ICC_BPR0_EL1, Interrupt Controller Binary Point Register 0

The ICC_BPR0_EL1 characteristics are:

Purpose

Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 0 interrupt preemption.

Configuration

AArch64 System register ICC_BPR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register ICC_BPR0[31:0] .

Virtual accesses to this register update ICH_VMCR_EL2.VBPR0.

RW fields in this register reset to architecturally UNKNOWN values.

Attributes

ICC_BPR0_EL1 is a 64-bit register.

Field descriptions

The ICC_BPR0_EL1 bit assignments are:

6362616059585756555453525150494847464544434241403938373635343332
00000000000000000000000000000000
00000000000000000000000000000BinaryPoint
313029282726252423222120191817161514131211109876543210

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

The value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. This is done as follows:

Binary point valueGroup priority fieldSubpriority fieldField with binary point
0[7:1][0]ggggggg.s
1[7:2][1:0]gggggg.ss
2[7:3][2:0]ggggg.sss
3[7:4][3:0]gggg.ssss
4[7:5][4:0]ggg.sssss
5[7:6][5:0]gg.ssssss
6[7][6:0]g.sssssss
7No preemption[7:0].ssssssss

This field resets to an architecturally UNKNOWN value.

Accessing the ICC_BPR0_EL1

The minimum binary point value is derived from the number of implemented priority bits. The number of priority bits is IMPLEMENTATION DEFINED, and reported by ICC_CTLR_EL1.PRIbits and ICC_CTLR_EL3.PRIbits.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum value. On a reset, the binary point field is UNKNOWN.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_BPR0_EL1

op0CRnop1op2CRm
0b110b11000b0000b0110b1000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then return ICV_BPR0_EL1; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_BPR0_EL1; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_BPR0_EL1; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else return ICC_BPR0_EL1;

MSR ICC_BPR0_EL1, <Xt>

op0CRnop1op2CRm
0b110b11000b0000b0110b1000

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if ICC_SRE_EL1.SRE == '0' then AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then ICV_BPR0_EL1 = X[t]; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_BPR0_EL1 = X[t]; elsif PSTATE.EL == EL2 then if ICC_SRE_EL2.SRE == '0' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.FIQ == '1' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_BPR0_EL1 = X[t]; elsif PSTATE.EL == EL3 then if ICC_SRE_EL3.SRE == '0' then AArch64.SystemAccessTrap(EL3, 0x18); else ICC_BPR0_EL1 = X[t];




13/12/2018 16:42; 6379d01c197f1d40720d32d0f84c419c9187c009

Copyright © 2010-2018 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.