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About this document 
This manual is part of the Arm Platform Security Architecture (PSA) family of specifications. It defines the 
security architecture and technical requirements to create a Trusted Boot process. A Trusted Boot process 
involves verifying and measuring software in accordance to a chain of trust. 

Release Information 

The change history table lists the changes that have been made to this document. For a detailed list of changes, 
see the change history table at the end of this document. 

 

Date Version Confidentiality Change 

October 2018 1.0 Beta 0 Non-confidential First public release 

February 2019 1.0 Beta 1 Non-confidential Second public release 

October 2019 1.0 Release 0 Non-confidential First complete release 

March 2019 1.1 Beta 0 Non-confidential Beta release covering A-class processors. Feedback is 
welcome. 
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Terms and abbreviations 

This document uses the following terms and abbreviations. 

Term Meaning 

AES Advanced Encryption Standard, a symmetric-key encryption standard  

Digest The output of a hash operation 

DoS Denial of Service 

EEPROM Electrically Erasable Programmable Read-Only Memory 

eFlash See Internal flash 
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eFuse OTP memory, available in very limited quantity 

HMAC Hashed Message Authentication Code 

HUK Hardware Unique Key 

Internal flash On-chip embedded flash 

KDF Key Derivation Function 

Manifest Signed metadata for a firmware image 

MCU Micro-controller unit 

Measurement A cryptographic hash of code and/or data 

MPU Memory Protection Unit 

MTP Multi-Time Programmable. A characteristic of some type of NVM 

NIST National Institute of Standards and Technology (http://www.nist.gov) 

NSPE Non-Secure Processing Environment (a PSA term) 

NSPE-PK Public Key of the Non-Secure Processing Environment 

NVM Non-volatile memory 

OEM Original Equipment Manufacturer 

OTA Over-The-Air 

OTP One Time Programmable. A characteristic of some types of NVM 

PKI Public Key Infrastructure 

PRoT PSA Root of Trust (a PSA term) 

ROM Read-only memory 

ROTPK Root of Trust Public Key (for firmware verification) 

RSA Rivest, Shamir and Adleman. An algorithm for public-key cryptography. 

RSA-PSS RSA Probabilistic Signature Scheme 

Runtime firmware Generic term to describe the firmware that executes after boot has completed 

SE Secure Element. An example of a secure element is a smart card. 

SoC System on Chip 

SPE Secure Processing Environment. Contains the PSA RoT and the trusted services. 

SPE-PK Public Key of the Secure Processing Environment 

System Inseparable component integrating all processing elements, bus masters, and 
secure software. Typically an SoC or equivalent. 

http://www.nist.gov/
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SPM Secure Partition Manager 

Trusted subsystem A self-contained subsystem providing security functionality e.g. a secure element 

XIP eXecute-In-Place 
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1 Introduction 
 

Arm’s Platform Security Architecture (PSA) is a holistic set of: 

• Threat models. 

• Security analyses. 

• Hardware and firmware architecture specifications. 

• Open source firmware reference implementations. 

PSA provides a recipe, based on industry best practice, that allows security to be consistently designed in, at 
both a hardware and firmware level. 

This document, PSA Trusted Boot and Firmware Update, outlines the security requirements. It specifically covers 
both: 

• Secure boot, which at each stage of the boot process checks that code is authorized to run before 
execution. Since this occurs recursively it creates a “chain of trust” as shown in Figure 1.  

• Measured boot, which is the process of cryptographically measuring the code and critical data so that 
the security state can be attested to later.  

Firmware update refers to the verification of an update before storing it. 

This document presents the best security principles for developing a Trusted Boot process across a range of 
different systems. These principles include: 

• A set of mandatory rules 

• A set of recommendations  

• A set of informative notes for specific markets and technologies  

System-on-chips (SoCs) vary in complexity and capability to meet different cost targets. Optional 
recommendations are given for SoCs that have sufficient resources to provide more robust protection. System 
developers are encouraged to test the given recommendations to increase the resiliency and longevity of their 
products. 

This document uses terminology defined by PSA but may be equally useful to other platforms that do not 
implement PSA functionality. 
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Figure 1: The Chain of Trust approach with a variable number of verification stages, each of which may be encrypted 

1.1 Scope 

Protection against unauthorized physical access depends on the hardware capabilities and the threat model for a 
particular product. Therefore, a detailed threat model and security review for a particular product is 
recommended, which is not within the scope of this document. 

The following boot related threats are covered in this specification: 

Threat Summary Mitigation 

T.IMAGE_TAMPERING An attacker executes an altered firmware or software image to gain 
control of the system execution and configuration.  

This can enable an attacker to access some assets.  

Image verification 

Error! Reference source not 

found. 

Concurrency  

T.DATA_TAMPERING An attacker with physical access alters assets in off-chip storage. Such 
techniques can include altering or replacing assets in flash chips or 
removable media. A more sophisticated attacker may also interpose on 
connected buses.  

Secure storage 

Concurrency  

T.ROLLBACK An attacker downgrades to a flawed version of firmware or software in 
order to exploit a vulnerability to gain partial or total control of the 
system. 

In a similar manner, an attacker can roll back or replay security critical 
data, such as the boot configuration. 

Rollback protection 

T.DEBUG_ABUSE An attacker uses the debug infrastructure to elevate privileges or obtain 
assets. 

Immutable bootloader 

(security lifecycle 

enforcement) 

T.REVERSE_ENGINEERING An attacker with physical access reads data in off-chip storage. This 
enables reverse engineering or cloning of assets to other systems.  

Image encryption 

Secret scrubbing 

..
1

2

3
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T.PERSISTENT_MALWARE An attacker exploits a vulnerability to install malicious software that 
remains persistent on the system across resets. This can prevent remote 
recovery of the system.  

Immutable bootloader 

Image verification 

Reset protection 

Isolation mechanisms 

T.MALICIOUS_PERIPHERALS An attacker exploits or replaces external off-chip peripherals in order to 
issue Direct Memory Access transactions. Transactions may be used to 
escalate privileges or to directly access assets.  

DMA protection 

Secure storage 

T.UPDATE_ABUSE A remote attacker renders a device inoperable by sending an unmodified 
but incompatible firmware update. 

Error! Reference source not 

found. 

 

The following threats are out of the scope of this specification, but might need to be covered for specific markets 
or certification levels: 

 

Threat Summary Mitigation 

T.SIDE_CHANNELS An attacker infers the value of sensitive on-chip code or data by using 
non-invasive techniques, such as differential power analysis or software 
observable side channels. An example asset can be a decryption key that 
is used for decrypting boot content. 

Out-of-scope 

T.GLITCHING An attacker glitches the SoC power supply or clock during the boot 
process in order to bypass authentication checks. 

Out-of-scope 

T.LAB_EQUIPMENT An attacker uses specialized equipment to unpackage and probe chips. Out-of-scope 

T.WEAK_CRYPTO An attacker breaks the cryptography used by the boot process (e.g. hash 
collision, signature forgery) 

See recommendations in   
Cryptographic algorithms 
(informational) 

 

Factory provisioning and test modes are also out-of-scope of this specification but might need to be considered 
by an implementation depending on supply chain relationships. 

Attacks on systems continuously evolve, with the effect that old security defenses must be strengthened, and 
new security defenses must be implemented to maintain the required level of security. The requirements 
described in this document represent the best practice at the time of writing. Some requirements provide 
implementation flexibility and improvements when compared to older documentation provided by Arm. In all 
cases, the differences are in the degree of security that is provided, or that is demanded by other market 
specifications. 

1.2 Assumptions 

This document assumes the reader is familiar with standard techniques in cryptography, such as authentication, 
hashing, encryption, Public Key Cryptography Standards (PKCS), NSA suite B and digital certificates. It does not 
describe these concepts in detail.  

This document assumes the reader is familiar with the Trusted Base System Architecture (TBSA), which includes 
the necessary hardware features expected for a PSA platform. At the time of writing there are two variants of 
TBSA: 
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• TBSA-M is the Arm specification for building a microcontroller with best practice security properties 

• TBSA-A is the Arm specification for building an application processor with best practice security 
properties. Further segment specific guidance is available in guides, such as the Arm® Server Base 
Security Guide. 

This document aims to support a class of system which:  

• can perform public key cryptography  

• have a boot ROM or a lockable sector of on-chip flash to emulate a boot ROM. The words “boot ROM” 
and “immutable bootloader” are used interchangeably in this specification 

• supports a level of memory isolation that can protect the code and data of security-critical functionality  

This document assumes that the reader wants to create firmware that has a Trusted Boot process and a secure 
update process.  

1.3 Compliance 

A claim of compliance to this specification is an evidence-backed assertion that the design meets all applicable 
requirements that are described in this document. The assertion is normally made by the design team and takes 
the form of documented output of a design review of the device. Arm recommends that this assessment is made 
as part of a Secure Development Lifecycle (SDL).  

The design team shall confirm, for each requirement, whether the requirement is fulfilled. This confirmation 
shall include a brief description of why the design is compliant and references to the relevant detailed 
specifications. In general, requirements may not be applicable if the threats that they mitigate can be shown to 
not form part of the threat model of the device, or that any vulnerabilities that might result from not meeting a 
requirement can be demonstrated to be mitigated in another way. In some cases, it will be necessary to provide 
stronger security than is anticipated by these requirements. In these cases, evidence shall be documented to 
support this approach alongside the requirement. The Appendix of this document includes a checklist to assist in 
this activity. 

In several areas, this specification provides recommendations. Where possible, these recommendations are 
provided to give guidance on reasonable default design choices. The threat model and functional requirements 
of the device is key in determining how requirements are met and which recommendations are followed. This is 
beyond the scope of this document. 

 

2 PSA terminology 
If the hardware supports isolation of software, then the software can be split into two security domains: 

• Secure Processing Environment (SPE), which contains the: 

- PSA Root of Trust (PSA RoT) for providing roots of trust to the system. These roots of trust are 
used for securing sensitive data such as secrets, platform state, and cryptographic key material. 
This is typically the Trusted Computing Base (TCB) for the SPE software. It is comprised of: 

• one or more bootloaders 

• a Trusted OS or a Secure Partition Manager (SPM) 

• one or more trusted subsystems (see 2.1 Trusted subsystem).  
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- Trusted services for providing application-specific security services while remaining isolated 
from the non-secure applications. It provides security functionality to the non-secure 
applications, and typically depends on the primitives provided by the PSA RoT. 

• Non-Secure Processing Environment (NSPE) for general purpose functionality that is not security critical. 
This includes communication stacks, device drivers, task management and application software. It is 
unable to undermine the integrity and confidentiality of the SPE. The NSPE may be isolated on a 
separate processor from the SPE. On an Arm processor with TrustZone security extensions the NSPE is 
known as the “Normal World”. On other systems, the NSPE may be a separate processor that is unable 
to access SPE resources. 

This specification refers to the SPE and NSPE when describing roles and responsibilities of components in the 
firmware update process. It is possible for the SPE and NSPE to be executing on separate CPUs within the same 
SoC, providing that the NSPE cannot interfere with SPE resources and execution. 

 

 

 

Each of these subsystems must be securely loaded, starting with the PSA RoT. 

A platform may have several images depending on the system design. The code in the SPE should be small in size 
and limited in purpose such that the software can be better validated for programming errors or design 
mistakes.  

Figure 2: Illustration of various security domains described in PSA (agnostic of hardware architecture) 

Secure Processing 
Environment (SPE) 

Non-secure 
Processing 

Environment (NSPE) 

Trusted services Unprivileged 

Privileged 

Immutable 
bootloader 

Trusted 
subsystem

s 

Hardware 

Non-trusted 
Applications 

Non-trusted 
Supervisor(s) PSA RoT 
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2.1 Trusted subsystem 

Trusted subsystems are blocks of security IP that are within the trust boundary of the PSA RoT. They might also 
provide RoT security services to the system. They may be integrated, or external (but bound) to the SoC. For 
example, these may include: 

• Trusted peripherals which support cryptographic operations 

• Secure elements and enclaves, each of which contains its own local RoT and its own local security 
lifecycle 

• System Control Processor (SCP) 

• Manageability Control Processor (MCP) 

• DRAM protection systems 

• Trusted real-time clock 

Secure Elements are independent subsystems which provide a set of RoT services for the system. There are 
many variations that might be on-chip or off-chip, have market-specific features and degrees of 
programmability. These are all collectively referred to as trusted subsystems. 

If a trusted subsystem is off-chip, it is expected that the communication channel between the SoC and the 
trusted subsystem are cryptographically paired. Cryptographic pairing enables secure communications between 
components and prevents unauthorized replacement of a trusted subsystem. 

2.2 Invasive subsystem 

Unlike Trusted subsystems, invasive subsystems represent a system feature or interface that may undermine the 
security of the PSA RoT. This may include: 

• JTAG debug interface 

• Boundary scan interface 

• I2C interface with access to on-chip resources 

• Fault detection technologies (e.g. RAS) 

• Entering and exiting power management states 

2.3 Trusted memory 

Each system has physical trust boundaries based on the threats they are designed to mitigate. Memory that is 
within the trust boundary is described as trusted. 

Specifically, trusted memory refers to connected RAM and NVM that are trusted to be sufficiently secure against 
a common set of threats and adversaries. NVM includes all types of persistent storage.  

The SPE uses trusted memory to initialize and load SPE components. SPE resources must be protected from the 
NSPE. 

• If RAM is shared between SPE and NSPE then they must be logically partitioned such that only the SPE 
can access SPE memory. This may involve an on-chip mechanism such as an address space controller or a 
security attribution unit. 

• If the SPE and NSPE do not share RAM, then the SPE memory must be physically isolated from the NSPE 
such that only the SPE can access SPE memory. 
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PSA-TBFU requirements focus on protecting easily accessible interfaces and supporting software 
countermeasures against typical concurrency issues. 

Designers are encouraged to evaluate the default profiles and validate whether they are sufficient against any 
relevant certification or compliance programs.   

 

Table 1: Default trust boundaries assumed for different device profiles 

System class Trusted memory Rationale 

Microcontroller On-chip* memory Off-chip memory, such as external flash, may be 
easily accessible to a locally present attacker, and 
may be accessible during manufacturing or 
deployment. 

Endpoint On-chip* memory + trusted 
off-chip RAM 

Off-chip memory, such as external flash, may be 
easily accessible to a locally present attacker, and 
may be accessible during manufacturing or 
deployment. 

Infrastructure On-chip* memory + trusted 
off-chip RAM 

Off-chip storage, such as flash, may be accessible to a 
locally present attacker or an external system, such 
as a networked Baseboard Management Controller 
(BMC), during manufacturing or deployment. 

[*] Arm recommends using on-chip RAM. However, SRAM can be used on a separate die, provided it is within 
the same package as the main SoC. 

Advanced hardware invasive attacks, in which the attacker has access to laboratory equipment that probes on to 
silicon metal layers, infers fuse settings, or performs differential power analysis are out of scope. 

A certain class of attacker may be able to read the contents of off-chip RAM given physical access to the system 
and appropriate tools. This may involve an attacker that can freeze the memory to manually read the contents 
or by replacing the memory with a more advanced component that persists data after the system has been 
turned off. If a security objective needs to address this then all off-chip memory must be considered untrusted. 

For information about the requirements for trusted peripherals see Section 2.1. 

2.4 Image 

An image contains one or more of the following artifacts: 

• Software executables 

• Firmware executables 

• Patches 

• Configuration data and parameters 

2.5 Image manifest 

Security critical metadata that is associated with an image. 

If a system is sufficiently capable of processing certificate chains using the X.509 standard, such as an A-class 
processor, then all instances of manifest in this document may use X.509 content certificates as a manifest. 
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Moreover, the X.509 standard is well documented, and free tools and source code are available. However, the 
parsing of encoded formats can introduce complexity that may outweigh the need for interoperability, especially 
on constrained devices. 

3 Security requirements 
To be compliant with this specification, the rules specified in this section must be met. Rules are denoted with 
rule IDs and highlighted in blue. The surrounding text provides examples and rationale. Subsections titled with 
“optional” contain optional functionality that may increase robustness of implementations. 

3.1 Boot flow (informational) 

The boot and firmware update cycle can be summarized in a small number of steps:  

1. The first Trusted Boot code is a bootloader that is embedded in a boot ROM, a write-protectable 
equivalent, or a security processor. This is referred to as the immutable bootloader in this specification. 
The immutable bootloader is a hardware Root of Trust that executes from reset, containing the minimal 
functionality required to check the authenticity of the Trusted Boot software.  

2. The Trusted Boot software authenticates the PSA RoT software and possibly also the NSPE software. The 
entire Trusted Boot sequence may consist of multiple stages, each of which must be authenticated 
before execution. 

3. The SPE initializes different Roots of Trust for the system as well as generic security services, known as 
Trusted Services. It may also provide bootloader functionality, such as backup and test features.  

4. The NSPE receives firmware updates Over the Air (OTA) or from a local peripheral.  

5. A runtime service or a bootloader within the SPE will check the update authenticity against a local public 
key and against a policy to see if it should be installed. If permitted to be updated, then the SPE will 
provision the update to storage, which is typically performed by a bootloader on reset.   

Depending on system resources and supply chain factors, the SPE may consist of multiple images, such as a 
mutable bootloader, runtime services and recovery software. Multiple bootloaders may also be used to separate 
board-specific code from chip-specific code. 

3.2 Chain of Trust (informational) 

A chain of trust ensures that each loaded component on the system has not been tampered. The chain of trust 
begins on reset whereby a hardware component authenticates the first stage of software. The chain continues 
when the authenticated software loads additional software. 

When the SoC hardware is powered on the CPU automatically executes from the start address (such as the reset 
vector). The start address and the boot selectors are configured to a predefined location of the internal flash 
address space or to masked ROM. The code at this start address must be considered immutable once 
provisioned in the factory. These characteristics provide strong assurance that the immutable bootloader cannot 
easily be bypassed. 

The immutable bootloader uses a public key to check the first stage of code is authentic before executing it: 

• In a single stage boot process, the immutable bootloader may validate a single image or simultaneously 
validate multiple images. 

• In a multistage boot process, there may be numerous loaders, each of which uses keys to verify and load 
other images. 
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An implementation must decide how many boot stages will be needed based on product requirements. 
Regardless of the number of stages, each boot stage must authenticate all the software it loads. 

 

 

Figure 3: Generic boot process with multiple stages 

 

It is common for a boot loader to be divided into several stages, the first of which is the immutable bootloader. 
The latter stages might be loaded from non-volatile storage into RAM and executed there or executed directly 
from eFlash. Splitting the bootloader into at least two stages, immutable and mutable, has some advantages:  

• It minimizes the risk of problems in the immutable code, as it allows for updates or errata to be handled 
by the mutable stage at provisioning time or later. As an example, image backup and recovery 
functionality can be non-trivial to implement in code for certain storage types and is likely to require bug 
fixes after product release 

• It separates concerns between silicon vendor and board maker, who may be different parties. For 
instance, the SoC manufacturer may provide code for basic initialization and protection of certain assets 
whereas the Original Equipment Manufacturer (OEM) may customize board specific features, such as 
external flash and advanced recovery capabilities. In this scenario, the SoC manufacturer’s code would 
authenticate the OEM’s initial code.  

The most constrained system may only contain a single stage bootloader within locked flash. 

At each step in the boot chain, each stage must verify the next, and verification of an image is based on a 
combination of hashing and asymmetric cryptography. Since asymmetric cryptographic algorithms are CPU-
intensive, hardware acceleration can be employed. For instance, the RSA cryptosystem may be accelerated using 
a Montgomery Multiplier hardware unit. Where possible, image authentication should use any available secure 
elements or accelerators to reduce memory footprint and accelerate the boot process.  
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It is possible for the boot sequence to fail at any stage due to a faulty component or restricted functionality. If 
the signature of a component fails verification, then the platform must not execute that component. The 
platform may want to perform one or more of the following actions: 

• log the event 

• recover the component 

• reset the system 

• load other components 

3.3 Use cases (informational) 

The size of the chain of trust is dependent on supply chain constraints and system complexity. A product analysis 
must determine the number of potential actors that will maintain the components of a product. Examples might 
include:  

• A Silicon Provider (SiP) that customizes SoC-specific code or errata fixes before the boot process begins. 

• A manufacturer who adds board-specific customizations based on product requirements (for example, 

OEM firmware and management software). 

• An operator (or owner) may configure an update policy, install additional software, or add additional 
identities on the system before deployment. 

• A repair company that may be authorized with certain debug capabilities. 

• An owner who may wish to replace the firmware after a system is no longer supported by a 
manufacturer. 

The number of distrustful actors will determine the number of keys the system needs to support and the 
required security lifecycle. 

3.4 Supply chain scenarios (informational) 

This specification requires at least one public key known as the Root of Trust Public Key (ROTPK), which is 
responsible for securely authenticating the first stage of code using public key cryptography. It may also be used 
to verify certificates of delegated signing keys  

Either the ROTPK hash or the ROTPK itself must be in an immutable part of the SoC NVM or within a Trusted 
Subsystem. A hash is often preferable because it requires less space in immutable storage. 

Multiple ROTPKs may be included for different vendors in the supply chain. For instance, the SoC vendor may be 
able to securely boot their own code using an in-built ROTPK, and then verify OEM firmware using a separate 
OEM ROTPK (see Section 3.4.3). The OEM ROTPK may be provisioned at a different point in the supply chain, 
where there may be operational processes in place to reduce risks in the provisioning process. The specific 
factory provisioning methods are outside the scope of this specification.  

R10_TBFU_KEYS: The system must include at least one firmware verification public key known as a Root of Trust 
Public Key (ROTPK) and a Hardware Unique Key (HUK) 

The private key associated with the immutable ROTPK cannot be revoked. This private key may be used to sign 
an OEM generic second stage boot loader or SPM, which will perform board-specific configuration and continue 
the Trusted Boot process. As such the ROTPK private key is hardly used (a few times per OEM) and can be kept in 
a highly secure Hardware Security Module (HSM).  
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R20_TBFU_KEYS: Each ROTPK must be immutable. These can be stored using a locked on-chip flash sector, a 
secure element, or on-chip OTP memory. It is permitted to store an immutable hash of each ROTPK to check the 
integrity of ROTPKs in untrusted storage.  

3.4.1 Single provider 

Figure 4 shows the simplest case, such as a constrained or embedded device, where a manufacturer controls the 
entire software stack and signing process. The manufacturer provides the ROTPK. No revocation is possible in 
this scenario. 

This scenario is only beneficial to ultra-constrained MCUs or simple peripherals. 

 

Figure 4: Single provider with a single signing key 

If the system has multiple software providers and has sufficient computational ability to validate a certificate 
chain, then it is recommended that separate signing keys are created to mitigate any loss of a private image 
signing key. This is discussed in the following sections. 

3.4.2 Multiple dependent providers 

The first link in the chain of trust is the management of the Root of Trust public key, which is used to verify all 
subsequent certificates and images. An example scenario is the following:  

• The OEM provides their own ROTPK. 
• The OEM signs a certificate belonging to a software vendor’s credentials. There could be multiple 

software vendors. 
• The software vendor uses their certified credentials to sign: 

- Production image signing credentials (unique for a particular model line)  
- Debug image signing credentials (unique for a particular model line) 

• The SoC ships with the OEM’s ROTPK provisioned into OTP memory  

If an image signer needs to replace their image signing key, then they must contact the owner of the ROTPK (the 
Root CA in Figure 4). This requires a continuous business relationship between the image signer and the Root CA 
(the ROTPK owner).  

 

Figure 5: Example of software signers dependent on a Root CA (the owner of the ROTPK).   
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If SPE and NSPE are separate systems with separate images, then Arm recommends signing these images with 
separate signing keys. If SPE and NSPE come from the same vendor, then the signing key for the SPE should have 
more levels of operational protection. Since the SPE must provide secure services to the NSPE, it must be more 
rigorously tested and should not require frequent updates.  

3.4.3 Multiple independent providers 

The system may include enough on-chip storage to hold multiple discrete ROTPKs. Each ROTPK provides an 
independent chain of trust, which allows for different manufacturers to authorize and revoke firmware signing 
keys independently of each other. For instance, one ROTPK can correspond to the SoC vendor whereas another 
may correspond to the OEM. Alternatively, an OEM owns one ROTPK while allowing a customer to install a 
separate ROTPK for NSPE firmware. Figure 6 shows a simplified chain of trust for independent providers.  

 

Figure 6: Example of multiple providers with independent roots of trust 

It should be noted that the example NSPE chain in Figure 5 can be arbitrarily long and complex depending on the 
number of actors signing NSPE components (multiple dependent providers within the NSPE domain).  

The NSPE ROTPK (or the hash used to identify it) can be stored in one of the following permitted 
implementations: 

• On-chip OTP memory 

• A secure element or security processor 

• Secure storage that is only writeable by the SPE. Any update of that key after provisioning must either: 

- Be rejected by the SPE (one-time provisioning) 

- Be replaced with a newer key only if it is signed by the currently stored NSPE ROTPK 

Implementation note  

Sufficient OTP space may allow for two truncated ROTPK cryptographic hashes to be stored. If 
this is desired, then it must conform to NIST’s recommendations as specified in NIST 800-107 [9]. 
For example, it is common for the most significant 128 bits from a SHA-256 digest to be used 
when truncated. 

 

The NSPE ROTPK may be used to authenticate a service within the SPE provided that it is sufficiently isolated 
from the Trusted Services and the PSA RoT. 
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3.4.4 Certificate creation and key management 

It is recommended that for the creation of certificates for use in production and development systems, users 
should consider appropriate processes for the handling, and management of keys used in the signing process, 
that should consider the physical security and storage of keys, controlled access to those keys, auditing of access 
and so on. A description of such a process is outside of the scope of this document but is a significant security 
issue that must be considered as part of the implementation of this document. 

3.5 Image metadata and parameters 

A manifest contains security critical metadata about an image and its runtime parameters. A manifest is 
cryptographically signed to ensure integrity and authenticity. 

R10_TBFU_MANIFEST:  Each image must be associated with a signed manifest. It is permitted for the manifest to 
be appended to the image itself and then signed together. 

Implementations may wish to transfer manifests in encrypted form to provide privacy for system updates. 

 

Attribute Description 

Manifest format version Version of the manifest format used 

Signer ID Identifies the signing key for the image. This must be the hash of the signer’s 
public key. This field is not required if there is only one image signer for the 
device software. 

Image hash algorithm The cryptographic algorithm used to calculate the image hash value. This field is 
not required if only one algorithm is supported. 

Image hash value The expected hash value of the image. If the image is encrypted, it is 
IMPLEMENTATION DEFINED whether the hash value is of the ciphertext or the 
plaintext.   

Image size The image size in bytes. 

Image type Specifically identifies the boot stage or peripheral. Also known as a purpose 
identifier. This field is not required if only one type of image is supported. 

Product class This can refer to a vendor ID, product ID, or a more specific identifier, such as the 
Instance ID.  

Image version The version that is used to for rollback protection. The specific versioning scheme 
is IMPLEMENTATION DEFINED. An implementation may separate image versioning 
from security versioning for deployment flexibility. 

Manifest signature 
algorithm 

Identifies the digital signature algorithm used for the “Manifest signature” field. 
This field is not required if only one algorithm is supported. 

Manifest signature Digital signature that signs all the manifest fields. The manifest may be signed 
using an industry-standard container format, Cryptographic Message Syntax 
(CMS), previously known as PKCS-7. It is recommended that the manifest format 
supports multiple signatures to support counter signing. 
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Table 2: Required manifest attributes 

More attributes can be added to the manifest to fit different use cases. The following contains a non-exhaustive 
list of additional attributes: 

• The full public key may need to be included (instead of the Signer ID) if the full key is not provisioned on 
the device. 

• If a firmware image has multiple dependencies, then a manifest can specify multiple images. For 
instance, a device may be a collection of different processing units, each of which requires specific 
firmware versions. 

• A set of conditions may also be included, such as a pre-condition or a post-condition. 

• A value (in seconds) specifying the maximum time the firmware update process should take to flash 

• Firmware storage location in terms of absolute or relative addressing 

• A device ID for special images that may be created for a specific platform instance. This may be 
necessary to provide specialized builds for specific customers, which should not be transferable to other 
platforms not owned by the customer. 

• Information on how to decompress a compressed image. 

• Parameters that affect runtime security, such as load addresses or stack pointer address. 

• A nonce may be included to make the manifest unique. 

R20_TBFU_MANIFEST: Each image manifest must contain the properties specified in Error! Reference source not 
found.. It is permitted for additional information to be included.  

The serialization format of a manifest may benefit from Concise Binary Object Representation (CBOR) or Abstract 
Syntax Notation One (ASN.1) encoding, depending on processing or interoperability requirements.  

For constrained devices, such as microcontrollers, Arm recommends using the IETF SUIT manifest format for 
signed manifests [12]. An example manifest is provided in the Appendix of this specification.  

For rich devices, such as application processors, Arm recommends the X.509v3 content certificate format for 
signed manifests. This enables interoperability with existing tools and software stacks. Additional fields may be 
specified using X.509v3 extensions. An example manifest is provided in the Appendix of this specification. 
Parsing of encoded formats can introduce complexity that outweighs the need for interoperability with popular 
formats. 

Systems may support delta encoded patches to reduce bandwidth and storage of firmware updates. The image 
manifest must contain the expected hash value of the image after the patch has been applied.     

R40_TBFU_MANIFEST: For delta updates, the image manifest must also contain the hash of the final expected 
image state.  

A system may have many modules that require updating individually. It may also need to trust several different 
actors to authorize an update. For example, a firmware author may not have the authority to install firmware on 
critical infrastructure without the authorization of an operator. In this case, the firmware should reject firmware 
updates unless they are signed both by the firmware author and by the operator. 

R50_TBFU_MANIFEST: All data in the image manifest must be digitally signed using asymmetric cryptography.  
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R60_TBFU_MANIFEST:  Image updates that include security enhancements or vulnerability fixes must increase 
the software version when signing the manifest.  

3.6 Image verification 

The Trusted Boot process works by authenticating a series of cryptographically signed binary images each 
containing a different stage or element in the system to be loaded and executed. Each image has either a 
lightweight manifest or a certificate, which is authenticated by a public key. This public key must be traced back 
to an ROTPK. 

At the point where a new image is to be installed the associated signature must first be verified against a public 
key.  

R00_TBFU_EXEC: Each loaded SPE image must be authenticated before execution. It is recommended to also 
authenticate NSPE images.  

Signature verification may be computationally expensive to perform on each boot. Verifying a large number of 
components may have a significant effect on the time it takes to boot the system. An implementation can 
optimize the Trusted Boot process at the expense of simplicity: once an image manifest has been successfully 
verified against a public key, it is permitted for an implementation to use one of the following mechanisms to 
speed up subsequent boots: 

• The image manifest can be locally authenticated with a Message Authentication Code (MAC). In this 
specification this process is referred to as rekeying. This avoids having to perform an asymmetric 
signature check again on subsequent boots of the same image and therefore can speed up the boot 
process. It is recommended that the key of the MAC be derived from the HUK using a KDF. It is then safe 
for the manifest and the MAC to be placed in untrusted storage. When using this option. 
implementations must consider protection against side channel attacks that can extract the key. 

R10_TBFU_EXEC: Any use of a MAC to re-key and authenticate a firmware image manifest must be in the 
form of a HMAC, CMAC, or GMAC signature. The key may either be in trusted memory or in a trusted 
subsystem. 

• The manifest of the verified image can be placed in on-chip storage that is write protected from the next 
stage of components. On subsequent reboots the calculated hash of the image can then be directly 
compared with the expected hash within the stored manifest without re-authenticating the manifest. It 
is permitted for a subset of the manifest information to be stored providing that there is sufficient 
information to provide integrity verification and rollback protection. 

R20_TBFU_EXEC: Any caching of authenticated manifests must be held in trusted memory and write 
protected from untrusted components.   

3.6.1 Secret scrubbing 

Memory may be shared between components at different stages of the Trusted Boot process. Secrets that are 
resident in memory, such as decryption keys, may need to be removed prior to executing a newly loaded 
component.  
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R30_TBFU_EXEC: Secrets used by a trusted component X must be scrubbed from volatile memory and registers 
before ownership of the memory is transferred to a component not trusted by X. 

Scrubbing a memory location can mean any of the following methods: 

• Overwritten with a pre-defined constant value (for example, zero) 

• Overwritten with a random value  

• Indirectly changed to a random value, for example by changing a key which is used to decrypt the 
memory contents 

3.6.2 Concurrency restrictions 

By loading components from untrusted storage to trusted memory prior to cryptographic validation, it is not 
possible to bypass verification with an authorized copy of the firmware and then substitute an unauthorized 
version at runtime.  

R40_TBFU_EXEC: Each loaded SPE image must be verified in trusted memory before execution. It is permitted for 
NSPE images to be loaded into untrusted memory.  

To prevent interference from code running on other processors, and to eliminate time-of-check-time-of-use 
(TOCTOU) exploits, concurrent execution must be disabled when validating images. 

R50_TBFU_EXEC: The boot process must be uninterruptible during signature verification to prevent race 
conditions.  

When signatures fail to verify or a roll back attack is detected, then this event is considered a security violation. 
The component that causes the security violation must not be executed. If the component is critical to the 
system functionality then a recovery mode might be entered, or the system might log diagnostics and reboot 
depending on the severity of the violation.  

R60_TBFU_EXEC: The boot process must not execute a component if a security violation occurs.   

Updating an image in persistent storage can be a complex process. Care must be taken to avoid partial or 
undefined system states. 

R70_TBFU_EXEC: The update process must be an atomic operation. If interrupted, then the update process must 
either revert to the prior state or enter a recovery mode.  

Recovery modes are IMPLEMENTATION DEFINED. As an example, the mode may restore a stored backup of the image 
or listen on a wired interface awaiting a new image. Any restored image must still be subject to all the rules 
defined in this specification, including rollback protection.  

R80_TBFU_EXEC: If the NSPE software is to be executed on a secondary processor, the secondary processor must 
be kept in reset or halted until the NSPE firmware has been verified by the SPE.  

This rule includes implementations with a secondary processor that has minimal ROM code waiting for an SPE 
notification. 
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3.6.3 Isolation mechanisms 

If the SPE and the NSPE share compute resources, such as CPU or memory, then isolation mechanisms must be 
configured to protect SPE resources before the NSPE begins execution. For instance, an isolation mechanism 
may be one of or a combination of Address Space Controllers, Security Attribution Units, Peripheral Protection 
Units, Memory Protection Units, etc.  

R85_TBFU_EXEC: Isolation mechanisms must be correctly configured before the NSPE begins execution.  

3.6.4 DMA protection 

Direct Memory Access (DMA) is a common way for peripherals to transfer data to and from SoC memory. It is 
possible for an attacker controlled peripheral to interfere with the Trusted Boot process using DMA. Some SoCs 
include special functionality for restricting DMA transactions to specific memory regions, ensuring that trusted 
components are integrity protected during the boot process. 

R95_TBFU_EXEC: Any available I/O protection mechanisms must be enabled to integrity protect loaded images 
from untrusted peripherals. 

An example of an I/O protection mechanism is a System Memory Management Unit (SMMU) or a Peripheral 
Protection Unit (PPU). 

3.6.5 Secure storage  

The following requirements address problems when handling images and authenticated data in untrusted 
memory. 

SPE firmware must not be executed directly from external flash memory. Instead it must either be copied into 
trusted RAM and verified and executed from there or executed in-place in secure internal flash memory.  

R10_TBFU_STORAGE: An SPE image in untrusted memory must be copied to trusted memory for authentication.  

R20_TBFU_STORAGE: When an image in untrusted memory is copied into trusted memory, it must be integrity 
checked after the copy has completed. The integrity check must match the authentication data for the image.  

R30_TBFU_STORAGE: Authentication data used to verify images must be in trusted memory before use.  

R40_TBFU_STORAGE: Encrypted images in untrusted memory must be decrypted into trusted memory and 
authenticated in trusted memory.  

When an image is created by a vendor and needs encryption, the point of encryption may vary depending on 
supply chain logistics: 

• If a signed image is subsequently encrypted before distribution, then the image must be decrypted by 
the device before it is authenticated.  

• If an image is encrypted before it is signed and distributed, then the device must authenticate the image 
before decrypting it. 

Arm recommends that SPE images be protected from NSPE access. This can be achieved by providing the SPE 
with exclusive access to some on-chip or off-chip non-volatile storage. 
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3.7 Immutable bootloader 

The first code of the Trusted Boot process is an immutable bootloader placed in an on-chip boot ROM or a 
locked eFlash sector that can emulate a boot ROM. An example of an emulated boot ROM would be an area of 
flash with an OTP lock that permanently disables write and erase accesses to the flash area, while also disabling 
debug access (e.g. JTAG/SWD).  

The purpose of the immutable bootloader should be solely to validate the signature of the next stage against the 
ROTPK. The next stage is expected to be a second stage bootloader or a SPM, which provide richer functionality. 
As a minimum the hash of the ROTPK is either embedded in the bootloader or provisioned into OTP NVM. The 
hash must be used to verify the integrity of the full public key, which might be included in the mutable next 
stage image.  

Code that performs more complex functions will naturally have a greater attack surface or risk of bugs. 
Therefore, the immutable bootloader should only contain the flash and cryptographic primitives necessary to 
read and validate software. Additional functionality should be a part of the SPE software, either another 
bootloader or an SPM.  

R20_TBFU_BOOT: The immutable bootloader must verify loaded images using the ROTPK itself or a delegated 
key. It is permitted for the immutable bootloader to only verify a single firmware image containing all remaining 
verification functionality 

Implementation note: 

It is advised that most functionality is placed into a loadable module to ensure that there is 
never a need for the immutable bootloader to be updated. This module can be verified using 
RSA/ECC authentication or using a hash in on-chip OTP memory. A silicon provider may use this 
to deliver errata to the SoC and to defer certain ROM functionality to a later stage of 
manufacturing. 

  

When using locked eFlash instead of ROM, the immutable bootloader must be placed at the reset vector to 
ensure that this stage always boots first. This may be at the beginning of the address space on some platforms. 
The regions must be configured in such a way that they are protected from program and erase operations.  

The immutable bootloader must be able to securely read the ROTPK in on-chip memory. Typically, there are a 
number of ways to achieve this:  

• The ROTPK might be embedded in the immutable bootloader itself. This is the least flexible option 
because the ROTPK owner may be a different party to the owner of the immutable bootloader.  

• The ROTPK might be provided with an SPE image. In this case, the immutable bootloader must calculate 
the hash of it and compare it against an embedded provisioned hash in immutable memory before using 
it.  

• The ROTPK or its hash might be stored in separate on-chip OTP NVM (i.e. for example eFuse or a flash 
sector that was locked during factory provisioning).  

• The ROTPK or its hash might be provided by a Trusted Subsystem.  

The immutable bootloader itself may execute within a Trusted Subsystem provided that it is on-chip and has 
sufficient capability to verify the SPE software while the main cores of the processor are held in reset (see 4.2.2 
Boot using an on-chip trusted subsystem). 
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Manufacturers may want confidentiality of bootloader secrets after initialization. Hiding the bootloader after the 
boot process requires a non-reversible mechanism, for example a sticky register bit that is activated by the boot 
software. It is recommended that the bootloader stages are only readable during the Trusted Boot process to 
prevent reverse engineering and code re-use attacks after boot.  

A security lifecycle is essential for ensuring that the debug infrastructure cannot be used to compromise the 
integrity of the boot process or leak assets. The security lifecycle can have many states, such as assembly and 
test, provisioning, production, return, and more. Once the system is in a secure production state, the immutable 
bootloader (or debug authentication module) must disable and lock debug capabilities. 

R40_TBFU_BOOT: It must not be possible to debug the immutable bootloader while Trusted Boot is enabled  

The detailed security requirements and lifecycle for debug are described in the Trusted Base System Architecture 
set of specifications. 

An advanced attacker with physical access to the system and specialized equipment may attempt to analyze the 
boot process before performing a non-invasive timing attack. Such a non-invasive timing attack might introduce 
intentional faults using clock, power or thermal means, which could result in instruction skipping, decoding 
errors, or malformed data accesses. Attackers may use these side-effects to target specific areas of code 
execution to bypass authentication checks during the Trusted Boot process. Since these attacks rely on reliable 
and precise timing, early stage firmware may employ an on-chip hardware random number generator to 
randomize the execution time of boot, making timing attacks infeasible for adversaries.  

3.7.1 Reset protection 

Some platforms provide a register for programming an address for the processor to jump to on reset. To make 
sure the trusted boot cannot be bypassed on reset, this must be protected from untrusted components.  

R60_TBFU_BOOT: If the platform has a programmable reset address, then the PSA RoT must protect this from 
untrusted components. This may be achieved using a locking or memory protection mechanism.  

Any processor cache used by the immutable bootloader needs to be invalidated before it is used.  

R70_TBFU_BOOT: Either the hardware or the immutable bootloader must invalidate caches before using them 

In the case where the immutable bootloader must invalidate the processor cache, the specific sequence of 
actions to invalidate it are typically provided in the corresponding technical reference manual. 

If a warm reset is supported, then the immutable bootloader should be able to determine whether the system 
performed a warm reset or a cold reset. This may be achieved by checking a variety of platform specific registers.  

Arm recommends enabling an available watchdog timers as soon to detect prolonged .  

3.8 Unlocking 

The image signer of the NSPE may decide to disable Trusted Boot of the NSPE either at factory provisioning stage 
or at a later point in the product lifecycle. 

R80_TBFU_MANIFEST:  If either the NSPE-PK or the NSPE image hash are authentic and equal to zero, then the 
NSPE image does not require authentication in order to execute. 
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The SPE runtime software might require information about the status of the NSPE. For instance, a Trusted 
service may use the verification status of the NSPE as a factor in an access control policy.   

3.9 Image encryption 

Images may contain secrets that must not be readable by attackers. When encryption is desired there are three 
options for decryption keys:  

• A full pre-shared symmetric key  

• A symmetric key derived using a key derivation function (KDF), which is based on a small pre-shared 
secret  

• An asymmetrically encrypted symmetric key, provisioned dynamically with the encrypted payload  

The choice of key and algorithm is IMPLEMENTATION DEFINED. Arm recommends an authenticated encryption 
algorithm, such as AES-GCM, which has the additional advantage of detecting tampering at the point of 
decryption. 

Implementations must also consider protections against side-channel attacks. 

R10_TBFU_ENCRYPTION: Each image containing secrets must be encrypted.  

Arm recommends that each image is encrypted with a separate key. 

3.10 Rollback protection 

If a firmware image is updated to fix security vulnerabilities, and the system permits the firmware image to be 
“rolled back” to a previous, insecure version, then a security risk exists. Therefore, firmware must use non-
volatile (NV) version counters to protect against rollback attacks.  

For validating untrusted software, each Trusted Boot stage must use one of the following mechanisms for 
providing rollback protection for images:  

• Secure on-chip NVM: Counters can be implemented in on-chip storage only accessible to the SPE.  
• On-chip OTP memory: Counters can be implemented using on-chip OTP memory if enough individual 

eFuses are available. Care should be taken to ensure that enough updates can be supported for the 
lifetime of the product. 

• Trusted subsystem: Counters may be provided by a trusted subsystem. If the trusted subsystem is off-
chip then the trusted subsystem must support an MTP counter that is cryptographically paired with the 
SoC. The pairing is required in case an attacker replaces the trusted subsystem with one that contains 
lower counter values.  

• Authenticated off-chip memory: Implementations may use a single on-chip counter to secure off-chip 
version counters. This can be achieved by storing an authenticated table of counters in untrusted 
storage. The table must be authenticated using a key derived from the HUK (to prevent cloning) and 
combined with the on-chip counter (for replay protection). The on-chip counter must be incremented on 
every update to the table. This option is not robust against flash erasure or corruption.  

Counters must never be updatable to a value less than their current value. A counter must also never overflow. If 
the maximum value is reached it must remain at that value.  

After a firmware image is verified, the image version number taken from the signed manifest and is compared 
with the corresponding stored counter. If the value is: 
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• Less than the NV counter then the authentication fails. 

• Identical to the NV counter then the authentication is successful. 

• More than the NV counter then the authentication is successful, and the NV counter is updated with the 
higher value  

R10_TBFU_ROLLBACK: Only images of a higher version or the same version can be executed.  

It is recommended to implement as many version counters as there are images, where each image can use a 
separate counter without affecting other images. However, the number of rollback counters that can practically 
be supported is implementation dependent. 

R20_TBFU_ROLLBACK: Each software stage must not be able to decrease their corresponding rollback counter. It 
is permitted for the PSA RoT to be exempt from this rule if it is responsible for preserving the integrity of counters.  

On TBSA complaint hardware it is expected for boot software to use the provided NV counters. On systems that 
are not TBSA complaint, trusted on-chip NVM may be used for counter values providing that the PSA RoT can 
ensure their correct operation. This protects the counters against modification from low skilled physical attacks 
but not from a runtime error or software attack that can revert the counter value.  

R30_TBFU_ROLLBACK: Rollback counters must be implemented either with on-chip OTP memory, a trusted 
subsystem, or a private on-chip NVM region which is only write-accessible to the Trusted Boot software.  

Rollback counters might also be required to support version control of other software. A suitable 
implementation might employ one counter per software instance, or group together a list of version numbers 
inside a database file, which is itself versioned using a single counter.  

R40_TBFU_ROLLBACK: Rollback counters must never overflow. If the maximum value is reached it must remain at 
that value.  

If a rollback counter is implemented using on-chip OTP memory, such as eFuses, then a lower bound on the 
number of supported updates must be specified.  

R50_TBFU_ROLLBACK: Each rollback counter used to validate SPE software must support at least 64 values. If the 
SPE consists of multiple boot stages, then it is recommended that each stage has a dedicated counter for each 
verification step.  

A rollback counter is increased when newer software is loaded. In some markets it can be desirable to perform a 
boot test of the image before increasing the version counter. One simple example of a boot test mechanism is a 
watchdog that tests whether an update is unresponsive. A more complex example may involve testing the 
network stack or update system to ensure that network connectivity has not been broken. 

R60_TBFU_ROLLBACK: If the counter value in the manifest is greater than the rollback counter, and if the 
manifest is authentic, then the rollback counter must eventually be increased to match the counter value in the 
manifest.  

It is IMPLEMENTATION DEFINED when a rollback counter is increased: 
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• An implementation can decide to perform a boot test of a new image before incrementing the rollback 
counter. When implementing staged update with failure rollback, counters must only be updated when 
the installed image has been successfully tested. 

• An implementation can decide to support a mechanism to control rollback protection by remote 
messaging. However, it must not be possible to use any remote management feature to increase an 
rollback counter on a device to a value beyond the highest version of any images currently loaded on the 
device. Such a mechanism requires: 

o Authentication of the command issuer with at least the same cryptographic properties as that 
used for image signing. 

o Replay protection, ensuring that any issued command instance can only be acted on only once 
by a device. 

It is IMPLEMENTATION DEFINED when a rollback counter is reset: 

• An implementation can decide to reset the anti-rollback mechanism following factory reset. This allows 
devices to be recovered if the anti-rollback mechanism becomes desynchronized with the signer. 

• An implementation can decide to use a remote messaging protocol as described above.  

R70_TBFU_ROLLBACK: Any implemented mechanism to reset rollback protection must be at least as secure as the 
image signing mechanism  

3.11 Measured boot and attestation 

An SoC may need to prove the integrity of its software to a remote party or to local systems on the same board.  

A prerequisite for attesting the platform state is to create measurements of loaded code and data on each boot. 
The measurements are then securely stored either in the PSA RoT or a trusted subsystem. This is known as a 
measured boot. Any measured boot mechanism must assure the integrity of such firmware and make it part of 
an overall chain of trust. Each stage of the chain of trust must accurately and robustly measure all the critical 
code and data that will be loaded. This also includes:  

• Loadable modules (including dynamic patches and code loaded from peripherals) 

• Parameters that influence boot behavior (for example, flags or variables that may change the control 
flow of the loaded program) 

Each stage of the chain of trust must store the measurements in a local root of trust. The measurements may be 
held in a security module or by a PSA RoT. A remote party can use the list of measurements to help validate the 
specific software identity of the platform.  

After successful validation, the immutable bootloader must store boot state that is used by the PSA RoT runtime 
services. Part of the boot state include a freshly generated number called a boot seed. The boot seed may be 
used by later services, for example to allow a validating entity to ensure that attestations for different 
attestation end points were generated in the same boot session. It must be large enough to make global 
collisions statistically improbable.  

R10_TBFU_ATTEST: On each reset, the immutable bootloader must create a boot state. 

R20_TBFU_ATTEST: The boot state must include calculated cryptographic measurements of loaded images and 
configuration files prior to execution. The immutable bootloader may also measure the installed NSPE image.  
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A platform may have one or more trusted subsystems, such as a Secure Element, Trusted Platform Module, or a 
cryptographic accelerator, for example. They may include updateable firmware, which must be measured.  

R30_TBFU_ATTEST: All firmware loaded into trusted subsystems must be measured and verified at boot. The 
measurements must be included in the boot state.  

The boot state must include a randomly generated number called a boot seed. 

R40_TBFU_ATTEST: The boot state must include a randomly generated boot seed. It is permitted for the boot 
seed to be generated by the PSA RoT runtime software and added to the boot state once boot has completed.  

It should be noted that the boot seed is separate and unrelated to any challenge or nonce provided by a remote 
party during an attestation protocol. It must be statistically improbable, which can be met with 256 random bits. 

R50_TBFU_ATTEST: The boot seed must be 256-bits in size.  

The boot state must be accessible to the PSA RoT software. This may be stored in on-chip NVM or on-chip RAM. 
The specific format and way to pass information is considered IMPLEMENTATION-DEFINED.  

R60_TBFU_ATTEST: The boot state must be stored in an on-chip memory area, which is only accessible to the PSA 
RoT. It is also permitted for the boot state to be stored within a trusted subsystem.  

Implementation note: 

A trusted subsystem, such as a Trusted Platform Module (TPM), can store 
measurements made by the boot software. With a TPM this is achieved by 
programming the TPM’s Platform Configuration Registers (PCRs) using the PCR extend 
TPM operation. The convention for using PCRs is specific to the device class and is 
being standardized by the Trusted Computing Group (TCG). 

For implementations based on the Unified Extensible Firmware Interface (UEFI) the 
convention for using TPM PCRs is described in the TCG Client profile [13]. Servers and 
embedded systems might also use the same profile to ease interoperability. 
 

It is possible for systems to provide multiple images in the form of a signed firmware image package or a single 
image. A firmware image package allows for packing bootloader images (and potentially other payloads) into a 
single archive that can be loaded. Nevertheless, each component must be measured independently. This is 
necessary for a remote party to easily verify a remote attestation.  

R70_TBFU_ATTEST: All images and configuration files must be measured separately, even if they are in one 
firmware image package.  

The state of the hardware may have a direct effect on the security of the system. As an example, a bootloader 
stage that supports an “unlocked” state may permit third party images to be loaded after an appropriate 
authorization procedure. This is considered a change of state because it affects and may be recorded in the boot 
state for remote attestation purposes.  
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R80_TBFU_ATTEST: In addition to measuring the next stage, each stage must measure parameters that may 
influence the behavior of software.  

Examples of sensitive configuration data are boot parameters and configuration data, which might be stored 
separately from the images. For example, the boot parameters may be loaded from a file or from a connected 
input device. 

4 Architectural variants 
The implementation of a Trusted Boot process largely depends on the security properties of various subsystems 
and non-volatile memories.  

This section presents the common variants in two categories, the baseline architecture and the assisted 
architecture, as also described in the TBSA documents. The figures: 

• are not to scale 

• omit redundant boots stages 

• do not show multiple images per stage. It is expected that more complex systems have multiple 
stages that contain multiple images per stage 

• do not distinguish between volatile and non-volatile memory 

4.1 Baseline architecture 

The Baseline Architecture performs the majority of the security functions within Trusted world software in the 
processor. It is supported by a minimum set of required security hardware, for example:  

• Immutable bootloader.  
• Trusted RAM and/or Trusted External Memory Partitioning.  
• Trusted peripherals 

• OTP Fuses 
• Entropy Source 
• Watchdog 

The Baseline architecture focuses on ensuring that the SPE has access to all the assets it requires, and has the 
underlying mechanisms to protect the integrity, confidentiality, and authenticity of the SPE.  

4.1.1 Boot from on-chip storage 

This variant does not depend on external NVM. All images in this variant are in internal XIP flash. 
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Figure 7: Example boot from trusted storage 

4.1.2 Boot from off-chip storage 

This variant has no on-chip NVM. Since no on-chip NVM exists for secure variables, both SPE and NSPE must be 
authenticated using embedded public keys on boot.  

The SPE may be composed of multiple images. The SPE and NSPE may be a combined single image. Anti-rollback 
counters must be implemented in on-chip memory that is only accessible to the SPE. 
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Figure 8: Example boot from untrusted memory 

4.2 Assisted architecture  

The Assisted Architecture builds on the Baseline Architecture by adding a trusted subsystem to accelerate and 
offload some of the cryptographic operations from the SPE software, and to provide increased protection to high 
value assets, such as root keys.  

The cryptographic accelerators are expected to support the most commonly used algorithms for encryption, 
decryption, and authentication  

4.2.1 Boot using a passive trusted subsystem 

The ROTPK(s) and other hardware secrets are contained within a trusted subsystem. 

A security module may be also known as a secure element or a secure enclave. For example, a Trusted Platform 
Module (TPM), smart card, or a generic security processor. The security module may be on-chip or off-chip. 

If the security module is off-chip then it must be cryptographically paired with the SoC during device assembly. 
Communications over exposed buses must be encrypted using a key established from the cryptographic pairing 
process. 
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Figure 9: Example boot using a passive trusted subsystem 

4.2.2 Boot using an on-chip trusted subsystem 

The on-chip trusted subsystem is on-chip and may be, for example: 

• An isolated system control processor (SCP)  

• Manageability control processor (MCP) 

• A Secure Enclave or advanced version of an integrated Secure Element 

The ROTPK(s) and other hardware secrets are contained within the security processor. 

The security module may be a secure enclave or a separate processor that controls the boot process.  

It has the capability to verify the initial SPE image in the internal flash. It is possible for a security module to 
verify multiple images. If the contents are successfully verified, then the main CPU is released, and execution 
begins.  

The non-volatile counters used for rollback protection of the SPE are stored within the security module. The 
main CPU then boots the SPE software. 
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Figure 10: Example boot using a trusted subsystem that directly loads and verifies images in the SPE 
 

5 eFlash considerations (informational) 
SoCs are used in different market segments and have varying security requirements based on their usage 
models. Usage models can be part of open or closed software ecosystems. System designers must consider 
which assets they need to protect, and which threats they want to protect against. This specification describes 
the required rules to reduce the impact of software-based attacks. It also provides recommendations, where 
appropriate, to prevent scalable low-cost physical attacks.  

The requirements for this document are derived from best security practices. To understand threats and general 
security objectives, refer to the Threat Models and Security Analyses (TMSA) provided by Arm.  

Offline modification of off-chip flash memory is a likely risk if an attacker has physical access to the system. It is 
common for external off-chip storage to be present, such as an SD card or NOR flash.  

Many consumer systems include a method of linking with a PC, for example a USB connection. This is an example 
of simple equipment that any attacker who is local to the system would have. Beyond this, an attacker might 
utilize more specialized equipment that can be easily acquired and that is relatively inexpensive. Examples of this 
equipment are JTAG interface controllers, soldering irons, and oscilloscopes. To perform the most sophisticated 
attacks, an attacker might require expensive laboratory-like equipment or software that must be specifically 
developed.  

Internal on-chip flash that can easily be reprogrammed or erased using programmers is also considered as 
untrusted storage. Microcontrollers can offer different levels of protection for internal flash. It is important to 
understand the implications of these protections for both development and production scenarios. Special 
configuration registers may provide the following modes for the internal flash:  

• Internal protection: This is typically used to protect a bootloader or any parts of the system to be 
overwritten either by the debugger or by the application itself. This protection can be reversed either by 
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a mass erase capability or reprogramming a special configuration register. If the registers cannot be 
protected from application software, then this does not provide security against software-based attacks.  

• External protection: Prohibits external tools or debuggers from accessing the flash. Designed to prevent 
reverse engineering of software. To recover the system a mass erase has to be applied. If the register 
cannot be protected from application software, then this does not provide security against software-
based attacks.  

• Disable mass erase: Prevents triggering of a mass erase. Combined with Internal protection and 
External protection, the system can never be manually reprogrammed. If mass erase is enabled and 
triggered then all system code, secrets and data are erased. If mass erase is enabled, this marks the end 
of the security lifecycle.  

If the registers for these states cannot be protected from untrusted application software, then this does not 
provide security against software-based attacks. The configuration registers for these modes must be protected 
from application software.  

6 Delegated signing schemes (optional) 
The security of the Trusted Boot process is primarily dependent on the secrecy of the private portion of the 
ROTPK. If the ROTPK private key is leaked or lost, then no recovery is possible. To mitigate this risk, the private 
portion of the ROTPK should have limited exposure, while the attack surface is moved to a delegated signing key 
of lesser authority. By limiting the exposure of the ROTPK’s private key, strict operational processes can be put in 
place around its usage, which reduces the possibilities for attackers.  

Implementations with higher robustness requirements should have a scheme in place to limit the exposure of 
the private key. The signing of key certificates should take place in a secure offline environment. It should be 
noted that operational processes are very dependent on business processes, which are not within the scope of 
this specification. However, this section will describe a scheme that implementations may wish to consider.  

Figures are provided to help illustrate the dependencies in such schemes. The provided examples only consider 
one level of delegation. However, the examples can easily be extended to include intermediate certificate 
authorities. 

6.1 Key certificate scheme 

In this scheme a key certificate is used. A key certificate is signed metadata that explicitly contains the identities 
of each delegated signing authority. The identities are represented by the hashes of each signer’s public key (see 
“Public key hash” within the Key Certificate of Figure 12).  

The ROTPK private key is used to sign the key certificate. It is expected that this event is very rare.  

Figure 11 shows an example of this scheme that includes a root authority with a delegated image signing key. 
The public key associated with the image in Figure 12 is called the “Image public key”. It should be noted that the 
example could have more intermediary signers to further reduce the privilege of each signer. 
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Figure 11: Key certificate example with a single image signer 

 

Implementation note: 

The image public key does not need to be embedded in the image manifest. It may be 
embedded in the Key Certificate itself or a separate file that is checked against the public key 
hash. 

 

6.1.1 Revocation workflow 

If the image signer loses control of the private signing key, then the revocation process is as follows:  

1. The image signer must generate a new key pair, keeping the private key secret.  
2. The public key of the new key pair is given to the holder of the ROTPK using a secure process. The ROTPK 

owner validates the image signer using multiple alternative factors of authentication.  
3. The holder of the ROTPK creates and signs a new key certificate, which includes:  

• an incremented Key Version number  

• the hashes of all delegated signer identities (their public keys), including the public key hash of 
the new keypair. The old public key hash associated to the PSA RoT image signer is removed and 
not included.  

• the policy of each signer (which public key is allowed to sign which type of image)  

4. All image signers must be notified by the ROTPK owner of the new changes  
5. The new key certificate is sent to all image signers and must be included with the latest firmware update  

The process is the same for each signer if they require revocation.  
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R10_TBFU_DELEGATION: On systems that support subsidiary keys, a compromised image signing key must be 
revoked as long as the private key of the ROTPK is not compromised, by signing a new key certificate with an 
incremented key version value. The use of subsidiary keys is not mandatory.  

R20_TBFU_DELEGATION: On systems that support subsidiary keys, the key version of the key certificate must be 
compared to an on-chip non-volatile counter to detect rollback of old keys. 

7 Cryptographic algorithms (informational) 
The cryptographic algorithms that are needed and their strength depend on the assets and the target 
requirements. This section describes the recommended cryptographic algorithms and sizes. The specific purpose 
of the required keys, such as a Root of Trust Public Key (ROTPK) are described in Section 3.2. Cryptographic best 
practice demands that the same key is not used for multiple purposes. 

This document recommends firmware to use one of the public key cryptography algorithms for the ROTPK.  

The choice between algorithms for cryptographic signatures may be made for patent related reasons, hardware 
cost, signature size and time required for authentication. The use of ECC for asymmetric cryptography is often 
beneficial because its smaller key sizes lessens storage and transmission requirements. System architects should 
also review the comparative performance of implementations in terms of throughput for each of the relevant 
key use cases. It should be noted that the speed of a signing operation may significantly differ from the speed of 
a signature verification operation. For this specification, only the latter is required for Trusted Boot and update. 
Since the image signing process is likely to be done in an offline environment and on a more capable machine, 
implementers may favor speed of signature verification since this can significantly affect boot time. 

7.1.1 RSA 

The RSA-PSS signature scheme signs a hash of a message instead of the message directly. This technique is often 
used with RSA because the amount of data that can be directly signed is proportional to the size of the keys, 
which is usually much smaller than the original message.  

A digital signature produced using RSA-PSS is the same length as the RSA key modulus, and so Arm considers 
signatures to be the same length as keys.  

For RSA signatures, it is recommended that the RSA-PSS signature scheme is used. 

In the absence of a compliance profile it is recommended to use the key size defined in the TBSA documents 
[2,3]. 

7.1.2 ECC 

Any use of ECDSA may want to follow the FIPS 186-4 standard [FIPS PUB 186-4]. The Commercial National 
Security Algorithm (CNSA) Suite recommends the P-384 curve as a parameter. Alternatively, the Standards for 
Efficient Cryptography Group (SECG) also provide recommendations for curves and parameters.  

In the absence of a compliance profile it is recommended to use the key size defined in the TBSA documents 
[2,3]. 

7.1.3 EdDSA 

Any use of EdDSA should conform to IETF RFC 8032 [RFC 8032].  

In the absence of a compliance profile it is recommended to use the key size defined in the TBSA documents 
[2,3]. 
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7.1.4 Hashing 

In the absence of a compliance profile, all cryptographic hashes in this document must use either:  

• Secure Hash Algorithm 2 (at least 256 bits). Systems that are expected to be in the field for a long time 
are recommended to use the stronger algorithm SHA-384, which is suggested by the CNSA suite.  

• SHA-3 (at least 256 bits) 

7.1.5 Key derivation 

For Key Derivation Functions (KDF) it is recommended to follow NIST’s recommendations as specified in NIST 
800-108 [8].  

7.1.6 Side channels 

Shared secrets that are used for encryption and decryption can be vulnerable to side-channel key-recovery 
attacks. Public key authentication, as required by this specification, is unaffected because no secret is required 
to authenticate firmware. However, ensuring confidentiality of assets remains an issue. 

Cryptographic algorithms can be implemented with hardware dedicated engines or completely in software. Both 
might be protected against non-invasive side-channel attacks. The software implementation of the cryptographic 
primitives may want to ensure that their execution have the same processing time and cache footprint for every 
code path in the cryptographic algorithm. 

 

8 Update process (informational) 
Some devices require protection against failure of a new image by retention of a known good image, normally 
the current image. This implies sufficient NVM to store two images. The simplest case is when both images might 
be stored on the device in eFlash, in which case the eFlash has to be dimensioned for two image slots, a primary 
slot and a secondary slot. The same principle can be applied for external flash. Following the download and 
processing of a new image the update client of the device is responsible for programming the new image into 
the secondary slot and arranging for the device to be rebooted. Images that have been provisioned to storage 
are known as candidate images. 

The update process might fetch images from an external interface such as USB, UART, SD-MMC, NAND, NOR, 
Ethernet to SoC NVM memories such as NAND Flash, LPPDR2-NVM or any memory as indicated by SoC inputs 
pins.  

The update procedure may consist of the following stages:  

1. Fetching signed manifests and their corresponding firmware images 

2. Authenticating the firmware images using the manifests to check their provenance and integrity 

3. Authorizing updates against a device security policy 

4. Installing the images into persistent storage 

A high availability use case may require candidate SPE images to be write-protected from the NSPE at all times. 
This ensures that certain images cannot be overwritten. This can be achieved if the SPE configures the 
appropriate hardware isolation mechanisms correctly. 

A device security policy is used by an updater to authorize the firmware update. It may include information 
about:  

• the public keys that must be used to verify specific images 
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• whether the update is targeted for that specific device  

• whether the device has enough power to perform all the required steps 

• rate limiting the frequency of updates in order to prevent premature write exhaustion of flash   

There may be restrictions set by any installed device management software. 

An update server holding firmware images should not be trusted for providing any security. The only data the 
updater needs to trust is manifest information signed by a trusted authority. Therefore, image updates can be 
propagated in different fashions. For instance, in a mesh topology of IoT or edge devices it may be convenient to 
distribute and host image updates via a local available gateway or through a decentralized distribution 
mechanism. Similarly, a network service provider may have an elaborate and dynamic content distribution 
network for provisioning updates to different regions resulting in fast updates and less network pressure. 

For rich devices, Arm recommends OEMs implement the UEFI Capsule Update interface to give operating 
systems a standard way of updating firmware.   

Appendix A: Example manifest using the IETF SUIT draft 
The IETF SUIT working group is developing a standard firmware manifest specifically for constrained devices. 
Arm recommends this standard for microcontrollers and embedded processors. This following mapping table is 
based on the draft-ietf-suit-manifest-03 document available from the IETF. It is recommended to use the latest 
version published by the IETF. 

 

Table 3 Example mapping of requirements to SUIT fields 

PSA-TBFU field IETF-SUIT field Description 

Manifest version manifest-version  

Image version manifest-sequence-
number 

Used for rollback protection 

Image hash digest-bytes  

Image size image-size  

 

Appendix B: Example manifest using the X.509v3 standard 
Application processors, such as the Cortex-A series, have sufficient resources to handle industry standard X.509 
certificates within a reasonable computation budget. This section provides an example interpretation of the PSA-
TBFU manifest requirements using the X.509 standard.  

The fields are part of the X.509 content certificate. Some fields defined in this specification are hence 
represented as X.509v3 certificate extensions.   

DER encoding is recommended. 
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Table 4: Example mapping of requirements to X.509v3 fields 

PSA-TBFU 

field 

X.509 field Extension name Extension 

criticality 

Extension 

size 

(bytes) 

Description 

Image hash 
value 

Extension FirmwareHash 1 >=32 SHA-256 is 32 bytes 

SHA-512 is 64 bytes 

etc 

 

Image size Extension FirmwareSize 0 >=32  

Image type Extension FirmwareType 1 1 Identifies the component type. The 
value is IMPDEF. 

Image 
version 

Extension FirmwareNVCounter 1 4 Used for anti-rollback protection.  

Legacy implementations may use: 
“TrustedFirmwareNVCounter” or 
“NonTrustedFirmwareNVCounter” 

Vendor/class 
ID 

Certificate 
Issuer 
name 

Subject 
name 

n/a n/a n/a Used to make sure that an update 
is not intended for another device.  

Manifest 
version 

n/a n/a n/a n/a An X.509 certificate is already 
versioned. 

 

Appendix C: Checklist 
 

Ref name Description 

R10_TBFU_KEYS  The system must include at least one firmware verification public key known as a 
Root of Trust Public Key (ROTPK) and a Hardware Unique Key (HUK) 

R20_TBFU_KEYS  Each ROTPK must be immutable. These can be stored using a locked on-chip flash 
sector, a secure element, or on-chip OTP memory. It is permitted to store an 
immutable hash of each ROTPK to check the integrity of ROTPKs in untrusted 
storage.  

 

Ref name Description 

R00_TBFU_EXEC  Each SPE image must be authenticated before execution. It is recommended to 
authenticate NSPE images.  
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R10_TBFU_EXEC  Any use of a MAC to re-key and authenticate a firmware image manifest must be in 
the form of a HMAC, CMAC, or GMAC signature. The key may either be in trusted 
memory or in a trusted subsystem. 

R20_TBFU_EXEC  Any caching of authenticated manifests must be held in trusted memory and write 
protected from untrusted components.   

R30_TBFU_EXEC  Secrets used by a trusted component X must be scrubbed from volatile memory and 
registers before ownership of the memory is transferred to a component not trusted 
by X. 

R40_TBFU_EXEC  Each loaded SPE image must be verified in trusted memory before execution. It is 
permitted for NSPE images to be loaded into untrusted memory.  

R50_TBFU_EXEC  The boot process must be uninterruptible during signature verification to prevent 
race conditions.  

R60_TBFU_EXEC  The boot process must not execute a component if a security violation occurs.   

R70_TBFU_EXEC  The update process must be an atomic operation. If interrupted, then the update 
process must either revert to the prior state or enter a recovery mode.  

R80_TBFU_EXEC  If the NSPE software is to be executed on a secondary processor, the secondary 
processor must be kept in reset or halted until the NSPE firmware has been verified 
by the SPE.  

R85_TBFU_EXEC  Isolation mechanisms must be correctly configured before the NSPE begins 
execution.  

R95_TBFU_EXEC  Any available I/O protection mechanisms must be enabled to integrity protect 
loaded images from untrusted peripherals. 

 

Ref name Description 

R10_TBFU_STORAGE An SPE image in untrusted memory must be copied to trusted memory for 
authentication.  

R20_TBFU_STORAGE When an image in untrusted memory is copied into trusted memory, it must be 
integrity checked after the copy has completed. The integrity check must match the 
authentication data for the image.  

R30_TBFU_STORAGE Authentication data used to verify images must be in trusted memory before use.  

R40_TBFU_STORAGE Encrypted images in untrusted memory must be decrypted into trusted memory and 
authenticated in trusted memory.  

 

Ref name Description 
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R20_TBFU_BOOT The immutable bootloader must verify loaded images using the ROTPK itself or a 
delegated key. It is permitted for the immutable bootloader to only verify a single 
firmware image containing all remaining verification functionality 

R40_TBFU_BOOT It must not be possible to debug the immutable bootloader while Trusted Boot is 
enabled 

R60_TBFU_BOOT If the platform has a programmable reset address, then the PSA RoT must protect 
this from untrusted components. This may be achieved using a locking or memory 
protection mechanism.  

R70_TBFU_BOOT Either the hardware or the immutable bootloader must invalidate caches before 
using them 

 

Ref name Description 

R80_TBFU_MANIFEST If either the NSPE-PK or the NSPE image hash are authentic and equal to zero, then 
the NSPE image does not require authentication in order to execute. 

 

Ref name Description 

R10_TBFU_ENCRYPTION  Each image containing secrets must be encrypted. 

 

Ref name Description 

R10_TBFU_ROLLBACK  Only images of a higher version or the same version can be executed.  

R20_TBFU_ROLLBACK  Each software stage must not be able to decrease their corresponding rollback 
counter. It is permitted for the PSA RoT to be exempt from this rule if it is 
responsible for preserving the integrity of counters.  

R30_TBFU_ROLLBACK  Rollback counters must be implemented either with on-chip OTP memory, a trusted 
subsystem, or a private on-chip NVM region which is only write-accessible to the 
Trusted Boot software.  

R40_TBFU_ROLLBACK  Rollback counters must never overflow. If the maximum value is reached it must 
remain at that value.  

R50_TBFU_ROLLBACK  Each rollback counter used to validate SPE software must support at least 64 values. 
If the SPE consists of multiple boot stages, then it is recommended that each stage 
has a dedicated counter for each verification step.  

R60_TBFU_ROLLBACK  If the counter value in the manifest is greater than the rollback counter, and if the 
manifest is authentic, then the rollback counter must eventually be increased to 
match the counter value in the manifest.  

R70_TBFU_ROLLBACK  Any implemented mechanism to reset rollback protection must be at least as secure 
as the image signing mechanism  
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Ref name Description 

R10_TBFU_ATTEST  On each reset, the immutable bootloader must create a boot state. 

R20_TBFU_ATTEST  The boot state must include calculated cryptographic measurements of loaded 
images and configuration files prior to execution. The immutable bootloader may 
also measure the installed NSPE image.  

R30_TBFU_ATTEST  All firmware loaded into trusted subsystems must be measured and verified at boot. 
The measurements must be included in the boot state.  

R40_TBFU_ATTEST  The boot state must include a randomly generated boot seed. It is permitted for the 
boot seed to be generated by the PSA RoT runtime software and added to the boot 
state once boot has completed.  

R50_TBFU_ATTEST  The boot seed must be 256-bits in size.  

R60_TBFU_ATTEST  The boot state must be stored in an on-chip memory area, which is only accessible 
to the PSA RoT. It is also permitted for the boot state to be stored within a trusted 
subsystem.  

R70_TBFU_ATTEST  All images and configuration files must be measured separately, even if they are in 
one firmware image package.  

R80_TBFU_ATTEST  In addition to measuring the next stage, each stage must measure parameters that 
may influence the behavior of software.  

 

Ref name Description 

R10_TBFU_DELEGATION On systems that support subsidiary keys, a compromised image signing key must be 
revoked as long as the private key of the ROTPK is not compromised, by signing a 
new key certificate with an incremented key version value. The use of subsidiary 
keys is not mandatory.  

R10_TBFU_DELEGATION On systems that support subsidiary keys, the key version of the key certificate must 
be compared to an on-chip non-volatile counter to detect rollback of old keys. 

 

Appendix D: Detailed change log 
 

Version Change 

1.0 Beta 0 • IETF SUIT manifest format is now recommended for constrained devices.  

• X.509v3 certificates are now recommended for application processors. 

• Clarification - NSPE software is permitted to be loaded into off-chip memory  

• Update client section has been renamed to Update process, and is now informational  
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• Manifest requirements have been separated from the update section  

1.0 Beta 1 • New PSA terminology section introduced as Section 2. 

• Rules no longer use on-chip/off-chip terminology. Trust boundaries are defined and used 
in the rules to refer to trusted/untrusted peripherals/memory/storage. 

• Image hash of encrypted images must be of ciphertext not the plaintext. 

• Removed Section 6.2  

• Removed security epoch as it is no longer defined in the PSA 

• Updated rollback section to allow for implementation-defined rollback schemes 

• Introduced R25_TBFU_EXEC to be explicit about system behavior during security 
violations. 

• Example manifests are included in the appendix for the IETF SUIT and ITU X.509v3 
standards. 

• Simplified the figures in Chapter 4. 

• Introduced R80_TBFU_MANIFEST about disabling Trusted Boot for the NSPE. 

• Introduced R30_TBFU_KEYS and R40_TBFU_KEYS 

 

1.0 • Document restructure 

• Improved definition of terminology  

• Scope subsection now clearly describes threats and mitigations that are covered 

• “Approved algorithms” section has been renamed, relabeled as informational, and moved 
to the end of the document. Implementers should check local government regulations 
and advisories on cryptographic best practices. 

• Update process (informational) section moved to the back of the document. 

• New section on reset protection, which also introduces R70_TBFU_BOOT to address 
invalid cache state for processors that include caches  

• Elaborate Unlocking chapter  

• Section 4 is now aligned with TBSA’s baseline and assisted architecture definitions 

• Added R10_TBFU_ENCRYPTION to make encryption requirements explicit  

• Removed R30_TBFU_BOOT and R90_TBFU_EXEC due to redundancy  

• Change direction of arrows in Figure 12 to represent a more realistic flow 

• Rule table added 

• Renamed PRoT to PSA RoT 

• Reduce emphasis on PSA RoT where not needed 

• Modified R20_TBFU_ATTEST to explicitly include measurements of configuration files  

• Removed R50_TBFU_STORAGE 

1.1 • ‘Image metadata’ section has been moved to an earlier part of the document 

• Added cache invalidation on reset 
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• Introduced Invasive subsystems term in PSA terminology section 

• Relabeled “Scenarios as “Supply chain scenarios” 

• Relabeled NVCounter to FirmwareNVCounter 

• Rephrased R40_TBFU_BOOT  

• Updated SUIT reference and guidance 

• Ciphertext hashes and plaintext hashes are permitted for image manifests 

• Added clarifications about encrypted images 

 


	About this document
	Release Information
	Arm Non-Confidential Document Licence (“Licence”)
	References
	Terms and abbreviations
	Feedback
	Feedback on this book


	1 Introduction
	1.1 Scope
	1.2 Assumptions
	1.3 Compliance

	2 PSA terminology
	2.1 Trusted subsystem
	2.2 Invasive subsystem
	2.3 Trusted memory
	2.4 Image
	2.5 Image manifest

	3 Security requirements
	3.1 Boot flow (informational)
	3.2 Chain of Trust (informational)
	3.3 Use cases (informational)
	3.4 Supply chain scenarios (informational)
	3.4.1 Single provider
	3.4.2 Multiple dependent providers
	3.4.3 Multiple independent providers
	3.4.4 Certificate creation and key management

	3.5 Image metadata and parameters
	3.6 Image verification
	3.6.1 Secret scrubbing
	3.6.2 Concurrency restrictions
	3.6.3 Isolation mechanisms
	3.6.4 DMA protection
	3.6.5 Secure storage

	3.7 Immutable bootloader
	3.7.1 Reset protection

	3.8 Unlocking
	3.9 Image encryption
	3.10 Rollback protection
	3.11 Measured boot and attestation

	4 Architectural variants
	4.1 Baseline architecture
	4.1.1 Boot from on-chip storage
	4.1.2 Boot from off-chip storage

	4.2 Assisted architecture
	4.2.1 Boot using a passive trusted subsystem
	4.2.2 Boot using an on-chip trusted subsystem


	5 eFlash considerations (informational)
	6 Delegated signing schemes (optional)
	6.1 Key certificate scheme
	6.1.1 Revocation workflow


	7 Cryptographic algorithms (informational)
	7.1.1 RSA
	7.1.2 ECC
	7.1.3 EdDSA
	7.1.4 Hashing
	7.1.5 Key derivation
	7.1.6 Side channels

	8 Update process (informational)
	Appendix A: Example manifest using the IETF SUIT draft
	Appendix B: Example manifest using the X.509v3 standard
	Appendix C: Checklist
	Appendix D: Detailed change log

