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With the widespread use of voice-activated virtual assistants, 
such as Apple’s Siri, Amazon’s Alexa, Microsoft’s Cortana, and the 
Google Assistant, voice has become an everyday way to interact 
with electronics. We’re talking to our devices more than ever, 
using speech to initiate searches, issue commands, and even make 
purchases. 

There are a number of reasons why using your voice to control an 
electronic device is a good idea. It’s almost always easier to talk 
than to type, and having voice activation means electronics can be 
controlled entirely hands-free. Devices can also have highly intuitive 
user interfaces, even if they don’t have a display, and can operate in 
challenging environments where a keyboard would be problematic. 

In developing the mechanisms for voice activation, designers have 
found that neural networks, which are modeled on brain function, 
are better at understanding us than traditional speech-processing 
networks. This is partly because neural networks, also known 
as “deep learning” algorithms, can be trained and can learn from 
experience, so they become more accurate over time. 

Making Voice-Driven Commands Easier   
to implement

Neural networks are algorithms that improve over time, by learning 
from accumulated data. They’re typically used in computationally-
intensive applications that deal with very large amounts of data, 
including robot kinematics, statistical analysis, computer vision, and 
speech recognition. Neural networks can perform many millions of 
operations in a single second, and are usually executed on advanced, 
high-powered processors. 

Performing full-on voice recognition means being able to recognize 
an entire dictionary’s worth of words and phrases, and many of the 
devices we use every day don’t have enough memory and onboard 
processing power to support full-on voice recognition with sufficient 

accuracy. So how do things like smartphones, smart speakers, smart 
home controllers, and other devices, operating at the edge of a 
network, support voice-initiated commands? By using processing 
power in the cloud along with a low-power, less processor-intensive 
algorithm, called KeyWord Spotting (KWS), which resides in the edge 
device. The edge device’s keyword spotting algorithm listens for a 
specific set of keywords that then initiates a connection to the cloud. 

Several such keywords have already become part of the daily lexicon. 
Saying “Hey, Siri” to an iPhone, “Ok, Google” to an Android device, 
“Alexa” to an Amazon Echo, or “Hey, Cortana” to a Microsoft device 
is putting keyword spotting to use. Having heard the keyword, the 
device connects to the cloud and starts transmitting whatever’s said 
next to a backend processing system. The backend system uses its 
built-in, heavy-duty processing power to make sense of the sounds, 
create a response, and then send that response back to the device. 

Keyword Spotting Needs Low-Power, 
Compact Operation

Keyword spotting (which is also called keyword detection) has to be 
very efficient. For completely hands-free operation, a voice-activated 
system needs to listen continuously for commands. A person may 
speak to the device at any time, and the device needs to be ready 
to respond immediately. Always-on operation reduces energy 
efficiency, so the implementation needs to consume as little power as 
possible. 

Keyword spotting also has to work on its own, in the edge device, 
without interaction from the backend system. That’s because 
transmitting continuous audio to the cloud introduces privacy 
concerns and bandwidth issues. There are already billions of devices 
accessing cloud services, and many billions more are predicted 
to come online soon. Even with only a portion of those devices 
supporting voice-initiated commands, the amount of network traffic 
required to support continuous listening would be overwhelming, 
and would take bandwidth away from other tasks that don’t involve 
speech. Heavy network usage and lack of bandwidth could also 
impair performance, by introducing latency and causing frustrating 
delays in the system’s response to a command. 

Borrowing from an approach used for computer vision, 

we created a compact keyword spotting algorithm that 

supports voice-driven commands in edge devices that 

use a very small, low-power microcontroller. 



Bringing Keyword Spotting to                 
More Devices

Today’s keyword spotting algorithms are designed to give quick 
responses while working in a variety of edge devices. But many of 
the devices that we would like to have support speech recognition 
– think small appliances, personal devices, wearables, and other 
portables – are so limited in their computing and power capacity 
that they either don’t deliver enough accuracy with today’s keyword 
spotting algorithms or simply can’t support them at all. 

To make keyword spotting viable in a wider range of edge devices, 
there’s a need to optimize a neural network for keyword spotting 
such that it can perform at an acceptable level in a broader range of 
systems, including those that are battery operated, have very limited 
power budgets, and use a very small microcontroller with only 
limited memory and computing capability. 

Our work shows that it is, indeed, possible to create a keyword 
spotting solution that meets these requirements. We found that a 
certain architecture, more commonly used for computer vision than 

for speech recognition, called a Depthwise Separable Convolutional 
Neural Network (DS-CNN), offers the performance and scalability 
we’re looking for. In terms of accuracy, our DS-CNN model achieved 
an accuracy of 95.4% in our evaluation. This was 10% better than 
our Deep Neural Network (DNN) model, based on an architecture 
commonly used for speech recognition. 

This paper summarizes how we got these results. 

 Choosing our Microcontroller Targets

To give ourselves a baseline hardware configuration to work with, 
we looked at small, off-the-shelf microcontrollers commonly used 
in edge devices, and chose a few as target examples. Looking at the 
characteristics of the processor core, the size of the SRAM block, 
and the amount of embedded flash memory, we selected from the 
Arm Cortex-M series a number of processor cores with different 
compute capabilities running at different frequencies. Table 1 gives 
a sample list of Cortex-M based microcontroller platforms and the 
hardware constraints they present.

For our purposes, the Cortex-M0 microcontrollers are the “smallest” 
options, since they have the lowest clock frequency and have the 
least amount of memory. The Cortex-M3 microcontrollers, with 
their somewhat higher frequency and larger memory, can be 
considered “medium” options, while the Cortex-M4 and Cortex-M7 
can be considered “large” microcontroller options. It’s important 
to note that the Cortex-M4 and Cortex-M7 microcontrollers have 
integrated functions for Digital Signal Processing (DSP), which can 
help the neural networks that support keyword spotting run more 
efficiently. 

Our aim was to develop a solution for keyword spotting that could be 
scaled to work in any of these microcontroller platforms. To do this, 
we focused on two hardware constraints.  

• Limited memory footprint
 As shown in Table 1, the microcontrollers have memories that 

offer from a few dozen to a few hundred kilobytes of space. The 

entire neural network model, including input/output, weights, and 

activations, had to fit within this very tight memory budget. 

• Limited computing resources
 Since the keyword spotting function is always on, the algorithm 

places real-time constraints on the total number of operations 

for neural network functionality. That is, if most or all of the 

computing power is being used to support continuous listening, 

there’s not much, if anything, left over for operating the 

Arm Mbed™ platform Processor Frequency SRAM Flash

Mbed LPC11 U24 Cortex-M0 48 MHz 8 KB 32 KB

Nordic nRF51-DK Cortex-M0 16 MHz 32 KB 256 KB

Mbed LPC1768 Cortex-M3 96 MHz 32 KB 512 KB

Nucleo F103RB Cortex-M3 72 MHz 20 KB 128 KB

Nucleo L476RG Cortex-M4 80 MHz 128 KB 1 MB

Nucleo F411RE Cortex-M4 100 MHz 128 KB 512 KB

FRDM-K64F Cortex-M4 120 MHz 256 KB 1 MB

Nucleo F746ZG Cortex-M7 216 MHz 320 KB 1 MB

Table 1. Typical off-the-shelf Arm Cortex-M based microcontroller development platforms
(Table 1 from the original paper)



 voice-recognition functions once they’re triggered. Reducing 

computational complexity, so as to minimize execution time, is a 

way to limit the amount of computing resources needed to run 

keyword spotting.   

Choosing our Neural Networks

Before selecting the neural networks we would train and evaluate, 
we did some background research. We found that, although there 
are many neural network models for keyword spotting presented 
in technical papers, it’s difficult to make a fair comparison between 
them as they are all trained and evaluated on different proprietary 
datasets with different input speech features and audio duration. To 
create an “apples to apples” comparison, we made our own models, 
based on various neural network architectures, and trained them all 
on the same dataset. Testing neural networks that were taught the 
same words let us make valid comparisons for performance. 

Here are the neural network architectures we explored most 
thoroughly, and tested on our sample configurations.

• DNN: Deep Neural Network

• CNN: Convolutional Neural Network

• Basic LSTM: Basic Long Short-Term Memory

• LSTM: Long Short-Term Memory

• GRU: Gated Recurrent Unit

• CRNN: Convolutional Recurrent Neural Network

• DS-CNN: Depthwise Separable Convolutional Neural Network

All these architectures are commonly used for speech recognition, 
except for DS-CNN. DS-CNN is an alternative method from 
computer vision. Google has developed a family of small, low-latency, 
low-power models for computer vision, called MobileNets, based 
on DS-CNN. MobileNets offer the kind of scalability, for computer 
vision, that we were aiming for with speech recognition, so we added 
it to our list. Figure 1 is a diagram of the DS-CNN architecture. 
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Figure 1. DS-CNN architecture frequently used in computer vision 
(Figure 4 from the original paper)



Training our Models

Using our chosen neural network architectures as starting points, we 
created our own implementations of models for keyword spotting 
and trained each on the Google speech commands dataset, a limited 
dataset intended as a guide to help designers get familiar with 
speech-recognition systems. 

The Google speech commands dataset includes 65,000 one-second-
long audio clips of 30 essential words, as said by different people. 
Each audio clip includes just one word, such as yes, no, up, down, left, 
right, on, off, stop, go, or the numbers one through ten. To help sift 
out keywords, a series of “unknown” words, along with audio clips of 
silence, are also included. It’s a good toolset for creating simple voice 
controls, using keyword spotting, without having to build everything 
from scratch.

Reducing Computational Complexity

When we started investigating neural networks, we found that 
the research emphasis for keyword spotting has generally been on 
maximizing accuracy within a small memory footprint, and not on 
reducing the number of operations per inference. In other words, 
present-day implementations only addressed one of our two key 
hardware constraints. As a result, we began experimenting with 
optimizations, to see if we could increase accuracy within a small 
computing footprint.

Trained model weights are usually represented by 32-bit floating 
point numbers, which can represent a wide range of values, including 
very small and very big numbers. Using a compression technique 
called quantization, we were able to convert the 32-bit floating 
point unit to an 8-bit fixed point unit. The 8-bit fixed point unit is 
more limited, able to represent a much narrow range of values, but 

we found that it still worked for keyword spotting without losing 
accuracy. The result is an algorithm for keyword spotting that is 
computationally less complex, so it needs fewer computing resources 
to run. 

Putting Them to the Test

Having taught all our models to detect the same set of keywords 
and having quantized the models to 8-bit fixed point numbers, we 
compared how our models performed, in terms of accuracy, memory 
footprint, and number of operations per inference.

Based on our chosen microcontrollers, we derived three sets of 
memory/compute constraints for each of our neural networks. 
Table 2 specifies these constraints, targeting small, medium, and 
large microcontrollers. In deriving these categories, we assumed 
that some amount of resources will be allocated for running other 
tasks, such as the operating system, inputs/outputs, network 
communications, and so on. We also assumed that the system runs 
ten inferences per second with 8-bit weight/activations.   

NN size NN memory 
limit

Ops/inference limit

Small (S) 80 KB 6 MOps

Medium (M) 200 KB 20 MOps

Large (L) 500 KB 80 MOps

Table 2. Memory/Compute Constraints of our Small, Medium, and Large Neural Networks
(Table 3 of original paper)

Table 3. Summary of Neural Network Performance
(Table 5 of original paper)

Table 3 shows the results of our test cases. The DS-CNN model won out in all three sets of constraints.

NN model

Acc. Mem. Ops Acc. Mem. Ops Acc. Mem. Ops

DNN 84.6% 80.0k 158.8K 86.4% 199.4K 397.0K 86.7% 496.6K 990.2K

CNN 91.6% 79.0k 5.0M 92.2% 199.4K 17.3M 92.7% 497.8K 25.3M

Basic LSTM 92.0% 63.3k 5.9M 93.0% 196.5K 18.9M 93.4% 494.5K 47.9M

LSTM 92.9% 79.5k 3.9M 93.9% 198.6K 19.2M 94.8% 498.8K 48.4M

GRU 93.5% 78.8k 3.8M 94.2% 200.0K 19.2M 94.7% 499.7K 48.4M

CRNN 94.0% 79.7k 3.0M 94.4% 199.8K 7.6M 95.0% 499.5K 19.3M

DS-CNN 94.4% 38.6k 5.4M 94.9% 189.2K 19.8M 95.4% 497.6K 56.9M

S(80KB, 6MOps) M(200KB, 20MOps) L(500KB, 80MOps)



Conclusion

Our entire keyword spotting application occupies only about 70 
KB of memory, so it fits within the 80 KB limit of even the smallest 
microcontrollers we evaluated. Our DS-CNN model, which delivers 
the highest accuracies across every size of microcontroller, shows 
that it’s possible to produce an effective application for keyword 
spotting, with good scalability, even when targeting very small, very 
low-power microcontrollers.  

Learn More

A more technical description of our work is available at

https://community.arm.com/processors/b/blog/posts/high-accuracy-
keyword-spotting-on-cortex-m-processors.
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