ICV_BPR1, Interrupt Controller Virtual Binary Point Register 1

The ICV_BPR1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines virtual Group 1 interrupt preemption.

Configuration

AArch32 System register ICV_BPR1 bits [31:0] are architecturally mapped to AArch64 System register ICV_BPR1_EL1[31:0] .

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ICV_BPR1 is a 32-bit register.

Field descriptions

The ICV_BPR1 bit assignments are:

313029282726252423222120191817161514131211109876543210
00000000000000000000000000000BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for virtual Group 0 and virtual Group 1 interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point valueGroup priority fieldSubpriority fieldField with binary point
0---
1[7:1][0]ggggggg.s
2[7:2][1:0]gggggg.ss
3[7:3][2:0]ggggg.sss
4[7:4][3:0]gggg.ssss
5[7:5][4:0]ggg.sssss
6[7:6][5:0]gg.ssssss
7[7][6:0]g.sssssss

Writing 0 to this field will set this field to its reset value.

If ICV_CTLR.CBPR is set to 1, Non-secure EL1 reads return ICV_BPR0 + 1 saturated to 0b111. Non-secure EL1 writes are ignored.

This field resets to an IMPLEMENTATION DEFINED non-zero value.

Accessing the ICV_BPR1

The reset value is IMPLEMENTATION DEFINED, but is equal to the minimum value of ICV_BPR0 plus one.

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b0110b11000b11110b1100

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then return ICV_BPR1; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then return ICV_BPR1; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then if SCR.NS == '0' then return ICC_BPR1_S; else return ICC_BPR1_NS; else return ICC_BPR1; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then return ICC_BPR1_NS; else return ICC_BPR1; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then return ICC_BPR1_S; else return ICC_BPR1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b0110b11000b11110b1100

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then ICV_BPR1 = R[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then ICV_BPR1 = R[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then if SCR.NS == '0' then ICC_BPR1_S = R[t]; else ICC_BPR1_NS = R[t]; else ICC_BPR1 = R[t]; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then ICC_BPR1_NS = R[t]; else ICC_BPR1 = R[t]; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then ICC_BPR1_S = R[t]; else ICC_BPR1_NS = R[t];




13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009

Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.