
The Power of Speech:
Supporting Voice-
Driven Commands
in Small, Low-Power
Microcontrollers
By Yundong Zhang, Naveen

Suda, Liangzhen Lai, and

Vikas Chandra, Arm

The Power of Speech: Supporting Voice-
Driven Commands in Small, Low-Power
Microcontrollers

With the widespread use of voice-activated virtual assistants,
such as Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, and the
Google Assistant, voice has become an everyday way to interact
with electronics. We’re talking to our devices more than ever,
using speech to initiate searches, issue commands, and even make
purchases.

There are a number of reasons why using your voice to control an
electronic device is a good idea. It’s almost always easier to talk
than to type, and having voice activation means electronics can be
controlled entirely hands-free. Devices can also have highly intuitive
user interfaces, even if they don’t have a display, and can operate in
challenging environments where a keyboard would be problematic.

In developing the mechanisms for voice activation, designers have
found that neural networks, which are modeled on brain function,
are better at understanding us than traditional speech-processing
networks. This is partly because neural networks, also known
as “deep learning” algorithms, can be trained and can learn from
experience, so they become more accurate over time.

Making Voice-Driven Commands Easier
to implement

Neural networks are algorithms that improve over time, by learning
from accumulated data. They’re typically used in computationally-
intensive applications that deal with very large amounts of data,
including robot kinematics, statistical analysis, computer vision, and
speech recognition. Neural networks can perform many millions of
operations in a single second, and are usually executed on advanced,
high-powered processors.

Performing full-on voice recognition means being able to recognize
an entire dictionary’s worth of words and phrases, and many of the
devices we use every day don’t have enough memory and onboard
processing power to support full-on voice recognition with sufficient

accuracy. So how do things like smartphones, smart speakers, smart
home controllers, and other devices, operating at the edge of a
network, support voice-initiated commands? By using processing
power in the cloud along with a low-power, less processor-intensive
algorithm, called KeyWord Spotting (KWS), which resides in the edge
device. The edge device’s keyword spotting algorithm listens for a
specific set of keywords that then initiates a connection to the cloud.

Several such keywords have already become part of the daily lexicon.
Saying “Hey, Siri” to an iPhone, “Ok, Google” to an Android device,
“Alexa” to an Amazon Echo, or “Hey, Cortana” to a Microsoft device
is putting keyword spotting to use. Having heard the keyword, the
device connects to the cloud and starts transmitting whatever’s said
next to a backend processing system. The backend system uses its
built-in, heavy-duty processing power to make sense of the sounds,
create a response, and then send that response back to the device.

Keyword Spotting Needs Low-Power,
Compact Operation

Keyword spotting (which is also called keyword detection) has to be
very efficient. For completely hands-free operation, a voice-activated
system needs to listen continuously for commands. A person may
speak to the device at any time, and the device needs to be ready
to respond immediately. Always-on operation reduces energy
efficiency, so the implementation needs to consume as little power as
possible.

Keyword spotting also has to work on its own, in the edge device,
without interaction from the backend system. That’s because
transmitting continuous audio to the cloud introduces privacy
concerns and bandwidth issues. There are already billions of devices
accessing cloud services, and many billions more are predicted
to come online soon. Even with only a portion of those devices
supporting voice-initiated commands, the amount of network traffic
required to support continuous listening would be overwhelming,
and would take bandwidth away from other tasks that don’t involve
speech. Heavy network usage and lack of bandwidth could also
impair performance, by introducing latency and causing frustrating
delays in the system’s response to a command.

Borrowing from an approach used for computer vision,

we created a compact keyword spotting algorithm that

supports voice-driven commands in edge devices that

use a very small, low-power microcontroller.

Bringing Keyword Spotting to
More Devices

Today’s keyword spotting algorithms are designed to give quick
responses while working in a variety of edge devices. But many of
the devices that we would like to have support speech recognition
– think small appliances, personal devices, wearables, and other
portables – are so limited in their computing and power capacity
that they either don’t deliver enough accuracy with today’s keyword
spotting algorithms or simply can’t support them at all.

To make keyword spotting viable in a wider range of edge devices,
there’s a need to optimize a neural network for keyword spotting
such that it can perform at an acceptable level in a broader range of
systems, including those that are battery operated, have very limited
power budgets, and use a very small microcontroller with only
limited memory and computing capability.

Our work shows that it is, indeed, possible to create a keyword
spotting solution that meets these requirements. We found that a
certain architecture, more commonly used for computer vision than

for speech recognition, called a Depthwise Separable Convolutional
Neural Network (DS-CNN), offers the performance and scalability
we’re looking for. In terms of accuracy, our DS-CNN model achieved
an accuracy of 95.4% in our evaluation. This was 10% better than
our Deep Neural Network (DNN) model, based on an architecture
commonly used for speech recognition.

This paper summarizes how we got these results.

 Choosing our Microcontroller Targets

To give ourselves a baseline hardware configuration to work with,
we looked at small, off-the-shelf microcontrollers commonly used
in edge devices, and chose a few as target examples. Looking at the
characteristics of the processor core, the size of the SRAM block,
and the amount of embedded flash memory, we selected from the
Arm Cortex-M series a number of processor cores with different
compute capabilities running at different frequencies. Table 1 gives
a sample list of Cortex-M based microcontroller platforms and the
hardware constraints they present.

For our purposes, the Cortex-M0 microcontrollers are the “smallest”
options, since they have the lowest clock frequency and have the
least amount of memory. The Cortex-M3 microcontrollers, with
their somewhat higher frequency and larger memory, can be
considered “medium” options, while the Cortex-M4 and Cortex-M7
can be considered “large” microcontroller options. It’s important
to note that the Cortex-M4 and Cortex-M7 microcontrollers have
integrated functions for Digital Signal Processing (DSP), which can
help the neural networks that support keyword spotting run more
efficiently.

Our aim was to develop a solution for keyword spotting that could be
scaled to work in any of these microcontroller platforms. To do this,
we focused on two hardware constraints.

• Limited memory footprint
 As shown in Table 1, the microcontrollers have memories that

offer from a few dozen to a few hundred kilobytes of space. The

entire neural network model, including input/output, weights, and

activations, had to fit within this very tight memory budget.

• Limited computing resources
 Since the keyword spotting function is always on, the algorithm

places real-time constraints on the total number of operations

for neural network functionality. That is, if most or all of the

computing power is being used to support continuous listening,

there’s not much, if anything, left over for operating the

Arm Mbed™ platform Processor Frequency SRAM Flash

Mbed LPC11 U24 Cortex-M0 48 MHz 8 KB 32 KB

Nordic nRF51-DK Cortex-M0 16 MHz 32 KB 256 KB

Mbed LPC1768 Cortex-M3 96 MHz 32 KB 512 KB

Nucleo F103RB Cortex-M3 72 MHz 20 KB 128 KB

Nucleo L476RG Cortex-M4 80 MHz 128 KB 1 MB

Nucleo F411RE Cortex-M4 100 MHz 128 KB 512 KB

FRDM-K64F Cortex-M4 120 MHz 256 KB 1 MB

Nucleo F746ZG Cortex-M7 216 MHz 320 KB 1 MB

Table 1. Typical off-the-shelf Arm Cortex-M based microcontroller development platforms
(Table 1 from the original paper)

 voice-recognition functions once they’re triggered. Reducing

computational complexity, so as to minimize execution time, is a

way to limit the amount of computing resources needed to run

keyword spotting.

Choosing our Neural Networks

Before selecting the neural networks we would train and evaluate,
we did some background research. We found that, although there
are many neural network models for keyword spotting presented
in technical papers, it’s difficult to make a fair comparison between
them as they are all trained and evaluated on different proprietary
datasets with different input speech features and audio duration. To
create an “apples to apples” comparison, we made our own models,
based on various neural network architectures, and trained them all
on the same dataset. Testing neural networks that were taught the
same words let us make valid comparisons for performance.

Here are the neural network architectures we explored most
thoroughly, and tested on our sample configurations.

• DNN: Deep Neural Network

• CNN: Convolutional Neural Network

• Basic LSTM: Basic Long Short-Term Memory

• LSTM: Long Short-Term Memory

• GRU: Gated Recurrent Unit

• CRNN: Convolutional Recurrent Neural Network

• DS-CNN: Depthwise Separable Convolutional Neural Network

All these architectures are commonly used for speech recognition,
except for DS-CNN. DS-CNN is an alternative method from
computer vision. Google has developed a family of small, low-latency,
low-power models for computer vision, called MobileNets, based
on DS-CNN. MobileNets offer the kind of scalability, for computer
vision, that we were aiming for with speech recognition, so we added
it to our list. Figure 1 is a diagram of the DS-CNN architecture.

MFCC Features
Shape:T x F

Conv1

DS-Conv1

DS-Conv2

DS-ConvN

Average Pool

Output layer

Depthwise
Conv

Batch Norm
ReLU

Pointwise Conv

Batch Norm +
ReLU

Figure 1. DS-CNN architecture frequently used in computer vision
(Figure 4 from the original paper)

Training our Models

Using our chosen neural network architectures as starting points, we
created our own implementations of models for keyword spotting
and trained each on the Google speech commands dataset, a limited
dataset intended as a guide to help designers get familiar with
speech-recognition systems.

The Google speech commands dataset includes 65,000 one-second-
long audio clips of 30 essential words, as said by different people.
Each audio clip includes just one word, such as yes, no, up, down, left,
right, on, off, stop, go, or the numbers one through ten. To help sift
out keywords, a series of “unknown” words, along with audio clips of
silence, are also included. It’s a good toolset for creating simple voice
controls, using keyword spotting, without having to build everything
from scratch.

Reducing Computational Complexity

When we started investigating neural networks, we found that
the research emphasis for keyword spotting has generally been on
maximizing accuracy within a small memory footprint, and not on
reducing the number of operations per inference. In other words,
present-day implementations only addressed one of our two key
hardware constraints. As a result, we began experimenting with
optimizations, to see if we could increase accuracy within a small
computing footprint.

Trained model weights are usually represented by 32-bit floating
point numbers, which can represent a wide range of values, including
very small and very big numbers. Using a compression technique
called quantization, we were able to convert the 32-bit floating
point unit to an 8-bit fixed point unit. The 8-bit fixed point unit is
more limited, able to represent a much narrow range of values, but

we found that it still worked for keyword spotting without losing
accuracy. The result is an algorithm for keyword spotting that is
computationally less complex, so it needs fewer computing resources
to run.

Putting Them to the Test

Having taught all our models to detect the same set of keywords
and having quantized the models to 8-bit fixed point numbers, we
compared how our models performed, in terms of accuracy, memory
footprint, and number of operations per inference.

Based on our chosen microcontrollers, we derived three sets of
memory/compute constraints for each of our neural networks.
Table 2 specifies these constraints, targeting small, medium, and
large microcontrollers. In deriving these categories, we assumed
that some amount of resources will be allocated for running other
tasks, such as the operating system, inputs/outputs, network
communications, and so on. We also assumed that the system runs
ten inferences per second with 8-bit weight/activations.

NN size NN memory
limit

Ops/inference limit

Small (S) 80 KB 6 MOps

Medium (M) 200 KB 20 MOps

Large (L) 500 KB 80 MOps

Table 2. Memory/Compute Constraints of our Small, Medium, and Large Neural Networks
(Table 3 of original paper)

Table 3. Summary of Neural Network Performance
(Table 5 of original paper)

Table 3 shows the results of our test cases. The DS-CNN model won out in all three sets of constraints.

NN model

Acc. Mem. Ops Acc. Mem. Ops Acc. Mem. Ops

DNN 84.6% 80.0k 158.8K 86.4% 199.4K 397.0K 86.7% 496.6K 990.2K

CNN 91.6% 79.0k 5.0M 92.2% 199.4K 17.3M 92.7% 497.8K 25.3M

Basic LSTM 92.0% 63.3k 5.9M 93.0% 196.5K 18.9M 93.4% 494.5K 47.9M

LSTM 92.9% 79.5k 3.9M 93.9% 198.6K 19.2M 94.8% 498.8K 48.4M

GRU 93.5% 78.8k 3.8M 94.2% 200.0K 19.2M 94.7% 499.7K 48.4M

CRNN 94.0% 79.7k 3.0M 94.4% 199.8K 7.6M 95.0% 499.5K 19.3M

DS-CNN 94.4% 38.6k 5.4M 94.9% 189.2K 19.8M 95.4% 497.6K 56.9M

S(80KB, 6MOps) M(200KB, 20MOps) L(500KB, 80MOps)

Conclusion

Our entire keyword spotting application occupies only about 70
KB of memory, so it fits within the 80 KB limit of even the smallest
microcontrollers we evaluated. Our DS-CNN model, which delivers
the highest accuracies across every size of microcontroller, shows
that it’s possible to produce an effective application for keyword
spotting, with good scalability, even when targeting very small, very
low-power microcontrollers.

Learn More

A more technical description of our work is available at

https://community.arm.com/processors/b/blog/posts/high-accuracy-
keyword-spotting-on-cortex-m-processors.

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information contained in, or the product described in, this

document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder. The product described in this document is subject

to continuous developments and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied or expressed,

including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document is intended only to provide information to the reader about

the product. To the extent permitted by local laws Arm shall not be liable for any loss or damage arising from the use of any information in this document or any error or omission

in such information.

© Arm Ltd. 01.18

