PMCCFILTR_EL0, Performance Monitors Cycle Count Filter Register

The PMCCFILTR_EL0 characteristics are:

Purpose

Determines the modes in which the Cycle Counter, PMCCNTR_EL0, increments.

Configuration

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCCFILTR[31:0] .

AArch64 System register PMCCFILTR_EL0 bits [31:0] are architecturally mapped to External register PMCCFILTR_EL0[31:0] .

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMCCFILTR_EL0 is a 64-bit register.

Field descriptions

The PMCCFILTR_EL0 bit assignments are:

6362616059585756555453525150494847464544434241403938373635343332
00000000000000000000000000000000
PUNSKNSUNSHM0SH000000000000000000000000
313029282726252423222120191817161514131211109876543210

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMCCFILTR_EL0.NSK bit. The possible values of this bit are:

PMeaning
0b0

Count cycles in EL1.

0b1

Do not count cycles in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMCCFILTR_EL0.NSU bit. The possible values of this bit are:

UMeaning
0b0

Count cycles in EL0.

0b1

Do not count cycles in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Non-secure EL1 are counted.

Otherwise, cycles in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.U bit, cycles in Non-secure EL0 are counted.

Otherwise, cycles in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSH, bit [27]

EL2 (Hypervisor) filtering bit. Controls counting in EL2. If EL2 is not implemented, this bit is RES0. If Secure EL2 is implemented, counting in Secure EL2 is further controlled by the PMCCFILTR_EL0.SH bit.

NSHMeaning
0b0

Do not count cycles in EL2.

0b1

Count cycles in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M, bit [26]

Secure EL3 filtering bit. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of the PMCCFILTR_EL0.P bit, cycles in Secure EL3 are counted.

Otherwise, cycles in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [25]

Reserved, RES0.

SH, bit [24]

When ARMv8.4-SecEL2 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMCCFILTR_EL0.NSH bit, cycles in Secure EL2 are counted.

Otherwise, cycles in Secure EL2 are not counted.

If Secure EL2 is not implemented or is disabled, this field is RES0.

Note

This field is not visible in the AArch32 PMCCFILTR System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.


Otherwise:

Reserved, RES0.

Bits [23:0]

Reserved, RES0.

Accessing the PMCCFILTR_EL0

PMCCFILTR_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to 0b11111.

Accesses to this register use the following encodings:

MRS <Xt>, PMCCFILTR_EL0

op0CRnop1op2CRm
0b110b11100b0110b1110b1111

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return PMCCFILTR_EL0; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return PMCCFILTR_EL0; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return PMCCFILTR_EL0; elsif PSTATE.EL == EL3 then return PMCCFILTR_EL0;

MSR PMCCFILTR_EL0, <Xt>

op0CRnop1op2CRm
0b110b11100b0110b1110b1111

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else PMCCFILTR_EL0 = X[t]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else PMCCFILTR_EL0 = X[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else PMCCFILTR_EL0 = X[t]; elsif PSTATE.EL == EL3 then PMCCFILTR_EL0 = X[t];




13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009

Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.