The ICV_AP0R<n>_EL1 characteristics are:
Provides information about virtual Group 0 active priorities.
AArch64 System register ICV_AP0R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register ICV_AP0R<n>[31:0] .
RW fields in this register reset to architecturally UNKNOWN values.
ICV_AP0R<n>_EL1 is a 64-bit register.
The ICV_AP0R<n>_EL1 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
IMPLEMENTATION DEFINED | |||||||||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Reserved, RES0.
IMPLEMENTATION DEFINED.
This field resets to an architecturally UNKNOWN value.
The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active priorities) might result in UNPREDICTABLE behavior of the virtual interrupt prioritization system, causing:
ICV_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICV_AP0R2_EL1 and ICV_AP0R3_EL1 are only implemented in implementations that support 7 bits of priority. Unimplemented registers are UNDEFINED.
Writing to the active priority registers in any order other than the following order might result in UNPREDICTABLE behavior of the interrupt prioritization system:
Accesses to this register use the following encodings:
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1100 | 0b000 | 0b1[n:1:0] | 0b1000 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then return ICV_AP0R_EL1[UInt(op2<1:0>)]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_AP0R_EL1[UInt(op2<1:0>)]; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_AP0R_EL1[UInt(op2<1:0>)]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_AP0R_EL1[UInt(op2<1:0>)];
op0 | CRn | op1 | op2 | CRm |
---|---|---|---|---|
0b11 | 0b1100 | 0b000 | 0b1[n:1:0] | 0b1000 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then ICV_AP0R_EL1[UInt(op2<1:0>)] = X[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t]; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];
13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009
Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.