ACPI for the Armv8 RAS Extensions 1.0
Platform Design Document

Non-confidential

arm

Copyright © 2019 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0085

ACPI for the Armv8 RAS Extensions

Contents
Release information 3
Non-Confidential Proprietary Notice 4
1 About this document 5
1.1 Terms and abbreviations 5
1.2 References 5
1.3 Feedback 5
2 ACPI description for Armv8 RAS error nodes 6
3 Arm Error Source Table 7
3.1 Component types 8
3.1.1 Processor structures 9
3.1.2 Memory controller structures 9
3.1.3 Vendor defined structures 10
3.2 Interfaces 10
3.3 Interrupts 11
4 Integration into APEI 12
4.1 Integrating AEST into HEST 12
4.2 Representing RAS error nodes in the BERT 12
4.2.1 CPER Armv8 RAS extension section: Introduction and usage 12
Page 2 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085

Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

Copyright © 2019 Arm Limited. All rights reserved.

Release information

Date Version Changes

2019/Mar/01 1.0
» Alpha release

Page 3 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of
the information contained in this document may be protected by one or more patents or pending patent
applications. No part of this document may be reproduced in any form by any means without the express prior
written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual
property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or
permit others to use the information for the purposes of determining whether implementations infringe any
third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WAR-
RANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm
makes no representation with respect to, and has undertaken no analysis to identify or understand the scope
and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABIL-
ITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use,
duplication or disclosure of this document complies fully with any relevant export laws and regulations to
assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws. Use of the word “partner”in reference to Arm’s customers is not intended to create or refer to
any partnership relationship with-any other company. Arm may make changes to this document at any time
and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or
signed written agreement covering this document with Arm, then the click through or signed written agreement
prevails over and supersedes the conflicting provisions of these terms. This document may be translated into
other languages for convenience, and you agree that if there is any conflict between the English version of
this document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. Please follow Arm’s trademark
usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.
Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.
LES-PRE-20349

Page 4 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

1 About this document

1.1 Terms and abbreviations

RAS: Reliability, Availability, Serviceability (see [1])

Term Meaning

ACPI The Advanced Configuration and Power Interface specification. This defines a
standard for device configuration and power management by an OS

PE Processing element (see [2]

1.2 References

This section lists publications by Arm and by third parties.
See Arm Infocenter (http://infocenter.arm.com) for access to Arm documentation.

[1] DDI 0587 Arm® Reliability, Availability, and Serviceability (RAS) Specification Armv8, for the Armv8-A
architecture profile. ARM Ltd.

[2] DDI 0487 Arm® Architecture Reference Manual ARMVS, for the ARMv8-A architecture profile. ARM Ltd.
[3] Advanced Configuration and Power Interface Specification. UEFI Forum. See http://uefi.org/specifications
[4] DEN 0049 10 Remapping Table. ARM Ltd.

[5] Unified Extensible Firmware Interface Specification. UEFI Forum. See http://uefi.org/specifications

1.3 Feedback

Arm welcomes feedback on its documentation.
If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

* The title (ACPI for the Armv8 RAS Extensions).

» The document ID and version (DEN0085 1.0).

* The page numbers to which your comments apply.
+ A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 5 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

http://uefi.org/specifications
http://uefi.org/specifications

ACPI for the Armv8 RAS Extensions

2 ACPI description for Armv8 RAS error nodes

This document describes ACPI extensions that enable kernel first RAS handling for systems that employ the
Arm RAS extensions. For PEs, this specification covers the Armv8 RAS extension and the Armv8.4 RAS
extensions. This specification also covers the RAS system architecture, versions 1.0 and 1.1. See [2] for
further details.

Page 6 of 14

Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

3 Arm Error Source Table

Provisional

Opens:

This document proposes we create an Arm specific RAS table, the Arm Error Source Table (AEST), to
represent Arm architected RAS error sources. Some partners have indicated that they would rather
see this implemented in APEI, chapter 18 if the ACPI specification [3]. If that were required another
approach would be to create error source structures in the HEST table that use the same kind of
structures discussed below. This idea is covered in Section 4.1.

Armv8.2 and above RAS error sources are represented in the Arm Error Source Table (AEST), which is
described in Table 3.

Table 3: AEST format

Field Byte length Byte offset Description

Header Standard ACPI format for header.

Signature 4 0 ‘AEST’ Arm error source table

Length 4 4 Length of table in bytes.

Revision 1 8 For this revision this must be 0.

Checksum 1 9 The entire table must sum to zero.

OEM ID 6 10 OEM ID.

OEM Table ID 8 16 For AEST, the table ID is the manufacture
model ID

OEM Revision 4 24 OEM revision of the AEST table for the
supplied OEM Table ID.

Creator ID 4 28 The vendor ID of the utility that created the
table.

Creator Revision 4 32 The revision of the utility that created the table.

Body

Array of AEST node - 36 Array of AEST node structures see Table 4.

The AEST consists of a header, and an array of AEST node entries. The format for the node entries is
described in Table 4.

Table 4: AEST node format

Field Byte Length ~ Byte Offset Description
Header
Type 1 0 Node type:

+ 0 processor error node

* 1 memory error node

+ 2 vendor defined error node
Length 2 1 Length of structure in bytes
Reserved 1 3 Must be zero
Revision 4 4

0.

Offset to Node 4 8 Offset from the start of the node entry (Type

specific data

field),to node specific data

Page 7 of 14

Copyright © 2019 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DENO0085
1.0

ACPI for the Armv8 RAS Extensions

Field Byte Length Byte Offset Description

Offset to Node 4 12 Offset from the start of the node entry (Type

Interface Array field) to node interface array

Node Interface Array 4 16 Number of entries in the interface array

size

Offset to Node 4 20 Offset from the start of the node entry (Type

Interrupt Array field) to node interrupt array

Node Interrupt Array 4 24 Number of entries in the interrupt array

size

Node generic data

Timestamp Rate 8 28 If the timestamp extension is implemented, and
does not use the timebase of the generic
counter, as indicated by ERRFR.TS == 0b10,
this field indicates the timestamp frequency in
HZ of the counter. Otherwise this field MBZ and
the OS must ignore its content.

Timestamp Start 8 36 If the timestamp extension is implemented, and

Value does not use the timebase of the generic
counter, as indicated by ERRFR.TS == 0b10,
this field indicates the initial value of the
timestamp at system power on. Otherwise this
fieldMBZ and the OS must ignore its content.

Error injection 8 44 If Common Fault Injection Model Extension is

countdown rate supported, as indicated by ERRFR.INJ != 0b00,
this field provides the rate at which the Error
Generation Counter decrements in HZ.
Otherwise this field MBZ and the OS must
ignore its content.

Node specific data - Offset for

Node Interface
Array

Node Interrupt
Array

node specific
data

Offset for
node interface
array

Offset for
node interrupt
array

AEST error node are composed of the following parts:

» A header described in Table 4
+ A set of common fields for all error nodes described in Table 4

» A component specific section that associates the error node to a component in the system.
+ A section that describes the interfaces associated with an error node.

* A section describing associated interrupts with the error node.

3.1 Component types

Each node entry is associated with a component in the system. The node specific data provides the OS with
the information needed to identify this association. Three types of component are supported:

* Processor structures
» Memory controller structures

Page 8 of 14

Copyright © 2019 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DENO0085
1.0

ACPI for the Armv8 RAS Extensions

» Vendor define structures

The tables described in these sections, provide the structure for the Node specific data entry of an AEST
node.

Provisional

SMMU or GIC related components are not described in this version. Arm would welcome feedback on
this issue.

3.1.1 Processor structures

Processor structures are described in Table 5.

Table 5: processor structure

Byte
Field Length Byte offset Description
ACPI 4 0 Processor ID of node
processor 1D
Cache level 4 8 Level of cache from perspective
of chosen processor
Cache type 4 12 Cache type :
* 0x0 Data
* 0x1 Instruction
* 0x2 unified

3.1.2 Memory controller structures

Memory structures are described in Table 6.

Table 6: memory structure format

Byte Byte
Field Length Offset Description
Proximity 4 0 SRAT proximity domain
domain
Provisional

Proximity domain might be a bit coarse in trying to convey information as to which areas of the physical
address space a memory controller covers. Particularly if interleaving is used. Another approach could
be a list of memory regions, where each region is described by following:

+ physical base address
. size
» stride

An additional data item could be a FRU that identifies any DIMM serviced by the impacted controller.

Page 9 of 14

Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

3.1.3 Vendor defined structures

Vendor defined structures are described in Table 7. An OSPM might just log these, or offer them to vendor
specific drivers where appropriate.

Table 7: vendor defined structure format

Byte Byte
Field Length Offset Description
Vendor ID 4 0 This identifies the node vendor using the vendor ACPI ID as

described in the ACPI ID registry is available at
http://www.uefi.org/acpi_id_list
Vendor 4 4 Vendor specific data e.g. to identify this error source.
specific data

3.2 Interfaces

Nodes can have a system register or a memory mapped interface. Therefore a node in the AEST might
present one or two interface entries in its interface array. The array can be found through the Interface Array
offset defined in the node header, see Table 4.

Table 8 describes the format of the interface entries.

Provisional

Error node MISC registers could be logged, or logged and cleared. The latter might be useful if, for
example, a MISC register contains a counter that needs to be cleared to stop the error from being
signaled again. We could add to these tables some bits to indicate whether for a given record in the
node, a MISCx register should be logged, or logged and cleared.

More complex management is hard to represent in an ACPI table, and therefore for cases where this is
required, one approach could be that this specification recommends such nodes should be handled
firmware first, and therefore should not be exposed in this table.

Arm welcomes feedback on both of these points.

Table 8: AEST node format

Byte Byte
Field Length Offset Description
Interface type 1 0 Interface type:
* 0x0 — System Register
* 0x1 — Memory mapped
All other values are reserved
Reserved 3 1 MBZ
Flags 4 4 Bit[0] — Node interface is shared. Note that for processor
cache nodes, the sharing is restricted to the processors
that share the indicated cache — Bits [31:1] — reserved MBZ
Base Address 8 8 Base address of error group that contains the error node.
This address is only valid if interface type is == 0x1
Start error 2 16 Zero based index of first standard error record that belongs
record index to this node. Value must lie in the range 0-(N-1) where N is
value read from ERRIRDR_EL1 register
Page 10 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085

Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

Byte Byte
Field Length Offset Description
Number of error 2 22 Number of error records between this & next node. This

records

includes both implemented and unimplemented error
records.

3.3 Interrupts

RAS architecture [1] nodes can have three kinds of interrupts associated with them:

» Error Recovery Interrupt (ERI)
» Fault Handling Interrupt (FHI)
« Critical Error Interrupt (Cl)

Of these only the first two types are represented in ACPI. This is because critical error interrupts are meant to
be handled by system controllers, rather than application processors under the control of the OS.

Table 9 describes the interrupt structures used to represent node interrupts to the OS. These structures form
the entries of the node interrupt array. The array can be found through the Interrupt Array offset defined in the
node header, see Table 4.

Table 9: AEST node format

Byte Byte

Field Length Offset Description

Interrupt type 1 0 Interrupt type:

* 0x0 — Fault Handling Interrupt
* 0x1 — Error Recovery Interrupt
All other values reserved

Reserved 2 1 MBZ

interrupt Flags 1 3 Bits [31:1]: Must be zero
Bit O:

* 0 — Interrupt is edge-triggered
* 1 — Interrupt is level-triggered

Interrupt GSIV 4 4 GSIV of Fault handling interrupt, if interrupt is SPI or
PPI. Zero if it is not implemented.

ID Node 20 8 IORT ID node if interrupt if MSI based. See [4] for the
format of IORT ID nodes. MBZ if interrupt is wire
based.

Page 11 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085

Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

4 Integration into APEI

Two aspects of integration into APEI are briefly considered below:

* Integrating AEST into the HEST.
» Representing the Armv8.2 and beyond RAS extensions in CPER records.

4.1 Integrating AEST into HEST

Provisional

This section is provisional and contingent on deciding whether error nodes can be represented in the
AEST, or whether they should be folded into the ACPI core spec, in the APEI chapter.

An alternative to creating the AEST table is to integrate the nodes listed above into the HEST directly. We can
do by creating new error source structure, described below in Table 10.

Table 10: HEST error source sub-table

Field Byte Byte offset Description
Length
Type 2 0 12 - Armv8 RAS Extension error node
Source Id 2 2 Thisvalue serves to uniquely identify this error
source against other error sources reported by the
platform.
Reserved 4 4 Reserved must be zero.

Note in other RAS structures in the HEST these
offsets typically have:
» A Reserved field
+ A flags field, that indicates different levels of
firmware interaction (FW_FIRST and
GHES_ASSIST)
» An enabled field
Since these sources are meant to be interacted with
Kernel first, the fields above seem unnecessary. A
possible exception is the enabled field. Arm
welcomes feedback on this question.
Node entry 8 - As described in Table 4.

4.2 Representing RAS error nodes in the BERT

Representing RAS error node contents in BERT will require first expressing them in the CPER. To this end,
below we describe proposed extensions to the CPER specification (see Appendix N of [5]).

4.2.1 CPER Armv8 RAS extension section: Introduction and usage

CPER records are comprised of a header, and a set of sections. Each section describes information relevant
to error. There is at least one section, but there can be more. The CPER specification provides sections
that are fairly generic, such as the generic processor error section, and sections that are more architecture
specific, such as the Arm or 164 error sections.

Page 12 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

This extension introduces and Arm8 RAS section. The section gathers the content of a RAS error node’s
registers. The section does not carry any specific information that can associate it with components in the
SoC. Instead, it is expected that the section is used alongside other error sections already defined for CPER,
such as processor sections, generic and Arm, or Memory sections.

The Armv8 RAS extension section is described by the following GUID:

Type: {0xBF32D4D5, 0xB427, 0x4025, {0x84, 0x95, 0x8A, O0x9E, 0x5D, 0x40, 0x30, O
xE4}}

The contents of the Armv8 RAS Extension section are described in Table 11.

Table 11: Armv8 RAS error record entry

Byte

Field Length Byte offset Description

Revision 4 0 0
Note
This field might be unnecessary as the version filed
in the section descriptor might be usable instead. It
is not clear in the UEFI specification whether that
version field is for the section header format or to
be used for the section body format. Arm welcomes
feedback on this question.

Number of 4 4 Number of error records captured in the section

records

Error Record 8 - Array of Armv8 RAS Error section entries described in

Array Table 12

The format for individual error record entries is described in Table 12.

Table 12: Armv8 RAS error record entry

Byte
Field Length Byte offset Description

Error record number 1 0 RAS error record number
RAS extension revision 1 1 Describes the revision of the Arm RAS
architecture used for this node. For
system component, this takes the
following format:
« bits[7:4] REVISION field of the
ERRDEVARCH register in the
RAS specification [1].
* bits[3:0] ARCHVER field of the
ERRDEVARCH register in the
RAS specification [1].
Note that registers ERR<n>MISC2 and
ERR<n>MISC3 are only valid if this
value is non zero.
Reserved 7 1 Reserved must be zero

Page 13 of 14 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. DENO0085
Non-confidential 1.0

ACPI for the Armv8 RAS Extensions

Byte

Field Length Byte offset Description

ERR<n>FR 8 8 Content of the Error Record Feature
Register

ERR<n>CTLR 8 16 Content of the Error Record Control
Register

ERR<n>STATUS 8 24 Content of the Error Record Primary
Status Register

ERR<n>ADDR 8 32 Content of the Error Record Address
Register

ERR<n>MISCO 8 40 Content of the Content Error Record
Miscellaneous Register 0

ERR<n>MISC1 8 48 Content of the Content Error Record
Miscellaneous Register 1

ERR<n>MISC2 8 56 Content of the Content Error Record
Miscellaneous Register 2

ERR<n>MISC3 8 64 Content of the Content Error Record

Miscellaneous Register 3

Page 14 of 14

Copyright © 2019 Arm Limited or its affiliates. All rights reserved.

Non-confidential

DENO0085
1.0

	Non-Confidential Proprietary Notice
	1 About this document
	2 ACPI description for Armv8 RAS error nodes
	3 Arm Error Source Table
	4 Integration into APEI

