The CNTV_CTL_EL0 characteristics are:
Control register for the virtual timer.
AArch64 System register CNTV_CTL_EL0 bits [31:0] are architecturally mapped to AArch32 System register CNTV_CTL[31:0] .
RW fields in this register reset to architecturally UNKNOWN values.
CNTV_CTL_EL0 is a 64-bit register.
The CNTV_CTL_EL0 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ISTATUS | IMASK | ENABLE |
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Reserved, RES0.
The status of the timer. This bit indicates whether the timer condition is met:
ISTATUS | Meaning |
---|---|
0b0 |
Timer condition is not met. |
0b1 |
Timer condition is met. |
When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.
When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.
For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.
This bit is read-only.
Timer interrupt mask bit. Permitted values are:
IMASK | Meaning |
---|---|
0b0 |
Timer interrupt is not masked by the IMASK bit. |
0b1 |
Timer interrupt is masked by the IMASK bit. |
For more information, see the description of the ISTATUS bit.
This field resets to an architecturally UNKNOWN value.
Enables the timer. Permitted values are:
ENABLE | Meaning |
---|---|
0b0 |
Timer disabled. |
0b1 |
Timer enabled. |
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL_EL0 continues to count down.
Disabling the output signal might be a power-saving option.
This field resets to an architecturally UNKNOWN value.
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CTL_EL0 or CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.
Accesses to this register use the following encodings:
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1110 | 0b011 | 0b001 | 0b0011 |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' then return CNTHVS_CTL_EL2; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then return CNTHV_CTL_EL2; else return CNTV_CTL_EL0; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then return NVMem[0x170]; else return CNTV_CTL_EL0; elsif PSTATE.EL == EL2 then if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' then return CNTHVS_CTL_EL2; elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then return CNTHV_CTL_EL2; else return CNTV_CTL_EL0; elsif PSTATE.EL == EL3 then return CNTV_CTL_EL0;
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1110 | 0b011 | 0b001 | 0b0011 |
if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' then CNTHVS_CTL_EL2 = X[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then CNTHV_CTL_EL2 = X[t]; else CNTV_CTL_EL0 = X[t]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<NV2,NV1,NV> == '111' then NVMem[0x170] = X[t]; else CNTV_CTL_EL0 = X[t]; elsif PSTATE.EL == EL2 then if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' then CNTHVS_CTL_EL2 = X[t]; elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then CNTHV_CTL_EL2 = X[t]; else CNTV_CTL_EL0 = X[t]; elsif PSTATE.EL == EL3 then CNTV_CTL_EL0 = X[t];
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1110 | 0b101 | 0b001 | 0b0011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then return NVMem[0x170]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.E2H == '1' then if PSTATE.EL == EL2 then return CNTV_CTL_EL0; elsif PSTATE.EL == EL3 then return CNTV_CTL_EL0; else UNDEFINED;
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1110 | 0b101 | 0b001 | 0b0011 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then NVMem[0x170] = X[t]; elsif EL2Enabled() && HCR_EL2.NV == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && HCR_EL2.E2H == '1' then if PSTATE.EL == EL2 then CNTV_CTL_EL0 = X[t]; elsif PSTATE.EL == EL3 then CNTV_CTL_EL0 = X[t]; else UNDEFINED;
13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009
Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.