PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose

Configures event counter n, where n is 0 to 30.

Configuration

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64 System register PMEVTYPER<n>_EL0[31:0] .

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External register PMEVTYPER<n>_EL0[31:0] .

This register is in the Warm reset domain. On a Warm or Cold reset RW fields in this register reset to architecturally UNKNOWN values.

Attributes

PMEVTYPER<n> is a 32-bit register.

Field descriptions

The PMEVTYPER<n> bit assignments are:

313029282726252423222120191817161514131211109876543210
PUNSKNSUNSH0MT000000000evtCount[15:10]evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1. If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the NSK bit. The possible values of this bit are:

PMeaning
0b0

Count events in EL1.

0b1

Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0. If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the NSU bit. The possible values of this bit are:

UMeaning
0b0

Count events in EL0.

0b1

Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSU, bit [28]

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0. If EL3 is not implemented, this bit is RES0.

If the value of this bit is equal to the value of U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSH, bit [27]

Non-secure EL2 (Hyp mode) filtering bit. Controls counting in Non-secure EL2. If EL2 is not implemented, this bit is RES0.

NSHMeaning
0b0

Do not count events in EL2.

0b1

Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [26]

Reserved, RES0.

MT, bit [25]

Multithreading. When the implementation is multi-threaded, the valid values for this bit are:

MTMeaning
0b0

Count events only on controlling PE.

0b1

Count events from any PE with the same affinity at level 1 and above as this PE.

When the implementation is not multi-threaded, this bit is RES0.

Note

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

From Armv8.1:

Extension to evtCount[9:0]. See evtCount[9:0] for more details.


Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

There are three types of event:

The ranges of event numbers allocated to each type of event are shown in Allocation of the PMU event number space.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the event type:

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>

PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If <n> is greater or equal to the number of accessible counters, reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and EL1:

Otherwise, the number of accessible counters is the number of implemented counters. See HDCR.HPMN and MDCR_EL2.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b[n:2:0]0b11100b11110b11[n:4:3]

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)]; elsif PSTATE.EL == EL3 then return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b[n:2:0]0b11100b11110b11[n:4:3]

if PSTATE.EL == EL0 then if !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); else AArch64.AArch32SystemAccessTrap(EL1, 0x03); elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then AArch32.TakeHypTrapException(0x00); else UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t]; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t]; elsif PSTATE.EL == EL3 then PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];




13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009

Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.