The CSSELR characteristics are:
Selects the current Cache Size ID Register, CCSIDR, by specifying the required cache level and the cache type, which is either instruction cache or data cache.
If ARMv8.3-CCIDX is implemented, CSSELR also selects the current CCSIDR2.
AArch32 System register CSSELR bits [31:0] are architecturally mapped to AArch64 System register CSSELR_EL1[31:0] .
RW fields in this register reset to architecturally UNKNOWN values.
CSSELR is a 32-bit register.
The CSSELR bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Level | InD |
Reserved, RES0.
Cache level of required cache. Permitted values are:
Level | Meaning |
---|---|
0b000 |
Level 1 cache. |
0b001 |
Level 2 cache. |
0b010 |
Level 3 cache. |
0b011 |
Level 4 cache. |
0b100 |
Level 5 cache. |
0b101 |
Level 6 cache. |
0b110 |
Level 7 cache. |
All other values are reserved.
If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.
This field resets to an architecturally UNKNOWN value.
Instruction not Data bit. Permitted values are:
InD | Meaning |
---|---|
0b0 |
Data or unified cache. |
0b1 |
Instruction cache. |
If CSSELR.Level is programmed to a cache level that is not implemented, then the value for this field on a read of CSSELR is UNKNOWN.
This field resets to an architecturally UNKNOWN value.
Accesses to this register use the following encodings:
opc1 | opc2 | CRn | coproc | CRm |
---|---|---|---|---|
0b010 | 0b000 | 0b0000 | 0b1111 | 0b0000 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '0' then return CSSELR_S; else return CSSELR_NS; else return CSSELR; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then return CSSELR_NS; else return CSSELR; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then return CSSELR_S; else return CSSELR_NS;
opc1 | opc2 | CRn | coproc | CRm |
---|---|---|---|---|
0b010 | 0b000 | 0b0000 | 0b1111 | 0b0000 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID2 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID4 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID2 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR2.TID4 == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '0' then CSSELR_S = R[t]; else CSSELR_NS = R[t]; else CSSELR = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then CSSELR_NS = R[t]; else CSSELR = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then CSSELR_S = R[t]; else CSSELR_NS = R[t];
13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009
Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.