ICC_AP0R<n>_EL1, Interrupt Controller Active Priorities Group 0 Registers, n = 0 - 3

The ICC_AP0R<n>_EL1 characteristics are:

Purpose

Provides information about Group 0 active priorities.

Configuration

AArch64 System register ICC_AP0R<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register ICC_AP0R<n>[31:0] .

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch64. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ICC_AP0R<n>_EL1 is a 64-bit register.

Field descriptions

The ICC_AP0R<n>_EL1 bit assignments are:

6362616059585756555453525150494847464544434241403938373635343332
00000000000000000000000000000000
IMPLEMENTATION DEFINED
313029282726252423222120191817161514131211109876543210

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

This field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value 0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP0R<n>_EL1

Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are no Group 0 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

ICC_AP0R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP0R2_EL1 and ICC_AP0R3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented registers are UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE behavior:

Accesses to this register use the following encodings:

MRS <Xt>, ICC_AP0R<n>_EL1

op0CRnop1op2CRm
0b110b11000b0000b1[n:1:0]0b1000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then return ICV_AP0R_EL1[UInt(op2<1:0>)]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_AP0R_EL1[UInt(op2<1:0>)]; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_AP0R_EL1[UInt(op2<1:0>)]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_AP0R_EL1[UInt(op2<1:0>)];

MSR ICC_AP0R<n>_EL1, <Xt>

op0CRnop1op2CRm
0b110b11000b0000b1[n:1:0]0b1000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then ICV_AP0R_EL1[UInt(op2<1:0>)] = X[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t]; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_AP0R_EL1[UInt(op2<1:0>)] = X[t];




13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009

Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.