ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

The ICC_IGRPEN1 characteristics are:

Purpose

Controls whether Group 1 interrupts are enabled for the current Security state.

Configuration

AArch32 System register ICC_IGRPEN1 bits [31:0] (S) are architecturally mapped to AArch64 System register ICC_IGRPEN1_EL1[31:0] (S) .

AArch32 System register ICC_IGRPEN1 bits [31:0] (NS) are architecturally mapped to AArch64 System register ICC_IGRPEN1_EL1[31:0] (NS) .

Some or all RW fields of this register have defined reset values. These apply only if the PE resets into an Exception level that is using AArch32. If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register. Otherwise, RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ICC_IGRPEN1 is a 32-bit register.

Field descriptions

The ICC_IGRPEN1 bit assignments are:

313029282726252423222120191817161514131211109876543210
RES0Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

EnableMeaning
0b0

Group 1 interrupts are disabled for the current Security state.

0b1

Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR.VENG1.

If EL3 is present:

This field resets to 0.

Accessing the ICC_IGRPEN1

The lowest Exception level at which this register can be accessed is governed by the Exception level to which IRQ is routed. This routing depends on SCR.IRQ, SCR.NS and HCR.IMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow the Distributor to forward the interrupt to a different PE.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11000b11000b111

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then return ICV_IGRPEN1; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then return ICV_IGRPEN1; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then if SCR.NS == '0' then return ICC_IGRPEN1_S; else return ICC_IGRPEN1_NS; else return ICC_IGRPEN1; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then return ICC_IGRPEN1_NS; else return ICC_IGRPEN1; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then return ICC_IGRPEN1_S; else return ICC_IGRPEN1_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b11000b11000b111

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then AArch32.TakeHypTrapException(0x03); elsif ICC_SRE.SRE == '0' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then ICV_IGRPEN1 = R[t]; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then ICV_IGRPEN1 = R[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then if SCR.NS == '0' then ICC_IGRPEN1_S = R[t]; else ICC_IGRPEN1_NS = R[t]; else ICC_IGRPEN1 = R[t]; elsif PSTATE.EL == EL2 then if ICC_HSRE.SRE == '0' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then AArch64.AArch32SystemAccessTrap(EL3, 0x03); elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then AArch32.TakeMonitorTrapException(); elsif HaveEL(EL3) then ICC_IGRPEN1_NS = R[t]; else ICC_IGRPEN1 = R[t]; elsif PSTATE.EL == EL3 then if ICC_MSRE.SRE == '0' then UNDEFINED; else if SCR.NS == '0' then ICC_IGRPEN1_S = R[t]; else ICC_IGRPEN1_NS = R[t];




27/03/2019 21:59; e5e4db499bf9867a4b93324c4dbac985d3da9376

Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.