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1 Overview 

 Application of EAS 

The mainline Completely Fair Scheduler (CFS) scheduler class implements a throughput-
oriented task placement policy. EAS adds an energy-based policy to this scheduler class 
which optimizes energy saving managing task placement and the spare capacity of CPUs 
intelligently. EAS operates when the system has low/medium total utilization and the 
original CFS policy operates at full system utilization, as EAS offers no energy benefit when 
all CPUs are overutilized. 

EAS targets dual-cluster big.LITTLE systems with non-overlapping power/performance 
curves for the two cpu core types and per-cluster and/or per-cpu power-down cpu-idle 
states. Such a topology allows EAS to clearly show its advantages over the vanilla mainline 
CFS scheduler for a wide range of workloads.  Since EAS uses a generic energy model 
approach, it also supports more advanced CPU topologies such as DynamIQ based 
systems. 

The current EAS implementation does not support Symmetric Multi-Threading (SMT) nor 
Non-Uniform Memory Access (NUMA) architectures. 

 Scope of the document 

This document describes the architecture of EAS as present in the EAS product codeline. 
The intended audience for this document are developers interested in porting, tuning and 
evaluation of the product codeline. 

This software release is suitable for product evaluation of the Energy-Aware Scheduler. It 
represents an extended, product-hardened version of the ongoing open-source EAS 
development taking place on Linux Kernel Mailing List.  

https://developer.arm.com/open-source/energy-aware-scheduling 

This document contains information about where the source code is hosted in chapter 4 
Source Code, explains the building blocks and the functionality of EAS in chapter 6 
Functionality and how to evaluate a new EAS integration on a new device in chapter 
8 Integration.   

 Changes in EAS r1.2 

• Provide PELT in addition to WALT (intention to use PELT as default) 

• Provide Schedutil in addition to sched-freq (intention to use Schedutil as default) 
(partial backport from 4.7, but not including cpufreq changes) 

• Wakeup path changes to support big.LITTLE using generic code 

• EAS restructured to be much closer to mainline version, but retain latency focus from 
EAS r1.1 

• Incorporated upstream CFS fixes 

• Added upstream capacity-based-scheduling 

 

https://developer.arm.com/open-source/energy-aware-scheduling


EAS 

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 

Page 6 of 55 ARM-ECM-0605656 

 Changes in EAS r1.3 

• Validation on real devices and additional development boards 

• Increased test coverage 

• Upstream schedutil backporting 

• Schedutil is now the recommended CPUFreq governor 

• General EAS refactoring improvements 

• android-4.9 brought to EAS equivalence with android-4.4 
 

 Changes in EAS r1.4 

• EAS refactoring improvements 

• Fixes to sched-freq for big.LITTLE platforms 

• Upstream PELT and load balance improvements 

• Upstream schedutil changes 

• Cumulative Runnable Average signal for OPP selection when using WALT 

• Improved WALT integration with EAS 
 

For full details on r1.4 changes, please refer to Linaro SFO17 presentation “EAS Update”: 
https://developer.arm.com/-/media/developer/developers/open-source/energy-aware-
scheduling/EAS_Update_SFO17.pdf  
 

 Changes in EAS r1.5 

• Early bringup on AOSP 4.14 

• New EXPERIMENTAL sched features (defaults match android-4.9): 

o EAS_PREFER_IDLE (Default ON) – when ON, use EAS task placement for 
tasks in schedtune groups with prefer_idle set. When OFF, use the mainline 
slow-path wakeup code for these tasks. 

o FIND_BEST_TARGET (Default ON) – when ON, use find_best_target to pre-
select candidate CPUs for energy calculation in wakeup task placement. When 
OFF, perform energy calculation for all possible candidate CPUs at wakeup 
time. 

o FBT_STRICT_ORDER (Default ON) – when ON, use the first CPU selection 
from find_best_target which saves energy compared to placing the task on the 
previous CPU. When OFF, use the CPU selection from find_best_target which 
saves the most energy. This option is meaningless if FIND_BEST_TARGET is 
OFF. 

• Per-sched-domain overutilization flags – instead of considering the whole system 
overutilized when a single CPU is >80% utilized, only mark the container sched 
domains as overutilized. This can allow energy-aware placement of some tasks to 
continue in medium utilization scenarios however those scenarios are rare. Customers 
should not see negative impact from this change. 

• Removal of sched-freq. Customers should use schedutil instead. 

https://developer.arm.com/-/media/developer/developers/open-source/energy-aware-scheduling/EAS_Update_SFO17.pdf
https://developer.arm.com/-/media/developer/developers/open-source/energy-aware-scheduling/EAS_Update_SFO17.pdf
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• Basic support for DynamIQ little-sync support (min frequency capping) 

• Minimum frequency restrictions coming through cpufreq policy changes are taken into 
account when performing energy calculations and when evaluating potential task 
placement options. 

• Improved performance for ‘Energy Diff’ calculation 

• Immediate force-migration of misfit tasks 

 

 Android-4.14 October 2018 Status 

Since the last release of this document, a small amount of changes to EAS code have 
been merged into android-4.14, described here. 

 Misfit task handling code was updated to what was the most current upstream 
expression of this functionality in July ’18. This is intended to remove the corner cases 
which could result in misfit tasks taking longer than expected to migrate to a bigger 
CPU. 

 Find_best_target was reworked slightly to remove the possibility that some CPUs could 
never be selected in a tri-gear system and to incorporate the c-state of a CPU when 
selecting between idle CPUs. 

 CPUFreq policy frequency capping is represented in the energy model calculations. 

 Util_Est was added for PELT signals in CFS. Util_est attempts to predict the utilisation 
of a task by storing the previous value when a task begins to sleep. This is used for task 
placement and frequency selection so that tasks which sleep for a while are not unduly 
penalised when they wake up. 

 Upstream idle loop rework was backported which results in more stable selection of 
CPU idle states. See https://lwn.net/Articles/767630/ for more information about what 
these changes do. 

 A new feature, schedtune boost hold, was added. This feature will retain the boost level 
on a CPU which came from an enqueued task for at least 50ms even if the task is 
dequeued. This is intended to allow CPU frequency to stay high for a short time when 
tasks are quickly enqueued/dequeued, based upon the userspace task classification 
rather than the global controls enabled by schedutil rate limiting. The time that a boost 
level is held for is not configurable. The behaviour of this is controlled by a new 
SCHEDTUNE_HOLD_ALL sched_feat. The default configuration applies boost hold 
only to RT tasks. If SCHEDTUNE_HOLD_ALL is on, it instead applies to all tasks.  

 EAS gained the ability to load energy models which are defined as a set of frequency-
power pairs rather than capacity-power pairs. This functionality allows vendors to better 
support EAS with frequency-binned SoCs. 

As part of frequency-power energy model support, we removed some android-only custom 
code and integrated the mainline arch topology driver from Linux-4.13. This has an impact 
on the configuration which should be applied for systems using this version of Android. 

 

https://lwn.net/Articles/767630/
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Commit 9001b8f1 (link) added support for expressing the energy model as 
frequency/power pairs to android-4.14. See the commit for more details of how this should 
be used. This is an alternative to the usual capacity/power pairs and is enabled by 
including a ‘freq-energy-model’ node in the device tree to switch loading mode. You cannot 
mix energy model types. 

Since we integrated the upstream arch topology drivers the device tree MUST always 
now include a correct capacity-dmips-mhz value. This value drives scale invariance 
and is essential for all users. 

Capacity values supplied in these nodes are no longer overridden when an energy model is 
provided through sched-energy-costs nodes. Capacity-dmips-mhz values can be calculated 
using dhrystone scores and the meaning of the binding is described in kernel 
documentation at doc/devicetree/bindings/arm/cpu-capacity.txt 

However, most users of this kernel will already have a capacity-based energy model for a 
platform, and you can easily translate capacity directly to capacity-dmips-mhz values. 

To translate capacity to capacity-dmips-mhz bindings, you need the maximum frequency of 
the various CPU frequency domains. The capacity-dmips-mhz binding for any CPU is 
simply the existing capacity divided by the ratio of max_freq (for the CPU under 
consideration) to max_freq of the biggest CPU in the system. 

 

capacity-dmips-mhz = cpu_capacity / (this_cpu_max_freq / biggest_cpu_max_freq) 

 

For example, if you have A53 and A73 CPUs in a system with maximum capacity in the 
energy model of 462 (A53) @ 1844MHz and 1024 (A73) @ 2362MHz: 

A53 capacity-dmips-mhz = 463 / (1844 / 2362) = 593 

You would then add this node to each A53 CPU: 

capacity-dmips-mhz = <593>; 

and you would add this node to each A73 CPU: 

capacity-dmips-mhz = <1024>; 

The kernel will check that capacity-dmips-mhz values are consistent with the energy model 
after it is loaded and will warn if a mismatch is detected. Reported capacity comes from the 
energy model and reported cpu_scale is calculated from capacity-dmips-mhz values. 

 “CPUx max energy model capacity=Cx != cpu_scale=Sx” 

Vendors should check for this warning during platform bring-up, as it indicates one 
or other of these values is incorrect. If you are using the capacity-based energy 
model for SoCs which limit maximum frequency based upon silicon characteristics, 
please strongly consider using the frequency-based energy model instead. 

https://android.googlesource.com/kernel/common.git/+/9001b8f1a599b974ca8f2f925c210a31c0c70d60
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 EAS Overview 

 

 

Figure 1 EAS building blocks in relation to Linux task scheduler, cgroups subsystem and 
related power management subsystems 

EAS extends a few different subsystems present in the kernel. A major part of EAS is 

located in the file: kernel/sched/fair.c and is the algorithm responsible for task 

placement decisions. This module constructs necessary structures containing energy 
metrics which are used for calculating energy efficiency. The code extends commonly used 
CFS scheduling policy and does not touch other policies. Some of the existing features in 
CFS have been made energy aware by factoring in the possible energy cost of scheduling 
tasks and managing the CPUs the tasks run on. EAS therefore impacts load balancing and 
task packing decisions. A key realisation was that it only makes sense to bias task 
placement in favour of energy efficient operation when there is spare CPU capacity 
available. In the absence of spare capacity, the system is usually in a state where 
throughput is the primary need. Intentionally biasing towards energy efficient operation in 
such cases could compromise throughput.  

A set of heuristics have been introduced which enable under-utilized systems to run tasks 
in an energy efficient manner. When the system is over-utilized, EAS is effectively disabled, 
with the rules for task placement falling back to conventional CFS rules. EAS considers the 
system over-utilized when even one CPU’s utilization is above a certain limit. This dynamic 
helps to spread work across CPUs when there is a real need for throughput while also 
giving the scheduler a chance to optimize task placement for energy efficiency when there 
is spare capacity available. 
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Enabling the scheduler to judge the power and performance requirements of tasks needs 
the introduction of new data structures centred around the concept of an energy model. 
Therefore, a common mechanism has been introduced for providing an energy model to 
the scheduler. This solution aspires to be universally beneficial for all platforms and use-
cases.  

The energy model data consists of: 

• power consumption for each supported P-state (this is the DVFS Operating 
Performance Point (OPP) which is a tuple of frequency and the associated voltage) 

• power consumption for each C-state (the idle power management state) 

• wake-up energy cost for each C-state 

The model only contains data for CPUs and clusters. The cluster maintenance energy, 
which can vary depending on specific architecture, is added to the energy related to each 
CPU to have accurate approximations. 

Energy model data is provided to the kernel using the Flattened Device Tree (FDT) 
mechanism. Extensions to the FDT specification have been made that enable the 
expression of energy model data (see Device Tree for further detail). A system specific 
FDT description is given to the kernel via a so called FDT blob as per the usual practice 
prevalent in Linux. The energy model data within the device tree is given to the scheduler 

via function present in kernel/sched/energy.c. Architecture specific code relevant to 

EAS includes a shim layer that builds a system topology for the scheduler. There are also 
some extensions for the main EAS algorithm such as FIE (Frequency Invariant Engine) and 
CIE (CPU Invariant Engine). These extensions help normalize the load calculations made 
by the scheduler and make these calculations invariant of the CPU frequency and micro-
architecture. This scale-invariance improves the estimation of CPU utilization by factoring 
in the microarchitecture differences between CPUs as well as the current CPU frequency. 
Suitable scaling correction factors are provided for more accurate load-tracking. 

Per-task load tracking in Linux (and by extension also EAS) is implemented using the Per-
Entity Load Tracking (PELT) technique by the CFS scheduler class. The EAS product 
codeline introduces another load tracking mechanism known as Window Assist Load 
Tracking (WALT). WALT is used selectively in the product codeline at present. This is 
because when compared with PELT, WALT promotes faster reaction times when the 
behaviour of tasks changes. Faster reaction time is a key requirement for Android. WALT 
uses periodic calculations that are synchronized across all of the run queues, attempting to 
track the behaviour of all scheduling classes (while PELT is focused only on a single class - 
CFS). A big advantage of this approach is that the decisions can be made based on the 
information about the full state of the running system. The drawback is additional locking 
complexity and some additional delays in other pathways 

Energy aware task placement decisions require the scheduler to estimate the energy 
impact in case of scheduling a specific task on a specific cpu. Sometimes it could be more 
energy efficient to wake up another cpu rather than alter the P-state of the current CPU 
where the given task runs. This calculation adds a small latency overhead to the scheduler. 
This feature is used at target run queue selection time for the task. At this point a decision 
needs to be taken to choose one of two possible pathways: energy efficient pathway or 
going to a sibling CPU. 
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Figure 2 Task wakeup path modifications. (The yellow dots represent EAS functionality) 

As mentioned previously, EAS is primarily targeted at promoting energy efficient operation 
when there is spare capacity present in the system. To assist with that style of operation, a 
new ‘utilization’ metric was introduced. The utilization metric, in addition to the load metric, 
simplifies energy-aware scheduling decisions. A CPU’s utilization corresponds to the 
CPU’s capacity. Therefore, CPU utilization can be compared with the currently available 
CPU capacity for CFS tasks.  

EAS has a notion of over-utilization. The diagram below shows sites where the scheduler 
flags that the system is over-utilized. 
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Figure 3 Places where the scheduler potentially marks the system as over-utilized 

When one CPU is over-utilized, the whole system is considered as over-utilized. In this 
case the scheduler opts for a task spreading dynamic via conventional load balance 
pathways (as opposed to the new energy aware pathway). Note that the latter is 

implemented by the energy_aware_wake_cpu() function which promotes a task 

packing dynamic aimed at keeping CPUs idle). 

The modification of the load balance subsystem is shown in the figure below: 
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Figure 4 Load balance modifications and the check for an over-utilized system 

Another subsystem which has been modified is cpufreq. This traditional architecture for 
DVFS management in Linux uses an average sampling driven design that is prone to sub-
optimal OPP selection. For example, a given choice of sampling rate may be too high or 
too low for a task with a very specific load profile. Making a wrong estimation of load can 
result in needlessly high OPP selection (wasted energy) or a low OPP selection (poor 
responsiveness). 

The Linux scheduler community has long asked for scheduler driven DVFS management. 
The rationale has been that the scheduler is best positioned to estimate the load profile of a 
task that is to run and can therefore request the necessary amount of compute needed on 
a per-task basis. Previous versions of EAS introduced an implementation of the scheduler-
driven DVFS technique known as sched-freq. A newer implementation of the very same 
idea appeared in Linux kernel version 4.7 under the name of Schedutil; EAS currently 
adopts this solution by default (while still keeping sched-freq as an alternative for 
comparison). The most important improvement that Schedutil brings is that the scheduler 
can choose the frequency at which the CPU should run in the near future. This promotes 
more accurate frequency selection and therefore better servicing of the current load and 
utilisation. 

The last module introduced by EAS is SchedTune, which uses the cgroups subsystem. 
SchedTune enables special case compute reservation for groups of tasks while also 
considering the energy impact. SchedTune is aimed for deployment in run-times with high 
visibility of compute requirements for tasks by way of a priori task classification. Middleware 
like Android fits very well in this category. Android knows which group of tasks require what 
compute for a given platform and at what point in time. SchedTune, by means of a cgroups 
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exported interface, permits the Android run-time to efficiently move tasks between pre-
created boost groups. SchedTune is aware of the platform specific energy model and 
works with the scheduler and Schedutil to ensure that the relevant tasks are serviced as 
needed. 

UI/UX intensive jobs are given special attention to meet their latency requirements) in the 
most energy efficient manner for a given platform. 

2 Requirements 

 Platform 

 The platform must have a working cpufreq implementation to allow EAS to manage 
spare CPU capacity correctly. 

 The platform must have a working cpuidle implementation to take energy savings due 
to turning off relevant parts of the CPU topology into consideration. 

 To be able to create the energy model there has to be infrastructure, on the board (e.g. 
Juno's (ARM development platform) energy meter) or external (e.g. ARM energy probe) 
to measure energy consumption. 

 Non-overlapping power/performance curves for the core types (big.LITTLE architecture) 
increase potential energy savings which can be achieved with EAS. 
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3 EAS Bringup 

 Overview 

In this section we will describe how to have EAS working on a device, assuming an Android 
Common Kernel is used (e.g. 4.14). 

In order to perform the measurements required to generate the full energy model, the 
platform needs to have working CPUFreq and CPUIdle subsystems however EAS-capable 
kernels without energy model data disable the EAS features and should operate as normal. 

 Capacity awareness 

The first step in making EAS work correctly on a platform is to make the kernel aware of 
the computing capacity of each CPU. This value simply represents how powerful are each 
CPU in relation to each other. 

The most powerful CPU in the system will have a capacity of 1024 (=100%), and the 
capacity of every other CPU will be scaled from that reference. As such, a CPU with a 
capacity of 512 (=50%) is half as ‘powerful’ as a CPU with a capacity of 1024. 

Data generation 
The collection of these capacity values is summarized in the following pseudo-code: 

for cpu in cpus: 

 freq[cpu] = max_frequency(cpu) 

 # Set current cpu's frequency to max 

 set_frequency(cpu, freq[cpu]) 

 # Scale result with frequency 

 perf[cpu] = run_benchmark(cpu) / freq[cpu] 

  

scaling_factor = 1024 / max(perf) 

 

for cpu in cpus: 

 capacity[cpu] = perf[cpu] * scaling_factor 

Figure 5 Computation of frequency-scaled CPU capacity 

Several benchmarks can be used to determine the performance of the CPUs – we 
recommend using Dhrystone 2.1 (or above). 

Do note that the kernel expects capacity values measured at maximum CPU frequency, 
which is done in the above code. If CPUFreq support is not complete, you can still measure 
CPU capacity so long as the CPUs run at maximum frequency – this could be either using 
the performance governor or by disabling CPUFreq entirely if the CPUs boot at maximum 
frequency. 

Since we are measuring benchmark throughput you do not need a complete CPUIdle 
implementation. 

Finally, if several CPUs of the system are identical (e.g. 4x4 big.LITTLE system), there is 
no need to run the benchmark on each CPU but rather one per CPU type (e.g. one big 
CPU and one LITTLE CPU). 
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Exposing capacity to the kernel 
While the full-fledged energy model makes use of those capacity numbers, it is 
nevertheless possible to expose those values to the kernel and it will make best use of it - 
e.g. schedule ‘small’ tasks on LITTLE (low capacity value) cores. This can be useful when 
the energy model is not complete yet. 

To inform the kernel of those capacity values, dmips-capacity-mhz entries must be added 
to the device tree. The gist of it is to describe the capacity of each CPU as in the following 
example: 

A57_0: cpu@0 { 

  compatible = "arm,cortex-a57","arm,armv8"; 

  reg = <0x0 0x0>; 

  device_type = "cpu"; 

  enable-method = "psci"; 

  next-level-cache = <&A57_L2>; 

  clocks = <&scpi_dvfs 0>; 

  cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; 

  capacity-dmips-mhz = <1024>; 

 }; 

Figure 6 Insertion of capacity-dmips-mhz in devicetree 

This device tree binding is further described in 
Documentation/devicetree/bindings/arm/cpu-capacity.txt. 

Capacity support features 
Once you have provided capacity information to the kernel, you will have the following 
support for big.LITTLE hardware in the fair scheduler: 

• Wakeup task placement support 

o tasks will not be placed on CPUs which cannot provide enough capacity 

• Misfit migration 

o Tasks which are running on a CPU with insufficient capacity will be moved to 
more capable CPUs in periodic load balance 

 Energy awareness 

Making the kernel energy-aware is a follow-up of the previous section, as capacity values 
are required. On top of that, data will be collected to make the scheduler aware of the 
energy consumption of the different cores and clusters of the system.  

Shape of the energy model 
Before discussing any energy measurement, we should first have a look at what kind of 
data is relevant. Here is how the finalized energy model looks like for a cluster of identical 
CPUs: 
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Figure 7 Insertion of energy model in devicetree 

This device tree binding is further described in 
Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt. 

• core-cost0: Those are the costs for a single core (CPU) 
o busy-cost-data: Those are the energy costs of the CPU at each OPP. Each 

entry is a mapping of capacity: energy cost, capacity being here a proxy for 
designating OPPs. 

o idle-cost-data: Those are the energy costs of the CPU at each idle state. Each 
entry is the energy cost of an idle state, starting at idle state -1 i.e. active state. 
This first entry doesn’t represent a real idle state but is used as a default idle 
state when the current idle index is evaluated to -1. We usually simply duplicate 
the entry for idle state 0 (WFI). 

 

• cluster-cost0: Those are the costs for a cluster. They do not include the energy 
consumption of the cores within the cluster, but rather the cluster machinery itself (e.g. 
L2 cache, shared voltage rails…). Even if there is no ‘physical’ cluster on the device, 
these entries can be used to describe the energy consumption of components shared 
between CPUs that reside in the same frequency/voltage domain. 

o busy-cost-data: Those are the energy costs of the cluster at each OPP. As for 
the per-core entry, each entry is a mapping of capacity: energy cost, capacity 
being here a proxy for designating OPPs. 

o idle-cost-data: Those are the energy costs of the cluster at each idle state. As 
for the per-core entry, each entry is the energy cost of an idle state, starting at 

CPU_COST_0: core-cost0 { 

 busy-cost-data = < 

  417   168 

  579   251 

  744   359 

  883   479 

  1024  616 

 >; 

 idle-cost-data = < 

  15 

  15 

  0 

 >; 

}; 

 

CLUSTER_COST_0: cluster-cost0 

{ 

 busy-cost-data = < 

  417   24 

  579   32 

  744   43 

  883   49 

  1024  64 

 >; 

 idle-cost-data = < 

  65 

  65 

  24 

 >; 

}; 

capacity energy 

energy 
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idle state -1 i.e. active state. This first entry doesn’t represent a real idle 
state but is used as a default idle state when the current idle index is evaluated 
to -1. We usually simply duplicate the entry for idle state 0 (WFI). 

Data generation 
It is theoretically possible to obtain the aforementioned energy values from hardware 
models, but in this document we will focus on obtaining them with a physical device. 

For generating this model, we use the following notebook: https://github.com/ARM-
software/lisa/blob/master/ipynb/energy/EnergyModel_SystemEnergy.ipynb (see 8.1 An 
Overview of the LISA Toolkit ). The notebook provides an EM_workload class that you can 
extend for a specific workload. This allows you to create an energy model with a 
benchmark of your choice – sysbench and dhrystone examples are provided within the 
notebook. 

The process used by this notebook to compute active costs is roughly described in the 
following piece of pseudo-code. Idle costs are computed in a similar fashion. This is more 
of a brief overview than a tutorial – please refer to the actual code within the notebook for a 
more in-depth overview. 

for cluster in clusters: 

  offline_all_but_one_cpu(cluster) 

  for cpu in cluster.cpus: 

    online_cpu(cpu) 

    bench_cpus += cpu 

    for freq in cpu.frequencies: 

      set_frequency(cluster, freq) 

      # Run the same benchmark on several cores 

      score, energy = run_benchmark(bench_cpus) 

      nr_cpus = len(bench_cpus) 

       

      score[cluster][freq][nr_cpus] = score 

      energy[cluster][freq][nr_cpus] = energy 

 

scaling_factor = 1024 / max_score(score) 

 

for cluster in clusters: 

  for freq in cluster.frequencies:     

    # Create a list of the shape: [1, .., nr_cpus] 

    cpu_list = xrange(1, len(cluster.cpus) + 1) 

     

    # Linear regression helps us distinguish core energy from cluster energy: 

    # - The intercept is the expected energy consumption for nr_cpus=0, which 

    # matches our concept of cluster energy. 

    # - The steepness of the energy consumption curve is then used to represent the 

    # energy consumption of individual cores. 

    slope, intercept = linear_regression(x=cpu_list, y=energy[cluster][freq]) 

     

    # We have several runs of the benchmark at the same frequency but with several 

    # CPUs, so we average out the results. It still boils down to simply doing 

    # capacity = score * scaling_factor 

    capacity = avg(energy[cluster][freq] / cpu_list) * scaling_factor 

     

    nrg_model[cluster].core_energy[capacity] = slope 

    nrg_model[cluster].cluster_energy[capacity] = intercept 

Figure 8 Computing active costs 

https://github.com/ARM-software/lisa/blob/master/ipynb/energy/EnergyModel_SystemEnergy.ipynb
https://github.com/ARM-software/lisa/blob/master/ipynb/energy/EnergyModel_SystemEnergy.ipynb
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Do note that, unlike the capacity values used for the dmips-capacity-mhz devicetree entry 
(see 3.2 Capacity awareness), the benchmark scores are not scaled by maximum CPU 
frequency. This is due to the fact that while the dmips-capacity-mhz entry is meant to 
describe the CPUs of a SoC, devices using that same SoC can have different ranges of 
available frequencies. The energy model that we use however is device-specific, so we can 
directly specify the capacity value of each OPP. 

Exposing the energy model to the kernel 
As before, this data will be exposed to the kernel through the devicetree. As seen in  
Figure 7 Insertion of energy model in devicetree, the energy model must first be added to 
the device tree. This energy model must then be linked to each CPU: 

 A57_0: cpu@0 { 

  compatible = "arm,cortex-a57","arm,armv8"; 

  reg = <0x0 0x0>; 

  device_type = "cpu"; 

  enable-method = "psci"; 

  next-level-cache = <&A57_L2>; 

  clocks = <&scpi_dvfs 0>; 

  cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; 

  sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>; 

 }; 

Figure 9 Linking of energy model with CPU 

For more technical details on how this data is exposed to the kernel, see EAS 
Configuration Data. 

 Use-case example: HiKey960 

Capacity awareness 
The following LKML posting describes the process followed to add the dmips-capacity-
mhz entry on HiKey960: https://marc.info/?l=devicetree&m=151317501714502&w=2  

Energy awareness 
This first commit introduces the full-fledged energy model to HiKey960: 
https://android.googlesource.com/kernel/hikey-
linaro/+/fe68b1f7a9d60674ecf6ab61c7780c08a97ac11a. 

 

In order to build an energy-model using the aforementioned notebook, a HiKey960 board 
was instrumented. The goal of this modification is to create an energy-measurement point 
that is as close to the CPUs as possible. In the case of the HiKey960 that point the resistor 
R408 at the output of the 4.2V regulator: 

https://marc.info/?l=devicetree&m=151317501714502&w=2
https://android.googlesource.com/kernel/hikey-linaro/+/fe68b1f7a9d60674ecf6ab61c7780c08a97ac11a
https://android.googlesource.com/kernel/hikey-linaro/+/fe68b1f7a9d60674ecf6ab61c7780c08a97ac11a
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Figure 10 Schematics of the HiKey960, taken from 96boards 

This resistor was replaced with a 33mΩ resistor to fit with our energy probe, the ACME. For 
more details about energy probes, see 8.2 Integrating a board into LISA. 

Using this setup and the energy model generation notebook, this updated energy model 
was submitted to Android: https://android.googlesource.com/kernel/hikey-
linaro/+/244e140cb7cab55a23144954710019b1204708b7. 

https://github.com/96boards/documentation/blob/master/ConsumerEdition/HiKey960/HardwareDocs/HiKey960_Schematics.pdf
https://android.googlesource.com/kernel/hikey-linaro/+/244e140cb7cab55a23144954710019b1204708b7
https://android.googlesource.com/kernel/hikey-linaro/+/244e140cb7cab55a23144954710019b1204708b7
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4 Source Code 

The source code of the individual EAS components can be found here: 

AOSP common kernel: 

https://android.googlesource.com/kernel/common/+/android-4.4 

https://android.googlesource.com/kernel/common/+/android-4.9 

https://android.googlesource.com/kernel/common/+/android-4.14  

Linaro Android Userspace: 

http://releases.linaro.org/android/reference-lcr/juno/7.0-16.10/ 

Lisa Tool  

https://github.com/ARM-software/lisa/releases/tag/v17.03 (tagged for EAS r1.2) 

https://github.com/ARM-software/lisa/releases/tag/v18.04 (tagged for EAS r1.5) 

EAS development is completely open. Patches are being developed against development 
branches off the common kernel branches and reviewed in public on Google’s Gerrit 
instance: 

https://android-review.googlesource.com/admin/repos/kernel/common 

 

EAS 
release 

Commit SHA1 hash 

EAS 
r1.5 

android-4.9 21bd85cd954df71c2b97df44b42ea8c488515ea9 

android-4.14 EAS r1.5 in at branch creation 

 

Developers should also join the eas-dev mailing list hosted by Linaro: 

https://lists.linaro.org/mailman/listinfo/eas-dev  

 

5 Related Documentation Sources 

Additional information and background on the Energy Aware Scheduling can be found on 
the ARM Developer website: 

https://developer.arm.com/open-source/energy-aware-scheduling  

  

https://android.googlesource.com/kernel/common/+/android-4.4
https://android.googlesource.com/kernel/common/+/android-4.9
https://android.googlesource.com/kernel/common/+/android-4.14
http://releases.linaro.org/android/reference-lcr/juno/7.0-16.10/
https://github.com/ARM-software/lisa/releases/tag/v17.03
https://github.com/ARM-software/lisa/releases/tag/v18.04
https://lists.linaro.org/mailman/listinfo/eas-dev
https://developer.arm.com/open-source/energy-aware-scheduling
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6 Functionality 

 Linux Kernel 

EAS Configuration Data 

Device Tree 

This section describes the structure of the energy model that EAS relies on. Specifically, 
the section focuses on the use of the Flattened Device Tree (FDT) as a means of 
expressing the energy model. FDT is an established specification intended to describe 
platform properties in a hierarchical data structure. This data structure is expressed in a 
Device Tree Source (DTS) file. DTS files are compiled into binary blobs which are provided 
as inputs to the kernel. FDT bindings are specifications that describe methods to describe 
particular system properties. A special set of FDT bindings were created in order to 
describe energy models for EAS. This makes it possible to have a single kernel image 
which can be deployed on multiple platforms with different FDT blobs containing the 
appropriate energy model. 

EAS relies on a simple platform energy cost model to guide scheduling decisions. The 
model only considers the CPU subsystem. The energy cost model concept is applicable to 
any system so long as the cost model data is provided for those processing elements in 
that system's topology that EAS is required to service. 

Processing elements refer to hardware threads, CPUs and clusters of related CPUs in 
increasing order of hierarchy. At present, EAS only supports CPUs and clusters of CPUs. 
Only two clusters of CPUs are supported. 

EAS requires two key cost metrics - busy costs and idle costs. Busy costs comprise of a list 
of compute capacities for the processing element in question and the corresponding power 
consumption at each capacity.  Idle costs comprise of a list of power consumption values 
for each idle state [C-state] that the processing element supports. 

These cost metrics are required for processing elements in all scheduling domain levels 
that EAS is required to service. Given that these cost metrics are properties of the system 
and have close topological ties to the system, it made sense to use the well-established 
Flattened Device Tree specification as a means to express these cost metrics to the kernel.  
For a complete description of the FDT bindings introduced for the cost model, please see 
the binding document located at 
Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt 

within the EAS kernel source. 

The best way to understand the structure of the energy model as described using FDT is to 
look at an example. A working knowledge of FDT is assumed. A snippet from the DTS file 
of a system composed of a cluster of 2 ARM Cortex-A57 CPUs and a cluster of 2 ARM 
Cortex-A53 CPUs) is shown in the appendix 10.1 Example DTS file 

EM data provisioning towards task scheduler 

In the architecture specific topology shim layer the energy model data is constructed by 

calling init_sched_energy_costs(). Its interface towards the task scheduler is the 

scheduler domain topology level table (arm64_topology[]). It consists of struct 
sched_domain_topology_level entries each of which are extended by the function 



EAS 

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 

Page 23 of 55 ARM-ECM-0605656 

pointer sched_domain_energy_f. This points the task scheduler to the scheduler 

domain specific energy data. The pointer is set to cpu_core_energy() for the MC 

scheduler domain level and to  cpu_cluster_energy() for the DIE scheduler domain 

level. 

Data structures 

The struct sched_group_energy represents the per scheduler group related data 

which is needed for Energy Aware Scheduling. It contains: 

• Number of elements of the idle state array 

• Pointer to the idle state array which comprises 'power consumption' for each idle state 

• Number of elements of the capacity state array 

• Pointer to the capacity state array which comprises 'compute capacity and power 
consumption' tuples for each capacity state 

The struct sched_group contains a pointer to a struct sched_group_energy 

data structure. 

EAS Load Tracking 

Overview 

Per-Entity Load Tracking (PELT) implements load-tracking for the SCHED_NORMAL 
scheduling policy on a per-scheduling-entity basis. Load stands for the actual load (a metric 
based on a sched-entity's runnable time, i.e. time spent on the run queue plus time spent 
running) and utilization (a metric based on a scheduling entity's running time). 
The fact that historical behaviour of a scheduling entity becomes increasingly less relevant 
with age when trying to draw conclusions about its future compute requirements is 
incorporated by using a geometric series for each of the two metrics. This has the natural 
effect of decreasing the relevance of the accounted time in each time slice as they age. 
PELT's bottom-up load-computation (scheduling entities contribute to the load of their 
parents’ (run-queues or task groups) allows the correct migration of load for an entity along 
with its accompanying entities. This provides the right metric for intelligent load-balancing 
especially when task groups are involved. 

EAS uses PELT utilization. This metric is used for CPU frequency selection and wakeup 
task placement. 

The Window Assisted Load Tracking scheme (WALT) offers an alternative load tracking 
mechanism to PELT. For mobile workloads there is evidence that using the window-based 
approach of WALT for CPU frequency selection and wakeup task placement improves the 
performance/power ratio and responsiveness in comparison to the use of PELT. 

FIE - Frequency Invariant Engine 

The PELT implementation is prepared to be aware of frequency scaling to provide better 

estimates for cpu load and utilization by calling arch_scale_freq_capacity(). 

However the mainline kernel will only use the default implementation of 
arch_scale_freq_capacity() which always returns SCHED_CAPACITY_SCALE 

essentially not making PELT frequency scale-invariant. 
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v4.9 and earlier kernel version 

Architectures interested in actual frequency scaling have to re-define 
arch_scale_freq_capacity() to point to their own frequency scaling solution. 

The FIE is integrated into the cpufreq subsystem by scaling the per-cpu variable 
freq_scale with the current frequency of the cpufreq policy the CPU belongs to. Its 

interface function cpufreq_scale_freq_capacity() is used to provide the actual 

frequency-invariant scaling solution. 

#define arch_scale_freq_capacity cpufreq_scale_freq_capacity 

v4.14 and later kernel version 

The mechanism from the Linux kernel v4.15 and later (described in 
https://lkml.org/lkml/2017/9/26/550) is used. 

Frequency invariance has to be invoked by the cpufreq driver calling 

arch_set_freq_scale() if the new frequency has been successfully set. Some of the 

cpufreq driver commonly used on Arm platforms (arm_big_little, cpufreq-dt and scpi-
cpufreq (v4.16)) have been already provisioned with this call. 

CIE - Cpu Invariant Engine 

PELT is aware of CPU invariant scaling to provide better estimates for cpu utilization. CPU 
invariant scaling is necessary due to micro-architectural differences (i.e. instructions per 
cycles, for example) between CPUs and differences in the current maximum frequency 
supported by individual CPUs.  However the mainline kernel will only use the default 

implementation of arch_scale_cpu_capacity() which always returns 
SCHED_CAPACITY_SCALE (1024) essentially not making PELT CPU scale-invariant. 

v4.9 and earlier kernel version 

The CIE is integrated into the architecture topology shim by scaling the per-cpu variable 
cpu_scale with the capacity value of the highest capacity state in the energy model of the 

CPU. Its interface function scale_cpu_capacity() is used to provide the actual CPU-

invariant scaling solution. 

#define arch_scale_cpu_capacity scale_cpu_capacity 

v4.14 and later kernel version 

The mechanism from the Linux kernel v4.15 and later (described in 
https://lkml.org/lkml/2017/9/26/550) is used. 

WALT - Window Assisted Load Tracking 

Note – WALT is not provided in android-common-4.14 or later, as the plan is to switch to 
PELT to align with mainline Linux and minimise product codeline differences. 

Window Assisted Load Tracking (WALT) provides a window-based view of time in order to 
track the demand and CPU utilization of tasks. A window is a (compile time) configurable 
time duration, by default 20ms, which is used to collect a new sample for both task demand 
and CPU utilization. The start of a new window is synchronized across all the CPUs in the 
system. A ‘sample’ measures: 

• how long a task was RUNNING, within the corresponding window 

• how long a CPU was BUSY, within the corresponding window 
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Samples are normalized to 1024, which represents the maximum utilization for both a task 
and a CPU. Thus, a 1024 sample means that a task was running for the whole duration of 
the corresponding window or, similarly, that a CPU was busy for the whole duration of the 
corresponding window. 

Like PELT, WALT samples are also scaled such that they are architecture and frequency 
invariant. Architecture scaling compensates for the possibly different maximum capacity of 
CPUs while frequency scaling compensates for time spent running at different frequencies. 
Thus, for example a sample of value 512 is measured for a task running for the whole 
sample window duration but at a frequency which also provides half of the capacity of the 
CPU with the maximum capacity in the system. 

The demand of a task is estimated by WALT considering the last N non-zero collected 
samples, where N is a compile time configuration which is set to 5 by default. Thus, 
samples are collected for a task only for windows where the task had a chance to run. 
From all the collected samples the task utilization is estimated based on an ‘aggregation 
policy’ which can be selected at compile time. By default, the aggregation policy used is 

WINDOW_STATS_MAX_RECENT_AVG which returns the maximum value between the 

average of all the collected samples and the most recent collected sample. 

WALT estimates the utilization of a CPU by considering the sample measured during the 
last window. Thus, it's noteworthy that everything happening in the current window’s time-
frame is not affecting the view of CPU utilization. 

Another main feature of WALT is that task demand and CPU utilization is tracked across all 

scheduling classes. The utilization metrics are associated with the struct task_struct 

for tasks and to the struct rq for cpus. The code to update these metrics is self-

contained into a single source file (kernel/sched/walt.c) and functions exposed by 

this file are used only from the core scheduler code (kernel/sched/core.c). A custom 

set of ‘events’ is defined which are used from specific call sites of the core scheduler to 
trigger updates of the metrics as well as to collect new samples. 

Integration with EAS 

It is possible to use WALT signals to drive EAS, for task placement as well as SchedFreq 
for OPP selection. The contact surface between WALT and EAS/SchedFreq is confined to 

a couple of functions: cpu_util() and task_util(). Both of these functions allow the 

transparent use of WALT signals instead of the corresponding PELT signal. When WALT is 

enabled at compile time via CONFIG_SCHED_WALT, a couple of control interfaces are 

exposed as procfs flags: 

/proc/sys/kernel/sched_use_walt_cpu_util 

/proc/sys/kernel/sched_use_walt_task_util 

When set to 1, they force the previous functions to return the corresponding WALT signal. 

NOTE: Although it's technically possible to enable the usage of WALT only for one of the 
two signals, such mixed configurations have not been tested and they should be 
considered highly experimental. 

Userspace control interfaces 

A set of configuration controllers are exposed to tune the behaviour of WALT: 

• sysctl_sched_walt_init_task_load_pct 

The initial utilization (in percentage) of a newly created task. 
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• sysctl_sched_walt_cpu_high_irqload 

Time spent serving IRQs (in ms, by default 10) to consider a CPU highly loaded by 

interrupt. This value is used in find_best_target() to skip CPUs which are 

currently under a high IRQ pressure: 

• sysctl_sched_use_walt_cpu_util 

Enable usage of WALT estimated CPU utilization. 

• sysctl_sched_use_walt_task_util 

Enable the usage of WALT estimated task utilization. 

Initial Task Load 

Newly created tasks have no previous history for which a corresponding utilization can be 
estimated. PELT and WALT differ in their approach to providing a suitable value. For 
WALT, a userspace control interface can be used to select the default initial task utilization 

for new tasks: sysctl_sched_walt_init_task_load_pct. The default value is 15%. 

Since utilization influences both load balancing and clock frequency selection, choosing a 
particular value for this setting is a trade-off between potential performance gain 
experienced by the task in the early phases of its life and increased power consumption if 
tasks creation rate is too high. 

Additional EAS related key concepts 

Tipping Point - Over-Utilization 

EAS is designed to save energy by managing spare capacity, i.e. CPU cycles, intelligently 
using a platform energy model. Without sufficient spare capacity, it is no longer feasible to 
optimize for energy and EAS optimizes solely for throughput instead. The tipping point at 
which EAS stops optimizing for energy is based on utilization. 

A CPU is considered over-utilized (or full), when its utilization leaves almost no capacity 
left: 

 capacity_of(cpu) * 1024 < cpu_util(cpu) * capacity_margin 

capacity_margin is defined as 1280, i.e. 20%, by default. The entire system is 

considered over-utilized as soon as one CPU is over-utilized to ensure that no task is 
throughput constrained unnecessarily. 

EAS functionality 

 Energy aware wakeup path 

When the system is not over-utilized, all tasks will occasionally wake up hence most of the 
energy-aware scheduling decisions can be made in the task wake-up path in the scheduler. 
If the system is over-utilized, tasks will be placed only on CPUs that are currently idle. 

When energy awareness is active (i.e. the system has not marked itself overutilized) tasks 
are generally placed according to the following steps: 
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 Tasks which are woken with the sync flag are placed on the current cpu, if their affinity 
allows. 

 All other tasks go first through find_best_target to determine the ‘best’ cpu for 

them. This is the function where schedtune influences task placement decisions. Any 
CPUs where the task will not fit or which have high irqload (as defined by WALT) are 
discarded. 

 find_best_target will attempt to select two candidate CPUs for a task, a primary 

target and a backup target, except where a latency-sensitive task finds an idle CPU 
available. Tasks which are latency sensitive or have boosted utilization begin looking for 
a CPU in the group which contains the highest capacity CPUs. All other tasks begin 
looking starting from the group which contains the lowest capacity CPUs. 

a. Latency sensitive (schedtune.prefer_idle – see below) tasks will select the first 
idle CPU they find. If there is not an idle CPU available they will first select a 
CPU with the largest amount of spare compute capacity, and as an alternative 
they will also select a CPU with the lowest utilization once this task is placed 
there. These two options express the spread/pack dynamic for this class of 
tasks. 

b. Non-latency sensitive tasks will select a primary target of an active CPU which 
has the smallest maximum capacity and the most spare capacity after adding 
the task to reflect a strategy which attempts to spread tasks within the most 
energy efficient cluster of CPUs. The backup CPU selected will be an idle CPU 
(if there is one) which has the lowest maximum capacity and the shallowest idle 
state. 

 If the task is latency sensitive, the task is placed on the first encountered idle CPU. 

 For all other tasks, candidate CPUs are evaluated for energy/performance tradeoffs 
before being used. The backup target is only evaluated if the primary target is not 
allowable, 

 If none of the candidate CPUs are allowable in the energy/performance tradeoff, the 

task will be placed on its previous CPU. If access to the sched_domain is not possible 

(for example, during hotplug sched domain structures are rebuilt), then the previous 
CPU will be used. 

Misfit Task 

Tasks that run for longer periods don't regularly come through the wake-up path and 
therefore don’t get a chance of being placed on higher capacity CPUs through that route. 
These tasks have to be migrated as part of periodic load-balancing or idle load-balancing 
instead. CPUs with runnable tasks with a higher utilization than can be accommodated 
mark themselves as having one or more ‘misfit’ tasks. In this scenario, the system is over-
utilized and scheduling decisions consider only throughput. 

During periodic or idle load-balancing, if no general overload issues are present, CPUs with 
misfit tasks are considered and misfit tasks are migrated to more appropriate CPUs if 
necessary. 

Schedutil - Scheduler driven DVFS 
Schedutil is a cpufreq governor that makes it possible to control CPU clock frequency 
selection directly from the scheduler. Schedutil works as a shim layer between the 
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scheduler and the CPUFreq framework. This enables the scheduler to implement a 
CPUFreq policy governor by itself, basically replacing legacy governors such as 
ondemand, interactive, etc. The tight connection between the scheduler and clock 
frequency selection provides better system-wide policies and improves both performance 
and power savings. 

Schedutil can be activated through the usual CPUFreq sysfs interfaces. 

Up and down threshold configuration interfaces 

Schedutil exposes to user-space an up and a down throttling threshold. Throttling 
thresholds (beyond the physical transition latency limit) are necessary to prevent too 
frequent (and potentially harmful) clock frequency transitions. In general, it is required to be 
quick in responding to a sudden increase in utilization, and have a bit of hysteresis for brief 
drops. The actual values (in microseconds) can be configured via two governor sysfs files: 

up_rate_limit__usec and down_rate_limit_usec. 

 

Figure 11 Schedutil block diagram showing connections between scheduler, thermal 
subsystem and existing CPUFreq 

SchedTune - Task classification and control 
SchedTune is an EAS module that implements a single (and simple) central tunable 
controller to balance energy-efficiency and performance-boosting. It extends the Schedutil 
CPUFreq governor, to bias the OPP selection, thus allowing this governor to provide 
behaviours similar to other governors; e.g. interactive, performance or powersave. It also 



EAS 

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 

Page 29 of 55 ARM-ECM-0605656 

integrates the energy-aware wakeup path of the EAS core, to bias tasks placement, thus 
allowing to trade-off energy-efficiency for performance-boosting. 

From a user-space perspective, SchedTune fosters the collection of sensible information to 
better support the scheduler in its decisions. A simple yet powerful interface, based on the 
cgroups API, allows an easy integration with run-times available in platforms like Android. 
This interface is suitable to support task classifications, for example foreground vs 
background, which can then be managed according to different goals from the scheduling 
standpoint. 

SchedTune is exposed to user-space via the cgroups interface, where the schedtune 

controller can be mounted to get access to the sysfs tunables it exposes. For example, 

Android mounts it by default under /dev/stune. This path represents the root 
boostgroup, which includes every task in the system. Additional boostgroups can be 

created (up to a maximum of 5 with the default kernel configuration), to represent different 
possible tasks classifications. All tasks within the same boostgroup are assigned a similar 
set of SchedTune parameters. 

 

Figure 12 SchedTune block diagram showing components and connections between 
scheduler policy and boosted group’s utilization concept. 
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Userspace exposed control interfaces 

For each boostgroup, SchedTune currently exposes two tunables: 

 schedtune.boost (int [-100..100]) 

This parameter specifies the boost percentage value which is used for the tasks in this 
group. 

This value is used to compute a margin to be added or removed to or from the utilization 
signal of a task/cpu. The value of the margin is calculated to provide a well-defined and 
expected user-space behaviour. For example, the following table reports the meaning of 
some specific boost values: 

Boost value [%] Meaning (e.g. run the task at a frequency corresponding to) 

0   Minimum required capacity (max energy efficiency) 

100   Maximum possible speed (min time to completion) (*) 

50   Something in between the previous two configurations 

-50   Half of the minimum required capacity 

-100   Minimum available capacity (minimum OPP) 

(*) minimum latency is not yet completely supported in the current ACK release, this feature 
is a work in progress and will be added in a following release. 

The logic to convert the boost value into a proper margin is based on a ‘Signal Proportional 
Compensation’ (SPC) policy which is implemented in: 

kernel/sched/fair.c::schedtune_margin(signal, boost) 

The parameter signal is the original task or CPU utilization to compensate and boost is 

the boosting percentage defined for the boostgroup the task is part of. 

 schedtune.prefer_idle (int [0,1]) 

This parameter specifies the ‘packing’ vs ‘spreading’ strategy to be used for tasks 
placement in the wakeup path. 

One of the first operations done in the energy aware wakeup path is the selection of a 
candidate CPU where the task should be executed. The prefer_idle flag reflects the desire 
for low-latency activation, possibly at the expense of increased energy consumption. Tasks 
belonging to boostgroups having this flag set are allocated (if available) on an idle CPU, 
thus reducing to the minimum their activation latency. When the flag is reset (or not IDLE 
CPUs are available) a more complex CPU selection heuristic is used, which targets tasks 
packing to optimize for energy consumptions. 

The figure below shows the state of the kernel scheduler and SchedTune in time t0, t1. It 
narrows down the case when the boost is applied via SchedTune to the run queue 
utilization. Thanks to this enhancement, it is possible to request more capacity via 
SchedFreq. 
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Figure 13 Flow diagram showing the state of the SchedTune and kernel scheduler in time: 
t0, t1. 

Dynamic CPU capacity capping  

v4.9 and earlier kernel version 

The current maximum frequency of a core in a multi-core processor can be restricted to a 
value lower than its absolute maximum frequency. One of the reasons for this to happen is 
thermal management. It makes sure that the system always operates in the boundary of its 
power budget. This is normally achieved by reducing the maximum frequency of CPU 
cores. To make sure that the task scheduler knows about this new maximum frequency 
dynamic CPU capacity capping can be applied. 

Dynamic CPU capacity capping provides PELT and the scheduler CPU capacity 
management with a maximum frequency scaling correction factor. This scaling factor 
describes the influence of running a CPU with a current maximum frequency lower than the 
absolute maximum frequency. 

current_max_freq(cpu) << SCHED_CAPACITY_SHIFT / max_freq(cpu) 

Dynamic CPU capacity capping is integrated into the cpufreq subsystem by scaling the per-

cpu variable max_freq_scale with the current maximum frequency of the cpufreq policy 

the CPU belongs to. Its interface function cpufreq_scale_max_freq_capacity() is 

used in the CIE implementation making sure that Dynamic CPU capacity capping affects 
PELT and CPU capacity management. 
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v4.14 and later kernel version 

There is no dynamic CPU capacity capping support (this is planned for later in 2018). 

EAS Trace 
The EAS release contains several patches with additional trace events which help in 
verifying that the individual EAS building blocks such as load-tracking (PELT and WALT), 
FIE, CIE, SchedFreq and SchedTune are working correctly. These trace events are also 
required for the Interactive Test and Analysis part of the LISA toolkit to work correctly. 

EAS Debug 
There is support to evaluate the EAS energy model on a running system via the proc file-

system. In case CONFIG_SCHED_DEBUG and CONFIG_SYSCTL are enabled the related 

files are placed under the subdirectory named energy inside the 
/proc/sys/kernel/sched_domain/cpuX/domainY/groupZ directory. 

To be able to figure out the reason for a potential misbehaviour of a task while running the 
EAS verification tests the cause of each task migration is additionally provided with the 

existing sched_migrate_task trace event. Please refer to chapter ‘Evaluate per task 

behavior’ for more information. 
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 User-space 

General policies to minimise energy use are not always suitable for some tasks in an 
interactive system. This is not a problem caused by EAS, but rather a feature of any 
system where performance is constrained to reduce energy consumption. There are often 
some tasks for which highest performance or minimum latency is more important than 
minimum energy to complete a job. Where you have heterogeneous multiprocessing, you 
also have to select a suitable CPU match for a task. 

There have been attempts at controlling this behaviour for at least as long as systems have 
implemented DVFS - the interactive governor is a longstanding Android feature which links 
to user input to try and minimise latency. Some systems use cpusets to guide tasks to 
specific CPUs and they may use cpu bandwidth controls and/or task priority to control 
behaviour. There are also controls which modify scheduler parameters and hence change 
the frequency of load balance decisions etc. Usually a combination of all these tools is used 
to configure a system to provide an acceptable balance between energy use and 
performance. The previous (HMP or GTS) big.LITTLE MP support had some userspace 
controllable tuning parameters and it was not uncommon to see userspace daemons 
dynamically controlling those thresholds in response to specific system events or 
behaviours. All of these tools and techniques are a way to guide the kernel as to the 
desired response when scheduling. 

Android userspace uses a combination of cpusets and schedtune to partition the system 
and optimise for responsiveness of user-facing tasks together with energy use for other 
tasks. 

  



EAS 

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 

Page 34 of 55 ARM-ECM-0605656 

Android 7.1 AOSP changes for Google Pixel 
The EAS/stune userspace integration, done as part of the Pixel program, has been made 
available in AOSP android_7.1.0_r1. These will make their way into Linaro Android when 
this release has been taken in. All integration points mentioned here are for the tag 
‘android_7.1.0_r1’. Linaro LCR Android release 16.10 is based on android_7.0 and has 
only basic support for foreground/background stune groups. 

SchedTune CGroup layout 

There are 4 groups defined for schedtune, commonly abbreviated to stune in AOSP 
commit messages. 

 

/dev/stune 
root group: anything not explicitly placed elsewhere goes 
here 

/dev/stune/background background group: this group holds tasks which the 
userspace designates as unimportant for interactive 
performance 

/dev/stune/foreground 

[prefer_idle=1]  

 

foreground group, this group holds tasks which the 
userspace designates as important for interactive 
performance 

Includes: audioserver / mediaserver 

/dev/stune/top-app 

[prefer_idle=1] 
[boost=10] 

 

top-app: holds tasks which belong to the application top-
most of the display stack, which use SP_TOP_APP 
scheduling policy (defined for the Java side as 
THREAD_GROUP_TOP_APP in 
frameworks/base/core/java/android/os/Process.java, and the 
Android.ui thread of all running apps 

Includes: cameraserver / bootanimation 

 

SchedTune CGroup usage for Services 

Some system components have been placed directly into one of the stune groups. The init 
script sections for these services are updated to write the service PID into the relevant 
group at creation time. 

1. /dev/stune/foreground  
a. audioserver 
b. mediaserver 

2. /dev/stune/top-app 
a. cameraserver 
b. bootanimation 
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SchedTune CGroup usage for Application Tasks 

All tasks in Android are mapped to specific scheduler policies by 
platform/system/core/libcutils/sched_policy.c. This includes assigning to specific cpuset 
groups as well as now assigning to the different schedtune groups. In order that 
sched_policy.c will include the schedtune group mappings, you must have 
USE_SCHEDBOOST defined when building. ActivityManager decides which tasks belong 
to a foreground app, a background app, or the top-app and passes the policy down through 
setProcessGroup etc. until eventually sched_policy.c writes the TIDs into the correct tasks 
file. 

Further to this, each application has an android.ui thread which will have its thread group 
set to TOP_APP. This results in calling into sched_policy.c:set_sched_policy and should 
force that task to be added to the foreground cpuset group and the top-app schedtune 
group. 

 

AOSP Commits adding EAS Integration 

AOSP Commit Functionality 

https://android.googlesource.com/pl
atform/system/core/+/11cde56 

Mount schedtune cgroup as /dev/stune 

 

https://android.googlesource.com/pl
atform/system/core/+/770ee49 

https://android.googlesource.com/pl
atform/system/core/+/aa45cb8 

Set stune groups from set_sched_policy 

 

https://android.googlesource.com/pl
atform/system/core/+/5dcff8f 

Add support for background stune group 

 

https://android.googlesource.com/pl
atform/system/core/+/481edfe 

https://android.googlesource.com/pl
atform/system/core/+/955694b 

Add support for the top-app stune group 

 

https://android.googlesource.com/pl
atform/frameworks/av/+/64c1ce8 

https://android.googlesource.com/pl
atform/frameworks/av/+/caba519 

Put mediaserver and audioserver in the foreground 
stune group. 

https://android.googlesource.com/pl
atform/frameworks/av/+/052c495 

Put cameraserver in the top-app stune group. 

 

https://android.googlesource.com/pl
atform/frameworks/base/+/1c14fbc 

https://android.googlesource.com/pl
atform/frameworks/base/+/5c52691 

Put bootanimation in the top-app stune group 

https://android.googlesource.com/pl
atform/frameworks/base/+/fe51b8f 

https://android.googlesource.com/pl
atform/frameworks/base/+/4074ad0 

 

Set android.ui to be in the fg stune group. (but uses 
top-app, so with later patches results in android.ui 
being in the top-app stune & fg cpuset group). 

https://android.googlesource.com/platform/system/core/+/11cde56
https://android.googlesource.com/platform/system/core/+/11cde56
https://android.googlesource.com/platform/system/core/+/770ee49
https://android.googlesource.com/platform/system/core/+/770ee49
https://android.googlesource.com/platform/system/core/+/aa45cb8
https://android.googlesource.com/platform/system/core/+/aa45cb8
https://android.googlesource.com/platform/system/core/+/5dcff8f
https://android.googlesource.com/platform/system/core/+/5dcff8f
https://android.googlesource.com/platform/system/core/+/481edfe
https://android.googlesource.com/platform/system/core/+/481edfe
https://android.googlesource.com/platform/system/core/+/955694b
https://android.googlesource.com/platform/system/core/+/955694b
https://android.googlesource.com/platform/frameworks/av/+/64c1ce8
https://android.googlesource.com/platform/frameworks/av/+/64c1ce8
https://android.googlesource.com/platform/frameworks/av/+/caba519
https://android.googlesource.com/platform/frameworks/av/+/caba519
https://android.googlesource.com/platform/frameworks/av/+/052c495
https://android.googlesource.com/platform/frameworks/av/+/052c495
https://android.googlesource.com/platform/frameworks/base/+/1c14fbc
https://android.googlesource.com/platform/frameworks/base/+/1c14fbc
https://android.googlesource.com/platform/frameworks/base/+/5c52691
https://android.googlesource.com/platform/frameworks/base/+/5c52691
https://android.googlesource.com/platform/frameworks/base/+/fe51b8f
https://android.googlesource.com/platform/frameworks/base/+/fe51b8f
https://android.googlesource.com/platform/frameworks/base/+/4074ad0
https://android.googlesource.com/platform/frameworks/base/+/4074ad0
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Userspace Integration required from OEMs 
You will notice that there is no ‘interactive’ style responsiveness boosting implemented in 
the kernel for the schedutil CPUFreq governor. If you want this functionality on your device, 
then the place to implement this is in the PowerHAL - you can set minimum frequencies, 
change stune group boost levels and more in response to indications from Android about 
what activities are going on. We do not discuss the implementation of a PowerHAL, but 
there is a Hikey-specific PowerHAL available in the Hikey device project for AOSP. Since 
the Android 7.1 release in AOSP, the new hints for Android 7.1 are implemented in a Pixel-
specific PowerHAL. 

When looking at PowerHAL implementations for other devices please remember that the 
actions taken on receipt of hints from the middleware are normally device-specific tunings 
and should be carefully tested. 

 New Android 7.1 Power Hints 

For more detail, refer to your Android PDK. For reference, the new hints are named like so: 

● POWER_HINT_SUSTAINED_PERFORMANCE 
● POWER_HINT_VR_MODE 
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7 Tuning 

This chapter contains the description of task scheduler related configuration data which can 
be used to fine tune the EAS behaviour on a particular target device. 

• sched_migration_cost 

This value describes the amount of time after the last execution of a task that this task 
is considered to be ‘cache hot’ in load balancing decisions. The default value is 500000 
ns. 

A ‘cache hot’ task is not considered for periodic, idle or nohz-idle load balance as long 

as the scheduler domain sd->nr_balance_failed counter is smaller or equal then 

the sd->cache_nice_tries value (leave ‘cache hot’ task for # tries on the current 

cpu) plus 2. 

If the idle time of a certain cpu or cluster is higher than desired when there are runnable 
tasks in the system, try to reduce this value.  

This task scheduler sysctl tuning variable is located in /proc/sys/kernel/. 

• busy_factor 

In case a cpu is busy, i.e. the cpu is not idle, the load balancing operation interval is 

increased by multiplying the scheduler domain sd->balance_interval value with 

this factor. 

The time between consecutive load balancing procedures on a specific scheduler 
domain level of a busy cpu can be reduced by decreasing this value. 

This scheduler domain data is set to 32 during sched domain hierarchy bring-up in 

sd_init(). 
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8 Integration 

 An Overview of the LISA Toolkit  

The Linux Interactive System Analysis (LISA) is a toolkit containing libraries and APIs that 

are suitable for interactive analysis of the behaviour of a Linux based system. 

The main goals of this toolkit are: 

 To support studying and understanding of existing behaviours, e.g. how PELT works 

 To support the analyses of new features to verify their impact on existing behaviours 

 To get possible insights on what's not working or not working well and possibly why 

 To establish a common framework and language to share easy to understand and 
reproducible experiments 

LISA is available at: https://github.com/ARM-software/lisa 

This toolkit is targeted at two main consumers: developers and integrators. 

Developers are people involved in the creation of new features of a Linux based system, 
mainly on the kernel-space side but user-space developers may also be involved. Their 
goal is usually to run some experiment on a target platform, collect execution traces and 
use the collected data to generate plots and statistics which allow the comparison of 
existing behaviours with the new features that are being developed. This process is usually 
repeated multiple times during the development and testing of a new feature and involves 
the interaction of possibly multiple different target platforms. 

Integrators are people mainly interested in running regression tests and performing 
analyses to verify how the behaviours of a system are changing across different release 
versions. 

The working flow used by both of these customers is usually repeated multiple times and it 
may involve interactions with multiple different target platforms. Moreover, developers 
usually need to share their results and experiments with other developers in order to 
reproduce the same experiments or to cross-check conclusions. 

The LISA toolkit addresses all these requirements and promotes re-use and cooperation 
among different people using different targets. LISA is a collection of python libraries which 
expose different sets of APIs at different abstraction levels as shown below: 

https://github.com/ARM-software/lisa
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Figure 14 Bird's eye view on the LISA toolkit components 

Hardware Abstraction Layer 
The devlib library is used to abstract the access to a target device. A device can be either a 
remote machine, accessed via SSH or ADB, or the local one. The devlib library allows the 
configuration of an abstract communication channel to send commands to the device as 
well as exchange files with the device. On top of these basic APIs, devlib also provides a 
set of convenient libraries to access and control the main subsystems of a Linux based 
device, e.g.: cpufreq, cpuidle, hotplug, cgroups, ftrace, etc. 

An example of the devlib APIs is available at this link: 

http://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/02_TestEnvUsage.ipynb 

Data Collection and Analysis 
A set of libraries are provided for processing collected trace data and for analysing system 
behaviours. 

 
The TRAPpy library (TRace Analysis and Plotting in Python) provides support for parsing a 
trace of system events, collected using either ftrace or systrace and converting them into 
PANDAS dataframes. This conversion gives access to rich  PANDAS 

(http://pandas.pydata.org) APIs for analysis of the collected data. 

An example of the TRAPPy APIs is available at this link: 

http://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/05_TrappyUsage.ipynb 

The BART library (Behavioural Analysis and Regression Toolkit) provides support for 
analysing system behaviours and assertion based testing for specific behaviours of 
interest. The API exposed by this library is mainly intended for the development of 
regression tests. 

An example the BART APIs is available in the ‘Behavioural Analysis’ section of this link: 

http://pandas.pydata.org/
https://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/05_TrappyUsage.ipynb
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https://github.com/ARM-
software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipynb 

Interactive Test and Analysis 
One of the main advantages of LISA is the ability to define a convenient workflow to define 
new tests and experiments, execute them on multiple targets, process the collected data 
and share all of these with other developers. This greatly simplifies the reproduction and 
verification of the results. 
This flow is based on usage of IPython ‘notebooks’ running within a browser as the primary 
environment where experiments are coded, and results produced. An IPython notebook is 
just an interactive Python shell, which makes it easy to mix code which produces results 
and additional comments . Notebooks are not only a playground to design and run 
experiments, but they are also a native exchange format which can be both used to share 
reproducible tests & results or simply to publish an analysis report. 

An example usage of the LISA's APIs to perform an interactive analysis is available at this 
link: 

https://github.com/ARM-
software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipynb 

Automated Tests 
If needed, notebooks can be easily converted into standalone tests. For this purpose, LISA 
provides an API which allows the user to encapsulate the code of a notebook into a 
standard python nosetest class. These tests are useful for example to run regression 
analyses across different versions and releases of a code base. 

A collection of tests. which allows to verify EAS specific features, are available here: 

https://github.com/ARM-software/lisa/tree/master/tests/eas 

Specifically: 

• preliminary: checks that the configuration of a given device is suitable for running 
EAS 

• load_tracking: checks that the main signals used by EAS are properly tracked and 
updated 

• capacity_capping: Verify that dynamic CPU capacity capping works in the system 

• generic: checks that some basic EAS scheduling features are working as expected 

• heavy_load: Test an EAS system under heavy load 

These tests can be executed from within a LISA Shell by: 

• properly setup the target.conf file according to the target in use 

• running the test with the command: 
[LISAShell lisa] \> lisa-test tests/eas/TEST_NAME.py 

For more details on how to verify EAS features refer to 8.3 Verifying EAS functionality 

 

https://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipynb%22https:/github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipyn%22https:/github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipyn
https://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipynb%22https:/github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipyn%22https:/github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipyn
https://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipynb
https://github.com/ARM-software/lisa/blob/master/ipynb/tutorial/UseCaseExamples_SchedTuneAnalysis.ipynb
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Android Workloads 
A set of Android benchmarks are now supported by the LISA framework which can be 
executed to collect energy and performance metrics. All the supported tests require the 
device to be pre-configured to run a test, which implies for example to install by hand the 
APK required by the test. 

The list of supported Android benchmarks is available at this link: 

https://github.com/ARM-software/lisa/tree/master/tests/benchmarks 

These benchmarks can be executed from within a LISA Shell by: 

• properly setup the target.conf file according to the target in use 

• running the benchmark with the command: 
 
[LISAShell lisa] \> python tests/benchmarks/BENCHMARK_NAME.py \ 
                           --android-home /path/to/your/android-sdk \ 
                           --results-dir RESULTS_FOLDER 

Each test provides a detailed list of supported configuration parameter which is printed via 
the "help" option. 

 Integrating a board into LISA 

A few steps are required to integrate a new board with LISA. First of all, we have to 
distinguish between what we call a platform and a board in the LISA configuration. A board 
is the target device intended for analysis; whereas the platform identifies the type of system 
running on that device. For example, if Linux is running on a Juno development board that 
is to be experimented with, from the point of view of the LISA configuration, the board is 
Juno and the platform is Linux 

That said, in order to integrate a board, LISA requires the following information in a JSON 
file: 

A board description containing: 

• A list of CPU names 

• The name of the big core in the system 

• An energy model that can be generated later as described in the following section 

Refer to the following link for more details on the format of the JSON file: 

https://github.com/ARM-software/lisa/wiki/Integrating-a-new-board-in-LISA 

Note that currently LISA only supports devices with up to two clusters while designs with 
more than two clusters are only partially supported (some functionality may not be 
available). 

For energy and power measurements, LISA supports three different energy meters: Linux 
Hardware Monitors (HWMON), ARM Energy Probe (AEP), BayLibre ACME Cape (ACME). 
For integrating a new energy meter, please refer to the following Wiki page: 

https://github.com/ARM-software/lisa/wiki/Energy-Meters-Requirements 

https://github.com/ARM-software/lisa/wiki/Integrating-a-new-board-in-LISA
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 Verifying EAS functionality 

A set of automated tests for verifying EAS are provided in LISA under the tests/eas/ 
directory. These tests are not designed as formal acceptance tests: kernel behaviour is 
inherently non-deterministic and platform variation cannot be fully accounted for. Therefore, 
these tests should be considered a starting point for verification. They can highlight obvious 
issues but ultimately it is generally necessary to manually inspect trace files, benchmark 
results, and energy measurements before deciding whether EAS' behaviour is satisfactory. 
Sometimes the tests may produce failures where a manual inspection shows that 
behaviour was in fact acceptable. It is therefore recommended to run tests multiple times 
and consider the proportion of pass and fail results. Executing multiple iterations can be 

specified on the command line by using the ‘--iterations’ parameter. A value of 10 

iterations is considered a safe minimum for which we generally expect at least an 80% 
pass rate. 

'Generic' EAS tests 
The 'generic suite can be run with: 

lisa-test tests/eas/generic.py 

These tests require data about the platform topology and energy model. LISA is able to 
extract this information from the target filesystem so long as: 

• CONFIG_SCHED_DEBUG is enabled in the kernel, so that 
/proc/sys/kernel/sched_domain/ exposes the scheduler's topology & energy data. 

• The cpufreq and cpuidle devlib modules are enabled by LISA. To ensure this is the 
case, add ‘cpufreq’ and ‘cpuidle’ to the ‘modules’ field in your target.config. 

Goal 

Verify energy-aware task placements. 

Detailed Description 

These tests use information about the target platform – namely the CPU topology and 
energy model – to determine the assertions that are made about scheduler behaviour. 
They are therefore named 'generic' because they can be used with any target platform, be 
it big.LITTLE or a different type of topology. 

The 'generic' suite uses a set of rt-app synthetic workloads. The workloads are viewed by 
this suite as consisting of a set of tasks, each of which contains a set of phases, each 
phase having a given duty cycle. For example one of the workloads (used by the 
EnergyModelWakeMigration test) consists of two tasks, each with four phases, where both 
task has a duty cycle of 10% in its first and third phases, and 50% in its second and fourth. 
This example represents a workload that alternates between providing using 20% and 
100% of the maximum compute bandwidth of the system's most capable CPUs. Another 
example (used by the RampUp test) contains a single task with several phases – the first 
having a 5% duty cycle, the last having 70%, and the intermediate phases having gradually 
increasing duty cycles. This represents a workload that increases its compute demand over 
time – here a continuous variation in capacity is modelled by using a set of discrete steps. 

Those familiar with rt-app will be aware that this tool can describe many more parameters 
of a task, in particular its period. However, this test suite does not consider the period 
of a task. It doesn't consider at which moment a task wakes up and goes to sleep, but 



EAS 

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 

Page 43 of 55 ARM-ECM-0605656 

instead views a task as an abstract consumer of a portion of compute bandwidth, and 
views the size of this portion as fixed for each of the task's phases. 

Using the information about the workload' and the platform data, the tests are able to 
estimate the amount of energy that the CPUs will use under any given task placement for 
each phase. Since the tests are aware of the workload parameters, they have advance 
knowledge of each task's utilisation in a given phase, so this test assumes a perfect load-
prediction system (an ‘oracle’ instead of the real scheduler's load-tracker). It further 
assumes a perfect scheduler-driven cpufreq governor that always immediately selects the 
minimum frequency to satisfy bandwidth requirements. Therefore, this suite aims to test 
energy aware task placement, but not OPP selection. 

For each phase of the workload in question, the test uses this estimation to find the ideal 
(most energy-efficient) task placement that provides the required bandwidth to all tasks. 
The workload is run on the target, and a trace captured. The trace is used to find the real 
task placements that were selected. The energy estimation is repeated for the observed 
task placements, and compared with estimation for the ideal placements. If the observed 
task placements were estimated to use at least 5% more energy than the ideal task 
placement, then a failure is declared. 

We have now asserted that the task placement was energy-efficient. However a second 
test is required to ensure that the placement provided the required bandwidth. Otherwise 
this test could be passed, for example, when two tasks with 55% duty cycles were placed 
on a single CPU – this may use less energy than placing them on different CPUs but is 
clearly undesirable as the tasks will not receive enough bandwidth. A second assertion is 
therefore required. The rt-app tool's output log is analysed and its 'Slack' measure is used 
to detect whether the required compute bandwidth was provided. 

Thus two types of test failures can result from these tests: 

1. test_task_placement asserts that the placement was energy efficient. In a 
big.LITTLE system, if a low-utilisation task was placed on a big CPU then this test 
should be expected to fail. 

2. test_slack asserts that the required bandwidth was provided. In a big.LITTLE 
system if a high-utilization task was placed on a LITTLE CPU then this test should 
be expected to fail. 

Workloads in 'generic' suite 

This suite contains a set of sub-tests, each of which contains a single workload for which 
the task placement test is executed. 

• OneSmallTask – a single 20% task lasting 2 seconds.  

• ThreeSmallTasks – 3 20% tasks lasting 2 seconds 

• TwoBigThreeSmall – 2 70% tasks and 3 10% tasks lasting 2 seconds 

• RampUp – A single task ramping from 5% to 70% over 2 seconds 

• RampDown – A single task ramping from 70% to 5% over 2 seconds 

• EnergyModelWakMigration – Two tasks each alternating between 10% and 50% 
over 2 seconds, 500ms for each phase. 
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Users can add additional rt-app workloads to the suite, without needing to write more 
analysis code, by editing tests/eas/generic.py. The details of how to do so are outside the 
scope of this document, however. 

Expected Behaviour 

The workloads are placed onto CPUs in the most energy-efficient way that provides enough 
compute bandwidth for each task. The details of this expected placement differ from platform to 
platform and depend on the energy model data.  

 

Capacity capping testing 
Similar to the acceptance tests, this test is part of lisa.  To run it configure your target in 
target.config and run: 

lisa-test -v tests/eas/capacity_capping.py 

Goal 

Verify that dynamic CPU capacity capping works in the system. 

Detailed Description 

The maximum frequency of a core can be restricted to a lower value than its absolute 
maximum frequency. This may happen because of thermal management or as a request 
from userspace via sysfs. Dynamic CPU capacity capping provides PELT and the 
scheduler CPU capacity management with a maximum frequency scaling corrector which 
describes the influence of running a CPU with a current maximum frequency lower than the 
absolute maximum frequency. 

The test creates as many busy threads as there are big cpus. These busy threads have 
high load and should run in the CPUs with highest capacity. The test has three phases of 
equal length. In the first phase, the system runs unconstrained. In the second phase, the 
maximum frequency of the big cpus is limited to the lowest frequency that the big frequency 
domain can run at. Finally, in the third phase, the maximum frequency of the big cpus is 
restored to its absolute maximum, i.e. the system is unconstrained again. 

This test assumes that the lowest OPPs of the big cpus have less capacity than the highest 
OPP of the little cpus.  If that is not the case, this test will fail.  Arguably, capacity capping is 
not needed in such a system. 

Expected Behaviour 

The threads have high load, so they should always run in the CPUs with the highest capacity of the 
system. In the first phase the system is unconstrained, so they should run on the big CPUs. In the 
second phase, the big cluster's maximum frequency is limited and the little CPUs have higher 
capacity. Therefore, in the second phase of the test, the threads should migrate to the little cpus. In 
the third phase the maximum frequency of the big cpus is restored, so they become again the 
CPUs with the highest capacity in the system. The busy threads must run on the big cpus in the 
third phase. 

Other EAS-related tests in LISA 
LISA now provides some tests that do not directly test EAS, but are intended for diagnosing 
common problems that could prevent EAS from working. 
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Load tracking tests 

In tests/eas/load_tracking.py are tests for load tracking features that EAS requires. 

• FreqInvarianceTest runs a single workload multiple times, each time at a different 
CPU frequency. It collects a trace for each run, and asserts that the scheduler's 
load_avg and util_avg signals were scaled according to the frequency that the 
workload ran at. 

• CpuInvarianceTest runs a single workload multiple times, each time pinned to a 
CPU of a different type. It collects a trace for each run, and asserts that the 
scheduler's util_avg signal was scaled according to the capacity of the CPU the 
workload ran on. The load_avg signal is not CPU invariant so is not tested here. 
This test is not relevant for symmetric systems. 

If these tests fail, EAS may misbehave. The two most likely causes of this problem are 

• The CPU capacity data in the EAS energy model, which the scheduler uses to scale 
load tracking signals, are inaccurate. 

• The patches introducing scale invariance to your kernel tree have been wrongly 
integrated. 

Preliminary tests 

In tests/eas/preliminary.py are tests for checking that certain pre-requisites for the target 
platform are in place. They are not intended to verify EAS behaviour but rather to highlight 
areas that may require investigation, in advance of debugging EAS itself. 

• TestSchedGovernor asserts that the 'sched' or 'schedutil' governor is available on 
the system. If it fails, this likely means the kernel was configured without these 
governors, which EAS is designed to work alongside. 

• TestKernelConfig reads the kernel config from the target and asserts that certain 
kernel features, which EAS is designed to work with, are enabled. 

• TestWorkThroughput ensures that cpufreq works as expected. It runs a simple 
workload multiple times, each at a different frequency, and ensures that it runs 
faster at higher frequencies. If this test fails, the platform's cpufreq driver may not be 
working. This will likely result in EAS misbehaving. 

Analyze test failures 
Fully debugging why a test has failed is outside the scope of this document.  However, the 
first step is usually to plot the trace and have a look at the scheduling decisions.  We can 
do this with trappy using an ipython notebook. For example: 

import trappy 

trace_file = "../results_latest/offload_idle_pull.dat" 

trappy.plotter.plot_trace(trace_file) 
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Figure 15 Lisa example plot 

The trace files for the different tests are: 

• Fork Migration: fork_migration.dat 

• Small Task Packing: small_task_packing.dat 

• Offload migration and idle pull: offload_idle_pull.dat 

• Wake Migration: wake_migration.dat 

Evaluate per task behavior 
During EAS integration on a new platform a test case might fail due to misbehaviour of one 
of the test tasks. This misbehaviour is normally characterized by an unexpected task 
migration during the test run, i.e. there are occurrences in which the test task is not 
scheduled on the designated cpu core type. 

To be able to analyse during trace file post processing which scheduler core path (e.g. EAS 
wakeup or periodic load balance) led to this misbehaviour 

CONFIG_SCHED_DEBUG_EAS_MIGRATION can be enabled so that the migration cause is 

additionally provided with each sched_migrate_task trace event: 

ksoftirqd/1-17 [001] 49.672428: sched_migrate_task: comm=usb-
storage pid=1048 prio=120 orig_cpu=1 dest_cpu=2 
cause=select_idle_sibling:idle_cpu 

ksoftirqd/1-17 [001] 49.685420: sched_migrate_task: comm=bash 
pid=2074 prio=120 orig_cpu=1 dest_cpu=2 
cause=select_idle_sibling:default 
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hackbench-2074  [002] 49.697317: sched_migrate_task:   
comm=hackbench pid=2112 prio=120 orig_cpu=5 dest_cpu=2 
cause=select_task_rq_fair:find_idlest_group/cpu 

The set of individual task migration causes is defined in 
include/trace/events/sched.h. 

You can visualize the events by using trappy in an ipython notebook.  For example, if we 
want to analyse the result of the wake migration test we would do: 

import trappy 

trace_file = "../results_latest/wake_migration.dat" 

trace = trappy.FTrace(trace_file) 

trappy.plotter.plot_trace(trace, execnames=["wmig", "wmig1"]) 

This plot shows the scheduling decisions for the two tasks that comprise the test in this 

platform: wmig and wmig1. If we want to know the reason behind, for example, the 

migration in cycle 6.039334, we can do so by showing the events that happened around 
that time with this code: 

trace.sched_migrate_task.data_frame[5.9:6.15] 
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Figure 16 Ipython notebook example plot 

 Figure 17 Analysis within kernelshark 
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 EAS test coverage 

 

android-4.14 October 2018 Update Test Results 
These results are produced using the Lisa synthetic test suite at commit 96e66c3432 with 
some minor changes on top which allow us to run in our internal CI loop. 

The kernels tested for Juno r0 and Juno r2 are the android-4.14 branch at commit 
494c2659 (Merge 4.14.80 into android-4.14). 

The kernel tested for Hikey960 is the android-hikey-linaro branch from 
https://android.googlesource.com/kernel/hikey-linaro at commit fcd9ab2aa4ab (Merge 
remote-tracking branch ‘mirror-android-4.14’ into android-hikey-linaro-4.14’. 

All tested kernels are built with the relevant defconfig, which means that this round of 
synthetic testing is performed using WALT. The synthetic tests are intended to be used 
with PELT, so an occasional mismatch in predicted behavior is to be expected due to the 
different representation of task utilization. 

 

Workload Result – 
Hikey960 
(4.14)  

Result – Juno R0 
(4.14)  

Result – Juno R2 
(4.14) 

Generic (task placement) tests    

OneSmallTask PASS 
(85%) 

PASS (100%) PASS (100%) 

ThreeSmallTasks PASS 
(100%) 

PASS (100%) PASS (100%) 

TwoBigTasks PASS 
(100%) 

PASS (100%) PASS (100%) 

TwoBigThreeSmall PASS 
(75%) 

PASS (95%) PASS (100%) 

RampUp PASS 
(100%) 

PASS (100%) PASS (100%) 

RampDown PASS 
(100%) 

PASS (100%) PASS (100%) 

EnergyModelWakeMigration PASS 
(100%) 

PASS (100%) PASS (100%) 

heavy_load    

capacity_capping    

load_tracking    

CpuInvarianceTest    

FreqInvarianceTest    

 

https://android.googlesource.com/kernel/hikey-linaro
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9 Glossary 

Scheduling Entity 

A scheduling entity (struct sched_entity) describes the unit which can be scheduled 

by the task scheduler. It can represent a task as well as a task group. 

Task Group 

A task group (struct task_struct) is an abstraction for a group of tasks which is 

represented by a single scheduling entity. The scheduler normally operates on tasks but in 
certain configurations it may be desirable to group tasks and provide fair CPU time to each 
such task group rather than to each individual task. 

Scheduling Domain 

A scheduling domain (struct sched_domain) is a set of CPUs which share properties 

and scheduling policies and which can be balanced against each other. Scheduling 
domains are hierarchical.  A multi-level system will have multiple levels of domains. 

E.g. the multi-cluster level (MC level) contains all the cpus belonging to a certain cluster 

whereas the physical processor level (DIE level) spans all the cpus of the processor. 

Scheduling Group 

Each scheduling domain contains two or more scheduling groups (struct 
sched_group) which are treated as a single unit by the scheduling domain. When the 

scheduler tries to balance the load within a scheduling domain, it tries to even out the load 
carried by each scheduling group without worrying directly about what is happening within 
the scheduling group. 

Frequency Invariance 

Frequency invariance makes the load and utilization signal of Per-Entity Load-Tracking 
(PELT) aware of CPU frequency scaling. 

Without frequency invariance a task with 25% load on a CPU operating at 100% of its 
maximum frequency would change its load to 50% in case the frequency decreases to 50% 
of the maximum frequency. With frequency invariance the load of the task remains 25% 
regardless of the CPU frequency. The same is true for the utilization signal. 

CPU Invariance 

CPU invariance makes the utilization signal of Per-Entity Load-Tracking (PELT) and task 
scheduler CPU capacity management aware of CPU micro-architectural differences and/or 
differences in the maximum frequency supported by the CPUs. 

Without CPU invariance a task with 25% utilization on a CPU with a capacity of 100% of 
the system-wide maximum CPU capacity would change its utilization to 50% in case it 
migrates to a CPU with a capacity of 50% of the system-wide maximum CPU capacity. 
With CPU Invariance the utilization of the task remains 25% regardless of the CPU the task 
is running on. 

Utilization 



EAS 

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 

Page 52 of 55 ARM-ECM-0605656 

The utilization of a scheduling entity is the amount of time the scheduling entity is running 
on a cpu over an elapsed period of time. 

Load 

The load of a scheduling entity is the amount of time the scheduling entity is ready to run 
on a CPU (i.e. it is runnable) multiplied by its weight (e.g. the weight of a task is its priority) 
over an elapsed period of time. 

Spreading 

The goal of the CFS task scheduler on an SMP platform is to distribute (hence to spread) 
work evenly across all available CPUs to guarantee maximum performance and minimum 
latency. This behaviour is characteristic for a work-conserving scheduler which tries to 
keep all scheduled resources busy as long as there are scheduling entities ready to be 
scheduled. 

Packing 

The goal of the EAS enhancement of the CFS task scheduler on an SMP platform is to 
maximize the power efficiency without harming the overall system throughput. EAS tries to 
distribute scheduling entities on the smallest number of suitable CPUs (hence to pack) 
while still meeting their compute requirements. This allows the power management 
subsystems to potentially save energy by turning off unused parts of the processor. 
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10 Appendix 

 Example DTS file 

cpus { 
 #address-cells = <2>; 
 #size-cells = <0>; 
 . 
 . 
 . 
 A57_0: cpu@0 { 
  compatible = "arm,cortex-a57","arm,armv8"; 
  reg = <0x0 0x0>; 
  device_type = "cpu"; 
  enable-method = "psci"; 
  next-level-cache = <&A57_L2>; 
  clocks = <&scpi_dvfs 0>; 
  cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; 
  sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>; 
 }; 
 A57_1: cpu@1 { 
  compatible = "arm,cortex-a57","arm,armv8"; 
  reg = <0x0 0x1>; 
  device_type = "cpu"; 
  enable-method = "psci"; 
  next-level-cache = <&A57_L2>; 
  clocks = <&scpi_dvfs 0>; 
  cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; 
  sched-energy-costs = <&CPU_COST_0 &CLUSTER_COST_0>; 
 }; 
 A53_0: cpu@100 { 
  compatible = "arm,cortex-a53","arm,armv8"; 
  reg = <0x0 0x100>; 
  device_type = "cpu"; 
  enable-method = "psci"; 
  next-level-cache = <&A53_L2>; 
  clocks = <&scpi_dvfs 1>; 
  cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; 
  sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>; 
 }; 
 A53_1: cpu@101 { 
  compatible = "arm,cortex-a53","arm,armv8"; 
  reg = <0x0 0x101>; 
  device_type = "cpu"; 
  enable-method = "psci"; 
  next-level-cache = <&A53_L2>; 
  clocks = <&scpi_dvfs 1>; 
  cpu-idle-states = <&CPU_SLEEP_0 &CLUSTER_SLEEP_0>; 
  sched-energy-costs = <&CPU_COST_1 &CLUSTER_COST_1>; 
 }; 
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energy-costs { 
  CPU_COST_0: core-cost0 { 
   busy-cost-data = < 
    417   168 
    579   251 
    744   359 
    883   479 
    1024  616 
   >; 
   idle-cost-data = < 
    15 
    0 
   >; 
  }; 
  CPU_COST_1: core-cost1 { 
   busy-cost-data = < 
    235 33 
    302 46 
    368 61 
    406 76 
    447 93 
   >; 
   idle-cost-data = < 
    6 
    0 
   >; 
  }; 
  CLUSTER_COST_0: cluster-cost0 { 
   busy-cost-data = < 
    417   24 
    579   32 
    744   43 
    883   49 
    1024  64 
   >; 
   idle-cost-data = < 
    65 
    24 
   >; 
  }; 
  CLUSTER_COST_1: cluster-cost1 { 
   busy-cost-data = < 
    235 26 
    303 30 
    368 39 
    406 47 
    447 57 
   >; 
   idle-cost-data = < 
    56 
    17 
   >; 
  }; 
 }; 
}; 

The first CPU node in the example above labelled A57_0: cpu&0 represents a Cortex-

A57 CPU and follows standard conventions as described in the traditional CPU bindings 

document. A new property called sched-energy-costs' is introduced which is a list of 
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phandles to cost nodes. The order of phandles in the list is significant. The first phandle is 
to the current processing element's own cost node. Subsequent phandles are to higher 
hierarchical level cost nodes up until the maximum level that EAS is to service. All cpu 
nodes must have the same highest level cost node. The phandle list must not be sparsely 
populated with handles to non-contiguous hierarchical levels. 

In the example above, the Cortex-A57's sched-energy-costs node lists phandles 

labelled '&CPU_COST_0'  and '&CLUSTER_COST_0'. Following the convention 

described in the previous paragraph, this is an ordered list with the first element being a 

phandle to a cost node that describes costing data for Cortex-A57 CPUs. The second 

element in the list is a phandle to a cost node that describes costing data for a cluster of 
Cortex-A57 CPUs. 

Cost nodes are children of a special energy-costs parent node. Cost nodes contain two 

properties: a busy-cost-data property and an idle-cost-data property. These 

describe the previously introduced busy costs and idle costs. A busy-cost-data 

property is an array of 2-item tuples, each of type u32. The first item in the tuple is a 
capacity value and the second item in the tuple is the energy cost value associated with 

that capacity. An idle-cost-data property is an array of 1-item tuples, each of type 

u32. The item in the tuple is the energy cost value associated with the idle state the item 
refers to. 

The scheduler has been suitably extended to process the relevant portions of the FDT and 
extract the costing data. The data is then supplied to the EAS core code for further 
processing as described in the next section. 

For a detailed specification of the bindings referred to here, see: 

Documentation/devicetree/bindings/scheduler/sched-energy-costs.txt. 


