DBGDTRRXint, Debug Data Transfer Register, Receive

The DBGDTRRXint characteristics are:

Purpose

Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and data to a debug target. See Arch64-DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communications Channel.

Configuration

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64 System register DBGDTR_EL0[63:32] .

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64 System register DBGDTR_EL0[31:0] when read.

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to External register DBGDTRRX_EL0[31:0] .

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

DBGDTRRXint is a 32-bit register.

Field descriptions

The DBGDTRRXint bit assignments are:

313029282726252423222120191817161514131211109876543210
Update DTRRX

Bits [31:0]

Update DTRRX.

Reads of this register:

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see The Debug Communication Channel and Instruction Transfer Register.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRXint

Data can be stored to memory from this register using STC.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11100b0000b00000b01010b000

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); else AArch64.AArch32SystemAccessTrap(EL1, 0x05); elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x05); else return DBGDTRRXint; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then AArch64.AArch32SystemAccessTrap(EL2, 0x05); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then AArch32.TakeHypTrapException(0x05); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x05); else return DBGDTRRXint; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x05); else return DBGDTRRXint; elsif PSTATE.EL == EL3 then return DBGDTRRXint;




27/03/2019 21:59; e5e4db499bf9867a4b93324c4dbac985d3da9376

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.