Signed dot product.
The signed integer partial dot product instruction delimits the source vectors into quadtuplets of four 8-bit or 16-bit signed integer elements. Within each quadtuplet the elements in the first source vector are multiplied by the corresponding elements in the second source vector and the resulting widened products are summed and added to the 32-bit or 64-bit element of the accumulator and destination vector which aligns with the quadtuplet in the first source vector.
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | size | 0 | Zm | 0 | 0 | 0 | 0 | 0 | 0 | Zn | Zda |
if !HaveSVE() then UNDEFINED; if size == '0x' then UNDEFINED; integer esize = 8 << UInt(size); integer n = UInt(Zn); integer m = UInt(Zm); integer da = UInt(Zda);
<Zda> |
Is the name of the third source and destination scalable vector register, encoded in the "Zda" field. |
<T> |
Is the size specifier,
encoded in
size<0>:
|
<Zn> |
Is the name of the first source scalable vector register, encoded in the "Zn" field. |
<Tb> |
Is the size specifier,
encoded in
size<0>:
|
<Zm> |
Is the name of the second source scalable vector register, encoded in the "Zm" field. |
CheckSVEEnabled(); integer elements = VL DIV esize; bits(VL) operand1 = Z[n]; bits(VL) operand2 = Z[m]; bits(VL) operand3 = Z[da]; bits(VL) result; for e = 0 to elements-1 bits(esize) res = Elem[operand3, e, esize]; for i = 0 to 3 integer element1 = SInt(Elem[operand1, 4 * e + i, esize DIV 4]); integer element2 = SInt(Elem[operand2, 4 * e + i, esize DIV 4]); res = res + element1 * element2; Elem[result, e, esize] = res; Z[da] = result;
Release: 00rel5-manual
Copyright © 2010-2018 ARM Limited or its affiliates. All rights reserved. This document is Non-Confidential.