NMRR, Normal Memory Remap Register

The NMRR characteristics are:

Purpose

Provides additional mapping controls for memory regions that are mapped as Normal memory by their entry in the PRRR.

Used in conjunction with the PRRR.

Configuration

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[63:32] when TTBCR.EAE == 0.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

When EL3 is using AArch32, write access to NMRR(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

NMRR is a 32-bit register.

Field descriptions

The NMRR bit assignments are:

When TTBCR.EAE == 0:

313029282726252423222120191817161514131211109876543210
OR7OR6OR5OR4OR3OR2OR1OR0IR7IR6IR5IR4IR3IR2IR1IR0

OR<n>, bits [2n+17:2n+16], for n = 0 to 7

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

OR<n>Meaning
0b00

Region is Non-cacheable.

0b01

Region is Write-Back, Write-Allocate.

0b10

Region is Write-Through, no Write-Allocate.

0b11

Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

IR<n>, bits [2n+1:2n], for n = 0 to 7

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

IR<n>Meaning
0b00

Region is Non-cacheable.

0b01

Region is Write-Back, Write-Allocate.

0b10

Region is Write-Through, no Write-Allocate.

0b11

Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

This field resets to an architecturally UNKNOWN value.

Accessing the NMRR

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b0010b10100b11110b0010

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '0' then return NMRR_S; else return NMRR_NS; else return NMRR; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then return NMRR_NS; else return NMRR; elsif PSTATE.EL == EL3 then if SCR.NS == '0' then return NMRR_S; else return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

opc1opc2CRncoprocCRm
0b0000b0010b10100b11110b0010

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.NS == '0' && CP15SDISABLE == HIGH then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) then if SCR.NS == '0' then NMRR_S = R[t]; else NMRR_NS = R[t]; else NMRR = R[t]; elsif PSTATE.EL == EL2 then if HaveEL(EL3) && ELUsingAArch32(EL3) then NMRR_NS = R[t]; else NMRR = R[t]; elsif PSTATE.EL == EL3 then if SCR.NS == '0' && CP15SDISABLE == HIGH then UNDEFINED; else if SCR.NS == '0' then NMRR_S = R[t]; else NMRR_NS = R[t];




13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009

Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.