The AMCNTENCLR0_EL0 characteristics are:
Disable control bits for the architected activity monitors event counters, AMEVCNTR0<n>_EL0.
AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to AArch32 System register AMCNTENCLR0[31:0] .
AArch64 System register AMCNTENCLR0_EL0 bits [31:0] are architecturally mapped to External register AMCNTENCLR0[31:0] .
This register is present only when AMUv1 is implemented. Otherwise, direct accesses to AMCNTENCLR0_EL0 are UNDEFINED.
Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.
AMCNTENCLR0_EL0 is a 64-bit register.
The AMCNTENCLR0_EL0 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
P<n>, bit [n] | |||||||||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Reserved, RES0.
Activity monitor event counter disable bit for AMEVCNTR0<n>_EL0.
Bits [31:N] are RAZ/WI. N is the value in AMCGCR_EL0.CG0NC.
Possible values of each bit are:
P<n> | Meaning |
---|---|
0b0 |
When read, means that AMEVCNTR0<n>_EL0 is disabled. When written, has no effect. |
0b1 |
When read, means that AMEVCNTR0<n>_EL0 is enabled. When written, disables AMEVCNTR0<n>_EL0. |
On a Cold reset, this field resets to 0.
Accesses to this register use the following encodings:
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1101 | 0b011 | 0b100 | 0b0010 |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && AMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return AMCNTENCLR0_EL0; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && CPTR_EL2.TAM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return AMCNTENCLR0_EL0; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && CPTR_EL3.TAM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return AMCNTENCLR0_EL0; elsif PSTATE.EL == EL3 then return AMCNTENCLR0_EL0;
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1101 | 0b011 | 0b100 | 0b0010 |
if IsHighestEL(PSTATE.EL) then AMCNTENCLR0_EL0 = X[t]; else UNDEFINED;
13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009
Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.