackendInternal : : IMemoryManagerUniquePtr MyBackend: :CreateMemoryManager() const

return std::make_unique<MyMemoryManager>(...);

}

In this example, MyMemoryManager is a class that is derived from 1Backend Internal : : IMemoryManager.

A backend that does not support a memory manager, such as the example plugin, should return an empty pointer, as you can see here:

IBackendInternal : : IMemoryManagerUniquePtr MyBackend: :CreateMemoryManager() const

return IBackendlInternal: : IMemoryManagerUniquePtr{};

The IMemoryManager interface defines two pure virtual methods that are implemented by the derived class for the backend:

e virtual void Acquire() = 0;
0 Acquire()iscalled by the LoadedNetwork before the model is executed.
0 Thebackend memory manager should allocate any memory that it needs for running the inference.

e virtual void Release() = 0;
0 Release()iscalled by the LoadedNetwork, in its destructor, after the model is executed.
0 Thebackend memory manager should free any memory that it previouslyallocated.

The backend memory manager uses internal memory management to further optimize memory usage.

6.5. Workload factories: CreateWorkloadFactory()

Each layer is executed using a workload. A workload is used to enqueue a layer for computation.

Each workload that is created by a WorkloadFactory creates workloads that are specific to each layer. This means that each backend needs its
own WorkloadFactory.

Allworkloads need to:

e implement the IWorkloadinterface

e implement the Create<x> methods to execute the operator on the backend hardwareby:
o0 readingtheinputtensors
0 writingtheresult to the outputtensors

You can see the example code in CustomWork loadFactory . cpp.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 150f 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

6.6. Backend context: CreateBackendContext()

The IBackendContext interface defines virtual methods that are implemented by the derived class for the backend, as seen here:

IBackendInternal : : IBackendContextPtr CustomBackend: :CreateBackendContext(const
IRuntime: :CreationOptions&) const

{
}

return IBackendContextPtr{};

Here you can see how these virtual methods are defined in armnn/src/backends/backendsCommon/ IBackendContext . hpp:

class IBackendContext

protected:
IBackendContext(const IRuntime::CreationOptions&) {}

public:
// Before and after Load network events
virtual bool BeforeLoadNetwork(Networkld networkld) = 0O;
virtual bool AfterLoadNetwork(Networkld networkld) = 0;

// Before and after Unload network events
virtual bool BeforeUnloadNetwork(Networkld networkld) = O;
virtual bool AfterUnloadNetwork(Networkld networkld) = 0;

virtual ~I1BackendContext() {}

The IBackendContext interface includes some methods that provide callback-like functionality. These methods are called by Arm NN before
and after loading or unloading a network respectively. These methods allow the user to run any code, for example to clear a cache or synch
threads, triggered by a specific load or unload network event.

6.7. Deciding which backends to assign to each layer: GetLayerSupport()
Duringoptimization, Arm NN must decide which layers are supported by the backend.
The IsLayer<x>Supported() functions indicate whether the backend supports the specified layer. For example:

bool CustomLayerSupport: : IsAdditionSupported(const TensorInfo& inputO,
const TensoriInfo& inputl,
const TensorInfo& output,
Optional<std::string&> reasonlfUnsupported) const

{

ignore_unused(inputl);

ignore_unused(output);

return IsDataTypeSupported(inputO.GetDataType(), reasonlfUnsupported);
}

6.8. Optimization: OptimizeSubGraph(SubGraph)

The optimizer calls OptimizeSubGraph() on the selected backend, for each subgraph.
From the IBackendInternal interface:

OptimizationViews OptimizeSubGraph(const SubGraph& subGraph) const =0;

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 16 of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

class OptimizationViews

Substitutions SuccesfulOptimizations; // Proposed substitutions from successful optimizations
Subgraphs FailedOptimizations; // Subgraphs from the original subgraph which cannot be supported
Subgraphs UntouchedSubgraphs; // Subgraphs from the original subgraph which remain unmodified
HE
struct SubstitutionPair
{

// Subgraph of Layers from the original graph which should be replaced
SubgraphView SubstitutableSubgraph;

// A subgraph of new layers which will replace layers in m_SubstitutableSubgraph
SubgraphView ReplacementSubgraph;

Example optimizations might include:

e merging layers, for more efficientexecution
e adding permute layers to modify the data layout for execution on the backend

The OptimizeSubGraph() function does the following:
e Ifnooptimizationwas attempted for part of the input subgraph, the optimization function adds it to the list of untouched subgraphs.
e Ifpartoftheinput subgraph cannot be supported by the backend, the optimization function adds it to the list of failed optimizations.
Arm NN tries to re-assign each failed subgraph to other backends, if they are available.
e |Ifpartoftheinput subgraph can be optimized, the optimization function creates a substitution pair.

The substitutable subgraph in the original graph is replaced with the corresponding replacement subgraph.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 17 of 18

. . ARMO062-948681440-3321
Build Arm NN custom backend plugins Version 1.1

7 Next steps

You can learn more about developing custom backends in the GitHub README.md file.

You can learn more about Arm NN.

Copyright © 2019-2020 Arm Limited (or its affiliates). All rights
reserved.
Page 18 of 18

https://github.com/ARM-software/armnn/tree/master/src/backends
https://developer.arm.com/ip-products/processors/machine-learning/arm-nn

	Build Arm NN custom backend plugins
	Contents
	1 Overview
	2 Before you begin
	3 What is an Arm NN backend?
	4 Build the example plugin
	5 How the custom backend works
	6 Write your own Arm NN backend plugin
	6.1. Build system integration
	6.2. Identify and register your plugin
	6.3. Implement the IBackendInternal interface
	6.4. Memory management: CreateMemoryManager()
	6.5. Workload factories: CreateWorkloadFactory()
	6.6. Backend context: CreateBackendContext()
	6.7. Deciding which backends to assign to each layer: GetLayerSupport()
	6.8. Optimization: OptimizeSubGraph(SubGraph)

	7 Next steps

