The ICV_PMR characteristics are:
Provides a virtual interrupt priority filter. Only virtual interrupts with a higher priority than the value in this register are signaled to the PE.
AArch32 System register ICV_PMR bits [31:0] are architecturally mapped to AArch64 System register ICV_PMR_EL1[31:0] .
To allow software to ensure appropriate observability of actions initiated by GIC register accesses, the PE and CPU interface logic must ensure that writes to this register are self-synchronising. This ensures that no interrupts below the written PMR value will be taken after a write to this register is architecturally executed. See Observability of the effects of accesses to the GIC registers, for more information.
Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.
ICV_PMR is a 32-bit register.
The ICV_PMR bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | Priority |
Reserved, RES0.
The priority mask level for the virtual CPU interface. If the priority of a virtual interrupt is higher than the value indicated by this field, the interface signals the virtual interrupt to the PE.
The possible priority field values are as follows:
Implemented priority bits | Possible priority field values | Number of priority levels |
---|---|---|
[7:0] | 0x00-0xFF (0-255), all values | 256 |
[7:1] | 0x00-0xFE (0-254), even values only | 128 |
[7:2] | 0x00-0xFC (0-252), in steps of 4 | 64 |
[7:3] | 0x00-0xF8 (0-248), in steps of 8 | 32 |
[7:4] | 0x00-0xF0 (0-240), in steps of 16 | 16 |
Unimplemented priority bits are RAZ/WI.
This field resets to 0.
Accesses to this register use the following encodings:
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b0100 | 0b0110 | 0b000 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then return ICV_PMR; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then return ICV_PMR; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.FMO == '1' then return ICV_PMR; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then return ICV_PMR; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11' then AArch32.TakeMonitorTrapException(); else return ICC_PMR; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then AArch32.TakeMonitorTrapException(); else return ICC_PMR; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else return ICC_PMR;
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b0100 | 0b0110 | 0b000 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then ICV_PMR = R[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then ICV_PMR = R[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.FMO == '1' then ICV_PMR = R[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then ICV_PMR = R[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11' then AArch32.TakeMonitorTrapException(); else ICC_PMR = R[t]; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then AArch32.TakeMonitorTrapException(); else ICC_PMR = R[t]; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else ICC_PMR = R[t];
27/03/2019 21:59; e5e4db499bf9867a4b93324c4dbac985d3da9376
Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.