
Arm Forge
User Guide

Version 18.1.3

Arm Forge 18.1.3

Contents

Contents 1

I Arm Forge 12

1 Introduction 12
1.1 Arm DDT . 12
1.2 Arm MAP . 13
1.3 Online resources . 13

2 Installation 14
2.1 Linux installation . 14

2.1.1 Graphical install . 14
2.1.2 Text-mode install . 15

2.2 Mac installation . 16
2.3 Windows installation . 17
2.4 License files . 17
2.5 Workstation and evaluation licenses . 17
2.6 Supercomputing and other floating licenses . 18
2.7 Architecture licensing . 18

2.7.1 Using multiple architecture licenses . 18

3 Connecting to a remote system 19
3.1 Remote connections dialog . 19
3.2 Remote launch settings . 20

3.2.1 Remote script . 21
3.3 Reverse Connect . 21

3.3.1 Overview . 21
3.3.2 Usage . 22
3.3.3 Connection details . 22

3.4 Treeserver or general debugging ports . 23
3.5 Using X forwarding or VNC . 23

4 Starting 25

II DDT 27

5 Getting started 27
5.1 Running a program . 28

5.1.1 Application . 28
5.1.2 MPI . 29
5.1.3 OpenMP . 29
5.1.4 CUDA . 29
5.1.5 Memory debugging . 30
5.1.6 Environment variables . 30
5.1.7 Plugins . 30

5.2 Express Launch . 31
5.2.1 Run dialog box . 31

5.3 remote-exec required by some MPIs . 32

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 1

Arm Forge 18.1.3

5.4 Debugging single-process programs . 33
5.5 Debugging OpenMP programs . 33
5.6 Manual launching of multi-process non-MPI programs 35
5.7 Debugging MPMD programs . 36

5.7.1 Debugging MPMD programs without Express Launch 36
5.7.2 Debugging MPMD programs in Compatibility mode 36

5.8 Opening core files . 37
5.9 Attaching to running programs . 37

5.9.1 Automatically detected MPI jobs . 38
5.9.2 Attaching to a subset of an MPI job . 38
5.9.3 Manual process selection . 38
5.9.4 Configuring attaching to remote hosts . 40
5.9.5 Using DDT command-line arguments . 40

5.10 Starting a job in a queue . 41
5.11 Using custom MPI scripts . 41
5.12 Starting DDT from a job script . 44
5.13 Attaching via gdbserver . 44
5.14 UPC . 45

5.14.1 GCC UPC . 45
5.14.2 Berkeley UPC . 45

5.15 Numactl . 45
5.15.1 MPI and SLURM . 45
5.15.2 Non-MPI Programs . 46

5.16 Python . 46
5.16.1 Overview . 46
5.16.2 Prerequisites . 46
5.16.3 Running . 47

6 Overview 48
6.1 Saving and loading sessions . 49
6.2 Source code . 49

6.2.1 Viewing . 49
6.2.2 Editing . 50
6.2.3 Rebuilding and restarting . 50
6.2.4 Committing changes . 50

6.3 Project Files . 50
6.3.1 Application and external code . 51

6.4 Finding lost source files . 51
6.5 Finding code or variables . 52

6.5.1 Find Files or Functions . 52
6.5.2 Find . 52
6.5.3 Find in Files . 52

6.6 Go To Line . 53
6.7 Navigating through source code history . 53
6.8 Static analysis . 54
6.9 Version control information . 54

7 Controlling program execution 57
7.1 Process control and process groups . 57

7.1.1 Detailed view . 57
7.1.2 Summary view . 58

7.2 Focus control . 58

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 2

Arm Forge 18.1.3

7.2.1 Overview of changing focus . 59
7.2.2 Process group viewer . 59
7.2.3 Breakpoints . 59
7.2.4 Code viewer . 59
7.2.5 Parallel stack view . 60
7.2.6 Playing and stepping . 60
7.2.7 Step threads together . 60
7.2.8 Stepping threads window . 60

7.3 Starting, stopping and restarting a program . 61
7.4 Stepping through a program . 62
7.5 Stop messages . 62
7.6 Setting breakpoints . 62

7.6.1 Using the source code viewer . 62
7.6.2 Using the Add Breakpoint window . 63
7.6.3 Pending breakpoints . 63
7.6.4 Conditional breakpoints . 64

7.7 Suspending breakpoints . 64
7.8 Deleting a breakpoint . 64
7.9 Loading and saving breakpoints . 65
7.10 Default breakpoints . 65
7.11 Synchronizing processes . 65
7.12 Setting a watchpoint . 66
7.13 Tracepoints . 67

7.13.1 Setting a tracepoint . 67
7.13.2 Tracepoint output . 68

7.14 Version control breakpoints and tracepoints . 68
7.15 Examining the stack frame . 70
7.16 Align stacks . 70
7.17 Viewing stacks in parallel . 70

7.17.1 Overview . 70
7.17.2 The Parallel Stack View in detail . 71

7.18 Browsing source code . 72
7.19 Simultaneously viewing multiple files . 74
7.20 Signal handling . 74

7.20.1 Custom signal handling (signal dispositions) 75
7.20.2 Sending signals . 75

8 Viewing variables and data 76
8.1 Sparklines . 76
8.2 Current line . 76
8.3 Local variables . 77
8.4 Arbitrary expressions and global variables . 77

8.4.1 Fortran intrinsics . 79
8.4.2 Changing the language of an expression . 79
8.4.3 Macros and #defined constants . 79

8.5 Help with Fortran modules . 79
8.6 Viewing complex numbers in Fortran . 80
8.7 C++ STL support . 81
8.8 Custom pretty printers . 81

8.8.1 Example . 81
8.9 Viewing array data . 82
8.10 UPC support . 82

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 3

Arm Forge 18.1.3

8.11 Changing data values . 83
8.12 Viewing numbers in different bases . 83
8.13 Examining pointers . 83
8.14 Multi-dimensional arrays in the Variable View . 83
8.15 Multi-dimensional array viewer (MDA) . 84

8.15.1 Array expression . 85
8.15.2 Filtering by value . 86
8.15.3 Distributed arrays . 86
8.15.4 Advanced: how arrays are laid out in the data table 86
8.15.5 Auto Update . 89
8.15.6 Comparing elements across processes . 89
8.15.7 Statistics . 89
8.15.8 Export . 89
8.15.9 Visualization . 90

8.16 Cross-process and cross-thread comparison . 91
8.17 Assigning MPI ranks . 92
8.18 Viewing registers . 93
8.19 Process details . 93
8.20 Disassembler . 93
8.21 Interacting directly with the debugger . 94

9 Program input and output 95
9.1 Viewing standard output and error . 95
9.2 Saving output . 95
9.3 Sending standard input . 95

10 Logbook 97
10.1 Usage . 97
10.2 Annotation . 98
10.3 Comparison window . 98

11 Message queues 99
11.1 Viewing the message queues . 99
11.2 Interpreting the message queues . 100
11.3 Deadlock . 101

12 Memory debugging 102
12.1 Enabling memory debugging . 102
12.2 CUDA memory debugging . 102
12.3 Configuration . 103

12.3.1 Static linking . 104
12.3.2 Available checks . 105
12.3.3 Changing settings at run time . 105

12.4 Pointer error detection and validity checking . 106
12.4.1 Library usage errors . 106
12.4.2 View pointer details . 106
12.4.3 Cross-process comparison of pointers . 108
12.4.4 Writing beyond an allocated area . 108
12.4.5 Fencepost checking . 109
12.4.6 Suppressing an error . 109

12.5 Current memory usage . 109
12.5.1 Detecting leaks when using custom allocators/memory wrappers 111

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 4

Arm Forge 18.1.3

12.6 Memory Statistics . 111

13 Checkpointing 113
13.1 Overview . 113
13.2 How to checkpoint . 113
13.3 Restoring a checkpoint . 113

14 Using and writing plugins 114
14.1 Supported plugins . 114
14.2 Installing a plugin . 115
14.3 Using a plugin . 115
14.4 Writing a plugin . 116
14.5 Plugin reference . 117

15 CUDA GPU debugging 119
15.1 Licensing . 119
15.2 Preparing to debug GPU code . 119
15.3 Launching the application . 119
15.4 Controlling GPU threads . 120

15.4.1 Breakpoints . 120
15.4.2 Stepping . 120
15.4.3 Running and pausing . 121

15.5 Examining GPU threads and data . 121
15.5.1 Selecting GPU threads . 121
15.5.2 Viewing GPU thread locations . 121
15.5.3 Understanding kernel progress . 122
15.5.4 Source code viewer . 123

15.6 GPU devices information . 123
15.7 Attaching to running GPU applications . 123
15.8 Opening GPU core files . 123
15.9 Known issues / limitations . 124

15.9.1 Debugging multiple GPU processes . 124
15.9.2 Thread control . 124
15.9.3 General . 124
15.9.4 Pre sm_20 GPUs . 125
15.9.5 Debugging multiple GPU processes on Cray limitations 125

15.10GPU language support . 125
15.10.1 Cray OpenACC . 125
15.10.2 PGI Accelerators and CUDA Fortran . 126

16 Offline debugging 127
16.1 Using offline debugging . 127

16.1.1 Reading a file for standard input . 128
16.1.2 Writing a file from standard output . 128

16.2 Offline report output (HTML) . 129
16.3 Offline report output (plain text) . 132
16.4 Run-time job progress reporting . 132

16.4.1 Periodic snapshots . 132
16.4.2 Signal-triggered snapshots . 132

III MAP 134

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 5

Arm Forge 18.1.3

17 Getting started 134
17.1 Express Launch . 135

17.1.1 Run dialog box . 136
17.2 Preparing a program for profiling . 136

17.2.1 Debugging symbols . 137
17.2.2 Linking . 137
17.2.3 Dynamic linking on Cray X-Series systems . 138
17.2.4 Static linking . 139
17.2.5 Static linking on Cray X-Series systems . 141
17.2.6 Dynamic and static linking on Cray X-Series systems using the modules envi-

ronment . 142
17.2.7 map-link modules installation on Cray X-Series 142

17.3 Profiling a program . 143
17.3.1 Application . 143
17.3.2 Duration . 144
17.3.3 Metrics . 144
17.3.4 MPI . 144
17.3.5 OpenMP . 145
17.3.6 Environment variables . 145
17.3.7 Profiling . 145
17.3.8 Profiling only part of a program . 146

17.3.8.1 C . 146
17.3.8.2 Fortran . 146

17.4 remote-exec required by some MPIs . 147
17.5 Profiling a single-process program . 147
17.6 Sending standard input . 148
17.7 Starting a job in a queue . 148
17.8 Using custom MPI scripts . 149
17.9 Starting MAP from a job script . 151
17.10Numactl . 152
17.11MAP environment variables . 153

18 Program output 156
18.1 Viewing standard output and error . 156
18.2 Displaying selected processes . 156
18.3 Restricting output . 156
18.4 Saving output . 157

19 Source code 158
19.1 Viewing . 158
19.2 OpenMP programs . 160
19.3 GPU programs . 161
19.4 Dealing with complexity: code folding . 162
19.5 Editing . 162
19.6 Rebuilding and restarting . 163
19.7 Committing changes . 163

20 Selected lines view 164
20.1 Limitations . 165
20.2 GPU profiling . 166

21 Stacks view 167

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 6

Arm Forge 18.1.3

22 OpenMP Regions view 168

23 Functions view 170

24 Project Files view 171

25 Metrics View 172
25.1 CPU instructions . 173

25.1.1 Per-line CPU instructions . 174
25.2 Perf metrics . 174
25.3 CPU time . 175
25.4 I/O . 175
25.5 Memory . 176
25.6 MPI . 176
25.7 Detecting MPI imbalance . 177
25.8 Accelerator . 177
25.9 Energy . 178

25.9.1 Requirements . 178
25.10Lustre . 178
25.11Zooming . 179
25.12Viewing totals across processes and nodes . 180
25.13Custom metrics . 180

26 PAPI metrics 182
26.1 Installation . 182
26.2 PAPI config file . 182
26.3 PAPI overview metrics . 182
26.4 PAPI cache misses . 183
26.5 PAPI branch prediction . 183
26.6 PAPI floating-point . 183

27 Main-thread, OpenMP and Pthread view modes 185
27.1 Main thread only mode . 185
27.2 OpenMP mode . 185
27.3 Pthread mode . 185

28 Processes and cores view 187

29 Running MAP from the command line 188
29.1 Profiling MPMD programs . 189

29.1.1 Profiling MPMD programs without Express Launch 189

30 Exporting profiler data in JSON format 190
30.1 JSON format . 190
30.2 Activities . 191

30.2.1 Description of categories . 191
30.2.2 Categories available in main_thread activity 192
30.2.3 Categories available in openmp and pthreads activities 193

30.3 Metrics . 193
30.4 Example JSON output . 195

31 GPU profiling 198
31.1 Kernel analysis . 198

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 7

Arm Forge 18.1.3

31.2 Compilation . 200
31.3 Performance impact . 200
31.4 Customizing GPU profiling behavior . 201
31.5 Known issues . 201

IV Appendix 202

A Configuration 202
A.1 Configuration files . 202

A.1.1 Sitewide configuration . 202
A.1.2 Startup scripts . 203
A.1.3 Importing legacy configuration . 203
A.1.4 Converting legacy sitewide configuration files 203
A.1.5 Using shared home directories on multiple systems 203
A.1.6 Using a shared installation on multiple systems 204

A.2 Integration with queuing systems . 204
A.3 Template tutorial . 205

A.3.1 The template script . 206
A.3.2 Configuring queue commands . 206
A.3.3 Configuring how job size is chosen . 206
A.3.4 Quick restart . 206

A.4 Connecting to remote programs (remote-exec) . 207
A.5 Optional configuration . 207

A.5.1 System . 208
A.5.2 Job submission . 209
A.5.3 Code viewer settings . 209
A.5.4 Appearance . 209

B Getting support 210

C Supported platforms 211
C.1 DDT . 211
C.2 MAP . 212

D Known issues 214
D.1 MAP . 214
D.2 XALT Wrapper . 214
D.3 MPICH 3 . 214
D.4 Open MPI . 214
D.5 CUDA . 214
D.6 SLURM . 215
D.7 PGI compilers . 215
D.8 64-bit Arm/Power platforms . 215
D.9 F1 user guide . 215
D.10 See also . 215

E MPI distribution notes and known issues 217
E.1 Berkeley UPC . 217
E.2 Bull MPI . 217
E.3 Cray MPT . 217

E.3.1 Using DDT with Cray ATP (the Abnormal Termination Process) 218
E.4 HP MPI . 218

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 8

Arm Forge 18.1.3

E.5 IBM PE . 219
E.6 Intel MPI . 219
E.7 MPC . 220

E.7.1 MPC in the Run window . 220
E.7.2 MPC on the command line . 221

E.8 MPICH 1 p4 . 221
E.9 MPICH 1 p4 mpd . 221
E.10 MPICH 2 . 221
E.11 MPICH 3 . 221
E.12 MVAPICH 2 . 222
E.13 Open MPI . 222
E.14 Platform MPI . 223
E.15 SGI MPT / SGI Altix . 223
E.16 SLURM . 223
E.17 Spectrum MPI . 224

F Compiler notes and known issues 225
F.1 AMD OpenCL compiler . 225
F.2 Arm Fortran compiler . 225
F.3 Berkeley UPC compiler . 225
F.4 Cray compiler environment . 225

F.4.1 Compile serial programs on Cray . 226
F.5 GNU . 226

F.5.1 GNU UPC . 226
F.6 IBM XLC/XLF . 227
F.7 Intel compilers . 227
F.8 Pathscale EKO compilers . 228
F.9 Portland Group compilers . 229

G Platform notes and known issues 231
G.1 CRAY . 231
G.2 GNU/Linux systems . 232

G.2.1 General . 232
G.2.2 SUSE Linux . 232
G.2.3 Attaching . 233

G.3 Intel Xeon . 233
G.3.1 Enabling RAPL energy and power counters when profiling 233

G.4 Intel Xeon Phi (Knight’s Landing) . 233
G.5 NVIDIA CUDA . 234

G.5.1 CUDA known issues . 234
G.6 Arm . 234

G.6.1 Arm®v8 (AArch64) known issues . 234
G.7 POWER . 234

G.7.1 POWER8 (POWER 64-bit) known issues . 234
G.8 MAC OS X . 235

H General troubleshooting and known issues 236
H.1 General troubleshooting . 236

H.1.1 Problems starting the GUI . 236
H.1.2 Problems reading this document . 236

H.2 Starting a program . 236
H.2.1 Problems starting scalar programs . 236

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 9

Arm Forge 18.1.3

H.2.2 Problems starting multi-process programs . 237
H.2.3 No shared home directory . 237
H.2.4 DDT or MAP cannot find your hosts or the executable 238
H.2.5 The progress bar does not move and Arm Forge times out 238

H.3 Attaching . 238
H.3.1 The system does not allow connecting debuggers to processes (Fedora, Ubuntu) . 238
H.3.2 The system does not allow connecting debuggers to processes (Fedora, Red Hat) 239
H.3.3 Running processes do not show up in the attach window 239

H.4 Source Viewer . 239
H.4.1 No variables or line number information . 239
H.4.2 Source code does not appear when you start Arm Forge 239
H.4.3 Code folding does not work for OpenACC/OpenMP pragmas 240

H.5 Input/Output . 240
H.5.1 Output to stderr is not displayed . 240
H.5.2 Unwind errors . 240

H.6 Controlling a program . 240
H.6.1 Program jumps forwards and backwards when stepping through it 240
H.6.2 DDT may stop responding when using the Step Threads Together option 241

H.7 Evaluating variables . 241
H.7.1 Some variables cannot be viewed when the program is at the start of a function . 241
H.7.2 Incorrect values printed for Fortran array . 241
H.7.3 Evaluating an array of derived types, containing multiple-dimension arrays . . . 241
H.7.4 C++ STL types are not pretty printed . 241

H.8 Memory debugging . 242
H.8.1 The View Pointer Details window says a pointer is valid but does not show you

which line of code it was allocated on . 242
H.8.2 mprotect fails error when using memory debugging with guard pages . . 242
H.8.3 Allocations made before or during MPI_Init show up in Current Memory Us-

age but have no associated stack back trace . 242
H.8.4 Deadlock when calling printf or malloc from a signal handler 242
H.8.5 Program runs more slowly with Memory Debugging enabled 243

H.9 MAP specific issues . 243
H.9.1 My compiler is inlining functions . 243
H.9.2 Tail call optimization . 243
H.9.3 MPI wrapper libraries . 244
H.9.4 Thread support limitations . 244
H.9.5 No thread activity while blocking on an MPI call 245
H.9.6 I am not getting enough samples . 245
H.9.7 I just see main (external code) and nothing else 245
H.9.8 MAPis reporting time spent in a function definition 245
H.9.9 MAP is not correctly identifying vectorized instructions 246
H.9.10 Linking with the static MAP sampler library fails with an undefined reference to

__real_dlopen . 246
H.9.11 Linking with the static MAP sampler library fails with FDE overlap errors 246
H.9.12 MAP adds unexpected overhead to my program 247
H.9.13 MAP takes an extremely long time to gather and analyze my OpenBLAS-linked

application . 247
H.9.14 MAP over-reports MPI, Input/Output, accelerator or synchronization time 248
H.9.15 MAP collects very deep stack traces with boost::coroutine 248

H.10 Obtaining support . 249

I Queue template script syntax 250

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 10

Arm Forge 18.1.3

I.1 Queue template tags . 250
I.2 Defining new tags . 251
I.3 Specifying default options . 253
I.4 Launching . 253

I.4.1 Using AUTO_LAUNCH_TAG . 253
I.4.2 Using ddt-mpirun . 254
I.4.3 MPICH 1 based MPI . 254
I.4.4 Scalar programs . 255

I.5 Using PROCS_PER_NODE_TAG . 255
I.6 Job ID regular expression . 255
I.7 Arm IPMI Energy Agent . 256

I.7.1 Requirements . 256

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 11

Arm Forge 18.1.3

Part I

Arm Forge

Introduction

Welcome to the Arm Forge user guide, covering Arm DDT and Arm MAP.

Arm DDT is our industry-leading parallel debugger supporting a wide range of parallel architectures and
models, including MPI, UPC, CUDA and OpenMP. Arm MAP is our low-overhead line-level profiler
for MPI, OpenMP and scalar programs. Both these tools are part of one common environment: Arm
Forge.

One installation provides you with everything you need to debug, fix and profile programs at any scale,
limited only by your current license. This simplifies your installation and maintenance overheads and
provides one common, familiar interface for all development tools, making it easy to move between
them while working on a piece of code. You may start Forge with ddt or map and can easily switch to
the other tool with a single click while working.

Arm Forge has native remote clients for Windows, Mac OS X and Linux that can connect via SSH to
any server or cluster using your existing login process and then run, debug, profile, edit and compile
files directly on the remote machine. The native remote client experience is superior to X forwarding or
VNC-based solutions.

Arm DDT

ArmDDT is a powerful, easy-to-use graphical debugger capable of debugging a wide variety of scenarios
found in modern development environments. With Arm DDT, it is possible to debug:

• Single process and multithreaded software.

• OpenMP.

• Parallel (MPI) software.

• Heterogeneous software such as that written to use GPUs.

• Hybrid codes mixing paradigms such as MPI + OpenMP, or MPI + CUDA.

• Multi-process software of any form, including client-server applications.

Arm DDT is designed to make you and your team more productive. It includes static analysis that high-
lights potential problems in the source code, integrated memory debugging that can catch reads and writes
outside of array bounds, integration with MPI message queues and much more. It provides a complete
solution for finding and fixing problems whether on a single thread or hundreds of thousands.

Arm DDT supports all of the compiled languages that are found in mainstream and high-performance
computing including:

• C, C++, and all derivatives of Fortran, including Fortran 90.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 12

Arm Forge 18.1.3

• Limited support for Python (CPython 2.7).

• Parallel languages/models including MPI, UPC, and Fortran 2008 Co-arrays.

• GPU languages such as HMPP, OpenMP Accelerators, CUDA and CUDA Fortran.

While many users choose Arm DDT for desktop development or for debugging on small departmental
parallel machines, it is also scalable and fast to beyond Petascale and is depended upon to debug hundreds
of thousands of processes simultaneously by leadership class facilities around the world.

Chapters 5 to 16 of this manual describe Arm DDT in more detail.

Arm MAP

Arm MAP is a parallel profiler that shows you which lines of code took the most time and why, without
requiring careful configuration or prior experience with profiling tools. It features:

• Support for MPI, OpenMP and single-threaded programs.

• Small data files. All data is aggregated on the cluster and only a few megabytes written to disk,
regardless of the size or duration of the run.

• Syntax-highlighted source code with performance annotations, allowing you to collapse blocks of
code and functions or drill down to the performance of a single line.

• Just 5% application slowdown even with thousands of MPI processes.

• Both interactive and batch modes for gathering profile data.

• A rich set of zero-configuration metrics, showing memory usage, floating-point calculations and
MPI usage across processes, including:

– The percentage of vectorized instructions, including AVX extensions, used in each part of the
code.

– The amount of time spent in memory operations varies over time and processes. Is there a
cache bottleneck?

– Click and drag to zoom in to specific regions of computation and explore them in detail.

– A display that enlightens you instead of drowning you in data. Everything is visually scalable,
using aggregation across processes and cores to deliver an immediate overview that highlights
regions of imbalance in the code.

Chapters 17 to 31 of this user guide describe Arm MAP in more detail.

Online resources

You can find links to tutorials, training material, webinars and white papers in the online knowledge
center:

Knowledge Center Arm help and tutorials

Known issues and the latest version of this user guide may be found on the support web pages:

Support Arm support

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 13

https://developer.arm.com/products/software-development-tools/hpc/documentation
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Installation

A release of Arm Forge, containing Arm DDT and Arm MAP may be downloaded from the Arm Devel-
oper website.

Both a graphical and text-based installer are provided. See the following sections for further details.

Linux installation

Graphical install

Untar the package and run the installer executable using these commands:

tar xf arm-forge-18.1.3-<distro>-<arch>.tar
cd arm-forge-18.1.3-<distro>-<arch>
./installer

replacing <distro> and <arch> with the OS distribution and architecture of your tar package, re-
spectively. For example, the tarball package for Redhat 7.4 OS and Armv8-A (AArch64) architecture is:
arm-forge-18.1.3-Redhat-7.4-aarch64.tar

The installer consists of a number of pages where you can choose install options. Use the Next and Back
buttons to move between pages or Cancel to cancel the installation.

The Install Type page lets you choose which user(s) to install Arm Forge for.

If you are an administrator (root) you may install Arm Forge for All Users in a common directory such
as /opt or /usr/local, otherwise only the Just For Me option is enabled.

Figure 1: Installer—Installation type

Once you have selected the installation type, you are prompted to specify the directory you would like
to install Arm Forge in. For a cluster installation, choose a directory that is shared between the cluster
login or frontend node and the compute nodes. Alternatively, install it on or copy it to the same location
on each node.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 14

https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/products/software-development-tools/hpc/

Arm Forge 18.1.3

Figure 2: Installer—Installation directory

You are shown the progress of the installation on the Install page.

Figure 3: Install in progress

Icons for DDT and MAP will be added to your desktop environment’s Development menu.

It is important to follow the instructions in the README file that is contained in the tar file. In particular,
you need a valid license file. Use the following link to obtain an evaluation license: Get software.

Due to the vast number of different site configurations and MPI distributions that are supported by Arm
Forge, it is inevitable that sometimes you may need to take additional steps to get everything fully inte-
grated into your environment. For example, it may be necessary to ensure that environment variables are
propagated to remote nodes, and ensure that the tool libraries and executables are available on the remote
nodes.

Text-mode install

The text-mode install script textinstall.sh is useful if you are installing remotely. This can be
used as follows:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 15

https://www.arm.com/products/development-tools/hpc-tools/get-software

Arm Forge 18.1.3

tar xf arm-forge-18.1.3-<distro>-<arch>.tar
cd arm-forge-18.1.3-<distro>-<arch>
./textinstall.sh

replacing <distro> and <arch> with the OS distribution and architecture of your tar package, re-
spectively. For example, the tarball package for Redhat 7.4 OS and Armv8-A (AArch64) architecture is:
arm-forge-18.1.3-Redhat-7.4-aarch64.tar

Press Return to read the license when prompted and then input the directory where you would like to
install Arm Forge. The directory must be accessible on all the nodes in your cluster.

Alternatively, to run the text-mode install script textinstall.sh, accept the license, and point to an
installation directory in one step, pass the arguments --accept-licence and <installation_-
directory> when executing textinstall.sh. For example:

./textinstall.sh --accept-licence <installation_directory>

replacing the <installation_directory> with a directory of your choice.

Mac installation

The Arm Forge client for Mac OS X is supplied as an Apple Disk Image (*.dmg) file. This includes the
documentation folder, which contains a copy of this user guide and the release notes. It also contains the
Arm Forge client application bundle icon, which should be drag and dropped into the Applications
directory.

Figure 4: Mac Installer—Installation Folder

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 16

Arm Forge \input version\endinput

Windows installation

The Arm Forge client for Windows is installed using a graphical installer. This is a familiar Windows
set-up executable, although care needs to be taken with the choice of a destination folder for the installa-
tion.

Figure 5: Windows Installer—Installation Folder

If the user performing the installation has administrative rights, then the default installation folder is
C:\Program Files\Arm Forge. If administrative rights have not been granted, then the default is
C:\Users\<user>\AppData\Local.

License files

Arm Forge products require a license file for their operation. If you are using the Remote Client you do
not need a license file on the machine running the Remote Client, but on the machine you are connecting
to instead.

If you do not have a license file, the GUI will show this in the lower-left corner and you will not be able
to run, debug or profile new programs.

Time-limited evaluation licenses are available from the Arm website: Get software.

Workstation and evaluation licenses

Workstation and Evaluation license files for Arm Forge do not require Arm Licence Server and should be
copied directly to{installation-directory}/licences. For example, /home/user/arm/
forge/licences/Licence.ddt. Do not edit the files as this will prevent them fromworking.

If you have separate license files for Arm DDT and Arm MAP you do not need separate installations of
ArmForge. Youmay instead copy the individual license files to{installation-directory}/licences.
When Arm Forge is started you may choose between Arm DDT and Arm MAP on the Welcome page. If
you have multiple licenses for the same product the license with the most tokens is preferred.

Youmay specify an alternative location of the license directory using the environment variableALLINEA_
LICENCE_DIR. For example:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 17

https://www.arm.com/products/development-tools/hpc-tools/get-software

Arm Forge 18.1.3

export ALLINEA_LICENCE_DIR=${HOME}/SomeOtherLicenceDir

ALLINEA_LICENSE_DIR is an alias for ALLINEA_LICENCE_DIR.

Supercomputing and other floating licenses

For users with Supercomputing and other floating licenses, the Arm Licence Server must be running on
the designated license server machine prior to running Arm Forge.

The Arm Licence Server and instructions for its installation and usage may be downloaded from Arm
Developer website.

The license server download is on the Arm Forge download page.

A floating license consists of two files: the server license (a file named Licence.xxxx) and a client li-
cense file namedLicence. The client file should be copied to{installation-directory}/licences.
For example, /home/user/arm/forge/licences/Licence. You will need to edit the host-
name line to contain the host name or IP address of the machine running the Licence Server. See the
Licence Server user guide for instructions on how to install the server license.

Architecture licensing

Licenses issued after the release of Arm Forge 6.1 specify the compute node architectures that they may
be used with. Licenses issued prior to this release will enable the x86_64 architecture by default. Existing
users for other architectures will be supplied with new licenses that will enable their architectures.

If there is any problem then contact Arm support at Arm support.

Using multiple architecture licenses

If you are using multiple license files to specify multiple architectures, it is recommended that you leave
the default licenses directory empty. Instead, create a directory for each architecture, and when you target
a specific architecture set ALLINEA_LICENSE_DIR to the relevant directory. Alternatively, you can
set ALLINEA_LICENSE_FILE in order to specify the license file.

By way of example, consider a site where there are two target architectures, x86_64 and aarch64. Create
two directories, licenses_x86_64 and licenses_aarch64. Then, if you want to target aarch64,
you would set the license directory as follows:

export ALLINEA_LICENSE_DIR=/path/to/licenses_aarch64

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 18

https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Connecting to a remote system

Often you will need to login to a remote system in order to run a job. For example you may use SSH to
login from your desktop machine mydesktop to the login node mycluster-login and then start a job using
the queue submission command qsub.

Figure 6: Connecting to a Remote System

The Arm Forge GUI can connect to remote systems using SSH, typically to a login node. It can also
connect using Reverse Connect, typically to a batch compute node. See 3.3 Reverse Connect for more
information on Reverse Connect. The remote client allows you to run the user interface on your local
machine without the need for X forwarding. Native remote clients are available for Windows, Mac OS X
and Linux.

No license file is required by a remote client. The license of the remote system will be used once con-
nected.

Note: The same versions of Arm Forge must be installed on the local and remote systems in order to use
DDT or MAP remotely.

Figure 7: Remote Launch—Configure

To connect to a remote system click on the Remote Launch drop down list and selectConfigure… The Re-
mote connections dialog will open where you can edit the necessary settings.

Remote connections dialog

TheRemote ConnectionsDialog allows you to add, remove and edit connections to remote systems.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 19

Arm Forge 18.1.3

Figure 8: Remote Connections Dialog

When adding or editing a host, you are presented with the Remote launch settings for that host.

You may also remove a remote host from the list by clicking the Remove button, or duplicate an existing
host using the Duplicate button.

You can also change the ordering of the hosts using theMove Up or Move Down buttons.

Remote launch settings

Figure 9: Remote Launch Options

Connection Name: An optional name for this connection. If no name is specified, the Host Name is
used.

Host Name: The host name of the remote system you wish to connect to.

The syntax of the host name field is:

[username]@hostname[:port]...

username is an optional user name to use on the remote system. If not specified your local user name
is used instead.

hostname is the host name of the remote system.

port is the optional port number that the remote host’s SSH daemon is listening on. If not specified the
default of 22 is used.

To login via one or more intermediate hosts (for example, a gateway) enter the host names in order,
separated by spaces, for example, gateway.arm.com cluster.lan

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 20

Arm Forge 18.1.3

Note: You must be able to login to the third and subsequent hosts without a password.

Additional SSH options may be specified in the remote-exec script covered in section A.4 Connecting
to remote programs (remote-exec).

Remote Installation Directory: The full path to the Arm Forge installation on the remote system.

Remote Script: This optional script will be run before starting the remote daemon on the remote system.
You may use this script to load the required modules for DDT and MAP, your MPI and compiler. See
the following sections for more details. The script is usually not necessary when using Reverse Con-
nect.

Always look for source files locally: Check this box to use the source files on the local system instead
of the remote system.

Remote script

The script may load modules using the module command or otherwise set environment variables. Arm
Forge will source this script before running its remote daemon (your script does not need to start the
remote daemon itself).

The script will be run using /bin/sh (usually a Bourne-compatible shell). If this is not your usual login
shell, make allowances for the different syntax it might require.

You may install a site-wide script that will be sourced for all users at
/path/to/arm/forge/remote-init.

You may also install a user-wide script that will be sourced for all of your connections at
$ALLINEA_CONFIG_DIR/remote-init.

Note: $ALLINEA_CONFIG_DIR will default to $HOME/.allinea if not set.

Example Script

Note: This script file should be created on the remote system and the full path to the file entered in the
Remote Script field box.

module load allinea-forge
module load mympi
module load mycompiler

Reverse Connect

Overview

The Reverse Connect feature allows you to submit your job from a shell terminal as you already do
and with a small tweak to your mpirun (or equivalent) allow that job to connect back to Arm Forge
GUI.

Reverse Connect makes it easy to debug and profile jobs with the right environment. You can easily load
the required modules and prepare all setup steps necessary before launching your job.

Please note that node-locked licenses such as workstation or Arm DDT Cluster licenses do not include
the Reverse Connect feature.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 21

Arm Forge 18.1.3

Usage

1. Start Arm Forge and let it connect to your remote system (typically a login node) with SSH.

2. Modify your current mpirun (or equivalent) command line inside your interactive queue alloca-
tion or queue submission script to enable Reverse Connect. In most of the cases it is sufficient
to prefix it with ddt/map --connect. Almost all Arm Forge arguments beside --offline
and --profile are supported by Reverse Connect.

Example:

$ mpirun -n 512 ./examples/wave_f

To debug the job using Reverse Connect and 5.2 Express Launch run:

$ ddt --connect mpirun -n 512 ./examples/wave_f

To profile the job using Reverse Connect and 17.1 Express Launch run:

$ map --connect mpirun -n 512 ./examples/wave_f

If your MPI is not yet supported by Express Launch mode you can use Compatibility Mode.

Debug:

$ ddt --connect -n 512 ./examples/wave_f

Profile:

$ map --connect -n 512 ./examples/wave_f

3. After a short period of time the Arm Forge GUI will show the Reverse Connect request including
the host (typically a batch compute node) from where the request was made and a command line
summary.

Figure 10: Reverse Connect request

4. You can accept the request with a click onAccept. Arm Forge will then connect to the specified host
and execute what you specified with the command line. If you do not want to accept the request
just click on Reject.

Connection details

If a Reverse Connect is initiated, for example withddt --connect, Arm Forge starts a server listening
on a port in the range between 4201 and 4240. If this port range is not suitable for some reason, such as
ports are already taken by other services, you can override the port range with the environment variable
ALLINEA_REMOTED_PORTS.

$ export ALLINEA_REMOTED_PORTS=4400-4500
$ ddt --connect

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 22

Arm Forge 18.1.3

The server will now pick a free port between 4400 and 4500 (inclusive).

This connection is between the batch or submit node (where ddt –connect is run from) and the login
node. This connection can also be to a compute node if for example, you are running ddt --connect
mpirun on a single node.

Treeserver or general debugging ports

Connections are made in the following ways, depending on the use case:

Using a queue submission or using X-forwarding:

• A connection is made between the login node and the batch or submit node using ports 4242–4262.

• Connections are made between the batch or submit node and the compute nodes using ports 4242–
4262.

• Connections are made from compute nodes to other compute nodes using ports 4242–4262.

Using reverse connect:

• See section 3.3.3 for details about login node to batch/submit node ports.

• Connections are made between the batch or submit node and the compute nodes using ports 4242–
4262.

• Connections are made from compute nodes to other compute nodes using ports 4242–4262.

Using X forwarding or VNC

If you do not want to use the Remote Launch feature there are two other methods for running DDT or
MAP on a remote system:

1. X forwarding is effective when the network connection is low latency, such as when the network
spans a single physical site.

2. VNC (or similar Unix-supporting remote desktop software) is strongly recommended when the
network connection is moderate or slow.

• MacOSX users accessing a Linux or other Unixmachine while using a single-buttonmouse should
be advised that pressing the Command key and the single mouse button will have the same effect
as right clicking on a two button mouse. Right-clicking allows access to some important features
in DDT and MAP.

You can use X forwarding to access the Arm Forge instance running on a remote Linux/Unix system
from a Mac OS X system:

– Start the X11 server (available in the X11User.pkg).

– Set the display variable correctly to allow X applications to display by opening a terminal in
Mac OS X and typing:

export DISPLAY=:0

– Then ssh to the remote system from that terminal, with ssh options -X and -C (X forwarding
and compression). For example:

ssh -CX username@login.mybigcluster.com

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 23

Arm Forge 18.1.3

– Now start DDT orMAP on the remote system and the windowwill be displayed on yourMac.

• Windows users can use any one of a number of commercial and open source X servers, but may find
VNC a viable alternative (http://www.realvnc.com/) which is available under free and commercial
licensing options.

• VNC allows users to access a desktop running on a remote server (for example, a cluster login node
or front end) and is more suitable than X forwarding for medium to high latency links. By setting
up an SSH ‘tunnel’ users are usually able to securely access this remote desktop from anywhere.

To use VNC and Arm Forge:

– Log in to the remote system and set up a tunnel for port 5901 and 5801. On Mac OS X or any
Linux/Unix systems use the ssh command. If you are using Putty on Windows use the GUI
to setup the tunnel.

ssh -L 5901:localhost:5901 -L 5801:localhost:5801 \
username@login.mybigcluster.com

– At the remote prompt, start vncserver. If this is the first time you have used VNC it asks
you to set an access password.

vncserver

The output from vncserver will tell you which ports VNC has started on—5800+n and
5900+n, where n is the number given as hostname:n in the output. If this number, n, is not
1, then another user is already using VNC on that system, and you should set a new tunnel
to these ports by logging in to the same host again and changing the settings to the new ports
(or use SSH escape codes to add a tunnel, see the SSH manual pages for details).

– Now, on the local desktop or laptop, either use a browser and access the desktop within the
browser by entering the URL http://localhost:5801/, or you may use a separate
VNC client such as krdc or vncviewer.

krdc localhost:1

or

vncviewer localhost:1

If n is not 1, as described above, use :2, :3 etc. as appropriate instead.

• Note: A bug in the browser-based access method means the Tab key does not work correctly in
VNC, but krdc or vncviewer users are not affected by this problem.

• VNC frequently defaults to an old X windowmanager (twm) which requires you to manually place
windows. This behavior can be changed by editing the ~/.vnc/xstartup file to use KDE or
GNOME and restarting the VNC server.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 24

http://www.realvnc.com/

Arm Forge 18.1.3

Starting

To start Arm Forge simply type one of the following commands into a terminal window:

forge
forge program_name [arguments]

To start Arm Forge on Mac OS X , use the Arm Forge icon or type in the terminal window:

open /Applications/Arm\ Forge/Arm Forge.app [--args program_name [
arguments]]

To launch additional instances of the Arm Forge application, right-click the Dock icon of a running
instance of Arm Forge, and choose “Launch a new instance of Arm Forge”. Alternatively, you can use
the following command in a terminal:

open -n /Applications/Arm\ Forge/Arm Forge.app [--args
program_name [arguments]]

Note: Unless in Express Launch mode, you should not attempt to pipe input directly to the Arm Forge
program. For information about how to achieve the effect of sending input to your program, please read
section 9 Program input and output (DDT) or 29 Running MAP from the command line (MAP).

Once Arm Forge has started it will display the Welcome Page.

Note: In Express Launch mode (see 5.2 Express Launch (DDT) or 17.1 Express Launch (MAP)) the
Welcome Page is not shown and the user is brought directly to the Run Dialog instead. If no valid license
is found, the program is exited and the appropriate message is shown in the console output.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 25

Arm Forge 18.1.3

Figure 11: DDT Welcome Page

TheWelcome Page allows you to choose what tool you would like to use (DDT or MAP). Click the icons
on the left hand side to switch tools.

Once you have selected the tool you want to use, click the buttons in the menu to select a debugging or
profiling activity.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 26

Arm Forge 18.1.3

Part II

DDT

Getting started

When compiling the program that you wish to debug, you must add the debug flag to your compile
command. For most compilers this is -g.

It is also advisable to turn off compiler optimizations as these can make debugging appear strange and
unpredictable. If your program is already compiled without debug information you will need to make the
files that you are interested in again.

The Welcome Page allows you to choose what kind of debugging you want to do, for example you
can:

• Run a program from DDT and debug it.

• Debug a program you launch manually (for example, on the command line).

• Attach to an already running program.

• Open core files generated by a program that crashed.

• Connect to a remote system and accept a Reverse Connect request.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 27

Arm Forge 18.1.3

Running a program

Figure 12: Run Window

If you click the Run button on the Welcome Page you see the window above. The settings are grouped
into sections. Click the Details… button to expand a section. The settings in each section are described
below.

Application

Application: The full path name to your application. If you specified one on the command line, this is
filled in. You may browse for an application by clicking on the Browse button.

Note: Many MPIs have problems working with directory and program names containing spaces. You are
advised to avoid the use of spaces in directory and file names.

Arguments: (optional) The arguments passed to your application. These are automatically filled if you
entered some on the command line.

Note: Avoid using quote characters such as ' and ", as these may be interpreted differently by DDT and
your command shell. If you must use these and cannot get them to work as expected, please contact Arm
support at Arm support.

stdin file: (optional) This allows you to choose a file to be used as the standard input (stdin) for your
program. DDT automatically adds arguments to mpirun to ensure your input file is used.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 28

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Working Directory: (optional) The working directory to use when debugging your application. If this
is blank then DDT’s working directory is used instead.

MPI

Note: If you only have a single process license or have selected none as yourMPI Implementation the
MPI options will be missing. The MPI options are not available when DDT is in single process mode.
See section 5.4 Debugging single-process programs for more details about using DDT with a single
process.

Number of processes: The number of processes that you wish to debug. DDT supports hundreds of
thousands of processes but this is limited by your license.

Number of nodes: This is the number of compute nodes that you wish to use to run your program.

Processes per node: This is the number of MPI processes to run on each compute node.

Implementation: The MPI implementation to use. If you are submitting a job to a queue the queue
settings will also be summarized here. You may change the MPI implementation by clicking on the
Change… button.

Note: The choice of MPI implementation is critical to correctly starting DDT. Your system will nor-
mally use one particular MPI implementation. If you are unsure as to which to pick, try generic, consult
your system administrator or Arm support. A list of settings for common implementations is provided in
Appendix E MPI distribution notes and known issues.

Note: If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can configure this using the Options window (See section A.5.1 System).

mpirun arguments: (optional): The arguments that are passed to mpirun or your equivalent, usually
prior to your executable name in normal mpirun usage. You can place machine file arguments, if
necessary, here. For most users this box can be left empty. You can also specify mpirun arguments on
the command line (using the --mpiargs command line argument) or using the ALLINEA_MPIRUN_
ARGUMENTS environment variable if this is more convenient.

Note: You should not enter the -np argument as DDT will do this for you.

Note: You should not enter the --task-nb or --process-nb arguments as DDT will do this for
you.

OpenMP

Number of OpenMP threads: The number of OpenMP threads to run your application with. The OMP_
NUM_THREADS environment variable is set to this value.

CUDA

If your license supports it, you may also debug GPU programs by enabling CUDA support. For more
information on debugging CUDA programs, please see section 15 CUDA GPU debugging.

Track GPU Allocations: Tracks CUDA memory allocations made using cudaMalloc, and similar
methods. See 12.2 CUDA memory debugging for more information.

Detect invalid accesses (memcheck): Turns on the CUDA-MEMCHECK error detection tool. See 12.2
CUDA memory debugging for more information.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 29

Arm Forge 18.1.3

Memory debugging

Clicking the Details… button will open theMemory Debugging Settings window.

See section 12.3 Configuration for full details of the available Memory Debugging settings.

Environment variables

The optional Environment Variables section should contain additional environment variables that should
be passed to mpirun or its equivalent. These environment variables may also be passed to your pro-
gram, depending on which MPI implementation your system uses. Most users will not need to use this
box.

Note: on some systems it may be necessary to set environment variables for the DDT backend itself. For
example: if /tmp is unusable on the compute nodes you may wish to set TMPDIR to a different directory.
You can specify such environment variables in/path/to/ddt/lib/environment. Enter one vari-
able per line and separate the variable name and value with =, for example, TMPDIR=/work/user.

Plugins

The optional Plugins section allows you to enable plugins for various third-party libraries, such as the
Intel Message Checker orMarmot. See section 14 Using and writing plugins for more information.

Click Run to start your program, or Submit if working through a queue. See section A.2 Integration with
queuing systems. This runs your program through the debug interface you selected and allows your MPI
implementation to determine which nodes to start which processes on.

Note: If you have a program compiled with Intel ifort or GNU g77 you may not see your code and
highlight line whenDDT starts. This is because those compilers create a pseudoMAIN function, above the
top level of your code. To fix this you can either open your Source Code window and add a breakpoint in
your code, then run to that breakpoint, or you can use the Step into function to step into your code.

When your program starts, DDT attempts to determine the MPI world rank of each process. If this fails,
the following error message is displayed:

Figure 13: MPI rank error

This means that the number DDT shows for each process may not be the MPI rank of the process. To
correct this you can tell DDT to use a variable from your program as the rank for each process.

See section 8.17 Assigning MPI ranks for details.

To end your current debugging session select the End Session menu option from the File menu. This
closes all processes and stops any running code. If any processes remain you may have to clean them up
manually using the kill command, or a command provided with your MPI implementation.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 30

Arm Forge 18.1.3

Express Launch

Each of the Arm Forge products can be launched by typing its name in front of an existing mpiexec
command:

$ ddt mpiexec -n 128 examples/hello memcrash

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see an error message like this:

$ 'MPICH 1 standard' programs cannot be started using Express
Launch syntax (launching with an mpirun command).

Try this instead:
ddt --np=256 ./wave_c 20

Type ddt --help for more information.

This is referred to as Compatibility Mode, in which the mpiexec command is not included and the
arguments to mpiexec are passed via a --mpiargs="args here" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts to
run your program under one of the Arm Forge products. This works best for Arm DDT with Reverse
Connect, ddt --connect, for interactive debugging or in offline mode (ddt --offline). See 3.3
Reverse Connect for more details.

If you can not use Reverse Connect and wish to use interactive debugging from a queue you may need
to configure DDT to generate job submission scripts for you. More details on this can be found in 5.10
Starting a job in a queue and A.2 Integration with queuing systems.

The following lists the MPI implementations currently supported by Express Launch:

• bullx MPI

• Cray X-Series (MPI/SHMEM/CAF)

• Intel MPI

• MPICH 2

• MPICH 3

• Open MPI (MPI/SHMEM)

• Oracle MPT

• Open MPI (Cray XT/XE/XK)

• Cray XT/XE/XK (UPC)

Run dialog box

In Express Launch mode, the Run dialog has a restricted number of options:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 31

Arm Forge 18.1.3

Figure 14: Express Launch DDT Run dialog box

remote-exec required by some MPIs

When using SGI MPT, MPICH 1 Standard or the MPMD variants of MPICH 2, MPICH 3 or Intel
MPI, DDT will allow mpirun to start all the processes, then attach to them while they’re inside MPI_
Init.

This method is often faster than the generic method, but requires the remote-exec facility in DDT to
be correctly configured if processes are being launched on a remote machine. For more information on
remote-exec, please see section A.4 Connecting to remote programs (remote-exec).

Note: If DDT is running in the background (for example, ddt &) then this process may get stuck (some
SSH versions cause this behavior when asking for a password). If this happens to you, go to the terminal
and use the fg or similar command to make DDT a foreground process, or run DDT again, without using
“&”.

If DDT cannot find a password-free way to access the cluster nodes then you will not be able to use
the specialized startup options. Instead, You can use generic, although startup may be slower for large
numbers of processes.

In addition to the listedMPI implementations above, all MPI implementations except forCrayMPT DDT
require password-free access to the compute nodes when explicitly starting by attaching.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 32

Arm Forge 18.1.3

Debugging single-process programs

Figure 15: Single-Process Run dialog

Users with single-process licenses will immediately see the Run dialog that is appropriate for single-
process applications.

Users with multi-process licenses can uncheck theMPI check box to run a single process program.

Select the application, either by typing the file name in, or selecting using the browser by clicking the
browse button. Arguments can be typed into the supplied box.

Click Run to start your program.

Note: If you have a program compiled with Intel ifort or GNU g77 you may not see your code and
highlight line when DDTstarts. This is because those compilers create a pseudo MAIN function, above
the top level of your code. To fix this you can either open your Source Code window and add a breakpoint
in your code and then play to that breakpoint, or you can use the Step Into function to step into your
code.

To end your current debugging session select the End Session menu option from the File menu. This will
close all processes and stop any running code.

Debugging OpenMP programs

When running an OpenMP program, set the Number of OpenMP threads value to the number of threads
you require. DDT will run your program with the OMP_NUM_THREADS environment variable set to the
appropriate value.

There are several important points to keep in mind while debugging OpenMP programs:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 33

Arm Forge 18.1.3

1. Parallel regions created with #pragma omp parallel (C) or !$OMP PARALLEL (Fortran)
will usually not be nested in theParallel Stack View under the function that contained the#pragma.
Instead they will appear under a different top-level item. The top-level item is often in the OpenMP
runtime code, and the parallel region appears several levels down in the tree.

2. Some OpenMP libraries only create the threads when the first parallel region is reached. It is
possible you may only see one thread at the start of the program.

3. You cannot step into a parallel region. Instead, check the Step threads together box and use the
Run to here command to synchronize the threads at a point inside the region. These controls are
discussed in more detail in their own sections of this document.

4. You cannot step out of a parallel region. Instead, useRun to here to leave it. Most OpenMP libraries
work best if you keep the Step threads together box ticked until you have left the parallel region.
With the Intel OpenMP library, this means you will see the Stepping Threadswindow and will have
to click Skip All once.

5. Leave Step threads together off when you are outside a parallel region, as OpenMP worker threads
usually do not follow the same program flow as the main thread.

6. To control threads individually, use the Focus on Thread control. This allows you to step and play
one thread without affecting the rest. This is helpful when you want to work through a locking
situation or to bring a stray thread back to a common point. The Focus controls are discussed in
more detail in their own section of this document.

7. Shared OpenMP variables may appear twice in the Locals window. This is one of the many un-
fortunate side-effects of the complex way OpenMP libraries interfere with your code to produce
parallelism. One copy of the variable may have a nonsense value, this is usually easy to recognize.
The correct values are shown in the Evaluate and Current Line windows.

8. Parallel regions may be displayed as a new function in the stack views. Many OpenMP libraries
implement parallel regions as automatically-generated “outline” functions, and DDT shows you
this. To view the value of variables that are not used in the parallel region, you may need to switch
to thread 0 and change the stack frame to the function you wrote, rather than the outline function.

9. Stepping often behaves unexpectedly inside parallel regions. Reduction variables usually require
some sort of locking between threads, and may even appear to make the current line jump back to
the start of the parallel region. If this happens step over several times and you will see the current
line comes back to the correct location.

10. Some compilers optimize parallel loops regardless of the options you specified on the command
line. This has many strange effects, including code that appears to move backwards as well as
forwards, and variables that are not displayed or have nonsense values because they have been
optimized out by the compiler.

11. The thread IDs displayed in the Process Group Viewer and Cross-Thread Comparison window
will match the value returned by omp_get_thread_num() for each thread, but only if your
OpenMP implementation exposes this data to DDT. GCC’s support for OpenMP (GOMP) needs to
be built with TLS enabled with our thread IDs to match the return omp_get_thread_num(),
whereas your system GCC most likely has this option disabled. The same thread IDs will be
displayed as tooltips for the threads in the thread viewer, but only your OpenMP implementation
exposes this data.

If you are using DDT with OpenMP and would like to tell us about your experiences, please contact Arm
support at Arm support, with the subject title OpenMP feedback.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 34

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Manual launching of multi-process non-MPI programs

DDT can only launch MPI programs and scalar (single process) programs itself. The Manual Launch
(Advanced) button on the Welcome Page allows you to debug multi-process and multi-executable pro-
grams. These programs do not necessarily need to be MPI programs. You can debug programs that use
other parallel frameworks, or both the client and the server from a client/server application in the same
DDT session.

You must run each program you want to debug manually using the ddt-client command, similar
to debugging with a scalar debugger like the GNU debugger (gdb). However, unlike a scalar debugger,
you can debug more than one process at the same time in the same DDT session, as long as your license
permits it. Each program you run will show up as a new process in the DDT window.

For example to debug both client and server in the same DDT session:

1. Click the Manual Launch (Advanced) button.

2. Select 2 processes

Figure 16: Manual Launch Window

3. Click the Listen button.

4. At the command line run:

ddt-client server &
ddt-client client &

The server process appears as process 0 and the client as process 1 in the DDT window.

Figure 17: Manual Launch Process Groups

After you have run the initial programs you may add extra processes to the DDT session, for example
extra clients could be added, using ddt-client in the same way.

ddt-client client2 &

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 35

Arm Forge 18.1.3

If you check Start debugging after the first process connects you do not need to specify how many pro-
cesses you want to launch in advance. You can start debugging after the first process connects and add
extra processes later as above.

Debugging MPMD programs

The easiest way to debug MPMD programs is by using Express Launch to start your application.

To use Express Launch, simply prefix your normal MPMD launch line with ddt, for example:

ddt mpirun -n 1 ./master : -n 2 ./worker

For more information on Express Launch, and compatible MPI implementations, see section 5.2.

Debugging MPMD programs without Express Launch

If you are using Open MPI, MPICH 2, MPICH 3 or Intel MPI, DDT can be used to debug multiple
program, multiple data (MPMD) programs. To start an MPMD program in DDT:

1. MPICH 2 and Intel MPI only: Select the MPMD variant of the MPI Implementation on the System
page of the Options window, for example, for MPICH 2 select MPICH 2 (MPMD).

2. Click the Run button on theWelcome Page.

3. Select one of the MPMD programs in the Application box, it does not matter what executable you
choose.

4. Enter the total amount of processes for the MPMD job in the Number of processes box.

5. Enter an MPMD style command line in the mpirun Arguments box in the MPI section of the Run
window, for example:

-np 4 hello : -np 4 program2

or:

--app /path/to/my_app_file

6. Click the Run button.

Note: be sure that the sum of processes in step 5 is equal to the number of processes set in step 4.

Debugging MPMD programs in Compatibility mode

If you are using Open MPI in Compatibility mode, for example, because you do not have SSH access to
the compute nodes, then replace:

-np 2 ./progc.exe : -np 4 ./progf90.exe

in the mpirun Arguments / appfile with this:

-np 2 /path/to/ddt/bin/ddt-client ./progc.exe : -np 4
/path/to/ddt/bin/ddt-client ./progf90.exe

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 36

Arm Forge 18.1.3

Opening core files

Figure 18: The Open Core Files Window

DDT allows you to open one or more core files generated by your application.

To debug using core files, click the Open Core Files button on the Welcome Page. This opens the Open
Core Files window, which allows you to select an executable and a set of core files. Click OK to open
the core files and start debugging them.

While DDT is in this mode, you cannot play, pause or step, because there is no process active. You
are, however, able to evaluate expressions and browse the variables and stack frames saved in the core
files.

The End Session menu option will return DDT to its normal mode of operation.

Attaching to running programs

DDT can attach to running processes on any machine you have access to, whether they are from MPI
or scalar jobs, even if they have different executables and source pathnames. Clicking the Attach to a
Running Program button on the Welcome Page shows DDT’s Attach Window:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 37

Arm Forge 18.1.3

Figure 19: Attach Window

There are two ways to select the processes you want to attach to: you can either choose from a list of
automatically detected MPI jobs (for supported MPI implementations) or manually select from a list of
processes.

Automatically detected MPI jobs

DDT can automatically detect MPI jobs started on the local host for selected MPI implementations. This
also applies to other hosts you have access to, if an Attach Hosts File is configured. See section A.5.1
System for more details.

The list of detected MPI jobs is shown on the Automatically-detected MPI jobs tab of the Attach Window.
Click the header for a particular job to see more information about that job. Once you have found the job
you want to attach to simply click the Attach button to attach to it.

Note: non-MPI programs that were started using MPI may not appear in this window. For example
mpirun -np 2 sleep 1000

Attaching to a subset of an MPI job

You may want to attach only to a subset of ranks from your MPI job. You can choose this subset using the
Attach to ranks box on the Automatically-detected MPI jobs tab of the Attach Window. You may change
the subset later by selecting the File→ Change Attached Processes…menu item. The menu item is only
available for jobs that were attached to, and not for jobs that were launched using DDT.

Manual process selection

You canmanually select which processes to attach to from a list of processes using the List of all processes
tab of the Attach Window. If you want to attach to a process on a remote host see section A.4 Connecting

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 38

Arm Forge 18.1.3

to remote programs (remote-exec) first.

Initially the list of processes is blank while DDT scans the nodes, provided in your node list file, for
running processes. When all the nodes have been scanned (or have timed out) the window appears as
shown above. Use the Filter box to find the processes you want to attach to. On non-Linux platforms
you also need to select the application executable you want to attach to. Ensure that the list shows all
the processes you wish to debug in your job, and no extra/unnecessary processes. You may modify the
list by selecting and removing unwanted processes, or alternatively selecting the processes you wish to
attach to and clicking on Attach to Selected Processes. If no processes are selected, DDT uses the whole
visible list.

On Linux you may use DDT to attach to multiple processes running different executables. When you
select processes with different executables the application box changes to read Multiple applications
selected. DDT creates a process group for each distinct executable.

With some supported MPI implementations (for example, OpenMPI) DDT showsMPI processes as chil-
dren of the mpirun (or equivalent) command, as shown in the following figure. Clicking the mpirun
command automatically selects all the MPI child processes.

Figure 20: Attaching with Open MPI

Some MPI implementations (such as MPICH 1) create forked (child) processes that are used for com-
munication, but are not part of your job. To avoid displaying and attaching to these, make sure the Hide
Forked Children box is ticked. DDT’s definition of a forked child is a child process that shares the par-
ent’s name. Some MPI implementations create your processes as children of each other. If you cannot
see all the processes in your job, try clearing this checkbox and selecting specific processes from the
list.

Once you click on the Attach to Selected/Listed Processes button, DDT uses remote-exec to attach
a debugger to each process you selected and proceeds to debug your application as if you had started it
with DDT. When you end the debug session, DDT detaches from the processes rather than terminating
them, this allows you to attach again later if you wish.

DDT examines the processes it attaches to and tries to discover the MPI_COMM_WORLD rank of each pro-
cess. If you have attached to two MPI programs, or a non-MPI program, then you may see the following
message:

Figure 21: MPI rank error

If there is no rank, for example, if you have attached to a non-MPI program, then you can ignore this
message and use DDT as normal. If there is, then you can easily tell DDT what the correct rank for each

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 39

Arm Forge 18.1.3

process via the Use as MPI Rank button in the Cross-Process Comparison Window. See section 8.17
Assigning MPI ranks for details.

Note that the stdin, stderr and stdout (standard input, error and output) are not captured by DDT
if used in attaching mode. Any input/output continues to work as it did before DDT attached to the
program, for example, from the terminal or perhaps from a file.

Configuring attaching to remote hosts

To attach to remote hosts in DDT, click the Choose Hosts button in the attach dialog. This displays the
list of hosts to be used for attaching.

Figure 22: Choose Hosts Window

From here you can add and remove hosts, as well as unchecking hosts that you wish to temporarily
exclude.

To import a list of hosts from a file, click the Import button.

The hosts list populates using the attach Hosts File. To configure the hosts, use the Options window:
File→ Options (Arm Forge→ Preferences on Mac OS X) .

Each remote host is scanned for processes, and the result is displayed in the attach window. If you
have trouble connecting to remote hosts, please see section A.4 Connecting to remote programs (remote-
exec).

Using DDT command-line arguments

As an alternative to starting DDT and using the Welcome Page, DDT can instead be instructed to attach
to running processes from the command-line.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 40

Arm Forge 18.1.3

To do so, you need to specify a list of hostnames and process identifiers (PIDs). If a hostname is omitted
then localhost is assumed.

The list of hostnames and PIDs can be given on the command-line using the --attach option:

mark@holly:∼$ ddt --attach=11057,node5:11352

Another command-line possibility is to specify the list of hostnames and PIDs in a file and use the --
attach-file option:

mark@holly:∼$ cat /home/mark/ddt/examples/hello.list

node1:11057
node1:11094
node2:11352
node2:11362
node3:12357

mark@holly:∼$ ddt --attach-file=/home/mark/ddt/examples/hello.list

In both cases, if just a number is specified for ahostname:PID pair, thenlocalhost: is assumed.

These command-line options work for both single- and multi-process attaching.

Starting a job in a queue

In most cases you can debug a job simply by putting ddt --connect in front of the existing mpiexec
or equivalent command in your job script. If a GUI is running on the login node or it is connected to it
via the remote client, then a message is displayed prompting you with the option to debug the job when
it starts.

See 5.2 Express Launch and 3.3 Reverse Connect for more details.

If DDT has been configured to be integrated with a queue/batch environment, as described in section A.2
Integration with queuing systems then you may use DDT to submit your job directly from the GUI. In
this case, a Submit button is presented on the Run Window, instead of the ordinary Run button. Clicking
Submit from the Run Window will display the queue status until your job starts. DDT will execute the
display command every second and show you the standard output. If your queue display is graphical or
interactive then you cannot use it here.

If your job does not start or you decide not to run it, click on Cancel Job. If the regular expression you
entered for getting the job id is invalid or if an error is reported then DDT will not be able to remove your
job from the queue. In this case it is strongly recommended that you check the job has been removed
before submitting another as it is possible for a forgotten job to execute on the cluster and either waste
resources or interfere with other debug sessions.

Once your job is running, it connects to DDT and you can debug it.

Using custom MPI scripts

On some systems a custom ‘mpirun’ replacement is used to start jobs, such asmpiexec. DDT normally
uses whatever the default for your MPI implementation is, so for MPICH 1 it would look for mpirun
and not mpiexec. This section explains how to configure DDT to use a custom mpirun command for
job start up.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 41

Arm Forge 18.1.3

There are typically two ways you might want to start jobs using a custom script, and DDT supports them
both. Firstly, you might pass all the arguments on the command-line, like this:

mpiexec -n 4 /home/mark/program/chains.exe /tmp/mydata

There are several key variables in this line that DDT can fill in for you:

1. The number of processes (4 in the above example).

2. The name of your program (/home/mark/program/chains.exe).

3. One or more arguments passed to your program (/tmp/mydata).

Everything else, like the name of the command and the format of its arguments remains constant. To use
a command like this in DDT, you adapt the queue submission system described in the previous section.
For this mpiexec example, the settings are as shown here:

Figure 23: DDT Using Custom MPI Scripts

As you can see, most of the settings are left blank. There are some differences between the Submit
Command in DDT and what you would type at the command-line:

1. The number of processes is replaced with NUM_PROCS_TAG.

2. The name of the program is replaced by the full path to ddt-debugger.

3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG.

Note, it is not necessary to specify the program name here. DDT takes care of that during its own startup
process. The important thing is to make sure your MPI implementation starts ddt-debugger instead
of your program, but with the same options.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 42

Arm Forge 18.1.3

The second way you might start a job using a custom mpirun replacement is with a settings file:

mpiexec -config /home/mark/myapp.nodespec

Where myfile.nodespec might contains something similar to the following:

comp00 comp01 comp02 comp03 : /home/mark/program/chains.exe /tmp/
mydata

DDT can automatically generate simple configuration files like this every time you run your program, you
need to specify a template file. For the above example, the template file myfile.ddt would contain
the following:

comp00 comp01 comp02 comp03 : DDTPATH_TAG/bin/ddt-debugger
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

This follows the same replacement rules described above and in detail in section A.2 Integration with
queuing systems. The options settings for this example might be:

Figure 24: DDT Using Substitute MPI Commands

Note the Submit Command and the Submission Template File in particular. DDTwill create a new file and
append it to the submit command before executing it. In this case what would actually be executed might
be mpiexec -config /tmp/ddt-temp-0112 or similar. Therefore, any argument like -config
must be last on the line, because DDT will add a file name to the end of the line. Other arguments, if
there are any, can come first.

It is recommended that you read the section on queue submission, as there are many features described
there that might be useful to you if your system uses a non-standard start up command.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 43

Arm Forge 18.1.3

If you do use a non-standard command, please contact Arm support at Arm support.

Starting DDT from a job script

The usual way of debugging a program with Arm DDT in a queue/batch environment is with Reverse
Connect and let it connect back from inside the queue to the GUI. See 3.3 Reverse Connect for more
details on Reverse Connect.

To do this replace your usual program invocation with a Arm DDT --connect command such as the
following:

ddt --connect --start MPIEXEC -n NPROCS PROGRAM [ARGUMENTS]

The following could also be used:

ddt --connect --start --once --np=NPROCS -- PROGRAM [ARGUMENTS]

In these examples MPIEXEC is the MPI launch command, NPROCS is the number of processes to start,
PROGRAM is the program to run, and ARGUMENTS are the arguments to the program.

The --once argument tells Arm DDT to exit when the session ends.

The alternative to Reverse Connect for debugging a program in a queue/batch environment is to configure
Arm DDT to submit the program to the queue for you. See section 5.10 Starting a job in a queue.

Some users may wish to start Arm DDT itself from a job script that is submitted to the queue/batch
environment. To do this:

1. Configure Arm DDT with the correct MPI implementation.

2. Disable queue submission in the Arm DDT options.

3. Create a job script that starts Arm DDT using a command such as:

ddt --start MPIEXEC -n NPROCS PROGRAM [ARGUMENTS]

Or the following:

ddt --start --no-queue --once --np=NPROCS -- PROGRAM [
ARGUMENTS]

In these examples MPIEXEC is the MPI launch command, NPROCS is the number of processes to
start, PROGRAM is the program to run, and ARGUMENTS are the arguments to the program.

4. Submit the job script to the queue. The --once argument tells DDT to exit when the session ends.

Attaching via gdbserver

DDT can attach to debugging sessions that have been started by gdbserver.

This is typically used for debugging embedded devices only. This should be considered as an expert
mode and would not normally be used to debug an application running on a server or workstation.

To prepare for using this mode, you must first start a gdbserver on the target device. Please see https:
//sourceware.org/gdb/onlinedocs/gdb/Server.html for further details as invocation may be system depen-
dent.

You may then attach to a running application either via the command line or the user interface.

To attach via the command line use:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 44

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://sourceware.org/gdb/onlinedocs/gdb/Server.html
https://sourceware.org/gdb/onlinedocs/gdb/Server.html

Arm Forge 18.1.3

ddt --attach-gdbserver=host:port target-executable

Note that the arguments are not optional.

To attach via the user interface, select the Attach dialog on DDT’s welcome page. Select the GDB Server
tab and substitute the appropriate settings.

If the gdbserver has been used to launch an application, then it will have been stopped before starting the
user code. In this case, add a breakpoint in the main function using the Add Breakpoint button, and then
play until this is reached. After this point is reached, source code will be displayed.

UPC

The DDT configuration depends on the UPC compiler used.

GCC UPC

DDTcan debug applications compiledwithGCCUPC4.8with TLS disabled. See section F.5GNU.

To run a UPC program in DDT you need to select the MPI implementation “GCC libupc SMP (no
TLS)”

Berkeley UPC

To run a Berkeley UPC program in DDT you need to compile the program using -tv flag and then select
the same MPI implementation used in the Berkeley compiler build configuration.

The Berkeley compiler must be build using the MPI transport.

See section F.3 Berkeley UPC compiler.

Numactl

DDT supports launching programs via numactl. DDT supports this feature for MPI programs but has
limited support for non-MPI programs.

MPI and SLURM

DDT can attach to MPI programs launched via numactl with or without SLURM. The recommended
way to launch via numactl is to use express launch mode (5.2 Express Launch).

$ ddt mpiexec -n 4 numactl -m 1 ./myMpiProgram.exe
$ ddt srun -n 4 numactl -m 1 ./myMpiProgram.exe

It is also possible to launch via numactl using compatibility mode (5.1 Running a program). When
using compatibility mode, you must specify the full path to numactl in the Application box. You can
find the full path by running:

which numactl

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 45

Arm Forge 18.1.3

Enter the name of the required application in the Arguments field, after all arguments to be passed to
numactl. It is not possible to pass any more arguments to the parallel job runner when using this mode
for launching.

Note: When using memory debugging, with a program launched via numactl, the Memory Statistics
view will report all memory as ’Default’ memory type unless allocated with memkind. (12.6 Memory
Statistics)

Non-MPI Programs

There is a minor caveat to launching non-MPI programs via numactl. If you are using SLURM, set
ALLINEA_STOP_AT_MAIN=1, otherwise DDT will not be able to attach to the program. For example,
the two following commands are examples of launching non-MPI programs via numactl:

$ ddt numactl -m 1 ./myNonMpiProgram.exe
$ ALLINEA_STOP_AT_MAIN=1 ddt srun \

numactl -m 1 ./myNonMpiProgram.exe

Once launched, the program stops in numactl main. To resume debugging as normal, set a break-
point in your code (optional), then use the play and pause buttons to progress and pause the debugging,
respectively.

Python

Overview

Python debugging in DDT has the following limited support:

• Debugging Python scripts running under the CPython interpreter (version 2.7 only).

• Decoding the stack to show Python frames, function names and line numbers.

• Displaying Python local and global variables when a Python frame is selected.

• Stopping on breakpoints and exceptions in native libraries that were invoked from Python code.

• Debugging MPI programs written in Python using mpi4py.

This feature is useful when debugging a mixed C, C++, Fortran and Python program that crashes some-
where in native code. If this native code was invoked from a Python function, then you can examine the
Python stack and local variables that led to the crash. The feature does not currently support breakpoints,
stepping, evaulating Python variables, or the current line window.

Prerequisites

On your system, debug symbols for Python must be available to DDT. To ensure they are available,
one solution is to install the Python debug symbols package. You may need to enable additional debug
respositories in your package manager.

On Ubuntu:

$ sudo apt-get install python2.7-dbg

On Redhat:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 46

Arm Forge 18.1.3

$ sudo yum install python-debug

On SuSE:

$ sudo zypper install python-base-debug

Python debugging depends on GDB 7.12.1. If GDB 7.6.2 is the selected debugger, you need to change
to GDB 7.12.1, using: Go to File→ Options→ System and set the Debugger field to Automatic (recom-
mended).

Running

To debug Python scripts, start the Python interpreter that will execute the script under DDT. To get
line level resolution, rather than function level resolution, insert %allinea_python_debug% before
your script when passing arguments to Python. To run the demo in the examples folder, change into the
examples folder and run the following steps.

Note: The demo requires mpi4py to be installed.

1. $ make -f python.makefile

2. $../bin/ddt --start -np 4 /usr/bin/python %allinea_python_debug%
python-debugging.py

3. Press Play/Continue

4. To see the Python local variables, open the ’Stacks’ view and select a Python frame.

Note: DDT does not search in your PATH when launching executables, so you must specify the full path
to Python.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 47

Arm Forge 18.1.3

Overview

Arm DDT uses a tabbed-document interface as a method of presenting multiple documents. This allows
you to have many source files open. You can view one file in the full workspace area, or two if the Source
Code Viewer is ‘split’.

Each component of Arm DDT is a dockable window, which may be dragged around by a handle, usually
on the top or left-hand edge. Components can also be double-clicked, or dragged outside of Arm DDT, to
form a new window. You can hide or show most of the components using the Viewmenu. The screenshot
shows the default Arm DDT layout.

Figure 25: DDT Main Window

The following table shows the key components:

Key
(1) Menu Bar
(2) Process Controls
(3) Process Groups
(4) Find File or Function
(5) Project Files
(6) Source Code
(7) Variables and Stack of Current Process/Thread
(8) Parallel Stack, IO and Breakpoints
(9) Evaluate Window
(10) Status Bar

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 48

Arm Forge 18.1.3

Note: On some platforms, the default screen size can be insufficient to display the status bar. If this
occurs, you should expand the Arm DDT window until it is completely visible.

Saving and loading sessions

Most of the user-modified parameters and windows are saved by right-clicking and selecting a save option
in the corresponding window.

However, Arm DDT also has the ability to load and save all these options concurrently to minimize
the inconvenience in restarting sessions. Saving the session stores such things as Process Groups, the
contents of the Evaluate window and more. This ability makes it easy to debug code with the same
parameters set time and time again.

To save a session simply use the Save Session option from the File menu. Enter a file name (or select
an existing file) for the save file and click OK. To load a session again simply choose the Load Session
option from the File menu, choose the correct file and click OK.

Source code

Arm Forge provides code viewing, editing and rebuilding features. It also integrates with the Git, Sub-
version and Mercurial version control systems and provides static analysis to automatically detect many
classes of common errors.

The code editing and rebuilding capabilities are not designed for developing applications from scratch,
but they are designed to fit into existing debugging or profiling sessions that are running on a current
executable.

The same capabilities are available for source code whether running remotely (using the remote client)
or whether connected directly to your system.

Viewing

When Arm DDT begins a session, source code is automatically found from the information compiled in
the executable.

Source and header files found in the executable are reconciled with the files present on the front-end
server, and displayed in a simple tree view within the Project Files tab of the Project Navigator window.
Source files can be loaded for viewing by clicking on the file name.

Whenever a selected process is stopped, the Source Code Viewer will automatically leap to the correct
file and line, if the source is available.

The source code viewer supports automatic color syntax highlighting for C and Fortran.

You can hide functions or subroutines you are not interested in by clicking the ’-’ glyph next to the first
line of the function. This will collapse the function. Simply click the ’+’ glyph to expand the function
again.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 49

Arm Forge 18.1.3

Editing

Source code may be edited in the code viewer windows of DDT. The actions Undo, Redo, Cut, Copy,
Paste, Select all, Go to line, Find, Find next, Find previous, and Find in files are available from the Edit
menu. Files may be opened, saved, reverted and closed from the File menu.

Note: Information from Arm DDT will not match edited source files until the changes are saved, the
binary is rebuilt, and the session restarted.

If the currently selected file has an associated header or source code file, it can be opened by right-clicking
in the editor and choosing Open <filename>.<extension>. There is a global shortcut on function key
F4, available in the Edit menu as Switch Header/Source option.

To edit a source file in an external editor, right-click the editor for the file and choose Open in external
editor. To change the editor used, or if the file does not open with the default settings, open the Options
window by selecting File → Options (Arm Forge → Preferences on Mac OS X) and enter the path to
the preferred editor in the Editor box, for example /usr/bin/gedit.

If a file is edited the following warning will be displayed at the top of the editor:

Figure 26: File Edited Warning

This is to warn that the source code shown is not the source that was used to produce the currently
executing binary. The source code and line numbers may not match the executing code.

Rebuilding and restarting

If source files are edited, the changes will not take effect until the binary is rebuilt and the session restarted.
To configure the build command chooseFile→Configure Build…, enter a build command and a directory
in which to run the command, and click Apply.

To issue the build command choose File → Build, or press Ctrl+B (Cmd+B on Mac OS X). When a
build is issued the Build Output view is shown. Once a rebuild succeeds it is recommended to restart the
session with the new build by choosing File→ Restart Session.

Committing changes

Changes to source files may be committed using one of Git, Mercurial, and Subversion. To commit
changes choose File→ Commit…, enter a commit message to the resulting dialog and click the commit
button.

Project Files

The Project Files tree shows a list of source files for your program. Click on a file in the tree to open it
in the Code Viewer. You may also expand a source file to see a list of classes, functions, defined in that
source file (C / C++ / Fortran only).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 50

Arm Forge 18.1.3

Figure 27: Function Listing

Clicking on any source code element (class, function, and so on) will display it in the Source Code
viewer.

Application and external code

Arm DDT automatically splits your source code into Application Code, which is source code from your
application and External Code, which is code from third party libraries. This allows you to quickly
distinguish between your own code and third party libraries.

You can control exactly which directories are considered to contain Application Code using the Applica-
tion / External Directories window. Right-click on the Project Files tree to open the window.

The checked directories are the directories containing Application Code. Once you have configured them
to your satisfaction click Ok to update the Project Files tree.

Finding lost source files

In some situations, not all source files are found automatically. This can also occur, for example, if the
executable or source files have been moved since compilation. Extra directories to search for source files
can be added by right-clicking while in the Project Files tab, and selecting Add/view Source Directory(s).
You can also specify extra source directories on the command line using the--source-dirs command
line argument (separate each directory with a colon).

It is also possible to add an individual file, if this file has moved since compilation, or is on a different (but
visible) file system. To do this right-click in the Project Files tab and select the Add File option.

Any directories or files you have added are saved and restored when you use the Save Session and Load
Session commands inside the File menu. If DDT does not find the sources for your project, you might
find these commands save you a lot of unnecessary clicking.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 51

Arm Forge 18.1.3

Finding code or variables

Find Files or Functions

The Find Files Or Functions box appears above the source file tree in the Project Files view.

You can type the name of a file, function, or other source code element (such as classes, Fortran modules,
and so on) in this box to search for that item in the source tree. You can also type just part of a name to
see all the items whose name contains the text you typed.

Double-click on a result to jump to the corresponding source code location for that item.

Figure 28: Find Files Or Functions dialog

Find

The Findmenu item can be found in the Edit menu, and can be used to find occurrences of an expression
in the currently visible source file.

DDT will search from the current cursor position for the next or previous occurrence of the search term.
Click on the magnifying glass icon for more search options.

Case Sensitive: When checked, DDT will perform a case sensitive search. For example, Hello will
not match hello.

Whole Words Only: When checked, DDT will only match your search term against whole ‘words’ in
the source file. For example Hello would not match HelloWorld while searching for whole words
only.

UseRegularExpressions: When this is checked, your searchmay use Perl-style regular expressions.

Find in Files

The Find In Files window can be found in the Edit menu, and can be used to search all source and header
files associated with your program. The search results are listed and can be clicked to display the file and
line number in the main Source Code Viewer; this can be of particular use for setting a breakpoint at a
function.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 52

Arm Forge 18.1.3

Figure 29: Find in Files dialog

Case sensitive: When checked, DDT will perform a case sensitive search. For example, Hello will not
match hello.

Whole words only: When checked, DDT will only match your search term against whole ‘words’ in
the source file. For example Hello would not match HelloWorld while searching for whole words
only.

Regular Expression: When checked, DDT will interpret the search term as a regular expression rather
than a fixed string. The syntax of the regular expression is identical to that described in the appendix I.6
Job ID regular expression.

Go To Line

DDT has a go to line function which enables the user to go directly to a line of code. This is found in the
Edit menu. A window will be displayed in the centre of your screen. Enter the line number you wish to
see and click OK. This will take you to the correct line providing that you entered a line that exists. You
can use the hotkey CTRL-L to access this function quickly.

Navigating through source code history

After jumping to a source code location or opening a new file, it is possible to return to the previous
location using the ”Navigate backwards in source code history” button on the toolbar or item in the
”Edit” menu. This can be done several times to revisit previous locations in the source code.

After navigating backwards, you can also use the ”Navigate forwards in source code history” toolbar
button or ”Edit” menu item to return to the previous location.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 53

Arm Forge 18.1.3

Static analysis

Static analysis is a powerful companion to debugging. Arm DDT enables the user to discover errors by
code and state inspection along with automatic error detection components such as memory debugging.
Static analysis inspects the source code and attempts to identify errors that can be detected from the source
alone, independently of the compiler and actual process state.

Arm DDT includes the static analysis tools cppcheck and ftnchek. These will by default automati-
cally examine source files as they are loaded and display a warning symbol if errors are detected. Typical
errors include:

• Buffer overflows. Accessing beyond the bounds of heap or stack arrays.

• Memory leaks. Allocating memory within a function and there being a path through the function
which does not deallocate the memory and the pointer is not assigned to any externally visible
variable, nor returned.

• Unused variables, and also use of variables without initialization in some cases.

Figure 30: Static Analysis Error Annotation

Static analysis is not guaranteed to detect all, or any, errors, and an absence of warning triangles should
not be considered to be an absence of bugs.

Version control information

The version control integration in DDT and MAP allows users to see line-by-line information from Git,
Mercurial or Subversion next to source files. Information is color-coded to indicate the age of the source
line.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 54

Arm Forge 18.1.3

Figure 31: DDT running with Version Control Information enabled

To enable select the Version Control Information option from the View menu. When enabled columns
to left of source code viewers are shown. In these columns are displayed how long ago the line was
added/modified. Each line in the information column is highlighted in a color to indicate its age. The
lines changed in the current revision are highlighted in red.

Where available lines with changes not committed are highlighted in purple. All other lines are high-
lightedwith a blend of transparent blue and opaque greenwhere blue indicates old and green young.

Currently uncommitted changes are only supported for Git. Arm Forge will not show any version control
information for files with uncommitted changes when using Mercurial or Subversion.

Figure 32: Version Control Information—Tooltips

A folded block of code displays the annotation for the most recently modified line in the block.

Hovering the cursor over the information column reveals a tool-tip containing a preview of the commit
message for the commit that last changed the line.

Figure 33: Version Control Information—Context Menu

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 55

Arm Forge 18.1.3

To copy the commit message right-click the column on the desired row and from the menu select Copy
Commit Message.

See also Version control breakpoints and tracepoints.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 56

Arm Forge 18.1.3

Controlling program execution

Whether debugging a multi-process or a single process code, the mechanisms for controlling program
execution are very similar.

In multi-process mode, most of the features described in this section are applied using Process Groups,
which are described in the following sections.

For single process mode, the commands and behaviors are identical, but apply to only a single process,
freeing the user from concerns about process groups.

Process control and process groups

MPI programs are designed to run as more than one process and can span many machines. Arm DDT
allows you to group these processes so that actions can be performed on more than one process at a time.
The status of processes can be seen at a glance by looking at the Process Group Viewer.

The Process Group Viewer is (by default) at the top of the screen with multi-colored rows. Each row
relates to a group of processes and operations can be performed on the currently highlighted group (for
example, playing, pausing and stepping) by clicking on the toolbar buttons. Switch between groups by
clicking on them or their processes. The highlighted group is indicated by a lighter shade. Groups can be
created, deleted, or modified by the user at any time, with the exception of the All group, which cannot
be modified.

Groups are added by clicking on the Create Group button or from a context-sensitive menu that appears
when you right-click on the process group widget. This menu can also be used to rename groups, delete
individual processes from a group and jump to the current position of a process in the code viewer. You
can load and save the current groups to a file, and you can create sub-groups from the processes currently
playing, paused or finished. You can even create a sub-group excluding the members of another group.
For example, to take the complement of the Workers group, select the All group and choose Copy, but
without Workers.

You can also use the context menu to switch between the two different methods of viewing the list of
groups in Arm DDT. These methods are the detailed view and the summary view.

Detailed view

The detailed view is ideal for working with smaller numbers of processes. If your program has less than
32 processes, Arm DDT defaults to the detailed view. You can switch to this view using the context menu
if you wish.

Figure 34: The Detailed Process Group View

In the detailed view, each process is represented by a square containing its MPI rank (0 through n-1). The
squares are color-coded; red for a paused process, green for a playing process and gray for a finished/dead
process. Selected processes are highlighted with a lighter shade of their color and the current process also
has a dashed border.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 57

Arm Forge 18.1.3

When a single process is selected the local variables are displayed in the Variable Viewer and displayed
expressions are evaluated. You can make the Source Code Viewer jump to the file and line for the current
stack frame (if available) by double-clicking on a process.

To copy processes from one group to another, simply click and drag the processes. To delete a process,
press the delete key. When modifying groups it is useful to select more than one process by holding down
one or more of the following:

Key Description
Control Click to add/remove process from selection
Shift Click to select a range of processes
Alt Click to select an area of processes

Note: Some window managers (such as KDE) use Alt and drag to move a window. You must disable this
feature in your window manager if you wish to use the Arm DDT’s area select.

Summary view

The summary view is ideal for working with moderate to huge numbers of processes. If your program
has 32 processes or more, Arm DDT defaults to this view. You can switch to this view using the context
menu if you wish.

Figure 35: The Summary Process Group View

In the summary view, individual processes are not shown. Instead, for each group, ArmDDT shows:

• The number of processes in the group.

• The processes belonging that group. Here 1–2048 means processes 1 through 2048 inclusive, and
1–10, 12–1024 means processes 1–10 and processes 12–1024 (but not process 11). If this list
becomes too long, it is truncated with a ‘…’. Hovering the mouse over the list shows more details.

• The number of processes in each state (playing, paused or finished). Hovering the mouse over each
state shows a list of the processes currently in that state.

• The rank of the currently selected process. You can change the current process by clicking here,
typing a new rank and pressing Enter. Only ranks belonging to the current group will be accepted.

The Show processes toggle button allows you to switch a single group into the detailed view and back
again. This is useful if you are debugging a 2048 process program, but have narrowed the problem down
to just 12 processes, which you have put in a group.

Focus control

The focus control allows you to focus on individual processes or threads as well as process groups. When
focused on a particular process or thread, actions such as stepping, playing/pausing, adding breakpoints,

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 58

Arm Forge 18.1.3

will only apply to that process or thread rather than the entire group.

In addition, the Arm DDT GUI will change depending on whether you are focused on group, process
or thread. This allows Arm DDT to display more relevant information about your currently focused
object.

Figure 36: Focus options

Overview of changing focus

Focusing in Arm DDT affects a number of different controls in the Arm DDT main window. These are
described here:

Note: Focus controls do not affect Arm DDT windows such as the Multi-Dimensional Array Viewer,
Memory Debugger, Cross-Process Comparison.

Process group viewer

The changes to the process group viewer amongst the most obvious changes to the ArmDDTGUI. When
focus on current group is selected you see your currently created process groups. When switching to focus
on current process or thread you see the view change to show the processes in the currently selected group,
with their corresponding threads.

Figure 37: The Detailed Process Group View Focused on a Process

If there are 32 threads or more, Arm DDT defaults to showing the threads using a summary view (as in
the Process Group View). The view mode can also be changed using the context menu.

During focus on process, a tooltip is shown that identifies the OpenMP thread ID of each thread, if the
value exists.

Breakpoints

The breakpoints tab in Arm DDT is filtered to only display breakpoints relevant to your current group,
process, thread. When focused on a process, the breakpoint tab displays which thread the breakpoint
belongs to. If you are focused on a group, the tab displays both the process and the thread the breakpoint
belongs to.

Code viewer

The code viewer in Arm DDT shows a stack back trace of where each thread is in the call stack. This is
also filtered by the currently focused item, for example when focused on a particular process, you only
see the back trace for the threads in that process.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 59

Arm Forge 18.1.3

Also, when adding breakpoints using the code viewer, they are added for the group, process or thread
that is currently focused.

Parallel stack view

The parallel stack view can also be filtered by focusing on a particular process group, process or thread.

Playing and stepping

The behavior of playing, stepping and the Run to here feature are also affected by your currently focused
item. When focused on a process group, the entire group is affected, whereas focusing on a thread means
that only current thread is executed. The same goes for processes, but with an additional option which is
explained below.

Step threads together

The step threads together feature in Arm DDT is only available when focused on process. If this option
is enabled then Arm DDT attempts to synchronize the threads in the current process when performing
actions such as stepping, pausing and using Run to here.

For example, if you have a process with two threads and you choose Run to here, Arm DDT pauses your
program when either of the threads reaches the specified line. If Step threads together is selected Arm
DDT attempts to play both of the threads to the specified line before pausing the program.

Note: You should always use Step threads together and Run to here to enter or move within OpenMP
parallel regions. With many compilers it is also advisable to use Step threads together when leaving a
parallel region, otherwise threads can get ‘left behind’ inside system-specific locking libraries and may
not enter the next parallel region on the first attempt.

Stepping threads window

When using the step threads together feature it is not always possible for all threads to synchronize at
their target. There are two main reasons for this:

1. One or more threads may branch into a different section of code (and hence never reach the target).
This is especially common in OpenMP codes, where worker threads are created and remain in
holding functions during sequential regions.

2. Asmost of ArmDDT’s supported debug interfaces cannot play arbitrary groups of threads together,
Arm DDT simulates this behavior by playing each thread in turn. This is usually not a problem, but
can be if, for example, thread 1 is playing, but waiting for thread 2 (which is not currently playing).
Arm DDT attempts to resolve this automatically but cannot always do so.

If either of these conditions occur, the Stepping Threads Window appears, displaying the threads which
have not yet reached their target.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 60

Arm Forge 18.1.3

Figure 38: The Stepping Threads Window

The stepping threadswindow also displays the status of threads, whichmay be one of the following:

• Done: The thread has reached it target (and has been paused).

• Skipped: The thread has been skipped and paused. Arm DDT no longer waits for it to reach its
target.

• Playing: This is the thread that is currently being executed. Only one thread may be playing at a
time while the Stepping Threads Window is open.

• Waiting: The thread is currently awaiting execution. When the currently playing thread is done
or has been skipped, the highest waiting thread in the list is executed.

The Stepping Threads Window also lets you interact with the threads with the following options:

• Skip: Arm DDT skips and pauses the currently playing thread. If this is the last waiting thread the
window is closed.

• Try Later: The currently playing thread is paused, and added to the bottom of the list of threads
to be retried later. This is useful if you have threads which are waiting on each other.

• Skip All: This skips, and pauses, all of the threads and close the window.

Starting, stopping and restarting a program

The Filemenu can be accessed at almost any time while ArmDDT is running. If a program is running you
can end it and run it again or run another program. When Arm DDT’s start up process is complete your
program should automatically stop either at the main function for non-MPI codes, or at the MPI_Init
function for MPI.

When a job has run to the end, Arm DDT displays a window box asking if you wish to restart the job.
If you select yes then Arm DDT kills any remaining processes and clear up the temporary files and then
restart the session from scratch with the same program settings.

When ending a job, Arm DDT attempts to ensure that all the processes are shut down and any temporary
files are cleared up. If this fails for any reason you may have to manually kill your processes using
kill, or a method provided by your MPI implementation such as lamclean for LAM/MPI.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 61

Arm Forge 18.1.3

Stepping through a program

To continue the program playing click Play/Continue and to stop it at any time click Pause .

For multi-process Arm DDT these start/stop all the processes in the current group (see Process Control
and Process Groups).

Like many other debuggers there are three different types of step available. These are enumerated
here:

1. Step Into moves to the next line of source code unless there is a function call in which case it steps
to the first line of that function.

2. Step Over moves to the next line of source code in the bottom stack frame.

3. Step Out executes the rest of the function and then stop on the next line in the stack frame above.
The return value of the function is displayed in the Locals view. When using Step Out be careful
not to try and step out of the main function, as doing this ends your program.

Stop messages

In certain circumstances your program may be automatically paused by the debugger. There are five
reasons your program may be paused in this way:

1. It hit one of Arm DDT’s default breakpoints, for example, exit or abort. See section 7.10
Default breakpoints for more information on default breakpoints.

2. It hit a user-defined breakpoint, that is a breakpoint shown in the Breakpoints view.

3. The value of a watched variable changed.

4. It was sent a signal. See section 7.20 Signal handling for more information on signals.

5. It encountered a Memory Debugging error. See section 12.4 Pointer error detection and validity
checking for more information on Memory Debugging errors.

Arm DDT displays a message telling you exactly why the program was paused. To copy the message
text to the clipboard select it with the mouse cursor, then right-click and select Copy.

You may want to suppress these messages in certain circumstances, for example if you are playing from
one breakpoint to another. Use theControl→Messagesmenu to enable or disable stop messages.

Setting breakpoints

Using the source code viewer

First locate the position in your code where you want to place a breakpoint. If you have numerous source
code files and wish to search for a particular function you can use the Find/Find In Files window.

Right-clicking in the Source Code Viewer displays a menu showing several options, including one to add
or remove a breakpoint.

In multi-process mode this sets the breakpoint for every member of the current group. Breakpoints may
also be added by left-clicking the margin to the left of the line number.

Every breakpoint is listed under the breakpoints tab towards the bottom of Arm DDT’s window.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 62

Arm Forge 18.1.3

If you add a breakpoint at a location where there is no executable code, Arm DDT highlights the line
you selected as having a breakpoint. However, when hitting the breakpoint, Arm DDT stops at the next
executable line of code.

Using the Add Breakpoint window

You can also add a breakpoint by clicking the Add Breakpoint icon in the toolbar. This opens the
Add Breakpoint window.

Figure 39: The Add Breakpoint window

You may wish to add a breakpoint in a function for which you do not have any source code: for example
in malloc, exit, or printf from the standard system libraries. Select the Function radio button and
enter the name of the function in the box next to it.

You can specify what group/process/thread you want the breakpoint to apply in the Applies To section.
You may also make the breakpoint conditional by checking the Condition check box and entering a
condition in the box.

Pending breakpoints

Note: This feature is not supported on all platforms.

If you try to add a breakpoint on a function that is not defined, Arm DDT asks you if you want to add
it anyway. If you click Yes the breakpoint is applied to any shared objects that are loaded in the fu-
ture.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 63

Arm Forge 18.1.3

Conditional breakpoints

Figure 40: The Breakpoints Table

Select the breakpoints tab to view all the breakpoints in your program. You may add a condition to any
of them by clicking on the condition cell in the breakpoint table and entering an expression that evaluates
to true or false.

Each time a process (in the group the breakpoint is set for) passes this breakpoint it evaluates the condi-
tion and breaks only if it returns true (typically any non-zero value). You can drag an expression from
the Evaluate window into the condition cell for the breakpoint and this is set as the condition automati-
cally.

Figure 41: Conditional Breakpoints In Fortran

Conditions may be any valid expression for the language of the file containing the breakpoint. This
includes other variables in your program and function calls.

You may want to avoid using functions with side effects as these will be executed every time the break-
point is reached.

The expression evaluation may be more pedantic than your compiler. To ensure the correct interpre-
tation of, for example, boolean operations, it is advisable to use brackets explicitly, to ensure correct
evaluation.

Suspending breakpoints

A breakpoint can be temporarily deactivated and reactivated by checking/unchecking the activated col-
umn in the breakpoints panel.

Deleting a breakpoint

Breakpoints may be deleted by right-clicking on the breakpoint in the breakpoints panel.

They can also be deleted by right-clicking in the file/line of the breakpoint, while in the correct process
group, and right-clicking and selecting delete breakpoint.

They may also be deleted by left-clicking the breakpoint icon in the margin, situated to the left of the line
number in the code viewer.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 64

Arm Forge 18.1.3

Loading and saving breakpoints

To load or save the breakpoints in a session right-click in the breakpoint panel and select the load/save
option. Breakpoints are also loaded and saved as part of the load/save session.

Default breakpoints

Arm DDT has a number of default breakpoints that stop your program under certain conditions which
are described below. You may enable/disable these while your program is running using the Control→
Default Breakpoints menu.

• Stop at exit/_exit

When enabled, Arm DDT pauses your program as it is about to end under normal exit conditions.
ArmDDT pauses both before and after any exit handlers have been executed. (Disabled by default.)

• Stop at abort/fatal MPI Error

When enabled, Arm DDT pauses your program as it about to end after an error has been triggered.
This includes MPI and non-MPI errors. (Enabled by default.)

• Stop on throw (C++ exceptions)

When enabled, Arm DDT pauses your program whenever an exception is thrown (regardless of
whether or not it will be caught). Due to the nature of C++ exception handling, you may not be
able to step your program properly at this point. Instead, you should play your program or use the
Run to here feature in DDT. (Disabled by default.)

• Stop on catch (C++ exceptions)

As above, but triggered when your program catches a thrown exception. Again, you may have
trouble stepping your program. (Disabled by default.)

• Stop at fork

Arm DDT stops whenever your program forks (that is, calls the fork system call to create a copy
of the current process). The new process is added to your existing Arm DDT session and can be
debugged along with the original process.

• Stop at exec

When your program calls the exec system call, Arm DDT stops at the main function (or program
body for Fortran) of the new executable.

• Stop on CUDA kernel launch

When debugging CUDA GPU code, this pauses your program at the entry point of each kernel
launch.

Synchronizing processes

If the processes in a process group are stopped at different points in the code and youwish to resynchronize
them to a particular line of code this can be done by right-clicking on the line at which you wish to
synchronize them to and selecting Run To Here. This effectively plays all the processes in the selected
group and puts a break point at the line at which you choose to synchronize the processes at, ignoring any
breakpoints that the processes may encounter before they have synchronized at the specified line.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 65

Arm Forge 18.1.3

If you choose to synchronize your code at a point where all processes do not reach then the processes that
cannot get to this point will play to the end.

Note: Though this ignores breakpoints while synchronizing the groups it will not actually remove the
breakpoints.

Note: If a process is already at the line which you choose to synchronize at, the process will still be set to
play. Be sure that your process will revisit the line, or alternatively synchronize to the line immediately
after the current line.

Setting a watchpoint

Figure 42: The Watchpoints Table

A watchpoint is a variable or expression that will be monitored by the debugger such that when it is
changed or accessed the debugger pauses the application.

Figure 43: Program Stopped At Watchpoint being watched

Unlike breakpoints, watchpoints are not displayed in the Source Code Viewer. Instead they are created
by right-clicking on theWatchpoints view and selecting the Add Watchpoint menu item.

It is also possible to add watchpoints automatically dragging a variable to theWatchpoints view from the
Local Variables, Current Line and Evaluate views, or right-clicking over the variable in the Source Code
Viewer and then selecting Add Watchpoint.

The automatic watchpoints are write-only by default.

Upon adding a watchpoint the Add Watchpoint dialog appears allowing you to apply restrictions to the
watchpoint:

• Process Group restricts the watch point to the chosen process group (see 7.1 Process control and
process groups).

• Process restricts the watchpoint to the chosen process.

• Expression is the variable name in the program to be watched.

• Language is the language of the portion of the program containing the expression.

• Trigger On allows you to select whether the watchpoint will trigger when the expression is read,
written or both.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 66

Arm Forge 18.1.3

You can set a watchpoint for either a single process, or every process in a process group.

Arm DDT automatically removes a watchpoint once the target variable goes out of scope. If you are
watching the value pointed to by a variable, that is, *p, you may want to continue watching the value at
that address even after p goes out of scope. You can do this by right-clicking on *p in the Watchpoints
view and selecting the Pin to address menu item. This replaces the variable p with its address so the
watch is not removed when p goes out of scope.

Modern processors have hardware support for a handful of watchpoints that are set towatch the contents of
a memory location. Consequently, watchpoints can normally be used with no performance penalty.

Where the number of watchpoints used is over this quantity, or the expression being watched is too
complex to tie to a fixed memory address, the implementation is through software monitoring, which
imposes significant performance slowdown on the application being debugged.

The number of hardware watchpoints available depends on the system. The read watchpoints are only
available as hardware watchpoints.

Consequently, watchpoints should, where possible, be a single value that is stored in a single memory
location. While it is possible to watch the whole contents of non-trivial user defined structures or an
entire array simultaneously, or complex statements involving multiple addresses, these can cause extreme
application slow down during debugging.

Tracepoints

Tracepoints allow you to see what lines of code your program is executing, and the variables, without
stopping it. Whenever a thread reaches a tracepoint it will print the file and line number of the tracepoint
to the Input/Output view. You can also capture the value of any number of variables or expressions at
that point.

Examples of situations in which this feature will prove invaluable include:

• Recording entry values in a function that is called many times, but crashes only occasionally. Set-
ting a tracepoint makes it easier to correlate the circumstances that cause a crash.

• Recording entry to multiple functions in a library, enabling the user or library developer to check
which functions are being called, and in which order. An example of this is theMPI History Plugin,
which records MPI usage. See section 14.3 Using a plugin.

• Observing progress of an application and variation of values across processes without having to
interrupt the application.

Setting a tracepoint

Tracepoints are added by either right-clicking on a line in the Source Code Viewer and selecting the Add
Tracepoint menu item, or by right-clicking in the Tracepoints view and selecting Add Tracepoint. If you
right-click in the Source Code Viewer a number of variables based on the current line of code are captured
by default.

Tracepoints can lead to considerable resource consumption by the user interface if placed in areas likely
to generate a lot of passing. For example, if a tracepoint is placed inside of a loop with N iterations, then
N separate tracepoint passings will be recorded.

While Arm DDT attempts to merge such data in a scalable manner, when alike tracepoints are passed
in order between processes, where process behavior is likely to be divergent and unmergeable then a
considerable load would result.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 67

Arm Forge 18.1.3

If it is necessary to place a tracepoint inside a loop, set a condition on the tracepoint to ensure you only log
what is of use to you. Conditions may be any valid expression in the language of the file the tracepoint
is placed in and may include function calls, although you may want to be careful to avoid functions with
side effects as these will be evaluated every time the tracepoint is reached.

Tracepoints also momentarily stop processes at the tracepoint location in order to evaluate the expressions
and record their values. This means if they are placed inside (for example) a loop with a very large number
of iterations, or a function executed many times per second, then a slowdown in your application will be
noticed.

Tracepoint output

The output from the tracepoints can be found in the Tracepoint Output view.

Figure 44: Output from Tracepoints in a Fortran application

Where tracepoints are passed by multiple processes within a short interval, the outputs will be merged.
Sparklines of the values recorded are shown for numeric values, along with the range of values obtained,
showing the variation across processes.

As alike tracepoints are merged then this can lose the order/causality between different processes in trace-
point output. For example, if process 0 passes a tracepoint at time T, and process 1 passes the tracepoint
at T + 0.001, then this will be shown as one passing of both process 0 and process 1, with no ordering
inferred.

Sequential consistency is preserved during merging, in that for any process, the sequence of tracepoints
for that process will be in order.

To find particular values or interesting patterns, use the Only show lines containing box at the bottom of
the panel. Tracepoint lines matching the text entered here will be shown, the rest will be hidden. To search
for a particular value, for example, try “my_var: 34”. In this case the space at the end helps distinguish
between my_var: 34 and my_var: 345.

For more detailed analysis you may wish to export the tracepoints. To do this, right-click and choose
Export from the pop-up menu. An HTML tracepoint log will be written using the same format as Arm
DDT’s offline mode.

Version control breakpoints and tracepoints

Version control breakpoint/tracepoint insertion allows you to quickly record the state of the parts of the
target program that were last modified in a particular revision. The resulting tracepoint output may be
viewed in the Tracepoint Output tab or the Logbook tab and may be exported or saved as part of a logbook
or offline log.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 68

Arm Forge 18.1.3

Figure 45: DDT with version control tracepoints

Version control tracepoints may be inserted either in the graphical interactive mode or in offline mode
via a command line argument.

In interactive mode enable “Version Control Information” from the “View” menu and wait for the annota-
tion column to appear in the code editor. This does not appear for files that are not tracked by a supported
version control system.

Figure 46: Version Control—Enable from Menu

Right-click a line last modified by the revision of interest and choose “Trace Variables At This Revi-
sion”.

Figure 47: Version Control—Trace at this revision

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 69

Arm Forge 18.1.3

Arm DDT will find all the source files modified in the revision, detect the variables on the lines modified
in the revision and insert tracepoints (pending if necessary). A progress dialog may be shown for lengthy
tasks.

Both the tracepoints and the tracepoint output in the Tracepoints, Tracepoint Output, and Logbook tabs
may be double-clicked during a session to jump to the corresponding line of source in the code viewer.

In offline mode supply the additional argument --trace-changes and Arm DDT applies the same
process as in interactive mode using the current revision of the repository.

By default version control tracepoints are removed after 20 hits. To change this hit limit set the environ-
ment variable ALLINEA_VCS_TRACEPOINT_HIT_LIMIT to an integer greater than or equal to 0.
To configure version control tracepoints to have no hit limit set this to 0.

See also Version control information.

Examining the stack frame

Figure 48: The Stack Tab

The stack back trace for the current process and thread are displayed under the Stack tab of the Variables
Window. When you select a stack frame Arm DDT jumps to that position in the code, if it is available,
and will display the local variables for that frame. The toolbar can also be used to step up or down the
stack, or jump straight to the bottom-most frame.

Align stacks

The align stacks button, or CTRL-A hotkey, sets the stack of the current thread on every process in a
group to the same level as the current process, where it is possible to do so.

This feature is particularly useful where processes are interrupted, by the pause button, and are at different
stages of computation. This enables tools such as the Cross-Process Comparison window to compare
equivalent local variables, and also simplifies casual browsing of values.

Viewing stacks in parallel

Overview

To find out where your program is, in one single view, you can use the Parallel Stack View. It is found
in the bottom area of Arm DDT’s GUI, tabbed alongside Input/Output, Breakpoints andWatches:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 70

Arm Forge 18.1.3

Figure 49: DDT Parallel Stack View

If you want to knowwhere a group’s processes are, click on the group and look at the Parallel Stack View.
This shows a tree of functions, merged from every process in the group (by default). If there is only one
branch in this tree, one list of functions, then all your processes are at the same place.

If there are several different branches, then your group has split up and is in different parts of the code.
Click on any branch to see its location in the Source Code Viewer, or hover your mouse over it and a little
popup will list the processes at that location. Right-click on any function in the list and select New Group
to automatically gather the processes at that function together in a new group, labelled by the function’s
own name.

The best way to learn about the Parallel Stack View is to simply use it to explore your program. Click on it
and see what happens. Create groups with it, and watch what happens to it as you step processes through
your code. The Parallel Stack View’s ability to display and select large numbers of processes based on
their location in your code is invaluable when dealing with moderate to large numbers of processes.

The Parallel Stack View in detail

The Parallel Stack View takes over much of the work of the Stack display, but instead of just showing
the current process, this view combines the call trees (commonly called stacks) from many processes
and displays them together. The call tree of a process is the list of functions (strictly speaking frames or
locations within a function) that lead to the current position in the source code.

For example, if main() calls read_input(), and read_input() calls open_file(), and you
stop the program inside open_file(), then the call tree looks like the following:

main()
read_input()
open_file()

If a function was compiled with debug information (usually -g) then Arm DDT adds extra information,
displaying the exact source file and line number that your code is on.

Any functions without debug information are grayed-out and are not shown by default. Functions without
debug information are typically library calls or memory allocation subroutines and are not generally of
interest. To see the entire list of functions, right-click on one and choose Show Children from the pop-up
menu.

You can click on any function to select it as the ‘current’ function in Arm DDT. If it was compiled
with debug information, then Arm DDT also displays its source code in the main window, and its local
variables and so on in the other windows.

One of the most important features of the Parallel Stack View is its ability to show the position of many
processes at once. Right-click on the view to toggle between:

1. Viewing all the processes in your program at once.

2. Viewing all the processes in the current group at once (default).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 71

Arm Forge 18.1.3

3. Viewing only the current process.

The function that Arm DDT is currently displaying and using for the variable views is highlighted in dark
blue. Clicking on another function in the Parallel Stack View selects another frame for the source code
and variable views. It also updates the Stack display, since these two controls are complementary. If the
processes are at several different locations, then only the current process’ location is displayed in dark
blue. The other processes’ locations are displayed in a light blue:

Figure 50: Current Frame Highlighting in Parallel Stack View

In the example above, the program’s processes are at two different locations. 1 process is in the main
function, at line 85 of hello.c. The other 15 processes are inside a function called func2, at line
34 of hello.c. The 15 processes reached func2 in the same way, main called func1 on line 123 of
hello.c, then func1 called func2 on line 40 of hello.c. Clicking on any of these functions takes
you to the appropriate line of source code, and displays any local variables in that stack frame.

There are two optional columns in the Parallel Stack View. The first, Processes shows the number of
processes at each location. The second, Threads, shows the number of threads at each location. By
default, only the number of processes is shown. Right-click to turn these columns on and off. Note that
in a normal, single-threaded MPI application, each process has one thread and these two columns will
show identical information.

Hovering the mouse over any function in the Parallel Stack View displays the full path of the filename,
and a list of the process ranks that are at that location in the code:

Figure 51: Parallel Stack View tool tip

Arm DDT is at its most intuitive when each process group is a collection of processes doing a similar
task. The Parallel Stack View is invaluable in creating and managing these groups.

Right-click on any function in the combined call tree and choose the New Group option. This creates a
new process group that contains only the processes sharing that location in code. By default Arm DDT
uses the name of the function for the group, or the name of the function with the file and line number if
it is necessary to distinguish the group further.

Browsing source code

Source code is automatically displayed when a process is stopped, when you select a process, or position
in the stack changed. If the source file cannot be found you are prompted for its location.

Arm DDT highlights lines of the source code to show the current location of your program’s execution.
Lines that contain processes from the current group are shaded in that group’s color. Lines only containing
processes from other groups are shaded in gray.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 72

Arm Forge 18.1.3

This pattern is repeated in the focus on process and thread modes. For example, when you focus on a
process, Arm DDT highlights lines containing that process in the group color, and other processes from
that group in gray.

Arm DDT also highlights lines of code that are on the stack, functions that your program will return to
when it has finished executing the current one. These are drawn with a faded look to distinguish them
from the currently-executing lines.

You can hover the mouse over any highlighted line to see which processes/threads are currently on that
line. This information is presented in a variety of ways, depending on the current focus setting:

Focus on Group

A list of groups that are on the selected line, along with the processes in them on this line, and a list of
threads from the current process on the selected line.

Focus on Process

A list of the processes from the current group that are on this line, along with the threads from the current
process on the selected line.

Focus on Thread

A list of threads from the current process on the selected line.

The tool tip distinguishes between processes and threads that are currently executing that line, and ones
that are on the stack by grouping them under the headings On the stack and On this line.

Variables and Functions

Right-clicking on a variable or function name in the Source Code Viewer causes Arm DDT to check
whether there is a matching variable or function, and then to display extra information and options in a
sub-menu.

In the case of a variable, the type and value are displayed, along with options to view the variable in the
Cross-Process Comparison Window (CPC) or the Multi-Dimensional Array Viewer (MDA), or to drop
the variable into the Evaluate Window, each of which are described in the next chapter.

Figure 52: Right-Click Menu—Variable Options

In the case of a function, it is also possible to add a breakpoint in the function, or to the source code of
the function when available.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 73

Arm Forge 18.1.3

Figure 53: Right-Click Menu—Function Options

Simultaneously viewing multiple files

Arm DDT presents a tabbed pane view of source files. Occasionally it may be useful to view two files
simultaneously, such as when tracking two different processes.

Inside the code viewing panel, right-click to split the view. This displays a second tabbed pane which
can be viewed beneath the first one. When viewing additional files, the currently ‘active’ panel displays
the file. Click on one of the views to make it active.

The split view can be reset to a single view by right-clicking in the code panel and deselecting the split
view option.

Figure 54: Horizontal Alignment Of Multiple Source Files

Signal handling

By default Arm DDT will stop a process if it encounters one of the standard signals. See section 7.20.1
Custom signal handling (signal dispositions). The standard signals include:

• SIGSEGV – Segmentation fault

The process has attempted to access memory that is not valid for that process. Often this will be
caused by reading beyond the bounds of an array, or from a pointer that has not been allocated yet.
The DDT Memory Debugging feature may help to resolve this problem.

• SIGFPE – Floating Point Exception

This is raised typically for integer division by zero, or dividing the most negative number by -1.
Whether or not this occurs is Operating System dependent, and not part of the POSIX standard.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 74

Arm Forge 18.1.3

Linux platforms will raise this.

Note that floating point division by zero will not necessarily cause this exception to be raised,
behavior is compiler dependent. The special value Inf or -Inf may be generated for the data,
and the process would not be stopped.

• SIGPIPE – Broken Pipe

A broken pipe has been detected while writing.

• SIGILL – Illegal Instruction

SIGUSR1, SIGUSR2, SIGCHLD, SIG63 and SIG64 are passed directly through to the user process
without being intercepted by DDT.

Custom signal handling (signal dispositions)

You can change the way individual signals are handled using the Signal Handling window. To open the
window select the Control→ Signal Handling… menu item.

Figure 55: Signal Handling dialog

Set a signal’s action to Stop to stop a process whenever it encounters the given signal, or Ignore to let the
process receive the signal and continue playing without being stopped by the debugger.

Sending signals

The Send Signalwindow allows a signal to be sent to the debugged processes. Select the Control→ Send
Signal… menu item. Select the signal you want to send from the drop-down list and click the Send to
process button.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 75

Arm Forge 18.1.3

Viewing variables and data

The Variables Window contains two tabs that provide different ways to list your variables. The Locals
tab contains all the variables for the current stack frame, while the Current Line(s) tab displays all the
variables referenced on the currently selected lines. Please note that several compilers and libraries (such
as Cray Fortran, OpenMP and others) generate extra code, including variables that are visible in Arm
DDT’s windows.

Right-clicking in these windows brings up additional options, including the ability to edit values (in the
Evaluations window), to change the display base, or to compare data across processes and threads. The
right-click menu also allows you to choose whether the fields in structures (classes or derived types)
should be displayed alphabetically by element name or not, which is useful for when structures have very
many different fields.

Figure 56: Displaying Variables

Sparklines

Numerical values may have sparklines displayed next to them. A sparkline is a line graph of process rank
or thread index against value of the related expression. The exact behavior is determined by the focus
control. See section 7.2 Focus control.

If focussed on process groups, then process ranks are used. Otherwise, thread indices are used. The graph
is bound by the minimum and maximum values found, or in the case that all values are equal the line
is drawn across the vertical center of the highlighted region. Erroneous values such as Nan and Inf are
represented as red, vertical bars. If focus is on process groups, then clicking on a sparkline displays the
Cross-Process Comparison window for closer analysis. Otherwise, clicking on a sparkline displays the
Cross-Thread Comparison window.

Current line

You can select a single line by clicking on it in the code viewer, or multiple lines by clicking and dragging.
The variables are displayed in a tree view so that user-defined classes or structures can be expanded to
view the variables contained within them. You can drag a variable from this window into the Evaluate
Window. It is then evaluated in whichever stack frame, thread or process you select.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 76

Arm Forge 18.1.3

Local variables

TheLocals tab contains local variables for the current process’s currently active thread and stack frame.

For Fortran codes the amount of data reported as local can be substantial, as this can include many global
or common block arrays. Should this prove problematic, it is best to conceal this tab underneath the
Current Line(s) tab, as this will not then update after every step.

It is worth noting that variables defined within common blocks may not appear in the local variables tab
with some compilers, this is because they are considered to be global variables when defined in a common
memory space.

The Locals view compares the value of scalar variables against other processes. If a value varies across
processes in the current group the value is highlighted in green.

When stepping or switching processes if the value of a variable is different from the previous position or
process it is highlighted in blue.

After stepping out of function the return value is displayed at the top of the Locals view (for selected
debuggers).

Arbitrary expressions and global variables

Figure 57: Evaluating Expressions

Since the global variables and arbitrary expressions do not get displayed with the local variables, you
may wish to use the Current Line(s) tab in the Variables window and click on the line in the Source Code
Viewer containing a reference to the global variable.

Alternatively, the Evaluate panel can be used to view the value of any arbitrary expression. Right-click on
the Evaluate window, click on Add Expression, and type in the expression required in the current source
file language. This value of the expression is displayed for the current process and stack/thread, and is
updated after every step.

Note: At the time of writing Arm DDT does not apply the usual rules of precedence to logical Fortran
expressions, such as x .ge. 32 .and. x .le. 45.. For now, please bracket such expressions
thoroughly: (x .ge. 32) .and. (x .le. 45).

Note: Although the Fortran syntax allows you to use keywords as variable names, Arm DDT is not be
able to evaluate such variables on most platforms. Please contact Arm support at Arm supportif this is a
problem for you.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 77

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Expressions containing function calls are only evaluated for the current process/thread and sparklines are
not displayed for those expressions, because of possible side effects caused by calling functions. Use
Cross-Process or Cross-Thread Comparison for functions instead. See section 8.16 Cross-process and
cross-thread comparison.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 78

Arm Forge 18.1.3

Fortran intrinsics

The following Fortran intrinsics are supported by the default GNUdebugger includedwithArmDDT:

ABS AIMAG CEILING CMPLX
FLOOR IEEE_IS_FINITE IEEE_IS_INF IEEE_IS_NAN
IEEE_IS_NORMAL ISFINITE ISINF ISNAN
ISNORMAL MOD MODULO REALPART

Support in other debuggers, including the CUDA debugger variants, may vary.

Changing the language of an expression

Ordinarily, expressions in the Evaluate window and Locals/Current windows are evaluated in the lan-
guage of the current stack frame. This may not always be appropriate. For example, a pointer to user
defined structure may be passed as value within a Fortran section of code, and you may wish to view the
fields of the C structure. Alternatively, you may wish to view a global value in a C++ class while your
process is in a Fortran subroutine.

You can change the language that ArmDDT uses for your expressions by right-clicking on the expression,
and clicking Change Type/Language, selecting the appropriate language for the expression. To restore
the default behavior, change this back to Auto.

Macros and #defined constants

By default, many compilers do not output sufficient information to allow the debugger to display the
values of “#defined” constants or macros, as including this information can greatly increase executable
sizes.

With the GNU compiler, adding the “-g3” option to the command line options generates extra definition
information which Arm DDT will then be able to display.

Help with Fortran modules

An executable containing Fortran modules presents a special set of problems for developers:

• If there are many modules, each of which contains many procedures and variables (each of which
can have the same name as something else in a separate Fortran module), keeping track of which
name refers to which entity can become difficult.

• When the Locals or Current Line(s) tabs (within the Variables window) display one of these vari-
ables, to which Fortran module does the variable belong?

• How do you refer to a particular module variable in the Evaluate window?

• How do you quickly jump to the source code for a particular Fortran module procedure?

To help with this, Arm DDT provides a Fortran Modules tab in the Project Navigator window.

When Arm DDT begins a session, Fortran module membership is automatically found from the informa-
tion compiled into the executable.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 79

Arm Forge 18.1.3

A list of Fortran modules found is displayed in a simple tree view within the Fortran Modules tab of the
Project Navigator window.

Each of these modules can be ‘expanded’ (by clicking on the + symbol to the left of the module name)
to display the list of member procedures, member variables and the current values of those member
variables.

Clicking on one of the displayed procedure names causes the Source Code Viewer to jump to that proce-
dure’s location in the source code. In addition, the return type of the procedure is displayed at the bottom
of the Fortran Modules tab. Fortran subroutines will have a return type of VOID ().

Similarly, clicking on one of the displayed variable names causes the type of that variable to be displayed
at the bottom of the Fortran Modules tab.

A module variable can be dragged and dropped into the Evaluatewindow. Here, all of the usual Evaluate
window functionality applies to the module variable. To help with variable identification in the Evaluate
window, module variable names are prefixed with the Fortran module name and two colons ::.

Right-clicking within the Fortran Modules tab brings up a context menu. For variables, choices on this
menu includes sending the variable to the Evaluatewindow, theMulti-Dimensional Array Viewer and the
Cross-Process Comparison Viewer.

Some caveats apply to the information displayed within the Fortran Modules tab:

1. The Fortran Modules tab is not displayed if the underlying debugger does not support the retrieval
and manipulation of Fortran module data.

2. The Fortran Modules tab displays an empty module list if the Fortran modules debug data is not
present or in a format understood by Arm DDT.

One limitation of the Fortran Modules tab is that the modules debug data compiled into the executable
does not include any indication of the module USE hierarchy. For example, if module A USEs module B,
the inherited members of module B are not shown under the data displayed for module A. Consequently,
the Fortran Modules tab shows the module USE hierarchy in a flattened form, one level deep.

Viewing complex numbers in Fortran

When working with complex numbers, you may wish to view only the real or imaginary elements of the
number. This can be useful when evaluating expressions, or viewing an array in the Multi-Dimensional
Array Viewer See section 8.15 Multi-dimensional array viewer (MDA).

You can use the Fortran intrinsic functions REALPART and AIMAG to get the real or imaginary parts of
a number, or their C99 counterparts creal and cimag.

Complex numbers in Fortran can also be accessed as an array, where element 1 is the real part, and element
2 is the imaginary part.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 80

Arm Forge 18.1.3

Figure 58: Viewing the Fortran complex number 3+4i

C++ STL support

Arm DDT uses pretty printers for the GNU C++ STL implementation (versions 4.7 and greater), Nokia’s
Qt library, and Boost, designed for use with the GNU Debugger. These are used automatically to present
such C++ data in a more understandable format.

For some compilers, the STL pretty printing can be confused by non-standard implementations of STL
types used by a compiler’s own STL implementation. In this case, and in the case where you wish to see
the underlying implementation of an STL type, you can disable pretty printing by running DDT with the
environment variable setting ALLINEA_DISABLE_PRETTY_PRINT=1.

Expanding elements in std::map, including unordered and multimap variants, is not supported
when using object keys or pointer values.

Custom pretty printers

In addition to the pre-installed pretty printers you may also use your own GDB pretty printers.

Note: custom pretty printers are only supported when using the GDB 7.6.2 debugger. You must select
this debugger on the System Settings page of the Options window.

A GDB pretty printer consists of an auto-load script that is automatically loaded when a particular
executable or shared object is loaded and the actual pretty printer Python classes themselves. To make a
pretty printer available in DDT copy it to ~/.allinea/gdb.

Example

An example pretty printer may be found in {installation-directory}/examples.

Compile the fruit example program using the GNU C++ compiler as follows:

cd {installation-directory}/examples
make -f fruit.makefile

Now start Arm DDT with the example program as follows:

ddt --start {installation-directory}/examples/fruit

After the program has started right-click on line 20 and click the Run to here menu item. Click on the
Locals tab and notice that the internal variable of myFruit are displayed.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 81

Arm Forge 18.1.3

Now install the fruit pretty printer by copying the files to ~/.allinea/gdb as follows:

cp -r {installation-directory}/examples/fruit-pretty-printer/* ∼/.
allinea/gdb/

Re-run the program in Arm DDT and run to line 20, as before. Click on the Locals tab and notice that
now, instead of the internal variable of myFruit, the type of fruit is displayed instead.

Viewing array data

Fortran users may find that it is not possible to view the upper bounds of an array. This is due to a lack
of information from the compiler. In these circumstances Arm DDT displays the array with a size of 0,
or simply <unknown_bounds>. It is still possible to view the contents of the array using the Evaluate
window to view array(1), array(2), and so on, as separate entries.

To tell Arm DDT the size of the array right-click on the array and select the Edit Type… menu option.
This opens a window similar to the one below. Enter the real type of the array in theNew Type box.

Figure 59: Edit Type window

Alternatively the MDA can be used to view the entire array.

UPC support

ArmDDT supports many different UPC compilers, including the GNUUPC compiler, the Berkeley UPC
compiler and those provided by Cray.

Note: In order to enable UPC support, you may need to select the appropriate MPI/UPC implementation
from DDT’s Options/System menu. See Section 5.14 UPC

Debugging UPC applications introduces a small number of changes to the user interface.

• Processes will be identified as UPC Threads, this is purely a terminology change for consistency
with the UPC language terminology. UPC Threads will have behavior identical to that of separate
processes: groups, process control and cross-process data comparison for examplewill apply across
UPC Threads.

• The type qualifier shared is given for shared arrays or pointers to shared.

• Shared pointers are printed as a triple (address, thread, phase). For indefinitely blocked pointers
the phase is omitted.

• Referencing shared items will yield a shared pointer and pointer arithmetic may be performed on
shared pointers.

• Dereferencing a shared pointer (for example, dereferencing *(&x[n] + 1])) will correctly
evaluate and fetch remote data where required.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 82

Arm Forge 18.1.3

• Values in shared arrays are not automatically compared across processes: the value of x[i] is
by definition identical across all processes. It is not possible to identify pending read/write to
remote data. Non-shared data types such as local data or local array elements will still be compared
automatically.

• Distributed arrays are handled implicitly by the debugger. There is no need to use the explicit
distributed dimensions feature in the MDA.

All other components of Arm DDT will be identical to debugging any multi-process code.

Changing data values

In the Evaluate window, the value of an expression may be set by right-clicking and selecting Edit Value.
This allows you to change the value of the expression for the current process, current group, or for all
processes.

Note: The variable must exist in the current stack frame for each process you wish to assign the value
to.

Viewing numbers in different bases

When you are viewing an integer numerical expression you may right-click on the value and use the View
As sub menu to change which base the value is displayed in. The View As→ Default option displays the
value in its original (default) base.

Examining pointers

You can examine pointer contents by clicking the + next to the variable or expression. This expands the
item and dereference the pointer.

In theEvaluatewindow, you can also use theViewAs Vector, Reference, andDereferencemenu items.

See also Multi-dimensional array viewer (MDA).

Multi-dimensional arrays in the Variable View

When viewing a multi-dimensional array in either the Locals, Current Line(s) or Evaluate windows it is
possible to expand the array to view the contents of each cell.

In C/C++ the array expands from left to right, x, y, z will be seen with the x column first, then under
each x cell a y column, whereas in Fortran the opposite will be seen with arrays being displayed from
right to left as you read it so x, y, z would have z as the first column with y under each z cell.

The first million elements in an array are shown in the Locals or Current Line(s) view. Larger arrays
are truncated, but elements past the millionth can be viewed by evaluating an expression or using the
multi-dimensional array viewer.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 83

Arm Forge 18.1.3

Figure 60: 2D Array in C: type of array is int[4][3]

Figure 61: 2D Array in Fortran: type of twodee is integer(3,5)

Multi-dimensional array viewer (MDA)

Arm DDT provides a Multi-Dimensional Array (MDA) Viewer (fig. 62) for viewing multi-dimensional
arrays.

To open theMulti-Dimensional Array Viewer, right-click on a variable in the Source Code, Locals, Cur-
rent Line(s) or Evaluate views and select the View Array (MDA) context menu option. You can also
open the MDA directly by selecting the Multi-Dimensional Array Viewer menu item from the View
menu.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 84

Arm Forge 18.1.3

Figure 62: Multi-Dimensional Array Viewer

If you open the MDA by right clicking on a variable, Arm DDT will automatically set the Array Expres-
sion and other parameters based on the type of the variable. Click the Evaluate button to see the contents
of the array in the Data Table.

The Full Window button hides the settings at the top of the window so the table of values occupies the
full window, allowing you to make full use of your screen space. Click the button again to reveal the
settings.

Array expression

The Array Expression is an expression containing a number of subscript metavariables that are sub-
stituted with the subscripts of the array. For example, the expression myArray($i, $j) has two
metavariables, $i and $j. The metavariables are unrelated to the variables in your program.

The range of each metavariable is defined in the boxes below the expression, for example Range of $i.
The Array Expression is evaluated for each combination of $i, $j, and so on, and the results shown in
the Data Table. You can also control whether each metavariable is shown in the Data Table using Rows
or Columns.

By default, the ranges for these metavariables are integer constants entered using spin boxes. However,
the MDA also supports specifying these ranges as expressions in terms of program variables. These ex-
pressions are then evaluated in the debugger. To allow the entry of these expressions, check the Staggered
Array check box. This will convert all the range entry fields from spin boxes to line edits allowing the
entry of freeform text.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 85

Arm Forge 18.1.3

The metavariables may be reordered by dragging and dropping them. For C/C++ expressions the major
dimension is on the left and theminor dimension on the right, for Fortran expressions the major dimension
is on the right and the minor dimension on the left. Distributed dimensions may not be reordered, they
must always be the most major dimensions.

Filtering by value

You may want the Data Table to only show elements that fit a certain criteria, for example elements that
are zero.

If the Only show if box is checked then only elements that match the boolean expression in the box are
displayed in the Data Table, for example, $value == 0. The special metavariable $value in the
expression is replaced by the actual value of each element. The Data Table automatically hides rows or
columns in the table where no elements match the expression.

Any valid expression for the current language may be used here, including references to variables in
scope and function calls. You may want to be careful to avoid functions with side effects as these will be
evaluated many times over.

Distributed arrays

A distributed array is an array that is distributed across one or more processes as local arrays.

The Multi-Dimensional Array Viewer can display certain types of distributed arrays, namely UPC shared
arrays (for supported UPC implementations), and general arrays where the distributed dimensions are
the most major, that is, the distributed dimensions change the most slowly, and are independent from the
non-distributed dimensions.

UPC shared arrays are treated the same as local arrays, simply right-click on the array variable and select
View Array (MDA).

To view a non-UPC distributed array first create a process group containing all the processes that the
array is distributed over.

If the array is distributed over all processes in your job then you can simply select the All group in-
stead. Right-click on the local array variable in the Source Code, Locals, Current Line(s) or Evaluate
views.

TheMulti-Dimensional Array Viewerwindowwill openwith theArray Expression already filled in.

Enter the number of distributed array dimensions in the corresponding box. A new subscript metavariable
(such as $p, $q) will be automatically added for each distributed dimension.

Enter the ranges of the distributed dimensions so that the product is equal to the number of processes in
the current process group, then click the Evaluate button.

Advanced: how arrays are laid out in the data table

The Data Table is two dimensional, but the Multi-Dimensional Array Viewer may be used to view arrays
with any number of dimensions, as the name implies. This section describes how multi-dimensional
arrays are displayed in the two dimensional table.

Each subscript metavariable (such as $i, $j, $p, $q) maps to a separate dimension on a hypercube.
Usually the number of metavariables is equal to the number of dimensions in a given array, but this

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 86

Arm Forge 18.1.3

does not necessarily need to be the case. For example myArray($i, $j) * $k introduces an extra
dimension, $k, as well as the two dimensions corresponding to the two dimensions of myArray.

The figure below corresponds to the expression myArray($i, $j) with $i = 0..3 and $j =
0..4.

Figure 63: myArray($i, $j) with $i = 0..3 and $j = 0..4.

If, by way of example, imagine that myArray is part of a three dimensional array distributed across three
processes. The figure below shows what the local arrays look like for each process.

Figure 64: The local array myArray($i, $j) with $i = 0..3 and $j = 0..4 on ranks 0–2

And as a three dimensional distributed array with $p the distributed dimension:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 87

Arm Forge 18.1.3

Figure 65: A three dimensional distributed array comprised of the local array myArray($i, $j) with $i =
0..3 and $j = 0..4 on ranks 0–2 with $p the distributed dimension

This cube is projected (just like 3D projection) onto the two dimensional Data Table. Dimensions marked
Display as Rows are shown in rows, and dimensions marked Display as Columns are shown in columns,
as you would expect.

More than one dimension may viewed as Rows, or more than one dimension viewed as Columns.

The dimension that changes fastest depends on the language your program is written in. For C/C++
programs the leftmost metavariable (usually $i for local arrays or $p for distributed arrays) changes the
most slowly (just like with C array subscripts). The rightmost dimension changes the most quickly. For
Fortran programs the order is reversed, that is the rightmost is most major, the leftmost most minor.

The figure below shows how the three dimensional distributed array above is projected onto the two
dimensional Data Table:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 88

Arm Forge 18.1.3

Figure 66: A three dimensional distributed array comprised of the local array myArray($i, $j) with $i =
0..3 and $j = 0..4 on ranks 0–2 projected onto the Data Table with $p (the distributed dimension) and $j
displayed as Columns and $i displayed as Rows.

Auto Update

If you check the Auto Update check box the Data Table will be automatically updated as you switch
between processes/threads and step through the code.

Comparing elements across processes

When viewing an array in the Data Table, you may double-click or choose Compare Element Across
Processes from the context menu for a particular element.

This displays the Cross-Process Comparison dialog for the specified element.

See 8.16 Cross-process and cross-thread comparison for more information.

Statistics

The Statistics tab displays information which may be of interest, such as the range of the values in the
table, and the number of special numerical values, such as nan or inf.

Export

You may export the contents of the results table to a file in the Comma Separated Values (CSV) or HDF5
format that can be plotted or analysed in your favourite spreadsheet or mathematics program.

There are two CSV export options: List (one row per value) and Table (same layout as the on screen
table).

Note: If you export a Fortran array fromArmDDT inHDF5 format the contents of the array are written in
column major order. This is the order expected by most Fortran code, but the arrays will be transposed if
read with the default settings by C-based HDF5 tools. Most HDF5 tools have an option to switch between
row major and column major order.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 89

Arm Forge 18.1.3

Visualization

If your system is OpenGL-capable then a 2-D slice of an array, or table of expressions, may be displayed
as a surface in 3-D space through the Multi-Dimensional Array (MDA) Viewer.

You can only plot one or two dimensions at a time. If your table has more than two dimensions the
Visualise button will be disabled.

After filling the table of theMDA Viewerwith values (see previous section), click Visualise to open a 3-D
view of the surface.

To display surfaces from two or more different processes on the same plot simply select another process
in the main process group window and click Evaluate in the MDA window, and when the values are
ready, click Visualise again.

The surfaces displayed on the graph may be hidden and shown using the check boxes on the right-hand
side of the window.

The graph may be moved and rotated using the mouse and a number of extra options are available from
the window toolbar.

The mouse controls are:

• Hold down the left button and drag the mouse to rotate the graph.

• Hold down the right button to zoom. Drag the mouse forwards to zoom in and backwards to zoom
out.

• Hold the middle button and drag the mouse to move the graph.

Note: Arm DDT requires OpenGL to run. If your machine does not have hardware OpenGL support,
software emulation libraries such as MesaGL are also supported.

Note: In some configurations OpenGL is known to crash. A work-around if the 3D visualization crashes
is to set the environment variable LIBGL_ALWAYS_INDIRECT to 1. The precise configuration which
triggers this problem is not known.

Figure 67: DDT Visualization

The toolbar and menu offer options to configure lighting and other effects, including the ability to save an
image of the surface as it currently appears. There is even a stereo vision mode that works with red-blue

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 90

Arm Forge 18.1.3

glasses to give a convincing impression of depth and form. Contact Arm support if you need to obtain
some 3D glasses.

Cross-process and cross-thread comparison

The Cross-Process Comparison and Cross-Thread Comparison windows can be used to analyze expres-
sions calculated on each of the processes in the current process group. Each window displays information
in three ways: raw comparison, statistically, and graphically.

This is a more detailed view than the sparklines that are automatically drawn against a variable in the
evaluations and locals/current line windows for multi-process sessions.

To compare values across processes or threads, right-click on a variable inside the Source Code, Locals,
Current Line(s) or Evaluate windows and then choose one of the View Across Processes (CPC) or View
Across Threads (CTC) options. You can also bring up the CPC or CTC directly from the View menu in
the main menu bar. Alternatively, clicking on a sparkline will bring up the CPC if focus is on process
groups and the CTC otherwise.

Figure 68: Cross-Process Comparison—Compare View

Processes and threads are grouped by expression value when using the raw comparison. The precision
of this grouping can be specified (for floating point values) by filling the Limit box.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 91

Arm Forge 18.1.3

If you are comparing across processes, you can turn each of these groupings of processes into a Arm
DDT process group by clicking the create groups button. This creates several process groups, one for
each line in the panel. Using this capability large process groups can be managed with simple expres-
sions to create groups. These expressions are any valid expression in the present language (that is,
C/C++/Fortran).

For threaded applications, when using the CTC, if Arm DDT is able to identify OpenMP thread IDs,
a third column will also display the corresponding OpenMP thread IDs for each thread that has each
value. The value displayed in this third column for any non-OpenMP threads that are running depends
on your compiler but is typically -1 or 0. OpenMP thread IDs should be available when using Intel and
PGI compilers provided compiler optimisations have not removed the required information (recompile
with -O0 if necessary). OpenMP thread IDs can only be obtained from GCC compiled programs if the
compiler itself was compiled with TLS enabled, unfortunately this is not the case for the packaged GCC
installs on any of the major Linux distributions at time of writing (Redhat 7, SUSE 12 or Ubuntu 16.04).
The display of OpenMP thread IDs is not currently supported when using the Cray compiler.

You can enter a second boolean expression in theOnly show if box to control which values are displayed.
Only values for which the boolean expression evaluates to true / .TRUE. are displayed in the results
table. The special metavariable $value in the expression is replaced by the actual value. Click the Show
Examples link to see examples.

The Align Stack Frames check box tries to automatically make sure all processes and threads are in the
same stack frame when comparing the variable value. This is very helpful for most programs, but you
may wish to disable it if different processes/threads run entirely different programs.

The Use as MPI Rank button is described in the next section, Assigning MPI Ranks.

You can create a group for the ranks corresponding to each unique value by clicking the Create Groups
button.

The Export button allows you to export the list of values and corresponding ranks as a Comma Separated
Values (CSV) file.

The Full Window button hides the settings at the top of the window so the list of values occupies the full
window, allowing you to make full use of your screen space. Click the button again to reveal the settings
again.

The Statistics panel showsMaximum,Minimum, Variance and other statistics for numerical values.

Assigning MPI ranks

Sometimes, Arm DDT cannot detect the MPI rank for each of your processes. This might be because
you are using an experimental MPI version, or because you have attached to a running program, or only
part of a running program. Whatever the reason, it is easy to tell DDT what each process should be
called.

To begin, choose a variable that holds theMPIworld rank for each process, or an expression that calculates
it. Use the Cross-Process Comparison window to evaluate the expression across all the processes. If the
variable is valid, the Use as MPI Rank button will be enabled. Click it, Arm DDT immediately relabels
all of its processes with these new values.

What makes a variable or expression valid? These criteria must be met:

1. It must be an integer.

2. Every process must have a unique number afterwards.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 92

Arm Forge 18.1.3

These are the only restrictions. As you can see, there is no need to use the MPI rank if you have an
alternate numbering scheme that makes more sense in your application. In fact you can relabel only a
few of the processes and not all, if you prefer, so long as afterwards every process still has a unique
number.

Viewing registers

To view the values of machine registers on the currently selected process, select the Registers window
from the View pull-down menu. These values will be updated after each instruction, change in thread or
change in stack frame.

Figure 69: Register View

Process details

To view the process details dialog select the Process Detailsmenu item from the Toolsmenu. Details can
be sorted by any columns, in ascending or descending order.

Figure 70: Process Details

Disassembler

To view the disassembly (assembly instructions) of a function select the Disassemble menu item from
the Tools menu. By default you will see the disassembly of the current function, but you can view the
disassembly of another function by entering the function name in the box at the top and clicking the
Disassemble button.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 93

Arm Forge 18.1.3

Figure 71: Disassemble Tool

Interacting directly with the debugger

Figure 72: Raw Command Window

Arm DDT provides a Raw Commandwindow that allows you to send commands directly to the debugger
interface. This window bypasses DDT and its book-keeping. If you set a breakpoint here, Arm DDT will
not list this in the breakpoint list.

Be careful with this window. It is recommended you only use it where the graphical interface does not
provide the information or control you require. Sending commands such as quit or kill may cause
the interface to stop responding to Arm DDT.

Each command is sent to the current group or process depending on the current focus. If the current group
or process is running, Arm DDT prompts you to pause the group or process first.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 94

Arm Forge 18.1.3

Program input and output

Arm DDT collects and displays output from all processes under the Input/Output tab. Both standard
output and error are shown, although on most MPI implementations, error is not buffered but output is
and consequently can be delayed.

Viewing standard output and error

Figure 73: DDT Standard Output Window

The Input/Output tab is at the bottom of the screen (by default).

The output may be selected and copied to the clipboard.

MPI users should note that most MPI implementations place their own restrictions on program output.
Some buffer it all until MPI_Finalize is called, and others may ignore it. If your program needs to
emit output as it runs, try writing to a file.

All users should note that many systems bufferstdout but not stderr. If you do not see your stdout
appearing immediately, try adding fflush(stdout) or equivalent to your code.

Saving output

By right-clicking on the text it is possible to save it to a file. You also have the option to copy a selection
to the clipboard.

Sending standard input

Arm DDT provides an stdin file box in the Run window. This allows you to choose a file to be used as
the standard input (stdin) for your program. Arm DDT will automatically add arguments to mpirun to
ensure your input file is used.

Alternatively, you may enter the arguments directly in the mpirun Arguments box. For example, if using
MPI directly from the command-line you would normally use an option to the mpirun such as -stdin
filename, then you may add the same options to the mpirun Arguments box when starting your DDT
session in the Run window.

It is also possible to enter input during a session. Start your program as normal, then switch to the
Input/Output panel. Here you can see the output from your program and type input you wish to send.
You may also use theMore button to send input from a file, or send an EOF character.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 95

Arm Forge 18.1.3

Note: Although input can be sent while your program is paused, the program must then be played to read
the input and act upon it.

The input you type will be sent to all processes.

Figure 74: DDT Sending Input

Note: If Arm DDT is running on a fork-based system such as Scyld, or a -comm=shared compiled
MPICH 1, your program may not receive an EOF correctly from the input file. If your program seems to
hang while waiting for the last line or byte of input, this is likely to be the problem. See the HGeneral trou-
bleshooting and known issues or contact Arm support at Arm support for a list of possible fixes.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 96

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Logbook

The logbook automatically generates a log of the user’s interaction with Arm DDT, for example, setting
a breakpoint or playing the program. For each stop of the program, the reason and location is recorded
together with the parallel stacks and local variables for one process.

Tracepoint values and output are logged as well.

Figure 75: Logbook example of a debug session

The user can export the current logbook as HTML or compare it to a previously exported one.

This enables comparative debugging and repeatability. It is always clear how a certain situation in the
debugger was caused as the previous steps are visible.

Usage

The logbook is always on and does not require any additional configuration. It is integrated as Logbook
tab at the bottom of the main window beside the Tracepoint Output tab.

To export the logbook click on file icon on RHS and choose a filename. A previously saved logbook can
be opened using a Tools menu option.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 97

Arm Forge 18.1.3

Annotation

Annotations may be recorded to the logbook using either the button with the pencil icon in the right-hand
margin or by right-clicking the logbook and choosing Add annotation.

Comparison window

Two logbooks can be compared side by side with the logbook comparison window. Either click the
‘compare’ icon on the right-hand side of the LogbookView from the Toolsmenu or use the same icon from
the Logbook tab. The current logbook can be compared with a file, or two files can be compared.

To easily spot differences the user can first align both logbooks to corresponding entries and then press the
Sync button. This ensures both vertical and horizontal scrollbars of the logbooks are tied together.

Figure 76: Logbook comparison window with tracepoint difference selected

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 98

Arm Forge 18.1.3

Message queues

Arm DDT’s Message Queue debugging feature shows the status of the message buffers of MPI. For
example, it shows the messages that have been sent by a process but not yet received by the target.

You can use DDT to detect common errors such as deadlock. This is where all processes are waiting for
each other. You can also use it for detecting when messages are present that are unexpected, which can
correspond to two processes disagreeing about the state of progress through a program.

This capability relies on the MPI implementation supporting this via a debugging support library: the
majority of MPIs provide this. Furthermore, not all implementations support the capability to the same
degree, and a variance between the information provided by each implementation is to be expected.

Viewing the message queues

Open the Message Queues window by selecting Message Queues from the Tools menu. The Message
Queues window will query the MPI processes for information about the state of the queues.

While the window is open, you can click Update to refresh the current queue information. Please note
that this will stop all playing processes. While DDT is gathering the data a “Please Wait” dialog may be
displayed and you can cancel the request at any time.

DDTwill automatically load the message queue support library from yourMPI implementation (provided
one exists). If it fails, an error message will be shown. Common reasons for failure to load include:

• The support library does not exist, or its use must be explicitly enabled.

Most MPIs will build the library by default, without additional configuration flags. MPICH 2 and
MPICH 3 must be configured with the --enable-debuginfo argument. MPICH 1.2.x must
be configured with the --enable-debug argument. MVAPICH 2 must be configured with the
--enable-debug and --enable-sharedlib arguments. SomeMPIs, notably Cray’s MPI,
do not support message queue debugging at all.

Intel MPI includes the library, but debug mode must be enabled. See E.6 Intel MPI for details.

LAM and Open MPI automatically compile the library.

• The support library is not available on the compute nodes where the MPI processes are running.

Please ensure the library is available, and set ALLINEA_QUEUE_DLL if necessary to force
using the library in its new location.

• The support library has moved from its original installation location.

Please ensure the proper procedure for the MPI configuration is used. This may require you to
specify the installation directory as a configuration option.

Alternatively, you can specifically include the path to the support library in the LD_LIBRARY_
PATH, or if this is not convenient you can set the environment variable, ALLINEA_QUEUE_DLL,
to the absolute path of the library itself (for example, /usr/local/mpich-1.2.7/lib/
libtvmpich.so).

• The MPI is built to a different bit-size to the debugger.

In the unlikely case that theMPI is not built to the bit-size of the operating system, then the debugger
may not be able to find a support library that is the correct size. This is unsupported.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 99

Arm Forge 18.1.3

Interpreting the message queues

Figure 77: Message Queue Window

To see the messages, you must select a communicator to see the messages in that group. The ranks
displayed in the diagram are the ranks within the communicator (not MPI_COMM_WORLD), if the Show
Local Ranks option is selected. To see the ‘usual’ ranks, select Show Global Ranks. The messages
displayed can be restricted to particular processes or groups of processes. To restrict the display in the
grid to a single process, select Individual Processes in the Display mode selector, and select the rank
of the process. To select a group of processes, select Process Groups in the Display mode selector and
select the ring arc corresponding to the required group. Both of these display modes support multiple
selections.

There are three different types of message queues about which there is information. Different colors are
used to display messages from each type of queue.

Label Description
Send Queue Calls to MPI send functions that have not yet completed.
Receive Queue Calls to MPI receive functions that have not yet completed.
Unexpected Message Queue Represents messages received by the system but the correspond-

ing receive function call has not yet been made.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 100

Arm Forge 18.1.3

Messages in the Send queue are represented by a red arrow, pointing from the sender to the recipient.
The line is solid on the sender side, but dashed on the received side (to represent a message that has been
Sent but not yet been Received).

Messages in the Receive queue are represented by a green arrow, pointing from the sender to the recipient.
The line is dashed on the sender side, but solid on the recipient side, to represent the recipient being ready
to receive a message that has not yet been sent.

Messages in the Unexpected queue are represented by a dashed blue arrow, pointing from sender of the
unexpected message to the recipient.

A message to self is indicated by a line with one end at the centre of the diagram.

Please note that the quality and availability of message queue data can vary considerably between MPI
implementations. Sometimes the data can therefore be incomplete.

Deadlock

A loop in the graph can indicate deadlock. This is where every process is waiting to receive from the
preceding process in the loop.

For synchronous communications, such as with MPI_Ssend, this is invariably a problem.

For other types of communication it can be the case, for example, with varMPI_Send that messages are
‘in the ether’, or in some O/S buffer, and the send part of the communication is complete but the receive
has not started. If the loop persists after playing the processes and interrupting them again, this indicates
a likely deadlock.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 101

Arm Forge 18.1.3

Memory debugging

Arm DDT has a powerful parallel memory debugging capability. This feature intercepts calls to the
system memory allocation library, recording memory usage and confirming correct usage of the library
by performing heap and bounds checking.

Typical problemswhich can be resolved by usingArmDDTwithmemory debugging enabled include:

• Memory exhaustion due to memory leaks can be prevented by examining the Current Memory
Usage display, which groups and quantifies memory according to the location at which blocks
have been allocated.

• Persistent but random crashes caused by access of memory beyond the bounds of an allocation
block can be resolved by using the Guard Pages feature

• Crashing due to deallocation of the same memory block twice, deallocation via invalid pointers,
and other invalid deallocations, for example deallocating a pointer that is not at the start of an
allocation.

Enabling memory debugging

To enable memory debugging within Arm DDT, from the Run window click on the Memory Debugging
checkbox.

The default options are usually sufficient, but you may need to configure extra options (described in the
following sections) if you have a multithreaded application or multithreaded MPI, such as that found on
systems using Open MPI with Infiniband, or a Cray XE6 system.

With the Memory Debugging setting enabled, start your application as normal. Arm DDT will take care
of ensuring that the settings are propagated through your MPI or batch system when your application
starts.

If it is not possible to load the memory debugging library, a message will be displayed, and you should
refer to the Configuration section in this chapter for possible solutions.

CUDA memory debugging

Arm DDT provides two options for debugging memory errors in CUDA programs, which are found in
the CUDA section of the Run window. See section 15.2 Preparing to debug GPU code before debugging
the memory of a CUDA application.

When the Track GPU allocations option is enabled Arm DDT tracks CUDA memory allocations made
by the host, that is, allocations made using functions such as cudaMalloc). You can find out howmuch
memory is allocated and where it was allocated from in the Current Memory Usage window.

Allocations are tracked separately for each GPU and the host (enabling Track GPU allocations will au-
tomatically track host-only memory allocations made using functions such as malloc as well). You can
select between GPUs using the drop-down list in the top-right corner of theMemory Usage andMemory
Statistics windows.

The Detect invalid accesses (memcheck) option turns on the CUDA-MEMCHECK error detection tool,
which can detect problems such as out-of-bounds and misaligned global memory accesses, and syscall
errors, such as calling free() in a kernel on an already free’d pointer.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 102

Arm Forge 18.1.3

The other CUDA hardware exceptions (such as a stack overflow) are detected regardless of whether this
option is checked or not.

For further details about CUDAhardware exceptions, you should refer toNVIDIA’s documentation.

Known issue: It is not possible to track GPU allocations created by the Cray OpenACC compiler as it
does not directly call cudaMalloc.

Configuration

While manual configuration is often unnecessary, it can be used to adjust the memory checks and pro-
tection, or to alter the information which is gathered. A summary of the settings is displayed on the Run
dialog in theMemory Debugging section.

To examine or change the options, select theDetails button adjacent to theMemory Debugging checkbox
in the Run dialog, which then displays theMemory Debugging Options window.

Figure 78: Memory Debugging Options

The two most significant options are:

1. Preload the memory debugging library. When this is checked, Arm DDT will automatically load
the memory debugging library. Arm DDT can only preload the memory debugging library when
you start a program in Arm DDT and it uses shared libraries.

Preloading is not possible with statically-linked programs or when attaching to a running process.
See section 12.3.1 Static linking for more information on static linking.

When attaching, you can set the DMALLOC_OPTIONS environment variable before running your
program, or see section 12.3.3 Changing settings at run time below.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 103

http://docs.nvidia.com/cuda/cuda-gdb/#gpu-error-reporting

Arm Forge 18.1.3

2. The box showing C/Fortran, No Threads in the screen shot. You should choose the option that
best matches your program. It is often sufficient to leave this set to C++/Threaded rather than
continually changing this setting.

TheHeap Debugging section allows you to trade speed for thoroughness. The two most important things
to remember are:

1. Even the fastest (leftmost) setting will catch trivial memory errors such as deallocating memory
twice.

2. The further right you go, the more slowly your program will execute. In practice, the Balanced
setting is still fast enough to use and will catch almost all errors. If you come across a memory
error that is difficult to pin down, choosing Thoroughmight expose the problem earlier, but you will
need to be very patient for large, memory intensive programs. See also 12.3.3 Changing settings
at run time.

You can see exactly which checks are enabled for each setting in the Enabled Checks box. See section
12.3.2 Available checks for a complete list of available checks.

You can turn on Heap Overflow/Underflow Detection to detect out-of-bounds heap access. See section
12.4.4 Writing beyond an allocated area for more details.

Almost all users can leave the heap check interval at its default setting. It determines how often the
memory debugging library will check the entire heap for consistency. This is a slow operation, so it is
normally performed every 100 memory allocations. This figure can be changed manually. A higher set-
ting (1000 or above) is recommended if your program allocates and deallocates memory very frequently,
for example, inside a computation loop.

If your program runs particularly slowly with Memory Debugging enabled you may be able to get a
modest speed increase by disabling the Store backtraces for memory allocations option. This disables
stack backtraces in the View Pointer Details and Current Memory Usage windows, support for custom
allocators and cumulative allocation totals.

It is possible to enable Memory Debugging for only selected MPI ranks by checking the Only enable for
these processes option and entering the ranks which you want to it for.

Note: The Memory Debugging library will still be loaded into the other processes, but no errors will be
reported.

Click on OK to save these settings, or Cancel to undo your changes.

Note: Choosing the wrong library to preload or the wrong number of bits may prevent Arm DDT from
starting your job, or may make memory debugging unreliable. You should check these settings if you
experience problems when memory debugging is enabled.

Static linking

If your program is statically linked then you must explicitly link the memory debugging library with your
program in order to use theMemory Debugging feature in Arm DDT.

To link with the memory debugging library you must add the appropriate flags from the table below at
the very beginning of the link command. This ensures that all instances of allocators in both user code
and libraries are wrapped. Any definition of a memory allocator preceding the memory debugging link
flags can cause partial wrapping and unexpected runtime errors.

--undefined=malloc has the side effect of pulling in all libc style allocator symbols from the library.
--undefinedworks on a per object file level, rather than a per symbol level, and the c++ and c allocator

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 104

Arm Forge 18.1.3

symbols reside in different object files within the library archive. Therefore, specifying only one allocator
is sufficient.

--undefined=_ZdaPv has the side effect of pulling in all c++ style allocator symbols. It is the c++
mangled name of operator delete[].

Note: if in doubt use the -ldmallocthcxx library.

Multi-thread C++ Bits Linker Flags
no no 64 -L/path/to/ddt/lib/64 -Wl,--allow-multiple-

definition,--undefined=malloc -ldmalloc
yes no 64 -L/path/to/ddt/lib/64 -Wl,--allow-multiple-

definition,--undefined=malloc -ldmallocth
no yes 64 -L/path/to/ddt/lib/64 -Wl,--allow-

multiple-definition,--undefined=malloc,-
-undefined=_ZdaPv -ldmallocxx

yes yes 64 -L/path/to/ddt/lib/64 -Wl,--allow-
multiple-definition,--undefined=malloc,-
-undefined=_ZdaPv -ldmallocthcxx

See section F.7 Intel compilers and section F.9 Portland Group compilers for compiler-specific informa-
tion.

Available checks

The following heap checks are available and may be enabled in the Enable Checks box:

Name Description
basic Detect invalid pointers passed to memory functions (malloc, free, ALLOCATE,

DEALLOCATE, etc.)
check-funcs Check the arguments of addition functions (mostly string operations) for invalid point-

ers.
check-heap Check for heap corruption, for example, due to writes to invalid memory addresses.
check-fence Check the end of an allocation has not been overwritten when it is freed.
alloc-blank Initialize the bytes of new allocations with a known value.
free-blank Overwrite the bytes of freed memory with a known value.
check-blank Check to see if space that was blanked when a pointer was allocated or when it was

freed has been overwritten. Enables alloc-blank and free-blank.
realloc-copy Always copy data to a new pointer when reallocating a memory allocation (for exam-

ple, due to realloc).
free-protect Protect freed memory where possible (using hardware memory protection) so subse-

quent read/writes cause a fatal error.

Changing settings at run time

You can changemostMemory Debugging settings while your program is running by selecting theControl
→ Memory Debugging Options menu item. In this way you can enable Memory Debugging with a

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 105

Arm Forge 18.1.3

minimal set of options when your program starts, set a breakpoint at a place you want to investigate for
memory errors, then turn on more options when the breakpoint is hit.

Pointer error detection and validity checking

Once you have enabled memory debugging and started debugging, all calls to the allocation and deal-
location routines of heap memory will be intercepted and monitored. This allows both for automatic
monitoring for errors, and for user driven inspection of pointers.

Library usage errors

If the memory debugging library reports an error, Arm DDT will display a window similar to the one
shown below. This briefly reports the type of error detected and gives the option of continuing to play
the program, or pausing execution.

Figure 79: Memory Error Message

If you choose to pause the program then Arm DDT will highlight the line of your code which was being
executed when the error was reported.

Often this is enough to debug simple memory errors, such as freeing or dereferencing an unallocated
variable, iterating past the end of an array and so on, as the local variables and variables on the current
line will provide insight into what is happening.

If the cause of the issue is still not clear, then it is possible to examine some of the pointers referenced
to see whether they are valid and which line they were allocated on, as is explained in the following
sections.

View pointer details

Any of the variables or expressions in the Evaluate window can be right-clicked on to bring up a menu.
If memory debugging is enabled, View Pointer Details will be available. This will display the amount
of memory allocated to the pointer and which part of your code originally allocated and deallocated that
memory:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 106

Arm Forge 18.1.3

Figure 80: Pointer details

Clicking on any of the stack frames displays the relevant section of your code, so that you can see where
the variable was allocated or deallocated.

Note: Only a single stack frame will be displayed if the Store stack backtraces for memory allocations
option is disabled.

This feature can also be used to check the validity of heap-allocated memory.

Note: Memory allocated on the heap refers to memory allocated by malloc, ALLOCATE, new and so
on. A pointer may also point to a local variable, in which case Arm DDT will tell you it does not point
to data on the heap. This can be useful, since a common error is taking a pointer to a local variable that
later goes out of scope.

Figure 81: Invalid memory message

This is particularly useful for checking function arguments, and key variables when things seem to be
going awry. Of course, just because memory is valid does not mean it is the same type as you were
expecting, or of the same size and dimensions, and so on.

Memory Type/Location

As well as invalid addresses, Arm DDT can often indicate the type and location of the memory being
pointed to. The different types are listed here:

• Null pointer.

• Valid heap allocation.

• Fence-post area before the beginning of an allocation.

• Fence-post area beyond the end of an allocation.

• Freed heap allocation.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 107

Arm Forge 18.1.3

• Fence-post area before the beginning of a freed allocation.

• Fence-post area beyond the end a freed allocation.

• A valid GPU heap allocation.

• An address on the stack.

• The program’s code section (or a shared library).

• The program’s data section (or a shared library).

• The program’s bss section or Fortran COMMON block (or a shared library).

• The program’s executable (or a shared library).

• A memory mapped file.

• High Bandwidth Memory.

Note: Arm DDT may only be able to identify certain memory types with higher levels of memory debug-
ging enabled. See 12.3 Configuration for more information.

For more information on fence post checking, see 12.4.5 Fencepost checking

Cross-process comparison of pointers

Enabling memory debugging has an impact on the Cross-Process Comparison and Cross-Thread Com-
parison windows, see 8.16 Cross-process and cross-thread comparison.

If you are evaluating a pointer variable then theCross-Process Comparisonwindow shows a column with
the location of the pointer.

Pointers to locations in heap memory are highlighted in green. Dangling pointers, that is pointers to
locations in heap memory that have been deallocated, are shown in red.

The Cross-Process Comparison of pointers helps you to identify:

• Processes with different addresses for the same pointer.

• The location of a pointer (heap, stack, .bss, .data, .text or other locations).

• Processes that have freed a pointer while other processes have not, null pointers, and so on.

If the Cross-Process Comparison shows the value of what is being pointed at when the value of the
pointer itself is wanted, then modify the pointer expression. For example, if you see the string that a
char* pointer is pointing at when you actually want information concerning the pointer itself, then add
(void *) to the beginning of the pointer expression.

Writing beyond an allocated area

Use the Heap Overflow / Underflow Detection option to detect reads and writes beyond or before an
allocated block. Any attempts to read or write to the specified number of pages before or after the block
will cause a segmentation violation which stops your program.

Add the guard pages after the block to detect heap overflows, or before to detect heap underflows. The
default value of one page will catch most heap overflow errors, but if this does not work a good rule of
thumb is to set the number of guard pages according to the size of a row in your largest array.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 108

Arm Forge 18.1.3

The exact size of a memory page depends on your operating system, but a typical size is 4 kilobytes. In
this case, if a row of your largest array is 64 KiB, then set the number of pages to 64/4 = 16. Note that
small overflows/underflows (for example, of less than 16 bytes) may not be detected. This is a result
of maintaining correct memory alignment and without this vectorized code may crash or generate false
positives.

On systems with larger page sizes (e.g. 2MB, 1GB) guard pages should be disabled or used with care as
at least two pages will used per allocation. On most systems you can check the page size with getconf
PAGESIZE.

Fencepost checking

DDTwill also perform ‘Fence Post’ checkingwhenever theHeapDebugging setting is not set toFast.

In this mode, an extra portion of memory is allocated at the start and/or end of your allocated block, and
a pattern is written into this area.

If your program attempts to write beyond your data, say by a few elements, then this will be noticed by
Arm DDT. However, your program will not be stopped at the exact location at which your program wrote
beyond the allocated data, it will only be stopped at the next heap consistency check.

Suppressing an error

If Arm DDT stops at an error but you wish to ignore it (for example, it may be in a third party library
which you cannot fix) then you may check Suppress memory errors from this line in future. This will
open the Suppress Memory Errors window. Here you may select which function you want to suppress
errors from.

Current memory usage

Memory leaks can be a significant problem for software developers. If your application’s memory usage
grows faster than expected, or continues to grow through its execution, then it is possible that memory is
being allocated which is not being freed when it is no longer required.

This type of problem is typically difficult to diagnose, and particularly so in a parallel environment, but
is able to make this task simple.

At any point in your program you can go to View → Current Memory Usage and Arm DDT will then
display the currently allocated memory in your program for the currently selected group. For larger
process groups, the processes displayed will be the ones that are using the most memory across that
process group.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 109

Arm Forge 18.1.3

Figure 82: Memory Usage Graphs

To view graphical representations of memory usage, select theMemory Usage tab.

The pie chart gives an at-a-glance comparison of the total memory allocated to each process. This gives
an indication of the balance of memory allocations. Any one process taking an unusually large amount
of memory is identifiable here.

The stacked bar chart on the right is where the most interesting information starts. Each process is repre-
sented by a bar, and each bar broken down into blocks of color that represent the total amount of memory
allocated by a particular function in your code. Say your program contains a loop that allocates a hundred
bytes that is never freed. That is not a lot of memory. But if that loop is executed ten million times, you
are looking at a gigabyte of memory being leaked! There are 6 blocks in total. The first 5 represent the
5 functions that allocated the most memory allocated, and the 6th (at the top) represents the rest of the
allocated memory, wherever it is from.

As you can see, large allocations show up as large blocks of color. If your program is close to the end, or
these grow, then they are severe memory leaks.

Typically, if the memory leak does not make it into the top 5 allocations under any circumstances then it
may not be significant. If you are still concerned you can view the data in the Table View yourself.

For more information about a block of color, click on the block. This displays detailed information
about the memory allocations comprising it in the bottom-left pane. Scanning down this list gives you
a good idea of what size allocations were made, how many, where from and if the allocation resides in
High Bandwidth Memory. Double-clicking on any one of these will display the Pointer Details view
described above, showing you exactly where that pointer was allocated in your code.

Note: Only a single stack frame will be displayed if the Store stack backtraces for memory allocations
option is disabled.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 110

Arm Forge 18.1.3

To view the current memory usage in a tabular format, select the Allocation Table tab.

The table is split into five columns:

• Allocated by: Code location of the stack frame or function allocating memory in your program.

• Count: Number of allocations called directly from this location.

• Total Size: Total size (in bytes) of allocations directly from this location.

• Count (including called functions): Number of allocations from this location. This inludes any
allocations called indirectly, for example, by calling other functions.

• Total Size (including called functions): Total size (in bytes) of allocations from this location,
including indirect allocations.

For example: if func1 calls func2 which calls malloc to allocate 50 bytes. Arm DDT will report an
allocation of 50 bytes against func2 in the Total Size column of the Current Memory Usage table. Arm
DDT will also record a cumulative allocation of 50 bytes against both functions func1 and func2 in
the Total Size (including called functions) column of the table.

Another valuable use of this feature is to play the program for a while, refresh the window, play it for a bit
longer, refresh the window and so on. If you pick the points at which to refresh, for example, after units
of work are complete, you can watch as the memory load of the different processes in your job fluctuates
and you will see any areas which continue to grow. These are problematic leaks.

Detecting leaks when using custom allocators/memory wrappers

Some compilers wrap memory allocations inside many other functions. In this case Arm DDT may find,
for example, that all Fortran 90 allocations are inside the same routine. This can also happen if you have
written your own wrapper for memory allocation functions.

In these circumstances you will see one large block in the Current Memory Usage view. You can mark
such functions as Custom Allocators to exclude them from the bar chart and table by right-clicking on the
function and selecting the Add Custom Allocator menu item. Memory allocated by a custom allocator is
recorded against its caller instead.

For example, if myfunc calls mymalloc and mymalloc is marked as a custom allocator, then the
allocation will be recorded against myfunc instead. You can edit the list of custom allocators by clicking
the “Edit Custom Allocators…” button at the bottom of the window.

Memory Statistics

The Memory Statistics view (Tools→ Overall memory Statistics) shows a total of memory usage across
the processes in an application. The processes using the most memory are displayed, along with the mean
across all processes in the current group, which is useful for larger process counts.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 111

Arm Forge 18.1.3

Figure 83: Memory Statistics

The contents and location of the memory allocations themselves are not repeated here. Instead this win-
dow displays the total amount of memory allocated and freed since the program began, the current number
of allocated bytes and the number of calls to allocation and free routines.

These can help show if your application is unbalanced, if particular processes are allocating or failing to
free memory and so on. At the end of program execution you can usually expect the total number of calls
per process to be similar (depending on how your program divides up work), and memory allocation calls
should always be greater than deallocation calls. Anything else indicates serious problems.

If your application is using High Bandwidth Memory, the charts and tables in this dialog will be broken
down into each type of memory in use.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 112

Arm Forge 18.1.3

Checkpointing

Overview

A program’s entire state, or a subset of it, can be recorded to memory as a checkpoint. The program can
be restored from the checkpoint and it then resumes execution from the recorded state.

Sometimes you are not sure what information you need to diagnose a bug until it is too late to get it.
For example, a program may crash because a variable has a particular unexpected value. You want to
know where the variable was set to that value but it is too late to set a watch on it. However, if you have
an earlier checkpoint of the program you can restore the checkpoint, set the watch, and then let it fail
again.

Checkpoints in DDT are stored in memory. They are valid for the life time of a session but are lost when
the session is ended.

How to checkpoint

To checkpoint your program, click the Checkpoint button on the tool bar . The first time you click
the button you are asked to select a checkpoint provider. If no checkpoint providers support the current
MPI and debugger an error message is displayed instead.

When the checkpoint has completed a newwindow opens displaying the name of the new checkpoint.

Restoring a checkpoint

To restore a checkpoint, click the Restore Checkpoint button on the tool bar . A new window opens
with a list of available checkpoints. Select a checkpoint then click the OK button. The program state will
be restored to the checkpoint. The Parallel Stack View, Locals View, and so on, are all updated with the
new program state.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 113

Arm Forge 18.1.3

Using and writing plugins

Plugins are a quick and easy way to preload a library into your application and define some breakpoints
and tracepoints during its use. They consist of an XML file which instructs DDT what to do and where
to set breakpoints or tracepoints.

Examples are MPI correctness checking libraries, or you could also define a library that is preloaded with
your application that could perform your own monitoring of the application. It also enables a message to
be displayed to the user when breakpoints are hit, displaying, for example, an error message where the
message is provided by the library in a variable.

Supported plugins

Arm DDT supports plugins for two MPI correctness-checking libraries:

• Intel Message Checker, part of the Intel Trace Analyser and Collector (Commercial with free eval-
uation: http://software.intel.com/en-us/intel-trace-analyzer/) version 7.1

• Marmot (Open source: http://www.hlrs.de/organization/amt/projects/marmot), support expected
in version 2.2 and above.

Arm DDT comes with two plugins for the GNU and LLVM compiler sanitizers.

• Address Sanitizer:

The Address Sanitizer (also known as ASan) is a memory error detector for C/C++ code. It can be
used to find various memory-related issues including use after free, buffer overflows, and use after
return.

To enable the Address Sanitizer:

1. Compile your application whilst passing the -fsanitize=address compiler option to
your compiler.

2. Enable the Address Sanitizer plugin within ArmDDT. For more information on how to enable
plugin withing Arm DDT , please refer to the 14.3 Using a plugin section.

When compiling with GNU 7 you must disable leak detection due to a conflict with ptrace and
this aspect of the plugin. To disable leak detection, either:

1. Add the following piece of code into your application:

extern "C" int __lsan_is_turned_off() { return 1; }

2. Set the LSAN_OPTIONS environment variable at runtime, using:

LSAN_OPTIONS=detect_leaks=0

• Thread Sanitizer:

The Thread Sanitizer (also known as TSan) is a data race detector for C/C++ code. A data race
occurs when two different threads attempt to write to the same memory at the same time.

To enable the Thread Sanitizer:

1. Compile your application whilst passing the -fsanitize=thread compiler option to
your compiler.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 114

http://software.intel.com/en-us/intel-trace-analyzer/
http://www.hlrs.de/organization/amt/projects/marmot

Arm Forge 18.1.3

2. Enable the Thread Sanitizer plugin within Arm DDT. For more information on how to enable
plugin withing Arm DDT , please refer to the 14.3 Using a plugin section.

Installing a plugin

To install a plugin, locate the XML Arm DDT plugin file provided by your application vendor and copy
it to:

{allinea-forge installation directory}/plugins/

It will then appear in Arm DDT’s list of available plugins on the DDT—Run dialog.

Each plugin takes the form of an XML file in this directory. These files are usually provided by third-party
vendors to enable their application to integrate with Arm DDT. A plugin for the Intel Message Checker
(part of the Intel Trace Analyser and Collector) is included with the DDT distribution.

Using a plugin

To activate a plugin in Arm DDT, simply click on the checkbox next to it in the window, then run your
application. Plugins may automatically perform one or more of the following actions:

• Load a particular dynamic library into your program

• Pause your program and show a message when a certain event such as a warning or error occurs

• Start extra, optionally hidden MPI processes. See the Writing Plugins section for more details on
this.

• Set tracepoints which log the variables during an execution.

If ArmDDT says it cannot load one of the plugins you have selected, check that the application is correctly
installed, and that the paths inside the XML plugin file match the installation path of the application.
Example Plugin: MPI History Library

Arm DDT’s plugin directory contains a small set of files that make a plugin to log MPI communica-
tion.

• Makefile – Builds the library and the configuration file for the plugin.

• README.wrapper – Details the installation, usage and limitations

• wrapper-config – Used to create the plugin XML config file, used by DDT to preload the
library and set tracepoints which will log the correct variables.

• wrapper-source – Used to automatically generate the source code for the library which will
wrap the original MPI calls.

The plugin is designed to wrap around many of the core MPI functions and seamlessly intercept calls to
log information which is then displayed in Arm DDT. It is targeted at MPI implementations which use
dynamic linking, as this can be supported without relinking the debugged application.

Static MPI implementations can be made to work also, but this is outside the scope of this version.

This package must be compiled before first use, in order to be compatible with your MPI version. It will
not appear in Arm DDT’s GUI until this is done.

To install as a non-root user in your local ~/.allinea/plugins directory, type the following com-
mand:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 115

Arm Forge 18.1.3

make local

To install as root in the DDT plugins directory, type the following command:

make

Once you have run the above, start Arm DDT and to enable the plugin, click the Details… button to
expand the Plugins section of the Run window. Select History v1.0, and start your job as normal.
DDT will take care of preloading the library and setting default tracepoints.

This plugin records call counts, total sent byte counts, and the arguments used in MPI function calls.
Function calls and arguments are displayed (in blue) in the Input/Output panel.

The function counts are available in the form of a variable:

MPIHistoryCount{function}

The sent bytes counters are accumulated for most functions, but specifically they are not added for the
vector operations such as MPI_Gatherv.

These count variables within the processes are available for use within Arm DDT, in components such
as the cross-process comparison window, enabling a check that, for example, the count of MPI_Barriers
is consistent, or primitive MPI bytes sent profiling information to be discovered.

The library does not record the received bytes, as most MPI receive calls in isolation only contain a
maximum number of bytes allowed, rather than bytes received. The MPI status is logged, the SOURCE
tag therein enables the sending process to be identified.

There is no per-communicator logging in this version.

This version is for demonstration purposes for the tracepoints and plugin features. It could generate
excessive logged information, or cause your application to run slowly if it is a heavy communicator.

This library can be easily extended, or its logging can be reduced, by removing the tracepoints from
the generated history.xml file (stored in ALLINEA_FORGE_PATH or ~/.allinea/plugins).
This would make execution considerably faster, but still retain the byte and function counts for the MPI
functions.

Writing a plugin

Writing a plugin for Arm DDT is described here. An XML plugin file is required that is structured similar
to the following example:

<plugin name="Sample v1.0" description="A sample plugin that
demonstrates DDT's plugin interface.">
<preload name="samplelib1" />
<preload name="samplelib2" />
<environment name="SUPPRESS_LOG" value="1" />
<environment name="ANOTHER_VAR" value="some value" />
<breakpoint location="sample_log" action="log" message_variable

="message" />
<breakpoint location="sample_err" action="message_box"

message_variable="message" />
<extra_control_process hide="last" />

</plugin>

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 116

Arm Forge 18.1.3

Only the surrounding plugin tag is required. All the other tags are entirely optional.

A complete description of each tag appears in the following table.

Note:If you are interested in providing a plugin for DDT as part of your application bundle, Arm can
provide you with any assistance you need to get up and running. Contact Arm support at Arm support
for more information.

Plugin reference

Tag Attribute Description
plugin name The plugin’s unique name. This should in-

clude the application/library the plugin is for,
and its version. This is shown in the DDT—
Run dialog.

plugin description A short snippet of text to describe the purpose
of the plugin/application to the user. This is
also shown in the DDT—Run dialog.

preload name Instructs DDT to preload a shared library of
this name into the user’s application. The
shared library must be locatable using LD_
LIBRARY_PATH, or the OS will not be able
to load it.

environment name Instructs DDT to set a particular environment
variable before running the user’s application.

environment value The value that this environment variable
should be set to.

breakpoint location Instructs DDT to add a breakpoint at
this location in the code. The location
may be in a preloaded shared library (see
above). Typically this will be a function
name, or a fully-qualified C++ names-
pace and class name. C++ class members
must include their signature and be en-
closed in single quotes, for example,
‘MyNamespace::DebugServer::
breakpointOnError(char*)’

breakpoint action Only message_box is supported in this re-
lease. Other settings will cause DDT to stop
at the breakpoint but take no action.

breakpoint message_variable A char* or const char* variable that
contains a message to be shown to the user.
DDT will group identical messages from dif-
ferent processes together before displaying
them to the user in a message box.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 117

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

extra_control_process hide Instructs ArmDDT to start onemoreMPI pro-
cess than the user requested. The optional
hide attribute can be first or last, and will
cause Arm DDT to hide the first or last
process in MPI_COMM_WORLD from the user.
This process will be allowed to execute when-
ever at least one other MPI process is execut-
ing, and messages or breakpoints (see above)
occurring in this process will appear to come
from all processes at once. This is only nec-
essary for tools such as Marmot that use an
extra MPI process to perform various runtime
checks on the rest of the MPI program.

tracepoint location See breakpoint location.
tracepoint variables A comma-separated list of variables to log on

every passing of the tracepoint location.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 118

Arm Forge 18.1.3

CUDA GPU debugging

Arm DDT is able to debug applications that use NVIDIA CUDA devices, with actual debugging of the
code running on the GPU, simultaneously while debugging the host CPU code.

Arm supports a number of GPU compilers that target CUDA devices.

• NVCC—the NVIDIA CUDA compilers

• Cray OpenACC

• PGI CUDA Fortran and the PGI Accelerator Model

The CUDA toolkits and their drivers for toolkits version 6.0 and above are supported by ArmDDT.

Licensing

In order to debug CUDA programs with Arm DDT, a CUDA-enabled license key is required, which is
an additional option to default licenses. If CUDA is not included with a license, the CUDA options will
be grayed-out on the run dialog of Arm DDT.

While debugging a CUDA program, an additional process from your license is used for each GPU. An
exception to this is that single process licenses will still allow the debugging of a single GPU.

Note: In order to serve a floating CUDA license you will need to use the Licence Servershipped with Arm
DDT 2.6 or later.

Preparing to debug GPU code

In order to debug your GPU program, you may need to add additional compiler command line options to
enable GPU debugging.

For NVIDIA’s nvcc compiler, kernels must be compiled with the “-g -G” flags. This enables genera-
tion of information for debuggers in the kernels, and also disables some optimisations that would hinder
debugging. To use memory debugging in DDTwith CUDA “--cudart shared” must also be passed
to nvcc.

For other compilers, please refer to 15.10 GPU language support of this guide and F Compiler notes and
known issues and your vendor’s own documentation.

Note: At this point OpenCL debugging of GPUs is not supported.

Launching the application

To launch a CUDA job, tick the CUDA box on the run dialog before clicking run/submit. You may
also enable memory debugging for CUDA programs from the CUDA section. See section 12.2 CUDA
memory debugging for details.

Attaching to running CUDA applications is not possible if the application has already initialized the driver
in some way, for example through having executed any kernel or called any functions from the CUDA
library.

For MPI applications it is essential to place all CUDA initialization after the MPI_Init call.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 119

Arm Forge 18.1.3

Controlling GPU threads

Controlling GPU threads is integrated with the standard Arm DDT controls, so that the usual play, pause,
and breakpoints are all applicable to GPU kernels.

As GPUs have different execution models to CPUs, there are some behavioral differences that are de-
scribed in the following sections.

Breakpoints

CUDA Breakpoints can be set in the same manner as other breakpoints in Arm DDT. See section 7.6
Setting breakpoints.

Breakpoints affect all GPU threads, and cause the application to stop whenever a thread reaches the
breakpoint. Where kernels have similar workload across blocks and grids, then threads tend to reach the
breakpoint together and the kernel pauses once per set of blocks that are scheduled, that is, the set of
threads that fit on the GPU at any one time.

Where kernels have divergent distributions of work across threads, timingmay be such that threads within
a running kernel hit a breakpoint and pause the kernel. After continuing, more threads within the currently
scheduled set of blocks will hit the breakpoint and pause the application again.

In order to apply breakpoints to individual blocks, warps or threads, conditional breakpoints can be used.
For example using the built-in variables threadIdx.x (and threadIdx.y or threadIdx.z as appropriate) for
thread indexes and setting the condition appropriately.

Where a kernel pauses at a breakpoint, the currently selected GPU thread will be changed if the previously
selected thread is no longer “alive”.

Stepping

The GPU execution model is noticeably different from that of the host CPU. In the context of stepping
operations, that is step in, step over or step out, there are critical differences to note.

The smallest execution unit on a GPU is a warp, which on current NVIDIA GPUs is 32 threads. Step
operations can operate on warps but nothing smaller.

Arm DDT also makes it possible to step whole blocks, whole kernels or whole devices. The stepping
mode is selected using the drop down list in the CUDA Thread Selector.

Figure 84: Selection of GPU Stepping Mode

Note: GPU execution under the control of a debugger is not as fast as running without a debugger. When
stepping blocks and kernels these are sequentialized into warps and hence stepping of units larger than a
warp may be slow. It is not unusual for a step operation to take 60 seconds on a large kernel, particularly
on newer devices where a step could involve stepping over a function call.

It is not currently possible to “step over” or “step out” of inlined GPU functions.

Note: GPU functions are often inlined by the compiler. This can be avoided (dependent on hardware) by
specifying the __noinline__ keyword in your function declaration, and by compiling your code for a
later GPU profile. For example, by adding -arch=sm_20 to your compile line.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 120

Arm Forge 18.1.3

Running and pausing

Clicking the “Play/Continue” button in DDT runs all GPU threads. It is not possible to run individual
blocks, warps or threads.

The pause button pauses a running kernel, although it should be noted that the pause operation is not as
quick for GPUs as for regular CPUs.

Examining GPU threads and data

Much of the user interface when working with GPUs is unchanged from regular MPI or multithreaded
debugging. However, there are a number of enhancements and additional features that have been added
to help understand the state of GPU applications.

These changes are summarized in the following section.

Selecting GPU threads

Figure 85: GPU Thread Selector

The Thread Selector allows you to select your current GPU thread. The current thread is used for the
variable evaluation windows in DDT, along with the various GPU stepping operations.

The first entries represent the block index, and the subsequent entries represent the 3D thread index inside
that block.

Changing the current thread updates the local variables, the evaluations, and the current line displays and
source code displays to reflect the change.

The thread selector is also updated to display the current GPU thread if it changes as a result of any other
operation. For example if:

• The user changes threads by selecting an item in the Parallel Stack View.

• A memory error is detected and is attributed to a particular thread.

• The kernel has progressed, and the previously selected thread is no longer present in the device.

The GPU Thread Selector also displays the dimensions of the grid and blocks in your program.

It is only possible to inspect/control threads in the set of blocks that are actually loaded in to the GPU. If
you try to select a thread that is not currently loaded, a message is displayed.

Note: The thread selector is only displayed when there is a GPU kernel active.

Viewing GPU thread locations

The Parallel Stack View has been updated to display the location and number of GPU threads.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 121

Arm Forge 18.1.3

Figure 86: CUDA threads in the parallel stack view

Clicking an item in the Parallel Stack View selects the appropriate GPU thread, updating the variable
display components accordingly and moving the source code viewer to the appropriate location.

Hovering over an item in the Parallel Stack view also allows you to see which individual GPU thread
ranges are at a location, as well as the size of each range.

Understanding kernel progress

Given a simple kernel that is to calculate an output value for each index in an array, it is not easy to check
whether the value at position x in an array has been calculated, or whether the calculating thread has yet
to be scheduled.

This contrasts sharply with scalar programming, where if the counter of a (up-)loop exceeds x then the
value of index x can be taken as being the final value. If it is difficult to decide whether array data is fresh
or stale, then clearly this will be a major issue during debugging.

Arm DDT includes a component that makes this easy, the Kernel Progress display, which appears at the
bottom of the user interface by default when a kernel is in progress.

Figure 87: Kernel Progress Display

This view identifies the kernels that are in progress. The number of kernels are identified and grouped
by different kernel identifiers across processes. The identifier is the kernel name.

A colored progress bar is used to identify which GPU threads are in progress. The progress bar is a
projection onto a straight line of the (potentially) 6-dimensional GPU block and thread indexing system
and is tailored to the sizes of the kernels operating in the application.

By clicking within the color highlighted sections of this progress bar, a GPU thread will be selected
that matches the click location as closely as possible. Selected GPU threads are colored blue. For de-
selected GPU threads, the ones that are scheduled are colored green whereas the unscheduled ones are
white.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 122

Arm Forge 18.1.3

Source code viewer

The source code viewer allows you to visualize the program flow through your source code by highlight-
ing lines in the current stack trace. When debugging GPU kernels, it will color highlight lines with GPU
threads present and display the GPU threads in a similar manner to that of regular CPU threads and pro-
cesses. Hovering over a highlighted line in the code viewer will display a summary of the GPU threads
on that line.

GPU devices information

One of the challenges of GPU programming is in discovering device parameters, such as the number of
registers or the device type, and whether a device is present.

In order to assist in this, Arm DDT includes a GPU Devices display. This display examines the GPUs
that are present and in use across an application, and groups the information together scalably for multi-
process systems.

Figure 88: GPU Devices

Note: GPU devices are only listed after initialization.

Attaching to running GPU applications

Attaching to a running GPU application and then debugging the GPU threads is only supported for Fermi
class cards and their successors. This includes Tesla C2050/2070, K10, and K20.

To attach to a running job, please see the section 5.9 Attaching to running programs and select the Debug
CUDA button on the attach window.

Opening GPU core files

In CUDA 7.0, NVIDIA introduced support for GPU code to generate core files. These can be opened
in DDT in exactly the same way as core files generated by CPU code. See 5.8 Opening core files for
details.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 123

Arm Forge 18.1.3

Known issues / limitations

Debugging multiple GPU processes

CUDA allows debugging of multiple CUDA processes on the same node. However, each process will
still attempt to reserve all of the available GPUs for debugging.

This works for the case where a single process debugs all GPUs on a node, but not for multiple processes
debugging a single GPU.

A temporary workaround when using Open MPI is to export the following environment variable before
starting DDT:

ALLINEA_CUDA_DEVICE_VAR=OMPI_COMM_WORLD_LOCAL_RANK

This will assign a single device (based on local rank) to each process. In addition:

• You must have Open MPI (Compatibility) selected in the File→ Options (Arm Forge→ Prefer-
ences on Mac OS X) . (Not Open MPI).

• The device selected for each process will be the only device visible when enumerating GPUs. This
cause manual GPU selection code to stop working (due to changing device IDs, and so on).

Thread control

The focus on thread feature in DDT is not supported, as it can lock up the GPU. This means that it is not
currently possible to control multiple GPUs in the same process individually.

General

• DDT supports versions 6.0 onwards of the NVIDIA CUDA toolkit. In all cases, the most recent
CUDA toolkit and driver versions is recommended.

• X11 cannot be running on any GPU used for debugging. (Any GPU running X11 will be excluded
from device enumeration.)

• You must compile with -g -G to enable GPU debugging otherwise your program will run through
the contents of kernels without stopping.

• Debugging 32-bit CUDA code on a 64-bit host system is not supported.

• It is not yet possible to spot unsuccessful kernel launches or failures. An error code is provided by
getCudaLastError() in the SDK which you can call in your code to detect this. Currently
the debugger cannot check this without resetting it, which is not desirable behavior.

• Device memory allocated via cudaMalloc() is not visible outside of the kernel function.

• Not all illegal program behavior can be caught in the debugger, for example, divide-by-zero.

• Device allocations larger than 100 MB on Tesla GPUs, and larger than 32 MB on Fermi GPUs,
may not be accessible.

• Breakpoints in divergent code may not behave as expected.

• Debugging applications with multiple CUDA contexts running on the same GPU is not supported.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 124

Arm Forge 18.1.3

• If CUDA environment variable CUDA_VISIBLE_DEVICES <index> is used to target a particular
GPU, then make sure no X server is running on any of the GPUs. Also note that any GPU running
X will be excluded from enumeration, with may affect the device Ids.

• CUDA drivers requires that applications be debugged in a mode matching their version. If your
system is runningwith a toolkit version lower than the CUDAdriver version, you should force DDT
to use the correct CUDA version by setting the ALLINEA_FORCE_CUDA_VERSION enviroment
variable. For example, if you are using the CUDA 7.5 driver, set ALLINEA_FORCE_CUDA_
VERSION=7.5. Alternatively, you should consider upgrading your CUDA toolkit to match the
CUDA driver.

• If memory debugging and CUDA support are enabled in Arm DDT then only threaded memory
preloads are available.

Pre sm_20 GPUs

For GPUs that have SM type less than sm_20 (or when code is compiled targeting SM type less than
sm_20), the following issues may apply.

• GPU code targeting less than SM type sm_20 will inline all function calls. This can lead to be-
havior such as not being able to step over/out of subroutines.

• Debugging applications using textures is not supported on GPUs with SM type less than sm_20.

• If you are debugging code in device functions that get called by multiple kernels, then setting a
breakpoint in the device function will insert the breakpoint in only one of the kernels.

Debugging multiple GPU processes on Cray limitations

It is not possible to debug multiple CUDA processes on a single node on a Cray machine, you must run
with 1 process per node.

GPU language support

In addition to the native nvcc compiler, a number of other compilers are supported.

At this point in time, debugging of OpenCL is not supported on the device.

Cray OpenACC

Cray OpenACC is fully supported by ArmDDT. Code pragmas are highlighted, most variables are visible
within the device, and stepping and breakpoints in the GPU code is supported. The compiler flag -g is
required for enabling device (GPU-based) debugging; -O0 should not be used, as this disables use of the
GPU and runs the accelerated regions on the CPU.

You should be aware of the following known issues:

• It is not possible to track GPU allocations created by the Cray OpenACC compiler as it does not
directly call cudaMalloc.

• Pointers in accelerator code cannot be dereferenced in CCE 8.0.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 125

Arm Forge 18.1.3

• Memory consumption in debugging mode can be considerably higher than regular mode, if issues
with memory exhaustion arise, consider using the environment variable CRAY_ACC_MALLOC_
HEAPSIZE to set total heap size (bytes) used on the device, which can make more memory avail-
able to the application.

PGI Accelerators and CUDA Fortran

Arm DDT supports debugging both the host and CUDA parts of PGI Accelerator and CUDA Fortran
programs compiled with version 14.4 or later of the PGI compiler. Older versions of the PGI compiler
support debugging only on the host.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 126

Arm Forge 18.1.3

Offline debugging

Offline debugging is a mode of running Arm DDT in which an application is run, under the control of
the debugger, but without user intervention and without a user interface.

There are many situations where running under this scenario will be useful, for example when access to a
machine is not immediately available and may not be available during the working day. The application
can run with features such as tracepoints and memory debugging enabled, and will produce a report at
the end of the execution.

Using offline debugging

To launch ArmDDT in this mode, the --offline argument is specified. Optionally, an output filename
can be supplied with the –output=<filename> argument. A filename with a .html or .htm extension
will cause an HTML version of the output to be produced, in other cases a plain text report is generated.
If the –output argument is not used, DDT generates an HTML output file in the current working directory
and reports the name of that file upon completion.

ddt --offline mpiexec -n 4 myprog arg1 arg2
ddt --offline -o myjob.html mpiexec -n 4 myprog arg1 arg2
ddt --offline -o myjob.txt mpiexec -n 4 myprog arg1 arg2
ddt --offline -o myjob.html --np=4 myprog arg1 arg2
ddt --offline -o myjob.txt --np=4 myprog arg1 arg2

Additional arguments can be used to set breakpoints, at which the stack of the stopping processes will be
recorded before they are continued. You can also set tracepoints at which variable values will be recorded.
Additionally, expressions can be set to be evaluated on every program pause.

Settings from your current ArmDDT configuration file will be taken, unless over-ridden on the command
line.

Command line options that are of the most significance for this mode of running are:

• --session=SESSIONFILE – run in offline mode using settings saved using the Save Session
option from the Arm DDT File menu.

• --processes=NUMPROCS or -n NUMPROCS – run with NUMPROCS processes

• --mem-debug[=(fast|balanced|thorough|off)] – enable and configurememory de-
bugging

• --snapshot-interval=MINUTES – write a snapshot of the program’s stack and variables to
the offline log file everyMINUTES minutes.

See section 16.4 below.

• --trace-at=LOCATION[,N:M:P],VAR1,VAR2,...] [if CONDITION] – set a tra-
cepoint at location, beginning recording after the N’th visit of each process to the location, and
recording every M’th subsequent pass until it has been triggered P times. Record the value of
variable VAR1, VAR2. The if clause allows you to specify a boolean CONDITION that must be
satisfied for the tracepoint to trigger.

Example:

main.c:22,-:2:-,x

This will record x every 2nd passage of line 22.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 127

Arm Forge 18.1.3

• --break-at=LOCATION[,N:M:P][if CONDITION] – set a breakpoint atLOCATION (ei-
ther file:line or function), optionally starting after the N’th pass, triggering every M passes
and stopping after it has been triggered P times. The if clause allows you to specify a boolean
CONDITION that must be satisfied for the breakpoint to trigger. When using the if clause the
value of this argument should be quoted.

The stack traces of paused processes will be recorded, before the processes are then made to con-
tinue, and will contain the variables of one of the processes in the set of processes that have paused.

Examples:

--break-at=main
--break-at=main.c:22
--break-at=main.c:22 --break-at=main.c:34

• --evaluate=EXPRESSION[;EXPRESSION2][;...] – set one or more expressions to be
evaluated on every program pause. Multiple expressions should be separated by a semicolon and
enclosed in quotes. If shell special characters are present the value of this argument should also be
quoted.

Examples:

--evaluate=i
--evaluate="i; (*addr) / x"
--evaluate=i --evaluate="i * x"

• --offline-frames=(all|none|n) – specify how many frames to collect variables for,
where n is a positive integer. The default value is all.

Examples:

--offline-frames=all
--offline-frames=none
--offline-frames=1337

The application will run to completion, or to the end of the job.

When errors occur, for example an application crash, the stack back trace of crashing processes is recorded
to the offline output file. In offline mode, Arm DDT always acts as if the user had clicked Continue if
the continue option was available in an equivalent “online” debugging session.

Reading a file for standard input

In offline mode, normal redirection syntax can be used to read data from a file as a source for the exe-
cutable’s standard input.

Examples:

cat <input-file> | ddt --offline -o myjob.html ...
ddt --offline -o myjob.html ... < <input-file>

Writing a file from standard output

Normal redirection can also be used to write data to a file from the executable’s standard output:

ddt --offline -o myjob.html ... > <output-file>

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 128

Arm Forge 18.1.3

Offline report output (HTML)

The output file is broken into four sections, Messages, Tracepoints, Memory Leak Report, and Output.
At the end of a job, Arm DDT merges the four sections of the log output (tracepoint data, error messages,
memory leak data, and program output) into one file. If the Arm DDT process is terminated abruptly,
for example by the job scheduler, then these separate files will remain and the final single HTML report
may not be created. Note that a memory leak report section is only created when memory debugging is
enabled.

Figure 89: Offline Mode HTML output

Timestamps are recorded with the contents in the offline log, and even though the file is neatly organized
into four sections, it remains possible to identify ordering of events from the time stamp.

The Messages section contains the following:

• Error messages: for example if Arm DDT’s Memory Debugging detects an error then the message
and the stack trace at the time of the error will be recorded from each offending processes.

• Breakpoints: a message with the stopped processes and another one with the Stacks, Current Stack
and Locals at this point.

• Additional Information: after an error or a breakpoint has stopped execution, then an additional
information message is recorded. This message could contain the stacks, current stack and local
variables for the stopped processes at this point of the execution.

– The Stacks table displays the parallel stacks from all paused processes. Additionally, for every
top-most frame the variables (locals and arguments) will be displayed by default. You can
use the --offline-frames command line option to display the variables for more frames
or none. If --offline-frames=none is specified no variables at all will be displayed,
instead a Locals table will show the variables for the current process. Clicking on a function
expands the code snippet and variables in one go. If the stop was caused by an error or crash,
the stack of the responsible thread or process is listed first.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 129

Arm Forge 18.1.3

– The Current Stacks table shows the stack of the current process.

– The Locals table (if --offline-frames=none) and the Variables column of the Stacks
table shows the variables across the paused processes. The text highlighting scheme is the
same as for the Local variables in the GUI. The Locals table shows the local variables of the
current process, whereas the Variables column shows the locals for a representative process
that triggered the stop in that frame. In either case a sparkline for each variable shows the
distribution of values across the processes.

The Tracepoints section contains the output from tracepoints, similar to that shown in the tracepoints win-
dow in an online debugging session. This includes sparklines displaying the variable distribution.

The Memory Leak Report section displays a graphical representation of the largest memory allocations
that were not freed by the end of the program:

Figure 90: Memory leak report

Each row corresponds to the memory still allocated at the end of a job on a single rank. If multiple MPI
ranks are being debugged, only those with the largest number of memory allocations are shown. You can
configure the number of MPI ranks shown with --leak-report-top-ranks=X.

The memory allocations on each rank are grouped by the source location that allocated them. Each
colored segment corresponds to one location, identified in the legend. Clicking on a segment reveals a
table of all call paths leading to that location along with detailed information about the individual memory
allocations:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 130

Arm Forge 18.1.3

Figure 91: Memory leak report detail

By default all locations that contribute less than 1% of the total allocations are grouped together into the
“Other” item in the legend.

This limit can be configured by setting the ALLINEA_LEAK_REPORT_MIN_SEGMENT environment
variable to a percentage. For example, ALLINEA_LEAK_REPORT_MIN_SEGMENT=0.5 will only
group locations with less than 0.5% of the total allocated bytes together.

In addition, only the eight largest locations are shown by default. This can be configured with the --
leak-report-top-locations=Y command-line option.

The raw data may also be exported by clicking the export link.

You may find the following command line options useful:

Option Description
--leak-report-top-ranks=X Limit the memory leak report to the top X ranks (default 8, implies

--mem-debug)
--leak-report-top-locations=Y Limit the memory leak report to the top Y locations in each rank

(default 8, implies --mem-debug)
--leak-report-top-call-paths=Z Limit the memory leak report to the top Z call paths to each allo-

cating function (default 8, implies --mem-debug)

Output from the application is written to the Output section. For most MPIs this will not be identifiable
to a particular process, but on those MPIs that do support it, Arm DDT will report which processes have
generated the output.

Identical output from the Output and Tracepoints section is, if received in close proximity and order,
merged in the output, where this is possible.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 131

Arm Forge 18.1.3

Offline report output (plain text)

Unlike the offline report in HTMLmode, the plain text mode does not separate the tracepoint, breakpoint,
memory leak, and application output into separate sections.

Lines in the offline plain text report are identified as messages, standard output, error output, and trace-
points, as detailed in the Offline Report Output (HTML) section previously.

For example, a simple report could look like the following:

message (0-3): Process stopped at breakpoint in main (hello.c:97).
message (0-3): Stacks
message (0-3): Processes Function
message (0-3): 0-3 main (hello.c:97)
message (0-3): Stack for process 0
message (0-3): #0 main (argc=1, argv=0x7fffffffd378, \

environ=0x7fffffffd388) at /home/ddt/examples/hello.c:97
message (0-3): Local variables for process 0 \

(ranges shown for 0-3)
message (0-3): argc: 1 argv: 0x7fffffffd378 beingWatched: 0 \

dest: 7 environ: 0x7fffffffd388 i: 0 message: ",!\312\t" \
my_r ank: 0 (0-3) p: 4 source: 0 status: t2: 0x7ffff7ff7fc0 \
tables: tag: 50 test: x: 10000 y: 12

Run-time job progress reporting

In offline mode, Arm DDT can be instructed to compile a snapshot of a job, including its stacks and
variables, and update the session log with that information. This includes writing the HTML log file,
which otherwise is only written once the session has completed.

Snapshots can be triggered periodically via a command-line option, or at any point in the session by
sending a signal to the Arm DDT front-end.

Periodic snapshots

Snapshots can be triggered periodically throughout a debugging session with the command-line option
--snapshot-interval=MINUTES. For example, to log a snapshot every three minutes:

ddt --offline -o log.html --snapshot-interval=3 \
mpiexec -n 8 ./myprog

Signal-triggered snapshots

Snapshots can also be triggered by sending a SIGUSR1 signal to the DDT front-end process (called
ddt.bin in process lists), regardless of whether or not the --snapshot-interval command-line
option was specified. For example, after running the following:

ddt --offline -o log.html mpiexec -n 8 ./myprog

A snapshot can be triggered by running (in another terminal):

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 132

Arm Forge 18.1.3

Find PID of DDT front-end:
pgrep ddt.bin
> 18032
> 18039

Use pstree to identify the parent if there are multiple PIDs:
pstree -p

Trigger the snapshot:
kill -SIGUSR1 18032

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 133

Arm Forge 18.1.3

Part III

MAP

Getting started

Arm MAP is a source-level profiler and can show how much time was spent on each line of code. To
see the source code in MAP, compile your program with the debug flag, which for the most compilers
this is -g. Do not use a debug build as you should always keep optimization flags turned on when
profiling.

You can also use MAP on programs without debug information. In this case inlined functions are not
shown and the source code cannot be shown but other features should work as expected.

To start MAP simply type one of the following shell commands into a terminal window:

map
map program_name [arguments]
map <profile-file>

Where <profile-file> is a profile file generated by a MAP profiling run. It contains the program
name and has a ’.map’ extension.

Note: When starting MAP for examining an existing profile file, a valid license is not needed.

Note: Unless you are using Express Launch mode (see 17.1 Express Launch), you should not attempt
to pipe input directly to MAP. For information about how to achieve the effect of sending input to your
program, please read section 9 Program input and output.

It is also recommended you add the--profile argument toMAP. This runswithout the interactiveGUI
and saves a .map file to the current directory and is ideal for profiling jobs submitted to a queue.

Once started in interactive mode, MAP displays the Welcome Page:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 134

Arm Forge 18.1.3

Figure 92: MAP Welcome Page

Note: In Express Launch mode (see 17.1 Express Launch) the Welcome Page is not shown and the user
is brought directly to the Run Dialog instead. If no valid license is found, the program is exited and the
appropriate message is shown in the console output.

The Welcome Page allows you to choose what kind of profiling you want to do. You can choose from
the following:

• Profile a program.

• Load a Profile from a previous run.

• Connect to a remote system and accept a Reverse Connect request.

Express Launch

Each of the Arm Forge products can be launched by typing its name in front of an existing mpiexec
command:

$ map mpiexec -n 256 examples/wave_c 30

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see a error message similar to the following:

$ 'MPICH 1 standard' programs cannot be started using Express
Launch syntax (launching with an mpirun command).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 135

Arm Forge 18.1.3

Try this instead:
map --np=256 ./wave_c 20

Type map --help for more information.

This is referred to as Compatibility Mode, in which the mpiexec command is not included and the
arguments to mpiexec are passed via a --mpiargs="args here" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts
to run your program under one of the Arm Forge products. This works best for MAP, which gathers
data without an interactive GUI (map --profile) or Reverse Connect (map --connect, see 3.3
Reverse Connect for more details) for interactive profiling.

If you can not use Reverse Connect and wish to use interactive profiling from a queue you may need
to configure MAPto generate job submission scripts for you. More details on this can be found in 17.7
Starting a job in a queue and A.2 Integration with queuing systems.

The following lists the MPI implementations supported by Express Launch:

• bullx MPI

• Cray X-Series (MPI/SHMEM/CAF)

• Intel MPI

• MPICH 2

• MPICH 3

• Open MPI (MPI/SHMEM)

• Oracle MPT

• Open MPI (Cray XT/XE/XK)

• Cray XT/XE/XK (UPC)

Run dialog box

In Express Launch mode, the Run dialog has a restricted number of options:

Figure 93: Express Launch MAP Run dialog box

Preparing a program for profiling

In most cases, if your program is already compiled with debugging symbols then you do not need to re-
compile your program to use it with MAP, although in some cases it may need to be relinked, as explained
in section 17.2.2 Linking.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 136

Arm Forge 18.1.3

Debugging symbols

ArmMAP is a source-level profiler and can show how much time was spent on each line of code. To see
the source code in MAP, compile your program with the debug flag, for example:

mpicc hello.c -o hello -g -O3

Do not just use a debug build. You should always keep optimization flags turned onwhen profiling.

You can also use MAP on programs without debug information. In this case inlined functions are not
shown and the source code cannot be shown but other features will work as expected.

Cray compiler

For the Cray compiler Arm recommends using the -G2 option with MAP.

CUDA programs

When compilingCUDAkernels do not generate debug information for device code (the-G or--device-
debug flag) as this can significantly impair runtime performance. Use -lineinfo instead, for exam-
ple:

nvcc device.cu -c -o device.o -g -lineinfo -O3

Arm®v8 (AArch64) machines

Unwind information is not always compiled in by default on this platform. This may result in partial
trace nodes being displayed in the the MAP parallel stack view. To avoid this, programs that are
not compiled with debug information (-g) should at least be compiled with the -fasynchronous-
unwind-tables flag or the -funwind-tables flag, preferably the former.

Linking

To collect data from your program, MAP uses two small profiler libraries, map-sampler and map-
sampler-pmpi. These must be linked with your program. On most systems MAP can do this auto-
matically without any action by you. This is done via the system’s LD_PRELOAD mechanism, which
allows an extra library into your program when starting it.

Note: Although these libraries contain the word ‘map’ they are used for both Arm Performance Reports
and Arm MAP.

This automatic linking when starting your program only works if your program is dynamically-linked.
Programs may be dynamically-linked or statically-linked, and for MPI programs this is normally deter-
mined by your MPI library. Most MPI libraries are configured with --enable-dynamic by default,
and mpicc/mpif90 produce dynamically-linked executables that MAP can automatically collect data
from.

The map-sampler-pmpi library is a temporary file that is precompiled and copied or compiled at
runtime in the directory ~/.allinea/wrapper.

If your home directory will not be accessible by all nodes in your cluster you can change where the map-
sampler-pmpi library will be created by altering the shared directory as described in H.2.3
No shared home directory.

The temporary library will be created in the .allinea/wrapper subdirectory to this shared di-
rectory.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 137

Arm Forge 18.1.3

For Cray X-Series Systems the shared directory is not applicable, instead map-sampler-pmpi
is copied into a hidden .allinea sub-directory of the current working directory.

If MAP warns you that it could not pre-load the sampler libraries, this often means that your MPI library
was not configured with --enable-dynamic, or that the LD_PRELOADmechanism is not supported
on your platform. You now have three options:

1. Try compiling and linking your code dynamically. On most platforms this allows MAP to use the
LD_PRELOAD mechanism to automatically insert its libraries into your application at runtime.

2. Link MAP’s map-sampler and map-sampler-pmpi libraries with your program at link time
manually.

See 17.2.3 Dynamic linking on Cray X-Series systems, or 17.2.4 Static linking and 17.2.5 Static
linking on Cray X-Series systems.

3. Finally, it may be that your system supports dynamic linking but you have a statically-linked
MPI. You can try to recompile the MPI implementation with --enable-dynamic, or find a
dynamically-linked version on your system and recompile your program using that version. This
will produce a dynamically-linked program that MAP can automatically collect data from.

Dynamic linking on Cray X-Series systems

If the LD_PRELOAD mechanism is not supported on your Cray X-Series system, you can try to dynami-
cally link your program explicitly with the MAP sampling libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler-
libraries --platform=cray --lib-type=shared command.

Note: Performance Reports also uses this library.

user@login:∼/myprogram$ make-profiler-libraries --platform=cray
--lib-type=shared

Created the libraries in /home/user/myprogram:
libmap-sampler.so (and .so.1, .so.1.0, .so.1.0.0)
libmap-sampler-pmpi.so (and .so.1, .so.1.0, .so.1.0.0)

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or '-G2' for native Cray Fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-dynamic -L/home/user/myprogram -lmap-sampler-pmpi -lmap-

sampler -Wl,--eh-frame-hdr

Note: These libraries must be on the same NFS/Lustre/GPFS
filesystem as your

program.

Before running your program (interactively or from a queue), set
LD_LIBRARY_PATH:
export LD_LIBRARY_PATH=/home/user/myprogram:$LD_LIBRARY_PATH

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 138

Arm Forge 18.1.3

map ...
or add -Wl,-rpath=/home/user/myprogram when linking your program.

Linking with the Arm MPI Wrapper Library

mpicc -G2 -o hello hello.c -dynamic -L/home/user/myprogram \
-lmap-sampler-pmpi -lmap-sampler -Wl,--eh-frame-hdr

PGI Compiler

When linkingOpenMP programs youmust pass the-Bdynamic command line argument to the compiler
when linking dynamically.

When linking C++ programs you must pass the -pgc++libs command line argument to the compiler
when linking.

Static linking

If you compile your program statically, that is your MPI uses a static library or you pass the -static
option to the compiler, then youmust explicitly link your programwith the Arm sampler andMPIwrapper
libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler-
libraries --lib-type=static command.

Note: Performance Reports also uses this library.

user@login:∼/myprogram$ make-profiler-libraries --lib-type=static

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/myprogram/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Arm sampler and MPI wrapper

libraries in
the link line. There's a comprehensive description of the link

ordering
requirements in the 'Preparing a Program for Profiling' section

of either
userguide-forge.pdf or userguide-reports.pdf, located in
/opt/arm/forge/doc/.

Linking with the Arm MPI Wrapper Library

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 139

Arm Forge 18.1.3

The -Wl,@/home/user/myprogram/allinea-profiler.ld syntax tells the compiler to look
in /home/user/myprogram/allinea-profiler.ld for instructions on how to link with the
Arm sampler. Usually this is sufficient, but not in all cases. The rest of this section explains how to
manually add the Arm sampler to your link line.

PGI Compiler

When linking C++ programs you must pass the -pgc++libs command line argument to the compiler
when linking.

The PGI compiler must be 14.9 or later. Using earlier versions of the PGI compiler will fail with an
error such as “Error: symbol 'MPI_F_MPI_IN_PLACE' can not be both weak and
common” due to a bug in the PGI compiler’s weak object support.

If you do not have access to PGI compiler 14.9 or later try compiling and the linking Arm MPI wrapper
as a shared library as described in 17.2.3 Dynamic linking on Cray X-Series systems Ommit the option
--platform=cray if you are not on a Cray.

Cray

When linking C++ programs you may encounter a conflict between the Cray C++ runtime and the GNU
C++ runtime used by the MAP libraries with an error similar to the one below:

/opt/cray/cce/8.2.5/CC/x86-64/lib/x86-64/libcray-c++-rts.a(rtti.o)
: In function `__cxa_bad_typeid':

/ptmp/ulib/buildslaves/cfe-82-edition-build/tbs/cfe/lib_src/rtti.c
:1062: multiple definition of `__cxa_bad_typeid'

/opt/gcc/4.4.4/snos/lib64/libstdc++.a(eh_aux_runtime.o):/tmp/peint
/gcc/repackage/4.4.4c/BUILD/snos_objdir/x86_64-suse-linux/
libstdc++-v3/libsupc++/../../../../xt-gcc-4.4.4/libstdc++-v3/
libsupc++/eh_aux_runtime.cc:46: first defined here

You can resolve this conflict by removing-lstdc++ and-lgcc_eh fromallinea-profiler.ld.

-lpthread

When linking -Wl,@allinea-profiler.ldmust go before the -lpthread command line argu-
ment if present.

Manual Linking

When linking your program you must add the path to the profiler libraries (-L/path/to/profiler-
libraries), and the libraries themselves (-lmap-sampler-pmpi, -lmap-sampler).

The MPI wrapper library (-lmap-sampler-pmpi) must go:

1. After your program’s object (.o) files.

2. After your program’s own static libraries, for example -lmylibrary.

3. After the path to the profiler libraries (-L/path/to/profiler-libraries).

4. Before the MPI’s Fortran wrapper library, if any. For example -lmpichf.

5. Before the MPI’s implementation library usually -lmpi.

6. Before the Arm sampler library -lmap-sampler.

The sampler library -lmap-sampler must go:

1. After the Arm MPI wrapper library.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 140

Arm Forge 18.1.3

2. After your program’s object (.o) files.

3. After your program’s own static libraries, for example -lmylibrary.

4. After -Wl,--undefined,allinea_init_sampler_now.

5. After the path to the profiler libraries -L/path/to/profiler-libraries.

6. Before -lstdc++, -lgcc_eh, -lrt, -lpthread, -ldl, -lm and -lc.

For example:

mpicc hello.c -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-Wl,--undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -lgcc_eh -lrt \
-Wl,--whole-archive -lpthread \
-Wl,--no-whole-archive \
-Wl,--eh-frame-hdr \
-ldl \
-lm

mpif90 hello.f90 -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-Wl,--undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -lgcc_eh -lrt \
-Wl,--whole-archive -lpthread \
-Wl,--no-whole-archive \
-Wl,--eh-frame-hdr \
-ldl \
-lm

Static linking on Cray X-Series systems

Compiling the MPI Wrapper Library

OnCrayX-Series systems usemake-profiler-libraries --platform=cray --lib-type=static
instead:

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or -G2 for native Cray Fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/myprogram/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Arm sampler and MPI wrapper

libraries in

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 141

Arm Forge 18.1.3

the link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in
/opt/arm/forge/doc/.

Linking with the MPI Wrapper Library

cc hello.c -o hello -g -Wl,@allinea-profiler.ld

ftn hello.f90 -o hello -g -Wl,@allinea-profiler.ld

Dynamic and static linking on Cray X-Series systems using the modules
environment

If your system has the Arm module files installed, you can load them and build your application as usual.
See section 17.2.7.

1. module load forge or ensure that make-profiler-libraries is in your PATH.

2. module load map-link-static or module load map-link-dynamic.

3. Recompile your program.

map-link modules installation on Cray X-Series

To facilitate dynamic and static linking of user programs with the Arm MPI Wrapper and Sampler li-
braries Cray X-Series System Administrators can integrate the map-link-dynamic and map-link-static
modules into their module system. Templates for these modules are supplied as part of the Arm Forge
package.

Copy files share/modules/cray/map-link-* into a dedicated directory on the system.

For each of the two module files copied:

1. Find the line starting with conflict and correct the prefix to refer to the location the module files
were installed, for example, arm/map-link-static. The correct prefix depends on the sub-
directory (if any) under the module search path the map-link-* modules were installed.

2. Find the line starting with setMAP_LIBRARIES_DIRECTORY ”NONE” and replace ”NONE”
with a user writable directory accessible from the login and compute nodes.

After installed you can verify whether or not the prefix has been set correctly with ‘module avail’, the
prefix shown by this command for the map-link-* modules should match the prefix set in the ‘conflict’
line of the module sources.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 142

Arm Forge 18.1.3

Profiling a program

Figure 94: Run window

If you click the Profile button on the MAP Welcome Page you will see the window above. The settings
are grouped into sections. Click the Details… button to expand a section. The settings in each section
are described below.

Application

Application: The full path name to your application. If you specified one on the command line, this will
already be filled in. You may browse for an application by clicking on the Browse button.

Note: Many MPIs have problems working with directory and program names containing spaces. Arm
recommends avoiding the use of spaces in directory and file names.

Arguments: (optional) The arguments passed to your application. These will be automatically filled if
you entered some on the command line.

Note: Avoid using quote characters such as ' and ", as these may be interpreted differently by MAP and
your command shell. If you must use these and cannot get them to work as expected, please contact Arm
support at Arm support.

stdin file: (optional) This allows you to choose a file to be used as the standard input (stdin) for your
program. MAP will automatically add arguments to mpirun to ensure your input file is used.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 143

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Working Directory: (optional) The working directory to use when running your application. If this is
blank then MAP’s working directory will be used instead.

Duration

Start profiling after: (optional) This allows you to delay profiling by a number of seconds into the run
of your program.

Stop profiling after: (optional) This allows you to specify a number of seconds after which the profiler
will terminate your program.

Metrics

This section allows you to explicitly enable and disable metrics for which data is collected. Metrics
are listed alphabetically with their display name and unique metric ID under their associated metric
group. Select a metric to see a more detailed description, including the metric’s default enabled/disabled
state.

Only metrics that can be displayed in MAP’s metrics view are listed. Metrics that are unlicensed, un-
supported or always disabled are not listed. Additionally, you cannot disable metrics that are always
enabled.

The initial state of enabled/disabled metrics are the combined settings given by the metric XML defin-
tions, the previousGUI session, and those specifiedwith the--enabled-metrics and--disable-
metrics command line options. The command line options take preference over the previous GUI
session settings, and both take preference over the metric XML defintions settings. Of course, metrics
that are always enabled or always disabled cannot be toggled.

All PAPI metrics will be displayed if installed, and available for enabling/disabling. However, only
metrics specified in the PAPI.config file will be affected.

MPI

Note: If you only have a single process license or have selected none as your MPI Implementation the
MPI options will be missing. TheMPI options are not available when in single process mode. See section
17.5 Profiling a single-process program for more details about using a single process.

Number of processes: The number of processes that you wish to profile. MAP supports hundreds of
thousands of processes but this is limited by your license. This option may not be displayed if disabled
on the Job Submission options page.

Number of nodes: This is the number of compute nodes that you wish to use to run your program. This
option is only displayed for certain MPI implementations or if it is enabled on the Job Submission options
page.

Processes per node: This is the number of MPI processes to run on each compute node. This op-
tion is only displayed for certain MPI implementations or if it is enabled on the Job Submission options
page.

Implementation: The MPI implementation to use, for example, Open MPI, MPICH 2. Normally the
Auto setting will detect the currently loaded MPI module correctly. If you are submitting a job to a queue
the queue settings will also be summarized here. You may change the MPI implementation by clicking
on the Change… button.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 144

Arm Forge 18.1.3

Note: The choice of MPI implementation is critical to correctly starting MAP. Your system will normally
use one particular MPI implementation. If you are unsure as to which to pick, try generic, consult your
system administrator or Arm support. A list of settings for common implementations is provided in E
MPI distribution notes and known issues.

Note: If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can configure this using the Options window. See section A.5.1 System.

mpirun arguments: (optional) The arguments that are passed to mpirun or your equivalent, usually
prior to your executable name in normal mpirun usage. You can place machine file arguments, if
necessary, here. For most users this box can be left empty.

Note: You should not enter the -np argument as MAP will do this for you.

Profile selected ranks: (optional) If you do not want to profile all the ranks, you can specify a set of ranks
to profile. The ranks should be separated by commas and intervals are accepted. Example: 5,6-10.

OpenMP

Number of OpenMP threads: The number of OpenMP threads to run your program with. This ensures
the OMP_NUM_THREADS environment variable is set, but your program may override this by calling
OpenMP-specific functions.

Environment variables

The optional Environment Variables section should contain additional environment variables that should
be passed to mpirun or its equivalent. These environment variables may also be passed to your pro-
gram, depending on which MPI implementation your system uses. Most users will not need to use this
box.

Profiling

Click Run to start your program, or Submit if working through a queue. See section A.2 Integration with
queuing systems. This will compile up aMPI wrapper library on the fly that can intercept the MPI_INIT
call and gather statistics about MPI use in your program. If this has problems see H.9.3 MPI wrapper
libraries. Then MAP brings up the Running window and starts to connect to your processes.

The program runs inside MAP which starts collecting stats on your program through the MPI interface
you selected and will allow your MPI implementation to determine which nodes to start which processes
on.

MAP collects data for the entire program run by default. Arm’s sampling algorithms ensure only a few
tens of megabytes are collected even for very long-running jobs. You can stop your program at any time
by using the Stop and Analyze button. MAP will then collect the data recorded so far, stop your program
and end the MPI session before showing you the results. If any processes remain you may have to clean
them up manually using the kill command, or a command provided with your MPI implementation,
but this should not be necessary.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 145

Arm Forge 18.1.3

Figure 95: Running window

Profiling only part of a program

Youmay choose not to start theMAP sampler when the job starts, but instead start it programmatically at a
later point. To do this you must set the ALLINEA_SAMPLER_DELAY_START=1 environment variable
before starting your program. For MPI programs it is important that this variable is set in the environment
of all the MPI processes. It is not necessarily sufficient to simply set the variable in the environment of
the MPI command itself. You must arrange for the variable to be set or exported by your MPI command
for all the MPI processes.

You may call allinea_start_sampling and allinea_stop_sampling once each. That is
to say there must be one and only one contiguous sampling region. It is not possible to start, stop, start,
stop. You cannot pause or resume sampling using the allinea_suspend_traces and allinea_-
resume_traces functions. This will not have the desired effect. You may only delay the start of
sampling and stop sampling early.

17.3.8.1 C

To start sampling programmatically you should #include "mapsampler_api.h" and call the
allinea_start_sampling function. You will need to point your C compiler at the MAP include
directory, by passing the arguments -I <install root>/map/wrapper and also link with the
MAP sampler library, by passing the arguments-L <install root>/lib/64 -lmap-sampler.
To stop sampling progammatically call the allinea_stop_sampling function.

17.3.8.2 Fortran

To start sampling programmatically you should call the ALLINEA_START_SAMPLING subroutine.
You will also need to link with the MAP sampler library, for example by passing the arguments -
L <install root>/lib/64 -lmap-sampler. To stop sampling programmatically call the
ALLINEA_STOP_SAMPLING subroutine.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 146

Arm Forge 18.1.3

remote-exec required by some MPIs

When using SGI MPT, MPICH 1 Standard or the MPMD variants of MPICH 2, MPICH 3 or Intel
MPI, MAP will allow mpirun to start all the processes, then attach to them while they’re inside MPI_
Init.

This method is often faster than the generic method, but requires the remote-exec facility in MAP to
be correctly configured if processes are being launched on a remote machine. For more information on
remote-exec, please see section A.4 Connecting to remote programs (remote-exec).

Note: If MAP is running in the background, for example using map &, then this process may get stuck.
Some SSH versions cause this behavior when asking for a password. If this happens to you, go to the
terminal and use the fg or similar command to make MAP a foreground process, or run MAP again,
without using “&”.

If MAP cannot find a password-free way to access the cluster nodes then you will not be able to use
the specialized startup options. Instead, You can use generic, although startup may be slower for large
numbers of processes.

Profiling a single-process program

Figure 96: Single-Process Run Window

1. If you have a single-process license you will immediately see the Run Window that is appropriate
for single-process applications. If your license supports multiple processes you can simply clear
theMPI checkbox to run a single-process program.

2. Select the application, either by typing the file name in, or selecting it using the browser displayed
by clicking the browse button.

3. Arguments can be typed into the supplied box.

4. If appropriate, tick the OpenMP box and select the Number of OpenMP threads to start your pro-
gram with.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 147

Arm Forge 18.1.3

5. Click Run to start your program.

Sending standard input

MAP provides a stdin file box in the Run window. This allows you to choose a file to be used as the
standard input (stdin) for your program. MAP will automatically add arguments to mpirun to ensure your
input file is used.

Alternatively, you may enter the arguments directly in the mpirun Arguments box. For example, if using
MPI directly from the command-line you would normally use an option to the mpirun such as -stdin
filename, then you may add the same options to the mpirun Arguments box when starting your MAP
session in the Run window.

It is also possible to enter input during a session. Start your program as normal, then switch to the
Input/Output panel. Here you can see the output from your program and type input you wish to send.
You may also use theMore button to send input from a file, or send an EOF character.

Figure 97: MAP Sending Input

Note: If MAP is running on a fork-based system such as Scyld, or a-comm=shared compiledMPICH 1,
your program may not receive an EOF correctly from the input file. If your program seems to hang while
waiting for the last line or byte of input, this is likely to be the problem. See H General troubleshooting
and known issues or contact Arm support at Arm support for a list of possible fixes.

Starting a job in a queue

If MAP has been configured to be integrated with a queue/batch environment, as described in section A.2
Integration with queuing systems then you may use it to launch your job.

In this case, a Submit button is presented on the RunWindow, instead of the ordinaryRun button. Clicking
Submit from the Run Window will display the queue status until your job starts. MAP will execute the

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 148

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

display command every second and show you the standard output. If your queue display is graphical or
interactive then you cannot use it here.

If your job does not start or you decide not to run it, click on Cancel Job. If the regular expression you
entered for getting the job ID is invalid or if an error is reported then MAP will not be able to remove
your job from the queue.

It is strongly recommended you check the job has been removed before submitting another as it is possible
for a forgotten job to execute on the cluster and either waste resources or interfere with other profiling
sessions.

After the sampling (program run) phase is complete, MAP will start the analysis phase, collecting and
processing the distinct samples. This could be a lengthy process depending on the size of the program.
For very large programs it could be as much as 10 or 20 minutes.

You should ensure that your job does not hit its queue limits during the analysis process, setting the job
time large enough to cover both the sampling and the analysis phases.

MAP will also require extra memory both in the sampling and in the analysis phases. If these fail and
your application alone approaches one of these limits then you may need to run with fewer processes per
node or a smaller data set in order to generate a complete set of data.

Once your job is running, it will connect to MAP and you will be able to profile it.

Using custom MPI scripts

On some systems a custom mpirun replacement is used to start jobs, such as mpiexec. MAP will
normally use whatever the default for your MPI implementation is, so for MPICH 1 it would look for
mpirun and not mpiexec, for SLURM it would use srun and so on. This section explains how to
configure MAP to use a custom mpirun command for job start up.

There are typically two ways you might want to start jobs using a custom script, and MAP supports them
both.

The first way is to pass all the arguments on the command-line, as in the following example:

mpiexec -n 4 /home/mark/program/chains.exe /tmp/mydata

There are several key variables in this line that MAP can fill in for you:

1. The number of processes (4 in the above example).

2. The name of your program (/home/mark/program/chains.exe).

3. One or more arguments passed to your program (/tmp/mydata).

Everything else, like the name of the command and the format of its arguments remains constant.

To use a command like this in MAP, the queue submission system is adpated as described in the previous
section. For this mpiexec example, the settings would be as shown here:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 149

Arm Forge 18.1.3

Figure 98: MAP Using Custom MPI Scripts

As you can see, most of the settings are left blank.

There are some differences between the Submit Command in MAP and what you would type at the
command-line:

1. The number of processes is replaced with NUM_PROCS_TAG.

2. The name of the program is replaced by the full path to ddt-debugger, used by both DDT and
MAP.

3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG.

Note: it is not necessary to specify the program name here. MAP takes care of that during its own startup
process. The important thing is to make sure your MPI implementation starts ddt-debugger instead
of your program, but with the same options.

The second way you might start a job using a custom mpirun replacement is with a settings file:

mpiexec -config /home/mark/myapp.nodespec

Where myfile.nodespec might contains something like the following:

comp00 comp01 comp02 comp03 : /home/mark/program/chains.exe /tmp/
mydata

MAP can automatically generate simple configuration files like this every time you run your program
if you specify a template file. For the above example, the template file myfile.template would
contain the following:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 150

Arm Forge 18.1.3

comp00 comp01 comp02 comp03 : DDTPATH_TAG/bin/ddt-debugger
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

This follows the same replacement rules described above and in detail in section A.2 Integration with
queuing systems.

The options settings for this example might be:

Figure 99: MAP Using Substitute MPI Commands

Note the Submit Command and the Submission Template File in particular. MAP will create a new file
and append it to the submit command before executing it. So, in this case what would actually be executed
might be mpiexec -config /tmp/allinea-temp-0112 or similar. Therefore, any argument
like -config must be last on the line, because MAP will add a file name to the end of the line. Other
arguments, if there are any, can come first.

Arm recommends reading the section on queue submission, as there are many features described there
that might be useful to you if your system uses a non-standard start up command.

If you do use a non-standard command, please contact Arm at Arm support.

Starting MAP from a job script

While it is common when debugging to submit runs from inside a debugger, for profiling the usual ap-
proach would be to run the program offline, producing a profile file that can be inspected later.

To do this replace your usual program invocation with a MAP command such as:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 151

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

mpirun -n 4 PROGRAM [ARGUMENTS]...

With either of the following examples:

map --profile mpirun -n 4 PROGRAM [ARGUMENTS]...

map --profile --np=4 PROGRAM [ARGUMENTS]...

MAPwill run without a GUI, gathering data to a .map profile file. Its filename is based on a combination
of program name, process count and timestamp, likeprogram_2p_2012-12-19_10-51.map.

If using OpenMP, the value of OMP_NUM_THREADS is also included in the name after the process count,
like program_2p_8t_2014-10-21_12-45.map.

This default name may be changed with the --output argument. To examine this file, either run MAP
and select the Load Profile Data File option, or access it directly with the command:

map program_2p_2012-12-19_10-51.map

Note: When starting MAP for examining an existing profile file, a valid license is not needed.

When running without a GUI, MAP prints a short header and footer to stderr with your program’s output
in between. The --silent argument suppresses this additional output so that your program’s output is
intact.

As an alternative to --profile you can use Reverse Connect (see 3.3 Reverse Connect) to connect
back to the GUI if you wish to use interactive profiling from inside the queue. So the above example
becomes either:

map --connect mpirun -n 4 PROGRAM [ARGUMENTS]...

Or:

map --connect --np=4 PROGRAM [ARGUMENTS]...

Numactl

MAP supports launching programs via numactl for MPI programs. It works with or without SLURM.
The recommended way to launch via numactl is to use express launch mode.

map mpiexec -n 4 numactl -m 1 ./myprogram.exe
map srun -n 4 numactl -m 1 ./myprogram.exe

It is also possible to launch via numactl using compatibility mode. If using compatibility mode, you
need to put the full path to numactl in the Application box. If you do not know the full path to nu-
mactl, you can find it by running:

which numactl

Enter the name of the required application in the Arguments field, after all arguments to be passed to
numactl. It is not possible to pass any more arguments to the parallel job runner when using this mode
for launching.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 152

Arm Forge 18.1.3

MAP environment variables

ALLINEA_SAMPLER_INTERVAL

MAP takes a sample in each 20ms period, giving it a default sampling rate of 50Hz. This will be
automatically decreased as the run proceeds to ensure a constant number of samples are taken. See
ALLINEA_SAMPLER_NUM_SAMPLES.

If your program runs for a very short period of time, you may benefit by decreasing the initial sampling
interval. For example, ALLINEA_SAMPLER_INTERVAL=1 sets an initial sampling rate of 1000Hz, or
once per millisecond. Higher sampling rates are not supported.

Increasing the sampling frequency from the default is not recommended if there are lots of threads and/or
very deep stacks in the target program as this may not leave sufficient time to complete one sample before
the next sample is started.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL may be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS). For more information, see ALLINEA_SAMPLER_INTERVAL_PER_
THREAD.

ALLINEA_SAMPLER_INTERVAL_PER_THREAD

To keep overhead low, MAP imposes a minimum sampling interval based on the number of threads. By
default this is 2ms per thread, thus for eleven or more threads MAP will increase the initial sampling
interval to more than 20ms.

You can adjust this behavior by setting ALLINEA_SAMPLER_INTERVAL_PER_THREAD to the mini-
mum per-thread sample time in milliseconds.

Lowering this value from the default is not recommended if there are lots of threads as this may not leave
sufficient time to complete one sample before the next sample is started.

Note: Whether OpenMP is enabled or disabled in MAP, the final script or scheduler values set for
OMP_NUM_THREADSwill be used to calculate the sampling interval per thread (ALLINEA_SAMPLER_
INTERVAL_PER_THREAD). When configuring your job for submission, check whether your final sub-
mission script, scheduler or the MAP GUI has a default value for OMP_NUM_THREADS.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL will be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS).

ALLINEA_MPI_WRAPPER

To directMAP to use a specific wrapper library setALLINEA_MPI_WRAPPER=<pathofsharedobject>.

MAP ships with a number of precompiled wrappers, when yourMPI is supportedMAPwill automatically
select and use the appropriate wrapper.

To manually compile a wrapper specifically for your system, set ALLINEA_WRAPPER_COMPILE=1
andMPICC and run<path to MAP installation>/map/wrapper/build_wrapper.

This will generate thewrapper library~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>
.so with symlinks to the following files:

• ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1

• ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1.0

• ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1.0.0.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 153

Arm Forge 18.1.3

ALLINEA_WRAPPER_COMPILE

To direct MAP to fall back to creating and compiling a just-in-time wrapper, set ALLINEA_WRAPPER_
COMPILE=1.

In order to be able to generate a just-in-time wrapper an appropriate compiler must be available on the
machine where MAP is running, or on the remote host when using remote connect.

MAP will attempt to auto detect your MPI compiler, however, setting the MPICC environment variable
to the path to the correct compiler is recommended.

ALLINEA_MPIRUN

The path of mpirun, mpiexec or equivalent.

If this is set it has higher priority than that set in the GUI and the mpirun found in PATH.

ALLINEA_SAMPLER_NUM_SAMPLES

MAP collects 1000 samples per process by default. To avoid generating too much data on long runs, the
sampling rate will be automatically decreased as the run progresses to ensure only 1000 evenly spaced
samples are stored.

Youmay adjust this by settingALLINEA_SAMPLER_NUM_SAMPLES=<positiveinteger>.

Note: It is strongly recommended that you leave this value at the default setting. Higher values are
not generally beneficial and add extra memory overheads while running your code. Bear in mind that
with 512 processes, the default setting already collects half a million samples over the job, the effective
sampling rate can be very high indeed.

ALLINEA_KEEP_OUTPUT_LINES

Specifies the number of lines of program output to record in .map files. Setting to 0will remove the line
limit restriction, although this is not recommended as it may result in very large .map files if the profiled
program produces lots of output.

See 18.3 Restricting output.

ALLINEA_KEEP_OUTPUT_LINE_LENGTH

The maximum line length for program output that will be recorded in .map files - lines containing more
characters than this limit will be truncated. Setting to 0 will remove the line length restriction, although
this is not recommended as it may result in very large .map files if the profiled program produces lots
of output per line.

See 18.3 Restricting output.

ALLINEA_PRESERVE_WRAPPER

To gather data from MPI calls MAP generates a wrapper to the chosen MPI implementation. See 17.2
Preparing a program for profiling.

By default the generated code and shared objects are deleted when MAP no longer needs them.

To prevent MAP from deleting these files set ALLINEA_PRESERVE_WRAPPER=1.

Please note that if you are using remote launch then this variable must be exported in the remote script.
See 3.2.1 Remote script.

ALLINEA_SAMPLER_NO_TIME_MPI_CALLS

Set this to prevent MAP from timing the time spent in MPI calls.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 154

Arm Forge 18.1.3

ALLINEA_SAMPLER_TRY_USE_SMAPS

Set this to allow MAP to use /proc/[pid]/smaps to gather memory usage data. This is not recom-
mended since it slows down sampling significantly.

MPICC

To create theMPIwrapperMAPwill try to useMPICC, then if that fails search for a suitableMPI compiler
command in PATH. If the MPI compiler used to compile the target binary is not in PATH (or if there are
multiple MPI compilers in PATH) then MPICC should be set.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 155

Arm Forge 18.1.3

Program output

MAP collects and displays output from all processes under the Input/Output tab. Both standard output
and error are shown. As the output is shown after the program has completed, there are not the problems
with buffering that occur with DDT.

Viewing standard output and error

Figure 100: MAP Standard Output Window

The Input/Output tab is at the bottom of the screen (by default).

The output may be selected and copied to the X-clipboard.

Displaying selected processes

You can choose whether to view the output for all processes, or just a single process.

Note: Some MPI implementations pipe stdin, stdout and stderr from every process through mpirun or
rank 0.

Restricting output

To keep file sizes within reasonable limits .map files will contain a summary of the program output
limited to the first and last 500 lines (by default).

To change this number, profile with the environment variable ALLINEA_KEEP_OUTPUT_LINES set
to the preferred total line limit (ALLINEA_KEEP_OUTPUT_LINES=20 will restrict recorded output to
the first 10 lines and last 10 lines).

Setting this to 0 will remove the line limit restriction, although this is not recommended as it may result
in very large .map files if the profiled program produces lots of output.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 156

Arm Forge 18.1.3

The length of each line is similarly restricted to 2048 characters. This can be changed with the environ-
ment variable ALLINEA_KEEP_OUTPUT_LINE_LENGTH.

As before setting this to a value of 0 will remove the restriction, although this is not recommended as it
risks a large .map file if the profiled program emits binary data or very long lines.

Saving output

By right-clicking on the text it is possible to save it to a file. You also have the option to copy a selection
to the clipboard.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 157

Arm Forge 18.1.3

Source code

Arm MAP provides code viewing, editing and rebuilding features. It also integrates with most major
version control systems and provides static analysis to automatically detect many classes of common
errors.

The code editing and rebuilding capabilities are not designed for developing applications from scratch,
but they are designed to fit into existing profiling sessions that are running on a current executable.

The same capabilities are available for source code whether running remotely (using the remote client)
or whether connected directly to your system.

Viewing

Source and header files found in the executable are reconciled with the files present on the front-end
server, and displayed in a simple tree view within the Project Files tab of the Project Navigator window.
Source files can be loaded for viewing by clicking on the file name.

The source code viewer supports automatic color syntax highlighting for C and Fortran.

You can hide functions or subroutines you are not interested in by clicking the ‘−’ glyph next to the first
line of the function. This will collapse the function. Simply click the ‘+’ glyph to expand the function
again.

Figure 101: Source Code View

The centre pane shows your source code, annotated with performance information. All the charts you
will see in MAP share a common horizontal time axis. The start of your job is at the left and the end at
the right. The sparkline charts next to each line of source code shows how the number of cores executing
that line of code varies over time.

What does it mean to say a core is executing a particular line of code? In the source code view, MAP
uses inclusive time, that is time spent on this line of code or inside functions called by this line. So the
main() function of a single-threaded C or MPI program is typically at 100% for the entire run.

Only ‘interesting’ lines get charts, that is, lines in which at least 0.1% of the selected time range was
spent. In the previous figure you can see three different lines meet this criteria. The other lines were
executed as well, but a negligible amount of time was spent on them.

The first line is a function call to imbalance, which was running for 18.1% of the wall-clock time.
If you look closely, you will see that as well as a large block of green there is a sawtooth pattern in
blue. Color is used to identify different kinds of time. In this single-threaded MPI code there are three
colors:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 158

Arm Forge 18.1.3

• Dark green Single-threaded computation time. For an MPI program, this is all computation time.
For an OpenMP or multi-threaded program, this is the time the main thread was active and no
worker threads were active.

• BlueMPI communication and waiting time. All time spent inside MPI calls is blue, regardless of
whether that is in MPI_Send or MPI_Barrier. Typically you want to minimize this, because
the purpose of most codes is parallel computation, not communication for its own sake.

• Orange I/O time. All time spent inside known I/O functions such as reading and writing to the
local or networked filesystem is shown in orange. You definitely want to minimize time spent in
I/O and on many systems the complex data storage hierarchy can cause unexpected bottlenecks to
occur when scaling a code up. MAP always shows the time from the application’s point of view,
so all the underlying complexity is captured and represented as simply as possible.

• Dark purpleAccelerator. All the time the CPU is waiting the accelerator to return the control to the
CPU. Typically you want to minimize this, making the CPU work in parallel with the accelerator
using accelerator asynchronous calls.

In the above screenshot you can see the following:

• First a function called imbalance is called. This function spends most of its time in computation
(dark green) and around 15–20% of it in MPI calls (blue). Hovering the mouse over any graph
shows an exact breakdown of the time spent in it. There is a sawtooth pattern to the time spent in
MPI calls that will be investigated later.

• Next the application moves on to a function called stride, which spends all of its time com-
puting. You will see how to tell whether this time is well spent or not. You can also see an MPI
synchronization at the end. The triangle shape is typical of ranks finishing their work at different
times and spending varying amounts of time waiting at a barrier. Where you see triangles in these
charts that indicates imbalance.

• Finally, a function called overlap is called, which spends almost all of its time in MPI calls.

• The other functions in this snippet of source code were active for <0.1% of the total runtime and
can be ignored from a profiling point of view.

As this was anMPI program, the height of each block of color represents the percentage of MPI processes
that were running each particular line at any moment in time. So the sawtooth pattern of MPI usage
actually tells us that:

• The imbalance function goes through several iterations.

• In each iteration all processes start out computing, there is more green than blue.

• As execution continues more and more processes finish computing and transition to waiting in an
MPI call, causing the distinctive triangular pattern showing workload imbalance.

• As each triangle ends all ranks finish communicating and the pattern begins again with the next
iteration.

This is a classic sign of MPI imbalance. In fact, any triangular patterns in MAP’s graphs show that
first a few processes are changing to a different state of execution, then more, then more until they all
synchronize and move on to another state together. These areas should be investigated.

You can explore this situation in more detail by opening the examples/slow.map file and looking
at the imbalance function yourself. Can you see why some processes take longer to finish computing
than others?

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 159

Arm Forge 18.1.3

OpenMP programs

Figure 102: OpenMP Source Code View

In an OpenMP or multi-threaded program (or a mixed-mode MPI+OpenMP program) you will also see
these colors used:

• Light greenMulti-threaded computation time. For anOpenMPprogram this is time insideOpenMP
regions. When profiling an OpenMP program you want to see as much light green as possible, be-
cause that is the only time you are using all available cores. Time spent in dark green is a potential
bottleneck because it is serial code outside an OpenMP region.

• Light blue Multi-threaded MPI communication time. This is MPI time spent waiting for MPI
communication while inside an OpenMP region or on a pthread. As with the normal blue MPI
time you will want to minimize this, but also maximize the amount of multi-threaded computation
(light green) that is occurring on the other threads while this MPI communication is taking place.

• Dark Gray Time inside an OpenMP region in which a core is idle or waiting to synchronize with
the other OpenMP threads. In theory, during anOpenMP region all threads are active all of the time.
In practice there are significant synchronization overheads involved in setting up parallel regions
and synchronizing at barriers. These will be seen as dark gray holes in the otherwise happy light
green of optimal parallel computation. If you see these there may be an opportunity to improve
performance with better loop scheduling or division of the work to be done.

• Pale blue Thread synchronization time. Time spent waiting for synchronization between non-
OpenMP threads (for example, a pthread_join). Whether this time can be reduced depends
on the purpose of the threads in question.

In the screenshot above you can see that 11.1% of the time is spent calling neighbor.build(atom)
and 78.4%of the time is spent callingforce->compute(atom, neighbor, comm, comm.me).
The graphs show a mixture of light green indicating an OpenMP region and dark gray indicating
OpenMP overhead. OpenMP overhead is the time spent in OpenMP that is not the contents of an OpenMP
region (user code). Hovering the mouse over a line will show the exact percentage of time spent in over-
head, but visually you can already see that it is significant but not dominant here.

Increasingly, programs use both MPI and OpenMP to parallelize their workloads efficiently. MAP fully
and transparently supports this model of working. It is important to note that the graphs are a reflection
of the application activity over time:

• A large section of blue in a mixed-mode MPI code means that all the processes in the application
were inside MPI calls during this period. Try to reduce these, especially if they have a triangular
shape suggesting that some processes were waiting inside MPI while others were still computing.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 160

Arm Forge 18.1.3

• A large section of dark green means that all the processes were running single-threaded computa-
tions during that period. Avoid this in an MPI+OpenMP code, or you might as well leave out the
OpenMP sections altogether.

• Ideally you want to achieve large sections of light green, showing OpenMP regions being effec-
tively used across all processes simultaneously.

• It is possible to call MPI functions from within an OpenMP region. MAP only supports this if the
main thread (the OpenMP master thread) is the one that makes the MPI calls. In this case, the blue
block of MPI time will be smaller, reflecting that one OpenMP thread is in an MPI function while
the rest are doing something else such as useful computation.

GPU programs

In a program using NVIDIA CUDA CPU, time spent waiting for GPU kernels to complete is shown in
Purple.

When CUDA kernel analysis mode is enabled (see Section 31) MAP will display also display data for
lines inside CUDA kernels. These graphs show when GPU kernels were active, and for each kernel a
breakdown of the different types of warp stalls that occurred on that line. The different types of warp
stalls are listed in Section 31.1. Refer to the tooltip or selected line display (Section 20.2) to get the exact
breakdown, but in general:

• Purple Selected. Instructions on this line were being executed on the GPU.

• Dark Purple Not selected. This means warps on this line were ready to execute but that there was
no available SM to do the executing.

• Red (various shades)Memory operations. Warps on this line were stalled waiting for somememory
dependency to be satisfied. Shade of red indicates the type of memory operation.

• Blue (various shades) Execution dependency. Warps on this line were stalled until some other
action completes. Shade of blue indicates the type of execution dependency.

Note that warp stalls are only reported per-kernel, so it is not possible to obtain the times within a kernel
invocation at which different categories of warp stalls occurred. As function calls in CUDA kernels are
also automatically fully inlined it is not possible to see warp stalls for ’time spent inside function(s) on
line’ for GPU kernel code.

Figure 103: Source Code View (GPU Kernel)

In this screenshot a CUDA kernel involving this line was running on this line 13.1% of the time, with
most of the warps waiting for a memory access to complete. The colored horizontal range indicates
when any kernel observed to be using this source line was on the GPU. The height of the colored re-
gion indicates the proportion of sampled warps that were observed to be on this line. See the NVIDIA
CUPTI documentation at http://docs.nvidia.com/cuda/cupti/r_main.html#r_pc_sampling for more infor-
mation on how warps are sampling.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 161

http://docs.nvidia.com/cuda/cupti/r_main.html#r_pc_sampling

Arm Forge 18.1.3

Dealing with complexity: code folding

Real-world scientific codes do not look much like the examples above. They tend to look more like the
following:

Figure 104: Typical Fortran Code in MAP

Here, small amounts of processing are distributed over many lines, and it is difficult to see which parts
of the program are responsible for the majority of the resource usage.

To understand the performance of complex blocks of code like this, MAP allows supports code folding.
Each logical block of code such as an if-statement or a function call has a small [–] next to it. Clicking
this folds those lines of code into one and shows one single sparkline for the entire block:

Figure 105: Folded Fortran Code in MAP

Now you can clearly see that most of the processing occurs within the conditional block starting on
line 122.

When exploring a new source file, a good way to understand its performance is to use the View->Fold
All menu item to collapse all the functions in the file to single lines, then scroll through it looking for
functions that take an unusual amount of time or show an unusual pattern of I/O or MPI overhead. These
can then be expanded to show their most basic blocks, and the largest of these can be expanded again and
so on.

Editing

Source code may be edited in the code viewer windows of MAP. The actions Undo, Redo, Cut, Copy,
Paste, Select all, Go to line, Find, Find next, Find previous, and Find in files are available from the Edit

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 162

Arm Forge 18.1.3

menu.

Files may be opened, saved, reverted and closed from the File menu.

Note that information fromMAPwill not match edited source files until the changes are saved, the binary
is rebuilt, and a new profile is recreated.

If the currently selected file has an associated header or source code file, it can be opened by right-clicking
in the editor and choosing Open <filename>.<extension>. There is a global shortcut on function key
F4, available in the Edit menu as Switch Header/Source option.

To edit a source file in an external editor, right-click the editor for the file and choose Open in external
editor. To change the editor used, or if the file does not open with the default settings, open the Options
window by selecting File → Options (Arm Forge → Preferences on Mac OS X) and enter the path to
the preferred editor in the Editor box, for example /usr/bin/gedit.

If a file is edited the following warning is displayed at the top of the editor.

Figure 106: File Edited Warning

This is to warn you that the source code shown is not the source that was used to produced the currently
executing binary, so the source code and line numbers may not match the executing code.

Rebuilding and restarting

To configure the build command chooseFile→Configure Build…, enter a build command and a directory
in which to run the command, and click Apply.

To issue the build command choose File→ Build, or press Ctrl+B (Cmd+B onMac OS X). When a build
is issued the Build Output view is shown.

Committing changes

Changes to source files may be committed using one of Git, Mercurial, and Subversion. To commit
changes choose File→ Commit…, enter a commit message to the resulting dialog and click the commit
button.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 163

Arm Forge 18.1.3

Selected lines view

Figure 107: Selected Lines View

Note: The selected lines view is currently only available for profiles generated on x86_64 systems.

The Selected Lines View view allows you to get detailed information on how one or more lines of code
are spending their time.

To access this view, open one of your program’s source files in the code viewer and highlight a line.

The Selected Lines View, which is by default shown on the right hand side of the source view, automat-
ically updates to show a detailed breakdown of how the selected lines are spending their time.

You can select multiple lines, and MAP will show information for all of the lines together.

You can also select the first line of a collapsed region to see information for the entire code block. See
section 19.1 for more information.

If you use the metrics view to select a region of time, the selected lines view only shows details for the
highlighted region. See section 25 for more information.

The panel is divided into two sections.

The first section gives an overview of how much time was spent executing instructions on this line, and
how much time was spent in other functions.

If the time spent executing instructions is low, consider using the stacks view, or the functions view to
locate functions that are using a lot of CPU time. For more information on the Stacks View see section
21. For more information on the Functions View see section 23.

The second section details the CPU instruction metrics for the selected line.

These largely show the same information as the global program metrics, described in section 25.1, but
for the selected lines of source code.

Unlike the global program metrics, the line metrics are divided into separate entries for scalar and vector
operations, and report time spent in “implicit memory accesses”.

On some architectures, computational instructions (such as integer or vector operations) are allowed to
access memory implicitly. When these types of instruction are used, MAP cannot distinguish between
time performing the operation and time accessing memory, and therefore reports time for the instruction
in both the computational category and the memory category.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 164

Arm Forge 18.1.3

The amount of time spent in “explicit” and “implicit” memory accesses is reported as a footnote to the
time spent executing instructions.

Some guidelines are listed here:

• In general, aim for a large proportion of time in vector operations.

• If you see a high proportion of time in scalar operations, try checking to see if your compiler is
correctly optimising for your processor’s SIMD instructions.

• If you see a large amount of time in memory operations then look for ways to more efficiently
access memory in order to improve cache performance.

• If you see a large amount of time in branch operations then look for ways to avoid using conditional
logic in your inner loops.

Section 25.1 offers detailed advice on what to look for when optimizing the types of instruction your
program is executing.

Limitations

Modern superscalar processors use instruction-level parallelism to decode and execute multiple opera-
tions in a single cycle, if internal CPU resources are free, and will retire multiple instructions at once,
making it appear as if the program counter “jumps” several instructions per cycle.

Current architectures do not allow profilers such as MAP (or Intel VTune, Linux perftools and others)
to efficiently measure which instructions were “invisibly” executed by this instruction-level parallelism.
This time is typically allocated to the last instruction executed in the cycle.

Most MAP users will not be affected by this for the following reasons:

1. Hot lines in a HPC code typically contain rather more than a single instruction such as nop. This
makes it unlikely that an entire source line will be executed invisibly via the CPU’s instruction-level
parallelism.

2. Any such lines executed “for free” in parallel with another line by a CPU core will clearly show
up as a “gap” in the source code view (but this is unusual).

3. Loops with stalls and mispredicted branches still show up highlighting the line containing the prob-
lem in all but the most extreme cases.

To summarize key points:

• Experts users: those wanting to use MAP’s per-line instruction metrics to investigate detailed CPU
performance of a loop or kernel (even down to the assembly level) should be aware that instructions
executed in parallel by the CPU will show up with time only assigned to the last one in the batch
executed.

• Other users: MAP’s statistical instruction-based metrics correlate well with where time is spent in
the application and help to find areas for optimization. Feel free to use them as such. If you see
lines with very few operations on them (such as a single add or multiply) and no time assigned to
them inside your hot loops then these are probably being executed “for free” by the CPU using
instruction-level parallelism. The time for each batch of such is assigned to the last instruction
completed in the cycle instead.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 165

Arm Forge 18.1.3

GPU profiling

Figure 108: Selected lines view (GPU kernel)

When CUDA kernel analysis is enabled (see section 31) and the selected line is executed on the GPU
then a breakdown of warp stall reasons on this line will be shown in this view. For a description of each
of these warp stall reasons, refer to the tooltip for each of the entries or section 31.1.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 166

Arm Forge 18.1.3

Stacks view

Figure 109: MAP Stacks View

The Stacks view offers a good top-down view of your program. It is easy to follow down from the main
function to see which code paths took the most time. Each line of the Stacks view shows the performance
of one line of your source code, including all the functions called by that line.

The sparkline graphs are described in detail in section 19.

You can read the above figure as follows:

1. The first line, slow, represents the entire program run. Collapsing this node The first line, pro-
gram slow, represents the entire program.

2. Beneath it, you see a call to the stride function, almost all of which was in single-threaded
compute (dark green). 1.4% of the time was spent in MPI.

3. The next major function called from program slow is the overlap function, seen at the bottom of
this figure. A more detailed breakdown is described in section 25. The stride function itself
spent most of that time on the line a(i,j)=x*j at slow.f90 line 107. In fact, 43.2% of the entire
run was spent executing this line of code.

4. The 1% MPI time inside stride comes from an MPI_Barrier on line 124.

5. The nextmajor function called fromprogram slow is theoverlap function, seen at the bottom
of this figure. This function ran for 24.8% of the total time, almost all of which was runtime. This
line of code was executed at the start of the overlap function, and other calls which are not visible
in the figure accounted for the rest.

Clicking on any line of the Stacks view jumps the Source Code view to show that line of code. This
makes it a very easy way to navigate and understand the performance of even complex codes.

The percentage MPI time gives an idea as to how well your program is scaling and shows the location
of any communication bottlenecks. As you discussed in section 19, any sloping blue edges represent
imbalance between processes or cores.

In the above example you can see that the MPI_Send call inside the overlap function has a sloping
trailing edge. This means that some processes took significantly longer to finish the call than others,
perhaps because they were waiting longer for their receiver to become ready.

Stacks view shows which lines of code spend the most time running, computing or waiting. As with most
places in the GUI you can hover over a line or chart for a more detailed breakdown.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 167

Arm Forge 18.1.3

OpenMP Regions view

Figure 110: OpenMP Regions View

The OpenMP Regions view gives insight into the performance of every significant OpenMP region in
your program. Each region can be expanded just as in the Stacks view to see the performance of every line
beneath it across every core in your job. The sparkline graphs are described in detail in section 19.

Note: If you are using MPI and OpenMP, this view summarizes all cores across all nodes and not just
one node.

You can read the above figure as follows:

1. The most time-consuming parallel region is in the update function at line 207. Clicking on this
shows the region in the Source Code view.

2. This region spends most of its time in the do_math function. Hovering on the line or clicking on
the [–] symbol collapses the view down to show the figures for how much time.

3. Of the lines of code inside do_math, the (sqtau * (values[i-1] ...) one takes longest
with 13.7% of the total core hours across all cores used in the job.

4. Calculating sqtau = tau * tau is the next most expensive line, taking 10.5% of the total
core hours.

5. Only 0.6% of the time in this region is spent on OpenMP overhead, such as starting/synchronizing
threads.

From this you can see that the region is optimized for OpenMP usage, that is, it has very low overhead. If
you want to improve performance you can look at the calculations on the lines highlighted in conjunction
with the CPU instruction metrics, in order to answer the following questions:

• Is the current algorithm is bound by computation speed or memory accesses? If the latter, you may
be able to improve cache locality with a change to the data structure layout.

• Has the compiler generated optimal vectorized instructions for this routine? Small things can pre-
vent the compiler doing this and you can look at the vectorization report for the routine to under-
stand why.

• Is there another way to do this calculation more efficiently now that you know which parts of it are
the most expensive to run?

See section 25 for more information on CPU instruction metrics.

Clicking on any line of the OpenMP Regions view jumps the Source Code view to show that line of
code.

The percentage OpenMP synchronization time gives an idea as to how well your program is scaling to
multiple cores and highlights the OpenMP regions that are causing the greatest overhead. Examples of

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 168

Arm Forge 18.1.3

things that cause OpenMP synchronization include:

• Poor load balancing, for example, some threads have more work to do or take longer to do it than
others. The amount of synchronization time is the amount of time the fastest-finishing threads wait
for the slowest before leaving the region. Modifying the OpenMP chunk size can help with this.

• Too many barriers. All time at an OpenMP barrier is counted as synchronization time. However,
omp atomic does not appear as synchronization time. This is generally implemented as a locking
modifier to CPU instructions. Overuse of the atomic operator shows up as large amounts of time
spent in memory accesses and on lines immediately following an atomic pragma.

• Overly fine-grained parallelization. By default OpenMP synchronizes threads at the start and end
of each parallel region. There is also some overhead involved in setting up each region. In general,
the best performance is achieved when outer loops are parallelized rather than inner loops. This
can also be alleviated by using the no_barrier OpenMP keyword if appropriate.

When parallelizing with OpenMP it is extremely important to achieve good single-core performance
first. If a single CPU core is already bottlenecked on memory bandwidth, splitting the computations
across additional cores rarely solves the problem.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 169

Arm Forge 18.1.3

Functions view

Figure 111: Functions View

The Functions view shows a flat profile of the functions in your program. The first three columns show
different measures of the time spent in a given function:

1. Self shows the time spent in code in the given function itself, but not its callees, that is, not in the
other functions called by that function.

2. Total shows the time spent in code in the given function itself, and all its callees.

3. Child shows the time spent in the given functions’s callees only.

You can use the Functions view to find costly functions that are called frommany different places.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 170

Arm Forge 18.1.3

Project Files view

Figure 112: Project files view

The Project Files view offers an effective way to browse around and navigate through a large, unfamiliar
code base.

The project files view distinguishes between Application Code and External Code. You can choose which
folders count as application code by right-clicking. External Code is typically system libraries that are
hidden away at startup.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 171

Arm Forge 18.1.3

Metrics View

Figure 113: Metrics view

Now that you are familiar with the source code, the stacks and the project files view, you will now see
how the metrics view works with all of these to help you identify, focus on and understand performance
problems.

As with all graphs in MAP, the horizontal axis is wall clock time. By default three metric graphs are
shown. The top-most is the main thread activity chart, which uses the same colors and scales as the
per-line sparkline graphs described in section 19. To understand the main thread activity chart, read that
section first.

For CUDA programs profiled with CUDA kernel analysis mode enabled a “warp stall reasons” graph
is also displayed. This shows the warp stalls for all CUDA kernels detected in the program, using the
same colors and scales as the GPU kernel graphs described in section 31.1). To understand the warp stall
reason chart, read that section first.

All of the other metric graphs show how single numerical measurements vary across processes and time.
Initially, two frequently used ones are shown: CPU floating-point andmemory usage. However, there are
many other metric graphs available, and they can all be read in the sameway. Each vertical slice of a graph
shows the distribution of values across processes for that moment in time. The minimum and maximum
are clear, and shading is used to display the mean and standard deviation of the distribution.

A thin line means all processes had very similar values. A ‘fat’ shaded region means there is significant
imbalance between the processes. Extra details about each moment in time appear below the metric
graphs as you move the mouse over them.

The metrics view is at the top of the GUI as it ties all the other views together. Move your mouse across
one of the graphs, and a black vertical line appears on every other graph in MAP, showing what was
happening at that moment in time.

You can also click and drag to select a region of time within it. All the other views and graphs now redraw
themselves to show just what happened during the selected period of time, ignoring everything else. This
is a useful way to isolate interesting parts of your application’s execution. To reselect the entire time
range just double-click or use the Select All button.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 172

Arm Forge 18.1.3

Figure 114: Map with a region of time selected

In the above screenshot a short region of time has been selected around an interesting sawtooth in time
in MPI_BARRIER because PE 1 is causing delays. The first block accepts data in PE order, so is badly
delayed, the second block is more flexible, accepting data from any PE, so PE 1 can compute in paral-
lel. The Code View shows how compute and comms are serialized in the first block, but overlap in the
second.

There are many more metrics other than those displayed by default. Click the Metrics button or right-
click on the metric graphs and you can choose one of the following presets or any combination of the
metrics beneath them. You can return to the default set of metrics at any time by choosing the Preset:
Default option.

CPU instructions

Note: All of the metrics described in this section are only available on x86_64 systems.

All of these metrics show the percentage of time active cores spent executing different classes of instruc-
tion. They are most useful for optimizing single-core and OpenMP performance:

CPU floating-point: The percentage of time each rank spends in floating-point CPU instructions. This
includes vectorized instructions and standard x87 floating-point. High values here suggest CPU-bound
areas of the code that are probably functioning as expected.

CPU integer: The percentage of time each rank spends in integer CPU instructions. This includes vec-
torized instructions and standard integer operations. High values here suggest CPU-bound areas of the
code that are probably functioning as expected.

CPU memory access: The percentage of time each rank spends in memory access CPU instructions,
such as move, load and store. This also includes vectorized memory access functions. High values
here may indicate inefficiently-structured code. Extremely high values (98% and above) almost always
indicate cache problems. Typical cache problems include cache misses due to incorrect loop orderings
but may also include more subtle features such as false sharing or cache line collisions.

CPU floating-point vector: The percentage of time each rank spends in vectorized floating-point instruc-
tions. Optimized floating-point-based HPC code should spend most of its time running these operations.
This metric provides a good check to see whether your compiler is correctly vectorizing hotspots. See
section H.6 for a list of the instructions considered vectorized.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 173

Arm Forge 18.1.3

CPU integer vector: The percentage of time each rank spends in vectorized and integer instructions.
Optimized integer-based HPC code should spend most of its time running these operations. This metric
provides a good check to see whether your compiler is correctly vectorizing hotspots. See section H.6
for a list of the instructions considered vectorized.

CPU branch: The percentage of time each rank spends in test and branch-related instructions such as
test, cmp and je. An optimized HPC code should not spend much time in branch-related instructions.
Typically the only branch hotspots are during MPI calls, in which the MPI layer is checking whether a
message has been fully-received or not.

Per-line CPU instructions

When you select one or more lines of code in the code view, MAP will show a breakdown of the CPU
Instructions used on those lines. Section 20 describes this view in more detail.

Perf metrics

This section presents key CPU performance measurements gathered using the Linux perf event subsys-
tem.

Note: All of the metrics described in this section are only available on Armv8 systems. These metrics
are not available on virtual machines. Linux perf events performance events counters will need to be
accessible on all systems on which the target program will run. See section G.6.1 for details.

Cycles per instruction The average amount of CPU cycles lapsed per retired instruction. This metric is
calculated from the CPU cycles and Instructions Perf metrics.

CPU cycles The rate at which CPU cycles were lapsed.

Note: This metric is affected by CPU frequency scaling.

Instructions The rate at which instructions were retired.

Note: This metric is affected by various issues, most notably hardware interrupt counts.

L2 cache accesses The rate of level 2 data cache accesses. This includes memory-write and memory-read
operations that access the level 2 data or unified cache.

L2 cache misses The rate of level 2 data cache refills.

Mispredicted branch instructions The rate of mispredicted branch instructions. This counts the number
of incorrectly predicted retired branches that are conditional, unconditional, branch and link, return or
eret.

Stalled backend cycles The percentage of CPU cycles lapsed on which no operation instructions were
issued, despite instructions being available from the fetch unit.

Stalled frontend cycles The percentage of CPU cycles lapsed on which no operation instructions were
issued as a result of instructions not being available in the fetch unit.

Stalled cyclesThe percentage of CPU cycles lapsed onwhich no operation instructionswere issued.

Non-stalled cyclesThe percentage of CPU cycles lapsed onwhich operation instructionswere issued.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 174

Arm Forge 18.1.3

CPU time

These metrics are particularly useful for detecting and diagnosing the impact of other system daemons
on your program’s run.

CPU time This is the percentage of time that each thread of your program was able to spend on a core.
Together with Involuntary context switches, this is a key indicator of oversubscription or interference
from system daemons. If this graph is consistently less than 100%, check your core count and CPU
affinity settings to make sure one or more cores are not being oversubscribed. If there are regular spikes
in this graph, show it to your system administrator and ask for their help in diagnosing the issue.

User-mode CPU time The percentage of time spent executing instructions in user-mode. This should be
close to 100%. Lower values or spikes indicate times in which the program was waiting for a system call
to return.

Kernel-mode CPU time Complements the above graph and shows the percentage of time spent inside
system calls to the kernel. This should be very low for most HPC runs. If it is high, show the graph to
your system administrator and ask for their help in diagnosing the issue.

Voluntary context switches The number of times per second that a thread voluntarily slept, for example
while waiting for an I/O call to complete. This is normally very low for a HPC code.

Involuntary context switches The number of times per second that a thread was interrupted while com-
puting and switched out for another one. This will happen if the cores are oversubscribed, or if other
system processes and daemons start running and take CPU resources away from your program. If this
graph is consistently high, check your core count and CPU affinity settings to make sure one or more
cores are not being oversubscribed. If there are regular spikes in this graph, show it to your system
administrator and ask for their help in diagnosing the issue.

System loadThe number of active (running or runnable) threads as a percentage of the number of physical
CPU cores present in the compute node. This value may exceed 100% if you are using hyperthreading,
if the cores are oversubscribed, or if other system processes and daemons start running and take CPU
resources away from your program. A value consistently less than 100% may indicate your program is
not taking full advantage of the CPU resources available on a compute node.

I/O

These metrics show the performance of the I/O subsystem from the application’s point of view. Corre-
lating these with the I/O time in the Application Activity chart helps to diagnose I/O bottlenecks.

POSIX I/O read rate: The total I/O read rate of the application. This may be greater than Disk read
transfer if data is read from the cache instead of the storage layer.

POSIX I/O write rate: The total I/O write rate of the application. This may be greater than Disk write
transfer if data is written to the cache instead of the storage layer.

Disk read transfer: The rate at which the application reads data from disk, in bytes per second. This
includes data read from network filesystems (such as NFS), but may not include all local I/O due to page
caching.

Disk write transfer: The rate at which the application writes data to disk, in bytes per second. This
includes data written to network filesystems.

POSIX read syscall rate: The rate at which the application invokes the read system call. Measured in
calls per second, not the amount of data transferred.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 175

Arm Forge 18.1.3

POSIX write syscall rate: The rate at which the application invokes the write system call. Measured
in calls per second, not the amount of data transferred.

Note: Disk transfer and I/O metrics are not available on Cray X-series systems as the necessary Linux
kernel support is not enabled.

Memory

Here the memory usage of your application is shown in both a per-process and per-node view. Perfor-
mance degrades severely once all the node memory has been allocated and swap is required. Some HPC
systems, notably Crays, will terminate a job that tries to use more than the total node memory avail-
able.

Memory usage: The current RAM usage of each process. Memory that is allocated and never used is
generally not shown. Only pages actively swapped into RAM by the OS count are displayed. This means
that you will often see memory usage ramp up as arrays are initialized. The slopes of these ramps can be
interesting in themselves.

Note: this means if you malloc or ALLOCATE a large amount of memory but do not actually use it the
Memory Usage metric will not increase.

Node memory usage: The percentage of each node’s memory that is in use at any one time. If this is far
below 100% then your code may run more efficiently using fewer processes or a larger problem size. If it
is close to or reaches 100% then the combination of your code and other system daemons are exhausting
the physical memory of at least one node.

MPI

A detailed range of metrics offering insight into the performance of the MPI calls in your application.
These are all per-process metrics and any imbalance here, as shown by large blocks with sloped means,
has serious implications for scalability.

Use these metrics to understand whether the blue areas of the Application Activity chart are problematic or
are transferring data in an optimal manner. These are all seen from the application’s point of view.

An asynchronous call that receives data in the background and completes within a few milliseconds will
have a much higher effective transfer rate than the network bandwidth. Making good use of asynchronous
calls is a key tool to improve communication performance.

In multithreaded applications, MAP only reports MPI metrics for MPI calls from main threads. If an
application uses MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE, the Application Activity
chart will showMPI activity, but some regions of the MPI metrics may be empty if the MPI calls are from
non-main threads.

MPI call duration: This metric tracks the time spent in an MPI call so far. PEs waiting at a barrier (MPI
blocking sends, reductions, waits and barriers themselves) will ramp up time until finally they escape.
Large areas show lots of wasted time and are prime targets for investigation. The PE with no time spent
in calls is likely to be the last one to arrive, so should be the focus for any imbalance reduction.

MPI sent/received: This pair of metrics tracks the number of bytes passed to MPI send/receive func-
tions per second. This is not the same as the speed with which data is transmitted over the network, as
that information is not available. This means that an MPI call that receives a large amount of data and
completes almost instantly will have an unusually high instantaneous rate.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 176

Arm Forge 18.1.3

MPI point-to-point and collective operations: This pair of metrics tracks the number of point-to-point
and collective calls per second. A long shallow period followed by a sudden spike is typical of a late
sender. Most processes are spending a long time in one MPI call (very low #calls per second) while one
computes. When that one reaches the matchingMPI call it completes much faster, causing a sudden spike
in the graph.

MPI point-to-point and collective bytes: This pair of metrics tracks the number of bytes passed to MPI
send and receive functions per second. This is not the same as the speed with which data is transmitted
over the network, as that information is not available. This means that an MPI call that receives a large
amount of data and completes almost instantly will have an unusually high instantaneous rate.

Note: (for SHMEM users) MAP shows calls to shmem_barrier_all in MPI collectives, MPI calls
andMPI call duration. Metrics for other SHMEM functions are not collected.

Detecting MPI imbalance

The metrics view shows the distribution of their value across all processes against time, so any ‘fat’
regions are showing an area of imbalance in this metric. Analyzing imbalance in MAP works like
this:

1. Look at the metrics view for any ‘fat’ regions. These represent imbalance in that metric during that
region of time. This tells us (A) that there is an imbalance, and (B) which metrics are affected.

2. Click and drag on the metrics view to select the ‘fat’ region, zooming the rest of the controls in to
just this period of imbalance.

3. Now the stacks view and the source code views show which functions and lines of code were
being executed during this imbalance. Are the processes executing different lines of code? Are
they executing the same one, but with differing efficiencies? This tells us (C) which lines of code
and execution paths are part of the imbalance.

4. Hover the mouse over the fattest areas on the metric graph and watch the minimum and maximum
process ranks. This tells us (D) which ranks are most affected by the imbalance.

Now you know (A) whether there is an imbalance and (B) which metrics (CPU, memory, FPU, I/O) it
affects. You also know (C) which lines of code and (D) which ranks to look at in more detail.

Often this is more than enough information to understand the immediate cause of the imbalance (for
example, late sender, workload imbalance) but for a deeper view you can now switch to DDT and rerun
the program with a breakpoint in the affected region of code. Examining the two ranks highlighted as
the minimum and maximum by MAP with the full power of an interactive debugger helps get to the root
cause of the imbalance behavior.

Accelerator

The NVIDIA CUDA accelerator metrics are enabled if you have Arm Forge Professional. Please contact
Arm Sales at HPCToolsSales@arm.com for information on how to upgrade.

Note: Accelerator metrics are not available when linking to the static MAP sampler library.

GPU temperature: The temperature of the GPU as measured by the on-board sensor.

GPU utilization: Percent of time that the GPU card was in use, that is, one or more kernels are executing
on the GPU card. If multiple cards are present in a compute node this value is the mean across all the cards
in a compute node. Adversely affected if CUDAkernel analysis mode is enabled (see section 31.1).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 177

mailto:HPCToolsSales@arm.com

Arm Forge 18.1.3

Time in global memory accesses: Percent of time that the global (device) memory was being read or
written. If multiple cards are present in a compute node this value is the mean across all the cards in a
compute node.

GPUmemory usage: The memory allocated from the GPU frame buffer memory as a percentage of the
total available GPU frame buffer memory.

Energy

The energy metrics are enabled if you have the Advanced Metrics Pack add-on for Arm MAP. All the
metrics are measured per node. If you are running our job in more than one node, MAP shows the
minimum, mean and maximum power consumption of the nodes.

Note: energy metrics are not available when linking to the static MAP sampler library.

GPU power usage: The cumulative power consumption of all GPUs on the node, as measured by the
NVIDIA on-board sensor. This metric is available if the Accelerator metrics are present.

CPU power usage: The cumulative power consumption of all CPUs on the node, as measured by the
Intel on-board sensor (Intel RAPL).

System power usage: The power consumption of the node as measured by the Intel Energy Checker or
the Cray metrics.

Requirements

CPU power measurement requires an Intel CPUwith RAPL support, for example Sandy Bridge or newer,
and the intel_rapl powercap kernel module to be loaded.

Node power monitoring is implemented via one of two methods: the Arm IPMI energy agent which can
read IPMI power sensors, or the Cray HSS energy counters.

Formore information on how to install theArm IPMI energy agent please see I.7 Arm IPMI EnergyAgent.
The Cray HSS energy counters are known to be available on Cray XK6 and XC30 machines.

Accelerator power measurement requires a NVIDIA GPU that supports power monitoring. This can be
checked on the command-line with nvidia-smi -q -d power. If the reported power values are
reported as “N/A”, power monitoring is not supported.

Lustre

The Lustre metrics are enabled if your compute nodes have one or more Lustre filesystems mounted. All
the metrics are measured per node. The metadata metrics are only available if you have the Advanced
Metrics Pack add-on for Arm MAP.

If you are running your job on more than one node the values are not summed across the nodes, rather
you will see the mean across the nodes. If you have more than one Lustre filesystem mounted on the
compute nodes the values are summed across all Lustre filesystems.

Lustre read transfer: The number of bytes read per second from Lustre.

Lustre write transfer: The number of bytes written per second to Lustre.

Lustre file opens: The number of file open operations per second on a Lustre filesystem.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 178

Arm Forge 18.1.3

Lustre metadata operations: The number of metadata operations per second on a Lustre filesystem.
Metadata operations include file open, close and create as well as operations such as readdir, rename,
unlink.

Note: depending on the circumstances and implementation ‘file open’ may count as multiple operations,
for example, when it creates a new file or truncates an existing one.

Zooming

To examine a small time range in more detail you can horizontally zoom in the metric graphs by selecting
the time-range you wish to see then left-clicking inside that selected region.

All the metric graphs will then resize to display that selection in greater detail. This only effects the metric
graphs, as the graphs in all the other views, such as the code editor, will already have redrawn to display
only the selected region when that selection was made.

A right-click on the metric graph zooms the metric graphs out again.

This horizontal zoom is limited by the number of samples that were taken and stored in the MAP file.
The more you zoom in the more ‘blocky’ the graph becomes.

While you can increase the resolution by instructingMAP to storemore samples (seeALLINEA_SAMPLER_
NUM_SAMPLES and ALLINEA_SAMPLER_INTERVAL in 17.11 MAP environment variables) this is
not recommended as it may significantly impact performance of both the program being profiled and of
MAP when displaying the resulting .map file.

You can also zoom in vertically to better see fine-grained variations in a specific metric’s values. The
auto-zoom button beneath the metric graphs will cause the graphs to automatically zoom in vertically
to fit the data shown in the currently selected time range. As you select new time ranges the graphs
automatically zoom again so that you see only the relevant data.

If the automatic zoom is insufficient you can take manual control of the vertical zoom applied to each
individual metric graph. Holding down the CTRL key (or the CMD key on Mac OS X), while either
dragging on a metric graph or using the mouse-wheel while hovering over one, will zoom that graph
vertically in or out, centered on the current position of the mouse.

A vertically-zoomedmetric graph can be panned up or down by either holding down the SHIFT key while
dragging on a metric graph or just using the mouse-wheel while hovering over it. Manually adjusting
either the pan or zoom will disable auto-zoom mode for that graph, click the auto-zoom button again to
reapply it.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 179

Arm Forge 18.1.3

Action Usage Description
Select Drag a range in a metric

graph.
Selects a time range to examine. Many
components (but not the metric graphs) will
rescale to display data for this time range only.

Reset Click the Reset icon (under
the metric graphs).

Selects the entire time range. All components
(including the metric graphs) will rescale to
display the entire set of data. All metric
graphs will be zoomed out.

Horizontal
zoom in

Left click a selection in amet-
ric graph.

Zoom in (horizontally) on the selected time
range.

Horizontal
zoom out

Right-click a metric graph. Undo the last horizontal zoom in action.

Vertical
zoom in/out

Ctrl + mouse scroll wheel or
Ctrl +Drag on ametric graph.

Zoom a single metric graph in or out.

Vertical pan Mouse scroll wheel or
Shift+Drag on a metric
graph.

Pan a single metric graph up or down.

Automatic
vertical
zoom

Toggle the Automatic Ver-
tical Zoom icon (under the
metric graphs).

Automatically change the zoom of each met-
ric graph to best fit the range of values each
graph contains in the selected time range.
Manually panning or zooming a graph will
disable auto vertical zoom for that graph only.

Viewing totals across processes and nodes

Themetric graphs show the statistical distribution of themetric across ranks or compute nodes (depending
on the metric). So, for example, the Nodes power usagemetric graph shows the statistical distribution of
power usage of the compute nodes.

If you hover the mouse over the name of a metric to the left hand side of the graph MAP will display a
tool tip with additional summary information. The tool tip will show you the Minimum, Maximum, and
Mean of the metric across time and ranks or nodes.

For metrics which are not percentages the tool tip will also show the peak sum across ranks / nodes. For
example, the Maximum (

∑
all nodes) line in the tool tip for Nodes power usage shows the peak power

usage summed across all compute nodes. This does not include power used by other components, for
example, network switches.

For some metrics which are rates (for example, Lustre read transfer) MAP will also show the cumulative
total across all ranks / nodes in the tool tip, for example, Lustre bytes read (

∑
all nodes).

Custom metrics

Custom metrics can be written to collect and expose additional data (for example, PAPI counters) in the
metrics view.

User custom metrics should be installed under the appropriate path in your home directory, for exam-
ple, /home/your_user/.allinea/map/metrics. Custom metrics can also be installed for all

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 180

Arm Forge 18.1.3

users by placing them in the MAP installation directory, for example, /arm_installation_di-
rectory/map/metrics. If a metric is installed in both locations, the user installation will take
priority.

Detailed information on how to write custom metrics can be found in supplementary documentation
bundled with the Arm Forge installation in allinea-metric-plugin-interface.pdf.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 181

Arm Forge 18.1.3

PAPI metrics

Note: Arm Forge Professional is required to make use of this feature. Please contact Arm Sales at
HPCToolsSales@arm.com for details on how to upgrade.

The PAPI metrics are additional metrics available for MAP which use the Performance Application Pro-
gramming Interface (PAPI). They can be used on any system supported by PAPI.

Note: In this release PAPI metrics will be collected from the main thread only.

Due to the limitations of PAPI, some metrics may be unavailable on your system. MAP displays all
available metrics and where metrics are not available error messages are displayed.

As there is a limit on the type and number of events that can be counted together, PAPI metrics have been
split up into small groups of compatible events, so that the user can choose which events to view.

To change which group of metrics MAP uses, navigate to the directory indicated on completion of the
installation process and modify the PAPI.config file.

Installation

To use these metrics, download and install PAPI from http://icl.cs.utk.edu/papi/index.html. Then run the
metrics installer papi_install.sh from the Arm Forge directory.

PAPI config file

By default there is a templatePAPI.config file located in your installation directory at/arm_installation_
directory/map/metrics. You can edit this file to set your configuration.

The PAPI.config file can alternatively be located inside your configuration directory as set by the
ALLINEA_CONFIG_DIR environment variable. By default your configuration directory is $HOME/
.allinea.

If youwish to use aPAPI.config file located elsewhere youwill need to set and export theALLINEA_-
PAPI_CONFIG environment variable. This should be set to point to your PAPI.config file, for
example, export ALLINEA_PAPI_CONFIG=/opt/arm/map/metrics/PAPI.config. This
needs to be set before running MAP.

In case of using a queuing system, be sure that the ALLINEA_PAPI_CONFIG variable is set and ex-
ported to all the compute nodes, for example adding the ALLINEA_PAPI_CONFIG export line in the
job script before the MAP command line.

The PAPI config file contains all the metrics sets that can be used and the location of it has been indicated
at the end of the installation process. The default metric set is Overview. If you want to use another
PAPI metrics set, modify the value of the variable called set to the desired PAPI metrics set of either
CacheMisses, BranchPrediction or FloatingPoint.

PAPI overview metrics

This group of metrics gives a basic overview of the program which has been profiled.

DP FLOPS: The number of double precision floating-point operations performed per second. This uses
the PAPI_DP_OPS (double precision floating-point operations) event. What it actually counts differs

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 182

mailto:HPCToolsSales@arm.com
http://icl.cs.utk.edu/papi/index.html

Arm Forge 18.1.3

across architectures. Additionally, there are many caveats surrounding this PAPI preset on Intel architec-
tures. See http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops for more details.

Cycles per instruction: The number of CPU cycles per instruction executed. This uses the PAPI_TOT_CYC
(total cycles) and PAPI_TOT_INS (total instructions) events.

L2 data cache misses: The number of L2 data cache misses per second. This uses the PAPI_L2_DCM
(L2 data cachemisses) event. Thismetric is only available in this preset if the system has enough hardware
counters (5 at least) to collect the required events.

PAPI cache misses

This group of metrics focuses on cache misses at various levels of cache.

L1 cache misses: The number of L1 cache misses per second. This uses the PAPI_L1_TCM (L1 total
cache misses) event, although if this event is unavailable the L1 data cache misses metric (using the
PAPI_L1_DCM event) will be displayed instead.

L2 cache misses: The number of L2 cache misses per second. This uses the PAPI_L2_TCM (L2 total
cache misses) event, although if this event is unavailable the L2 data cache misses metric (using the
PAPI_L2_DCM event) will be displayed instead.

L3 cache misses: The number of L3 cache misses per second. This uses the PAPI_L3_TCM (L3 total
cache misses) event, although if this event is unavailable the L3 data cache misses metric (using the
PAPI_L3_DCM event) will be displayed instead.

PAPI branch prediction

This group of metrics focuses on branch prediction instructions.

Branch instructions: The number of branch instructions per second. This uses the PAPI_BR_INS
(branch instructions) event.

Mispredicted branch instructions: The number of conditional branch instructions that are mispredicted
each second. This uses the PAPI_BR_MSP (mispredicted branch instructions) event.

Completed instructions: The number completed instructions per second. This uses the PAPI_TOT_INS
event, and is included to provide context for the above other metrics in this group.

PAPI floating-point

This group of metrics focuses on floating-point instructions.

Floating-point scalar instructions: The number of scalar floating-point instructions per second. This
uses the PAPI_FP_INS event.

Floating-point vector instructions: The number of vector floating-point instructions per second. This
uses the PAPI_VEC_SP (single-precision vectorized instructions) and PAPI_VEC_DP (double-precision
vectorized instructions) events, although if those events are unavailable the Vector Instructions metric
will be displayed instead.

Vector instructions: The number of vector instructions (floating-point and integer) per second. This
uses the PAPI_VEC_INS event, but is only displayed if the events needed for the Floating-point vector
instructions metric are not available.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 183

http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops

Arm Forge 18.1.3

Completed instructions: The number completed instructions per second. This uses the PAPI_TOT_INS
event, and is included to provide context for the above other metrics in this group.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 184

Arm Forge 18.1.3

Main-thread, OpenMP and Pthread view modes

The percentage values and activity graphs shown alongside the source code and in the Stacks, OpenMP
Regions and Functions views can present information for multithreaded programs in a variety of different
ways.

MAP will initially choose the most appropriate view mode for your program. However, in some cases,
for example such as when you have written a program to use raw pthreads rather than OpenMP, you may
wish to change the mode to get a different perspective on how your program is executing multiple threads
and using multiple cores. You can switch between view modes from the View menu.

Main thread only mode

In this view mode only the main thread from each process is displayed; the presence of any other thread
is ignored. A value of 100% for a function or line means that all the processes’ main threads are at that
location. This is the best mode to use when exploring single-threaded programs and programs that are
unintentionally/indirectly multithreaded (that is, recent implementations of both Open MPI and CUDA
will start their own thread).

This is the default mode for all non-OpenMP programs. The OpenMP Regions tab is not displayed in
this mode.

Note that the CPU instruction metric graphs (showing the proportion of time in various classes of CPU
instructions: such as integer, floating-point, and vector) are not restricted to the main thread when in the
Main thread only view mode. These metric graphs always represent the data gathered from all the CPU
cores.

OpenMP mode

This view mode is optimized for interpreting programs where OpenMP is the primary source of mul-
tithreaded activity. Percentage values and activity graphs for a line or function indicate the proportion
of the available resources that are being used on that line. For serial code on a main thread this is the
proportion of processes at that location, for OpenMP code the contribution from each process is further
broken down by the proportion of CPU cores running threads that are at that location in the code.

For example, a timeslice of an activity graph showing 50% dark green (serial, main-thread computation)
and 50% light green (computation in an OpenMP region) means that half the processes were in serial
code and half the processes were in an OpenMP region. Of the processes in an OpenMP region 100% of
the available cores (as determined by the cores per process value, see 28 Processes and cores view) were
being used for OpenMP.

This is the default mode for OpenMP programs. It is only available for programs where MAP detected
an OpenMP region.

Pthread mode

This view mode is optimized for interpreting programs that make explicit use of pthreads. Percentage
values and activity graphs reflect the proportion of CPU cores that are being used out of the maximum
number of expected cores per process, see 28 Processes and cores view.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 185

Arm Forge 18.1.3

A value of 100% for a function or line means that 100% of the expected number of CPU cores per process
were working at that location. The main thread’s contribution gets no special attention so activity on the
main thread(s) will appear the same height as activity from any other thread.

The advantage of this is that it makes it obvious when the program is not making full use of all the
CPU cores available to it. But it has the downside of it being harder to analyze the performance of the
intentionally serial sections of code performed by each process. This is because activity occurring only
on one thread per process will be restricted to at most 1/nth of a percentage value or height on an activity
graph, where n is the number of cores per process.

This mode is not used by default so must be explicitly selected. It is only available for multithreaded
programs.

The OpenMP Regions tab is not displayed in this mode.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 186

Arm Forge 18.1.3

Processes and cores view

Figure 115: Process and Cores Window

Most modern CPUs support hyperthreading and report multiple logical cores for each physical core.
Some programs run faster when scheduling threads or processes to use these hyperthreaded cores, while
most HPC codes run more slowly. Rather than show all of the sparklines at half-height simply because
the hyperthreaded cores are (wisely) not being used, MAP tries to detect this situation and will rescale its
expectations to the number of physical cores used by your program.

If this heuristic goes wrong for any reason you will see large portions of unusual colors in your sparklines
and the application activity chart (for example, bright red). When that happens, open this dialog and
increase the cores per process setting.

You can find this dialog via the Window → Processes and Cores menu or by clicking on the X
cores (Y per process) hyperlinked text in the application details section above the metric graphs.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 187

Arm Forge 18.1.3

Running MAP from the command line

MAP can be run from the command line with the following arguments:

--no-mpi

Run MAP with 1 process and without invoking mpirun, mpiexec, or equivalent.

--queue

Force MAP to submit the job to the queueing system.

--no-queue

Run MAP without submitting the job to the queueing system.

--view=VIEW

Start MAP using VIEW as the default view. VIEW must be one of (main|pthread|openmp). If the
selected view is not available, the main view will be displayed.

--export=OUTPUT.json PROFILEDATA.map

Export PROFILEDATA.map to OUTPUT.json in JSON format, without user interaction. For the for-
mat specification see 30.1 JSON format.

--profile

Generate a MAP profile but without user interaction. This will not display the MAP GUI. Messages
are printed to the standard output and error. The job is not run using the queueing system unless used in
conjunction with --queue. When the job finishes a map file is written and its name is printed.

--export-functions=FILE

Export all the profiled functions to FILE. Use this in conjunction with --profile. The output should
be CSV file name. Examples:

map --profile --export-functions=foo.csv ...

--start-after=TIME

Start profiling TIME seconds after the start of your program. Use this in conjunction with --stop-
after=TIME to focus MAP on a particular time interval of the run of your program.

--stop-after=TIME

Stop profiling TIME seconds after the start of your program. This will terminate your program and
proceed to gather the samples taken after the time given has elapsed.

When running without the GUI, normal redirection syntax can be used to read data from a file as a source
for the executable’s standard input. Examples:

cat <input-file> | map --profile ...
map --profile ... < <input-file>

Normal redirection can also be used to write data to a file from the executable’s standard output:

map --profile ... > <output-file>

For OpenMP jobs, simply use the OMP_NUM_THREADS environment variable (or leave it blank) exactly
as you usually would when running your application. There is no need to pass the number of threads to
MAP as an argument.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 188

Arm Forge 18.1.3

OMP_NUM_THREADS=8 map --profile ... > <output-file>

--enable-metrics=METRICS
--disable-metrics=METRICS

Allows you to specify comma-separated lists which explicitly enable or disable metrics for which data
is to be collected. If the metrics specified cannot be found, or if a metric is both enabled and disabled,
an error message is displayed and MAP exits. Metrics which are always enabled or disabled cannot be
explicitly disabled or enabled, respectively. A metrics source library which has all its metrics disabled,
either in the XML definition or via --disable-metrics, will not be loaded. Metrics which can be
explicitly enabled or disabled can be listed using the --list-metrics option.

The enabled/disabled metrics settings do not persist when running MAP without the GUI, so they will
need to be specified for each profiling session. When running MAP in GUI mode, the effect of these
settings will be displayed in the Metrics section of the run dialog, where the user can further refine their
settings. These settings will then persist to the next GUI session.

--cuda-kernel-analysis

Enables CUDA kernel analysis mode, providing line level profiling information on CUDA kernels run-
ning on a GPU at the cost of potentially significant overhead. See section 31.

Profiling MPMD programs

The easiest way to profile MPMD programs is by using Express Launch to start your application.

To use Express Launch, simply prefix your normal MPMD launch line with map. For example, to profile
an MPMD application without user interaction you can use:

map --profile mpirun -n 1 ./master : -n 2 ./worker

For more information on Express Launch, and compatible MPI implementations, see section 17.1.

Profiling MPMD programs without Express Launch

The command to create a profile from an MPMD program using MAP is:

map <map mode> --np=<#processes> --mpiargs=<MPMD command> <one
MPMD program>

This example shows how to run MAP without user interaction using the flag --profile:

map --profile --np=16 --mpiargs="-n 8 ./exe1 : -n 8 ./exe2" ./exe1

First the number of processes used by the MPMD programs is set, in this case 8+8=16. Then an MPMD
style command as an mpi argument is specified, followed by one of the MPMD programs.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 189

Arm Forge 18.1.3

Exporting profiler data in JSON format

MAP provides an option to export the profiler data in machine readable JSON format.

To export as JSON, first you need to open a .map file in MAP. Then the profile data can be exported by
clicking File and selecting the Export Profile Data as JSON option.

For a command line option, see 29 Running MAP from the command line.

JSON format

The JSON document contains a single JSON object containing two object members, info containing
general information about the profiled program, and samples with the sampled information. An exam-
ple of profile data exported to a JSON file is given in Section 30.4.

• info (Object): If some information is not available, the value is null instead.

– command_line (String): Command line call used to run the profiled application (for ex-
ample aprun -N 24 -n 256 -d 1 ./my_exe).

– machine (String): Hostname of the node on which the executable was launched.

– notes (String): A short description of the run or other notes on configuration and com-
pilation settings. This is specified by setting the environment variable ALLINEA_NOTES
berfore running MAP.

– number_of_nodes (Number): Number of nodes run on.

– number_of_processes (Number): Number of processes run on.

– runtime (Number): Runtime in milliseconds.

– start_time (String): Date and time of run in ISO 8601 format.

– create_version (String): Version of MAP used to create the map file.

– metrics (Object): Attributes about the overall run, reported once per process, each repre-
sented by an object with max, min, mean, var and sums fields, or null, when the metric
is not available. The sums series contains the sum of the metric across all processes / nodes
for each sample. In many cases the values over all nodes will be the same, that is the max, min
and mean values are the same, with variance zero. For example, in homogeneous systems
num_cores_per_node is the same over all nodes.

* wchar_total (Object): The number of bytes written in total by I/O operation system
calls (see wchar in the Linux Programmer’s Manual page ‘proc’: man 5 proc).

* rchar_total (Object): The number of bytes read in total by I/O operation system
calls (see rchar in the Linux Programmer’s Manual page ‘proc’: man 5 proc).

* num_cores_per_node (Object): Number of cores available per node.

* memory_per_node (Object): RAM installed per node.

* nvidia_gpus_count (Object): Number of GPUs per node.

* nvidia_total_memory (Object): GPU frame buffer size per node.

* num_omp_threads_per_process (Object): Number of OpenMP worker threads
used per process.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 190

Arm Forge 18.1.3

• samples (Object)

– count (Number): Number of samples recorded.

– window_start_offset (Array of Numbers): Offset of the beginning of each sampling
window, starting from zero. The actual sample might have been taken anywhere in between
this offset and the start of the next window, that is the window offsets wi and wi+1 define a
semi-open set (wi, wi+1] in which the sample was taken.

– activity (Object): Contains information about the proportion of different types of activity
performed during execution, according to different view modes. The types of view modes
possibly shown are OpenMP, PThreads and Main Thread, described in Section 27. Only
available view modes are exported, for example, a program without OpenMP sections will
not have an OpenMP activity entry.

Note: The sum of the proportions in an activity might not add up to 1, this can happen when
there are fewer threads running than MAP has expected. Occasionally the sum of the propor-
tions shown for a sample in PThreads or OpenMP threads mode might exceed 1. When this
happens, the profiled application uses more cores than MAP assumes the maximum number
of cores per process can be. This can be due to middleware services launching helper threads
which, unexpectedly to MAP, contribute to the activity of the profiled program. In this case,
the proportions for that sample should not be compared with the rest of proportions for that
activity in the sample set.

– metrics (Object): Contains an object for each metric that was recorded. These objects
contain four lists each, with the minimum, maximum, average and variance of that metric in
each sample. The format of a metrics entry is given in Section 30.3. All metrics recorded
in a run are present in the JSON, including custom metrics. The names and descriptions of
all core MAP metrics are given in Section 30.3. It is assumed that a user including a custom
metrics library is aware of what the custom metric is reporting. See the Arm Metric Plugin
Interface documentation.

Activities

Each exported object in an activity is presented as a list of fractional percentages (0.0 – 1.0) of sample
time recorded for a particular activity during each sample window. Therefore, there are as many entries
in these list as there are samples.

Description of categories

The following is the list of all of the categories. Only available categories are exported, see sections
30.2.2 and 30.2.3.

• normal_compute: Proportion of time spent on the CPU which is not categorized as any of the
following activities. The computation can be, for example, floating point scalar (vector) addition,
multiplication or division.

• point_to_point_mpi: Proportion of time spent in point-to-pointMPI calls on the main thread
and not inside an OpenMP region.

• collective_mpi: Proportion of time spent in collective MPI calls on the main thread and not
inside an OpenMP region.

• point_to_point_mpi_openmp: Proportion of time spent in point-to-point MPI calls made
from any thread within an OpenMP region.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 191

Arm Forge 18.1.3

• collective_mpi_openmp: Proportion of time spent in collective MPI calls made from any
thread within an OpenMP region.

• point_to_point_mpi_non_main_thread: Proportion of time spent in point-to-pointMPI
calls on a pthread, but not on the main thread nor within an OpenMP region.

• collective_mpi_non_main_thread: Proportion of time spent in collective MPI calls on
a pthread, but not on the main thread nor within an OpenMP region.

• openmp: Proportion of time spent in an OpenMP region, that is compiler-inserted calls used to
implement the contents of a OpenMP loop.

• accelerator: Proportion of time spent in calls to accelerators, that is, blocking calls waiting
for a CUDA kernel to return.

• pthreads: Proportion of compute time on a non-main (worker) pthread.

• openmp_overhead_in_region: Proportion of time spent setting up OpenMP structures,
waiting for threads to finish and so on.

• openmp_overhead_no_region: Proportion of time spent in calls to the OpenMP runtime
from an OpenMP region.

• synchronisation: Proportion of time spent in thread synchronization calls, such as pthread_-
mutex_lock.

• io_reads: Proportion of time spent in I/O read operations, such as ‘read’.

• io_writes: Proportion of time spent in I/O write operations. Also includes file open and close
time as these are typically only significant when writing.

• io_reads_openmp: Proportion of time spent in I/O read operations from within an OpenMP
region.

• io_writes_openmp: Proportion of time spent in I/O write operations from within an OpenMP
region.

• mpi_worker: Proportion of time spent in the MPI implementation on a worker thread.

• mpi_monitor: Proportion of time spent in the MPI monitor thread.

• openmp_monitor: Proportion of time spent in the OpenMP monitor thread.

• sleep: Proportion of time spent in sleeping threads and processes.

Categories available in main_thread activity

• normal_compute

• point_to_point_mpi

• collective_mpi

• point_to_point_mpi_openmp

• collective_mpi_openmp

• openmp

• accelerator

• openmp_overhead_in_region

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 192

Arm Forge 18.1.3

• openmp_overhead_no_region

• synchronisation

• io_reads

• io_writes

• io_reads_openmp

• io_writes_openmp

• sleep

Categories available in openmp and pthreads activities

• normal_compute

• point_to_point_mpi

• collective_mpi

• point_to_point_mpi_openmp

• collective_mpi_openmp

• point_to_point_mpi_non_main_thread

• collective_mpi_non_main_thread

• openmp

• accelerator

• pthreads

• openmp_overhead_in_region

• openmp_overhead_no_region

• synchronisation

• io_reads

• io_writes

• io_reads_openmp

• io_writes_openmp

• mpi_worker

• mpi_monitor

• openmp_monitor

• sleep

Metrics

The following list contains the core metrics reported by MAP.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 193

Arm Forge 18.1.3

Only available metrics are exported to JSON. For example, if there is no Lustre filesystem then the Lustre
metrics will not be included. If any custom metrics are loaded, they will be included in the JSON, but are
not documented here.

For more information on the metrics see 25 Metrics View.

• CPU Instructions: see 25.1 CPU instructions

– instr_fp: See CPU floating-point (percentage)

– instr_int: See CPU integer (percentage)

– instr_mem: See CPU memory access (percentage)

– instr_vector_fp: See CPU floating-point vector (percentage)

– instr_vector_int: See CPU floating-point vector (percentage)

– instr_branch: See CPU branch (percentage)

– instr_scalar_fp: The percentage of time each rank spends in standard x87 floating-
point operations.

– instr_scalar_int: The percentage of time each rank spends in standard integer opera-
tions.

– instr_implicit_mem: Implicit memory accesses. The percentage of time spent execut-
ing instructions with implicit memory accesses.

– instr_other: The percentage of time each rank spends in instructions which cannot be
categorized as any of the ones given above.

• CPU Time: see 25.3 CPU time

– cpu_time_percentage: See CPU time

– user_time_percentage: See User-mode CPU time

– system_time_percentage: See Kernel-mode CPU time

– voluntary_context_switches: See Voluntary context switches (1/s)

– involuntary_context_switches: See Involuntary context switches (1/s)

– loadavg: See System load (percentage)

• I/O: see 25.4 I/O

– rchar_rate: See POSIX I/O read rate (B/s)

– wchar_rate: See POSIX I/O write rate (B/s)

– bytes_read: See Disk read transfer (B/s)

– bytes_written: See Disk write transfer (B/s)

– syscr: See POSIX read syscall rate (calls/s)

– syscw: See POSIX write syscall rate (calls/s)

• Lustre

– lustre_bytes_read: Lustre read transfer (B/s)

– lustre_bytes_written: Lustre write transfer (B/s)

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 194

Arm Forge 18.1.3

– lustre_rchar_total: Lustre bytes read

– lustre_wchar_total: Lustre bytes written

• Memory: see 25.5 Memory

– rss: See Memory usage in bytes (Resident Set Size)

– node_mem_percent: See Node memory usage (percentage)

• MPI: see 25.6 MPI

– mpi_call_time: See MPI call duration (ns)

– mpi_sent: See MPI sent (B/s)

– mpi_recv: See MPI received (B/s)

– mpi_calls: Number of MPI calls per second per process

– mpi_p2p: See MPI P2P (calls/s).

– mpi_collect: See MPI collectives (calls/s)

– mpi_p2p_bytes: See MPI point-to-point bytes

– mpi_collect_bytes: See MPI collect bytes

• Accelerator: see 25.8 Accelerator

– nvidia_temp: See GPU temperature (Celsius)

– nvidia_gpu_usage: See GPU utilization (percentage)

– nvidia_memory_sys_usage: See Time in global memory accesses (percentage)

– nvidia_memory_used_percent: See GPU memory usage (percentage)

– nvidia_memory_used: GPU memory usage in bytes

• Energy: see 25.9 Energy

– nvidia_power: See GPU power usage (mW/node)

– rapl_power: See CPU power usage (W/node)

– system_power: See System power usage (W/node)

– rapl_energy: CPU energy, integral of rapl_power (J)

– system_energy: CPU energy, integral of system_power (J)

Example JSON output

In this section an example is given of the format of the JSON that is generated from a MAP file. This
illustrates the description that has been given in the previous sections. This is not a full file, but should
be used as an indication of how the information looks after export.
{
"info" : {

"command_line" : "mpirun␣-np␣4␣./exec",
"machine" : "hal9000",
"number_of_nodes" : 30,
"number_of_processes" : 240,
"runtime" : 8300,

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 195

Arm Forge 18.1.3

"start_time" : "2016-05-13T11:36:31",
"create_version" : "6.0.4"
"metrics": {

wchar_total: {max: 384605588, min: 132, mean: 24075798, var: 546823},
rchar_total: {max: 6123987, min: 63, mean: 9873, var: 19287},
num_cores_per_node: {max: 4, min: 4, mean: 4, var: 0},
memory_per_node: {max: 4096, min: 4096, mean: 4096, var: 0},
nvidia_gpus_count: {max: 0, min: 0, mean: 0, var: 0},
nvidia_total_memory: {max: 0, min: 0, mean: 0, var: 0},
num_omp_threads_per_process: {max: 6, min: 6, mean: 6, var: 0},

}
},
"samples" : {

"count" : 4,
"window_start_offsets" : [0, 0.2, 0.4, 0.6],
"activity" : {

"main_thread" : {
"normal_compute" : [0.762, 0.996, 1, 0.971],
"io_reads" : [0.00416, 0.00416, 0, 0.00416],
"io_writes" : [0.233, 0, 0, 0],
"openmp" : [0, 0, 0, 0.01667],
"openmp_overhead_in_region" : [0, 0, 0, 0.1],
"openmp_overhead_no_region" : [0, 0, 0, 0.00417],
"sleep" : [0, 0, 0, 0]

},
"openmp" : {

"normal_compute" : [0.762, 0.996, 1, 0.971],
"io_reads" : [0.00416, 0.00416, 0, 0.00416],
"io_writes" : [0.233, 0, 0, 0],
"openmp" : [0, 0, 0, 0.01319],
"openmp_overhead_in_region" : [0, 0, 0, 0],
"openmp_overhead_no_region" : [0, 0, 0, 0],
"sleep" : [0, 0, 0, 0]

},
"pthreads" : {

"io_reads" : [0.00069, 0.00069, 0, 0.00069],
"io_writes" : [0.0389, 0, 0, 0],
"normal_compute" : [0.1270, 0.1659, 0.1666, 0.1652],
"openmp" : [0, 0, 0, 0.01319],
"openmp_overhead_in_region" : [0, 0, 0, 0.02153],
"openmp_overhead_no_region" : [0, 0, 0, 0.00069],
"sleep" : [0, 0, 0, 0]

}
},
"metrics" : {

"wchar_total" : {
"mins" : [3957, 3957, 3958, 4959],
"maxs" : [4504, 4959, 5788, 10059],
"means" : [3965.375, 4112.112, 4579.149, 6503.496],
"vars" : [2159.809, 49522.783, 169602.769, 2314522.699],
"sums" : [15860, 16448, 18316, 26012]

},
"bytes_read" : {

"mins" : [0, 0, 0, 0],
"maxs" : [34647.255020415301, 0, 0, 0],
"means" : [645.12988722358205, 0, 0, 0],
"vars" : [9014087.0327749606, 0, 0, 0],
"sums" : [2580, 0, 0, 0]

},
"bytes_written" : {

"mins" : [0, 0, 0, 0],
"maxs" : [123, 0, 0, 0],
"means" : [32, 0, 0, 0],

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 196

Arm Forge 18.1.3

"vars" : [12, 0, 0, 0],
"sums" : [128, 0, 0, 0]

}
}

} }

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 197

Arm Forge 18.1.3

GPU profiling

When profiling applications that use CUDA 8.0, GPU kernels that can be tracked by NVIDIA’s CUDA
Profiling Tools Interface (CUPTI) will be displayed in a new “GPU Kernels” tab.

Figure 116: GPU Kernels View

This lists the CUDA kernels that were detected in the program alongside graphs indicating when those
kernels were active. If multiple kernels were identified in a process within a particular sample they will
have equal weighting in this graph.

Note that:

• CUDA kernels generated by OpenACC or CUDA Fortran are not yet supported by MAP.

• GPU profiling is only supported with CUDA 8.0.

• GPU profiling is not supported if the CUDA driver and toolkit versions do not match (for example,
profiling a CUDA 8.0 program with a CUDA 9.0 driver is not supported).

• GPU profiling is not supported when statically linking the MAP sampler library.

Kernel analysis

CUDA kernel analysis mode is an advanced feature that provides insight into the activity within CUDA
kernels. This mode can be enabled from the MAP run dialog or from the command line with --cuda-
kernel-analysis.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 198

Arm Forge 18.1.3

Figure 117: Run window with CUDA kernel analysis enabled

When enabled the “GPUKernels” tab is enhanced to show a line-level breakdown of warp stalls. The pos-
sible categories of warp stall reasons are as listed in theenum CUpti_ActivityPCSamplingStall-
Reason in the CUPTIAPI documentation (http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY_
_API.html):

Selected No stall, instruction is selected for issue.

Instruction fetch Warp is blocked because next instruction is not yet available, because of an instruction
cache miss, or because of branching effects.

Execution dependency Instruction is waiting on an arithmetic dependency.

Memory dependency Warp is blocked because it is waiting for a memory access to complete.

Texture sub-system Texture sub-system is fully utilized or has too many outstanding requests.

Thread or memory barrier Warp is blocked as it is waiting at __syncthreads or at a memory bar-
rier.

__constant__ memory Warp is blocked waiting for __constant__memory and immediate memory
access to complete.

Pipe busy Compute operation cannot be performed due to required resource not being available.

Memory throttle Warp is blocked because there are too many pending memory operations.

Not selected Warp was ready to issue, but some other warp issued instead.

Other Miscellaneous stall reason.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 199

http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html
http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html

Arm Forge 18.1.3

Dropped samples Samples dropped (not collected) by hardware due to backpressure or overflow.

Unknown The stall reason could not be determined. Used when CUDA kernel analysis has not been
enabled (see above) or when an internal error occurred within CUPTI or MAP.

Figure 118: GPU kernels view (with CUDA kernel analysis)

Note that warp stalls are only reported per-kernel, so it is not possible to obtain the times within a kernel
invocation at which different categories of warp stalls occurred. As function calls in CUDA kernels are
automatically fully inlined it is not possible to see a stack trace of code within a kernel on the GPU.

Warp stall information is also present in the code editor (section 19.3), the selected line view (sec-
tion 20.2), and in a warp stall reason graph in the metrics view (section 25).

Compilation

When compilingCUDAkernels do not generate debug information for device code (the-G or--device-
debug flag) as this can significantly impair runtime performance. Use -lineinfo instead, for exam-
ple:

nvcc device.cu -c -o device.o -g -lineinfo -O3

Performance impact

Enabling the CUPTI sampling will impact the target program in the following ways:

1. A short amount of time will be spent post-processing at the end of each kernel. This will depend
on the length of the kernel and the CUPTI sampling frequency.

2. Kernels will be serialized. Each CUDA kernel invocation will not return until the kernel has fin-
ished andCUPTI post-processing has been performed. Without CUDAkernel analysis mode kernel
invocation calls return immediately to allow CUDA processing to be performed in the background.

3. Increased memory usage whilst in a CUDA kernel. This may manifest as fluctuations between two
memory usage values, depending on whether a sample was taken during a CUDA kernel or not.

Taken together the above may have a significant impact on the target program, potentially resulting in
orders of magnitude slowdown. To combat this profile and analyse CUDA code kernels (with --cuda-
kernel-analysis) and non-CUDA code (no --cuda-kernel-analysis) in separate profiling
sessions.

The NVIDIA GPUmetrics will be adversely affected by this overhead, particularly the “GPU utilization”
metric. See section 25.8.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 200

Arm Forge 18.1.3

When profiling CUDA code it may be useful to only profile short subsection of the program so time is
not wasted waiting for CUDA kernels you do not need to see data for. See section 17.3.8 for instructions
on how to do this.

Customizing GPU profiling behavior

The interval at whichCUPTI samplesGPUwarps can bemodified by the environment variableALLINEA_-
SAMPLER_GPU_INTERVAL. Accepted values are max, high, mid, low, and min, with the default
value being high. These correspond to the values in the enum CUpti_ActivityPCSamplingPe-
riod in the CUPTIAPI documentation (http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY_
_API.html).

Reducing the sampling interval means warp samples are takenmore frequently. While this may be needed
for very short-lived kernels, setting the interval too low can result in a very large number of warp samples
being taken which then require significant post-processing time once the kernel completes. Overheads
of twice as long as the kernel’s normal runtime have been observed. It is recommended that the CUPTI
sampling interval is not reduced.

Known issues

• GPU profiling is only supported using CUDA 8.0.

• GPU profiling is not supported if the CUDA driver and toolkit versions do not match (for example,
profiling a CUDA 8 program with a CUDA 9 driver is not supported).

• When preparing your program for profiling, it is advised to match the version of the CUDA toolkit
to that of the CUDA driver.

• CUDA kernels generated by OpenACC or CUDA Fortran are not yet supported by MAP.

• The graphs are scaled on the assumption that there is a 1:1 relationship between processes and
GPUs, each process having exclusive use of its own CUDA card. The graphs may be of an un-
expected height if some processes do not have a GPU, or if multiple processes share the use of a
common GPU.

• Enabling CUDA kernel analysis mode can have a significant performance impact as described in
section 31.3.

• GPU profiling is not supported when statically linking the MAP sampler library.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 201

http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html
http://docs.nvidia.com/cuda/cupti/group__CUPTI__ACTIVITY__API.html

Arm Forge 18.1.3

Part IV

Appendix

Configuration

Arm Forge shares a common configuration file between Arm DDT and Arm MAP. This makes it easy
for users to switch between tools without reconfiguring their environment each time.

Configuration files

ArmForge uses two configuration files: the systemwidesystem.config and the user specificuser.config.
The system wide configuration file specifies properties such as MPI implementation. The user specific
configuration file describes user’s preferences such as font size. The files are controlled by environment
variables:

Environment Variable Default
ALLINEA_USER_CONFIG ${ALLINEA_CONFIG_DIR}/user.config
ALLINEA_SYSTEM_CONFIG ${ALLINEA_CONFIG_DIR}/system.config
ALLINEA_CONFIG_DIR ${HOME}/.allinea

Sitewide configuration

If you are the system administrator, or have write-access to the installation directory, you can provide a
configuration file which other users are automatically given a copy of the first time that they start Arm
Forge. In this case users no longer need to provide configuration for site-specific aspects such as queue
templates and job submission.

First configure Arm Forge normally and run a test program to make sure all the settings are correct. When
you are satisfied with your configuration execute one of the following commands:

forge --clean-config

This will remove any user-specific settings from your system configuration file and will create a sys-
tem.config file that can provide the default settings for all users on your system. Instructions on how
to do this are printed when --clean-config completes. Note that only the system.config file
is generated. Arm Forge also uses a user-specific user.config which is not affected.

If you want to use DDT to attach to running jobs you also need to create a file called nodes in the
installation directory with a list of compute nodes you want to attach to. See section 5.9 Attaching to
running programs for details.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 202

Arm Forge 18.1.3

Startup scripts

When Arm Forge is started it searches for a sitewide startup script called allinearc in the root of the
installation directory. If this file exists it is sourced before starting the tool. When using the remote client
this startup script is sourced before any sitewide remote-init remote daemon startup script.

Similarly, you can also provide a user-specific startup script in ~/.allinea/allinearc.

Note: If theALLINEA_CONFIG_DIR environment variable is set then the softwarewill look in$ALLINEA_
CONFIG_DIR/allinearc instead. When using the remote client the user-specific startup script will
be sourced before the user-specific~/.allinea/remote-init remote daemon startup script.

Importing legacy configuration

If you have used a version of ArmDDT prior to 4.0 your existing configuration will be imported automat-
ically. If the DDTCONFIG environment variable is set, or you use the --config command-line argu-
ment, the existing configuration will be imported. However, the legacy configuration file will not bemod-
ified, and subsequent configuration changes will be saved as described in the previous sections.

Converting legacy sitewide configuration files

If you have existing sitewide configuration files from a version of Arm DDT prior to 4.0 you will need to
convert them to the new 4.0 format. This can easily be done using the following command line:

forge --config=oldconfig.ddt --system-config=newconfig.ddt --clean
-config

Note: newconfig.ddt must not exist beforehand.

Using shared home directories on multiple systems

If your site uses the same home directory for multiple systems you may want to use a different configu-
ration directory for each system.

You can do this by specifying the ALLINEA_CONFIG_DIR environment variable before starting Arm
Forge. If you use the module system you may choose to set ALLINEA_CONFIG_DIR according to
which system the module was loaded on.

For example, say you have two systems: harvester with login nodesharvester-login1 andharvester-
login2 and sandworm with login nodes sandworm-login1 and sandworm-login2. You may
add something similar to the following code to your module file:

case $(hostname) in
harvester-login*)
ALLINEA_CONFIG_DIR=$HOME/.allinea/harvester
;;

sandworm-login*)
ALLINEA_CONFIG_DIR=$HOME/.allinea/sandworm
;;

esac

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 203

Arm Forge 18.1.3

Using a shared installation on multiple systems

If you have multiple systems sharing a common Arm Forge installation, you may wish to have a differ-
ent default configuration for each system. You can use the ALLINEA_DEFAULT_SYSTEM_CONFIG
environment variable to specify a different file for each system. For example, you may add something
similar to the following to your module file:

case $(hostname) in
harvester-login*)
ALLINEA_DEFAULT_SYSTEM_CONFIG=/sw/allinea/forge/harvester.

config
;;

sandworm-login*)
ALLINEA_DEFAULT_SYSTEM_CONFIG=/sw/allinea/forge/sandworm.

config
;;

esac

Integration with queuing systems

Figure 119: Queuing Systems

Arm Forge can be configured to interact with most job submission systems. This is useful if you wish to
debug interactively but need to submit a job to the queue in order to do so.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 204

Arm Forge 18.1.3

MAP is usually run as a wrapper around mpirun or mpiexec, via the map --profile argument.
Arm recommends using this to generate .map files instead of configuring MAP to submit jobs to the
queue, but both usage patterns are fully-supported.

In the Options window (Preferences on Mac OS X), you should choose Submit job through queue. This
displays extra options and switches the GUI into queue submission mode.

The basic stages in configuring to work with a queue are:

1. Making a template script.

2. Setting the commands used to submit, cancel, and list queue jobs.

Your system administratormaywish to provide a configuration file containing the correct settings, thereby
removing the need for individual users to configure their own settings and scripts.

In this mode Arm Forge can use a template script to interact with your queuing system. The templates
subdirectory contains some example scripts that can bemodified tomeet your needs. {installation-
directory}/templates/sample.qtf, demonstrates the process of creating a template file in
some detail.

Template tutorial

Ordinarily, your queue script will probably end in a line that starts mpirun with your target executable.
In most cases you can simply replace that line with AUTO_LAUNCH_TAG. For example, if your script
currently has the line:

mpirun -np 16 program_name myarg1 myarg2

Then create a copy of it and replace that line with:

AUTO_LAUNCH_TAG

Select this file as the Submission template file on the Job Submission Settings page of theOptions. Notice
that you are no longer explicitly specifying the number of processes, and so on. You instead specify the
number of processes, program name and arguments in the Run window.

Fill in Submit command with the command you usually use to submit your job, for example qsub or
sbatch, Cancel command with the command you usually use to cancel a job, for example qdel or
scancel and Display command with the command you usually use to display the current queue status,
for example qstat or squeue.

You can usually use (
d+) as the Regexp for job id. This just scans for a number in the output from your Submit com-
mand.

Once you have a simple template working you can go on to make more things configurable from the
GUI. For example, to be able to specify the number of nodes from the GUI you would replace an explicit
number of nodes with the NUM_NODES_TAG. In this case replace:

#SBATCH --nodes=100

With:

#SBATCH --nodes=NUM_NODE_TAG

See appendix I.1 Queue template tags for a full list of tags.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 205

Arm Forge 18.1.3

The template script

The template script is based on the file you would normally use to submit your job. This is typically a
shell script that specifies the resources needed such as number of processes, output files, and executes
mpirun, vmirun, poe or similar with your application.

Themost important difference is that job-specific variables, such as number of processes, number of nodes
and program arguments, are replaced by capitalized keyword tags, such as NUM_PROCS_TAG.

When Arm Forge prepares your job, it replaces each of these keywords with its value and then submits
the new file to your queue.

To refer to tags in comments without Arm Forge detecting them as a required field the comment line must
begin with ##.

Configuring queue commands

Once you have selected a queue template file, enter submit, display and cancel commands.

When you start a session Arm Forge will generate a submission file and append its file name to the submit
command you give.

For example, if you normally submit a job by typing job_submit -u myusername -f myfile
then you should enter job_submit -u myusername -f as the submit command.

To cancel a job, Arm Forge will use a regular expression you provide to get a value for JOB_ID_TAG.
This tag is found by using regular expression matching on the output from your submit command. See
appendix I.6 Job ID regular expression for details.

Configuring how job size is chosen

Arm Forge offers a number of flexible ways to specify the size of a job. You may choose whetherNumber
of Processes andNumber of Nodes options appear in theRunwindow orwhether these should be implicitly
calculated. Similarly you may choose to display Processes per node in the Runwindow or set it to a Fixed
value.

Note: if you choose to display Processes per node in the Run window and PROCS_PER_NODE_TAG is
specified in the queue template file then the tag will always be replaced by the Processes per node value
from the Run dialog, even if the option is unchecked there.

Quick restart

DDT allows you reuse an existing queued job to quickly restart a run without resubmitting it to the queue,
provided that your MPI implementation supports doing this. Simply check the Quick Restart check box
on the Job Submission Options page.

In order to use quick restart, your queue template file must use AUTO_LAUNCH_TAG to execute your
job.

For more information on AUTO_LAUNCH_TAG, see I.4.1 Using AUTO_LAUNCH_TAG.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 206

Arm Forge 18.1.3

Connecting to remote programs (remote-exec)

When Arm Forge needs to access another machine for remote launch or as part of starting some MPIs, it
will attempt to use the secure shell, ssh, by default.

However, this may not always be appropriate, ssh may be disabled or be running on a different port to
the normal port 22. In this case, you can create a file called remote-exec which is placed in your
~/.allinea directory and DDT will use this instead.

Arm Forge will use look for the script at ~/.allinea/remote-exec, and it will be executed as
follows:

remote-exec HOSTNAME APPNAME [ARG1] [ARG2] ...

The script should start APPNAME on HOSTNAME with the arguments ARG1 ARG2 without further in-
put (no password prompts). Standard output from APPNAME should appear on the standard output of
remote-exec. An example is shown here:

SSH based remote-exec

A remote-exec script using ssh running on a non-standard port might look as follows:

#!/bin/sh
ssh -P {port-number} $*

In order for this to work without prompting for a password, you should generate a public and private
SSH key, and ensure that the public key has been added to the ~/.ssh/authorized_keys file on
machines you wish to use. See the ssh-keygen manual page for more information.

Testing

Once you have set up your remote-exec script, it is recommended that you test it from the command
line. For example:

∼/.allinea/remote-exec TESTHOST uname -n

Should return the output of uname -n on TESTHOST, without prompting for a password.

If you are having trouble setting up remote-exec, please contact Arm support at Arm support for
assistance.

Windows

The previously described functionality is also provided by the Windows remote client. However, there
are two differences:

1. The script is named remote-exec.cmd rather than remote-exec.

2. The default implementation uses the plink.exe executable supplied with Arm Forge.

Optional configuration

Arm Forge providess an Options window (Preferences on Mac OS X), which allows you to quickly edit
the settings outlined below.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 207

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

System

MPI Implementation: Allows you to tell Arm Forge which MPI implementation you are using.

Note: If you are not using Arm Forge to work with MPI programs select none.

Override default mpirun path: Allows you to override the path to the mpirun (or equivalent) com-
mand.

Select Debugger: Tells Arm Forge which underlying debugger it should use. This should almost always
be left as Automatic.

On Linux systems Arm Forge ships with four versions of the GNUGDB debugger: GDB 7.2, GDB 7.6.2,
GDB 7.10.1 and GDB 7.12.1. GDB 7.2 is the same version as shipped with DDT 4.2 and is provided for
backwards compatibility. GDB 7.6.2 is the recommended debugger for MAP. GDB 7.12.1 is the newest
debugger shipped with Arm Forge and is the recommended debugger for DDT. These recommended
defaults are selected automatically when Automatic (recommended) is selected from the System Settings
page on the Options window.

Create Root and Workers groups automatically: If this option is checked DDT will automatically
create aRoot group for rank 0 and aWorkers group for ranks 1–nwhen you start a newMPI session.

Use Shared Symbol Cache: The shared symbol cache is a file that contains all the symbols in your pro-
gram in a format that can be used directly by the debugger. Rather than loading and converting the sym-
bols itself, every debugger shares the same cache file. This significantly reduces the amount of memory
used on each node by the debuggers. For large programs theremay be a delay starting a jobwhile the cache
file is created as it may be quite large. The cache files are stored in $HOME/.allinea/symbols.
Arm recommends you only turn this option on if you are running out of memory on compute nodes when
debugging programs with DDT.

Heterogeneous system support: DDT has support for running heterogeneous MPMDMPI applications
where some nodes use one architecture and other nodes use another architecture. This requires a little
preparation of your Arm Forge installation. You must have a separate installation of DDT for each archi-
tecture. The architecture of the machine running the Arm Forge GUI is called the host architecture. You
must create symbolic links from the host architecture installation of Arm Forge to the other installations
for the other architectures. For example with a 64-bit x86_64 host architecture (running the GUI) and
some compute nodes running the 32-bit i686 architecture:

ln -s /path/to/arm-forge-i686/bin/ddt-debugger \
/path/to/arm-forge-x86_64/bin/ddt-debugger.i686

Enable CUDA software pre-emption: Allows debugging of CUDA kernels on a workstation with a
single GPU.

Default groups file: Entering a file here allows you to customize the groups displayed by DDT when
starting an MPI job. If you do not specify a file DDT will create the default Root and Workers groups if
the previous option is checked.

Note: A groups file can be created by right clicking the process groups panel and selecting Save groups…
while running your program.

Attach hosts file: When attaching, DDT will fetch a list of processes for each of the hosts listed in this
file. See section 5.9 Attaching to running programs for more details.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 208

Arm Forge 18.1.3

Job submission

This section allows you to configureArmForge to use a custommpirun command, or submit your jobs to
a queuing system. For more information on this, see section A.2 Integration with queuing systems.

Code viewer settings

This allows you to configure the appearance of the Arm Forge code viewer, which is used to display your
source code while debugging.

Tab size: Sets the width of a tab character in the source code display. A width of 8 means that a tab
character will have the same width as 8 space characters.

Font name: The name of the font used to display your source code. It is recommended that you use a
fixed width font.

Font size: The size of the font used to display your source code.

External Editor: This is the program Arm Forge will execute if you right click in the code viewer and
choose Open file in external editor. This command should launch a graphical editor. If no editor is
specified, Arm Forge will attempt to launch the default editor as configured in your desktop environ-
ment.

Colour Scheme: Color palette to use for the code viewer’s background, text and syntax highlighting.
Defined in Kate syntax definition format in the resource/styles directory of the Arm Forge in-
stall.

Visualize Whitespace: Enables or disables this display of symbols to represent whitespace. Useful for
distinguishing between space and tab characters.

Warn about potential programming errors: This setting enables or disables the use of static analysis
tools that are included with the Arm Forge installation. These tools support F77, C and C++, and analyze
the source code of viewed source files to discover common errors, but can cause heavy CPU usage on
the system running the Arm Forge user interface. You can disable this by unchecking this option.

Appearance

This section allows you to configure the graphical style of Arm Forge, as well as fonts and tab settings
for the code viewer.

Look and Feel: This determines the general graphical style of Arm Forge. This includes the appearance
of buttons, context menus.

Override System Font Settings: This setting can be used to change the font and size of all components
in Arm Forge (except the code viewer).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 209

Arm Forge 18.1.3

Getting support

While this user guide attempts to cover as many parts of the installation, features and uses of our tool as
possible, there will be scenarios or configurations that are not covered, or are only briefly mentioned, or
you may on occasion experience a problem using the product. If the solution to your problem is not in
this guide then please contact Arm support at Arm support.

Please provide as much detail as you can about the scenario in hand, such as:

• Version number of Arm Forge. For example, forge --version and your operating system
and the distribution, such as Red Hat Enterprise Linux 6.4. This information is all available by
using the --version option on the command line of any Arm tool:

bash$ forge --version

Arm DDT
Part of Arm Forge.
Copyright (c) 2002-2018 Arm Limited (or its affiliates). All

rights reserved.

Version: 18.0.2
Build ID: 556f23c4895e
Build Platform: Ubuntu 16.04 x86_64
Build Date: Jan 25 2018 21:15:53

Frontend OS: Ubuntu 16.04.2 LTS
Nodes'␣OS:␣unknown

␣␣␣Last␣connected␣ddt-debugger:␣unknown

• The compiler used and its version number.

• The MPI library and CUDA toolkit version if appropriate.

• A description of the issue : what you expected to happen and what actually happened.

• An exact copy of any warning or error messages that you may have encountered.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 210

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Supported platforms

A full list of supported platforms and configurations is maintained on the Arm Developer website.

DDT

See Arm DDT supported platforms.

Platform Operating Systems MPI Compilers
x86 and x86_64 Red Hat Enterprise

Linux and derivatives
6 and 7, SUSE Linux
Enterprise Server 11
and 12, Ubuntu 14.04
and 16.04

Bullx MPI 1.2.7 and
1.2.8, Cray MPT
(MPI/SHMEM), IBM
PE, Intel MPI 4.1.x and
5.0.x, MPICH 2.x.x
and 3.x.x, MVAPICH
2.0 and 2.1, Open MPI
1.6.x, 1.8.x (MPI/SH-
MEM), 1.10.x and
2.0.x, Platform MPI
9.x, SGI MPT 2.08,
2.10 and 2.11, and
Spectrum MPI 10.1.0

Cray, GNU 4.3.2+, In-
tel 13+, PGI 14+

Intel Xeon Phi
(Knight’s Landing)

Red Hat Enterprise
Linux 7.2 and SUSE
Linux Enterprise
Server 12

x86_64 platform MPI
support

Intel, GNU

IBM Power (PPC64le
little-endian,
POWER8)

Red Hat Enterprise
Linux 7.2

IBM PE, MPICH 3.x.x,
Open MPI 1.8.x and
1.10.x, and Spectrum
MPI 10.1.x

GNU

Arm®v8 (AArch64) Ubuntu 16.04, SUSE
Linux Enterprise
Server 12.2, and Red
Hat Enterprise Linux
7.4

Open MPI 1.8.x, 1.10.x
and 2.0.x

Arm Compiler for
HPC, GNU

NVIDIA
CUDA Toolkit
7.0/7.5/8.0/9.0/9.1

Linux - Cray OpenACC,
NVCC, PGI OpenACC
(14.4 and above), PGI
CUDA Fortran (14.1
and above)

Notes:

• Pretty printing of C++ types is supported for GNU and Intel compilers.

• Message queue debugging is supported for Bullx MPI, IBM PE, Intel MPI 4.1.x, MPICH, MVA-
PICH, and Open MPI.

• Version control integration is supported for Git 1.7+, Mercurial 2.1+ and Subversion 1.6+.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 211

https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/products/software-development-tools/hpc/arm-forge/arm-ddt/arm-ddt-platforms

Arm Forge 18.1.3

Batch schedulers supported:

• SLURM 2.6.3+ and 14.03+

• PBS

• TORQUE

• Moab

• Oracle Grid Engine

• Loadleveler

• Cobalt.

Batch scheduling systems are supported through Queue Templates.

See section A.2 Integration with queuing systems for more information.

See section E.16 SLURM for more details about SLURM support.

MAP

See Arm MAP supported platforms.

Platform Operating Systems MPI Compilers
x86_64 Red Hat Enterprise

Linux and derivatives
6 and 7, SUSE Linux
Enterprise Server 11
and 12, Ubuntu 14.04
and 16.04

Bullx MPI 1.2.7 and
1.2.8, Cray MPT, Intel
MPI 4.1.x and 5.0.x,
MPICH 2.x.x and
3.x.x, MVAPICH 2.0
and 2.1, Open MPI
1.6.x, 1.8.x, 1.10.x and
2.0.x, Platform MPI
9.x, SGI MPT 2.10 and
2.11

Cray, GNU 4.3.2+, In-
tel 13+, PGI 14+

Intel Xeon Phi
(Knight’s Landing)

Red Hat Enterprise
Linux 7.2 and SUSE
Linux Enterprise
Server 12

x86_64 MPI platform
support

Intel, GNU

IBM Power (PPC64le
little-endian,
POWER8)

Red Hat Enterprise
Linux 7.2

IBM PE, MPICH 3.x.x,
Open MPI 1.8.x and
1.10.x, and Spectrum
MPI 10.1.0

GNU

Arm®v8 (AArch64) Ubuntu 16.04, SUSE
Linux Enterprise
Server 12.2, and Red
Hat Enterprise Linux
7.4

Open MPI 1.8.x, 1.10.x
and 2.0.x

Arm Compiler for
HPC, GNU

NVIDIA CUDA
Toolkit 7.0/7.5/8.0

Linux - Cray OpenACC,
NVCC, PGI OpenACC
(14.4 and above), PGI
CUDA Fortran (14.1
and above)

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 212

https://developer.arm.com/products/software-development-tools/hpc/arm-forge/arm-map/arm-map-platforms

Arm Forge 18.1.3

The followingMPIs are also covered by our precompiledwrappers: OpenMPI 1.6.x-1.10.x, MPICH2.x.x
and 3.x.x, Intel MPI 4.x.x and 5.x.x, Cray MPT, Bullx MPI 1.2.7 and 1.2.8, MVAPICH 2.x.x.

Version control integration is supported for Git 1.7+, Mercurial 2.1+ and Subversion 1.6+.

The Arm profiling libraries must be explicitly linked with statically linked programs whichmostly applies
to the Cray X-Series.

Batch schedulers supported:

• SLURM 2.6.3+ and 14.03+

• PBS

• TORQUE

• Moab

• Oracle Grid Engine

• Loadleveler

• Cobalt.

Batch scheduling systems are supported through Queue Templates.

See section A.2 Integration with queuing systems for more information.

See section E.16 SLURM for more details about SLURM support.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 213

Arm Forge 18.1.3

Known issues

The most significant known issues for the latest release are summarized here:

MAP

The following known issues affect MAP.

• I/O metrics are not available on some systems, including Cray systems.

• CPU instruction metrics are only available on x86_64 systems.

• Thread activity is not sampled whilst a process is inside an MPI call with a duration spanning
multiple samples.

XALT Wrapper

The XALT wrapper is known to cause several issues when used in conjunction with Arm Forge, such
as:

• MPI programs cannot be debugged due to a hang during start up.

• Error messages are reported relating to the permissions on qstat.

For each case, the workaround is to disable the XALT wrapper. To disable the XALT wrapper, unload
the XALT module.

MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with the Arm Forge due to an MPICH defect. MPICH 3.1 is fully
supported.

Open MPI

Message queue debugging does not work in Open MPI 1.8.1 to 1.8.5. This issue is fixed in Open MPI
1.8.6.

Open MPI 2.1.x does not work with Arm Forge due to a bug in the Open MPI debug interface.

CUDA

The following known issues affect CUDA:

• To debug or profile a CUDA program, compile the program with a version of the CUDA toolkit
that matches the version of the installed CUDA driver. For example, if the CUDA 7.5 driver is
installed, then you must use the CUDA 7.5 toolkit to compile your program.

Note: Compiling with mismatched CUDA toolkit and CUDA driver versions will cause errors when
debugging or profiling.

Note: To force DDT to use a particular version of the CUDA debugger, set the ALLINEA_FORCE_
CUDA_VERSION environment variable to a version number. For example, ALLINEA_FORCE_

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 214

Arm Forge 18.1.3

CUDA_VERSION=7.5 for CUDA 7.5. This may cause issues due to CUDA version incompatibil-
ities.

• GPU profiling is only supported when using a CUDA 8.0 toolkit with a CUDA 8.0 driver.

• Cray CCE 8.1.2 OpenACC and previous releases will fail to generate debug information for local
variables in accelerated regions. Please install CCE 8.1.3.

• When debugging a CUDA application, adding watchpoints on either host or kernel code is not
supported.

• When debugging a CUDA application, using the Step threads together box and Run to here to step
into OpenMP regions is not supported. Breakpoints can be used to stop at the desired line.

• Stepping multiple warps simultaneously (e.g. those in the same block or kernel) is not supported
in CUDA 9.x. Individual warps can be stepped sequentially to achieve the same effect.

• When CUDA is set to Detect invalid accesses (memcheck), placing breakpoints in CUDA kernels
is not supported.

SLURM

On Cray X-series systems only native SLURM is supported, hybrid mode is not supported.

PGI compilers

Version 14.9 or later of the PGI compilers is required to compile the Arm MAP MPI wrappers as a static
library.

64-bit Arm/Power platforms

For best operation, DDT and MAP require debug symbols for the runtime libraries to be installed in
addition to debug symbols for the program itself.

F1 user guide

Sometimes on pressing “F1” the user guide may not display correctly. Some stale files appear to be able
to corrupt the document browser. If “F1” leads to invisible documents, please remove these cached files
by typing:

rm -r ∼/.local/share/data/Arm

See also

See also additional known issues here:

Category Known Issues
MPI Distribution E MPI distribution notes and known issues
Compiler F Compiler notes and known issues
Platform G Platform notes and known issues
General H General troubleshooting and known issues

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 215

Arm Forge 18.1.3

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 216

Arm Forge 18.1.3

MPI distribution notes and known issues

This appendix has brief notes onmany of theMPI distributions supported byArmDDT andArmMAP.

Advice on settings and problems particular to a distribution are given here. Note that MAP supports
fewer MPI distributions than DDT. See C Supported platforms for more details.

Berkeley UPC

Only the MPI transport is supported. Programs must be compiled with the -tv flag, for example:

upcc hello.c -o hello -g -tv

Bull MPI

Bull MPI 1, MPI 2 and Bull X-MPI are supported. For Bull X-MPI select the Open MPI or Open MPI
(Compatibility) MPIs, depending on whether ssh is allowed. If ssh is allowed choose Open MPI, or if
not choose Open MPI Compatibility mode.

SelectBullMPI or BullMPI 1 forBullMPI 1, or BullMPI 2 for BullMPI 2 from theMPI implementations
list. In the mpirun arguments box of the Run window you may also wish to specify the partition that you
wish to use by adding the following:

-p partition_name

You should ensure thatprun, the command used to launch jobs, is in yourPATH before startingDDT.

Cray MPT

This section only applies when using aprun. For srun (‘Native’ SLURM mode) see section E.16
SLURM.

DDT and MAP have been tested with Cray XT 5/6, XE6, XK6/7, and XC30 systems. DDT is able to
launch and support debugging jobs in excess of 700,000 cores.

A number of template files for launching applications from within the queue, using Arm’s job submission
interface, are included in the distribution. These may require some minor editing to cope with local
differences on your batch system.

To attach to a running job on a Cray system theMOMnodes, that is those nodes whereaprun is launched,
must be reachable via ssh from the node where DDT is running, for example on a login node. DDTmust
connect to these nodes in order to launch debugging daemons on the compute nodes. Users can either
specify the aprun host manually in the attach dialog when scanning for jobs, or configure a hosts list
containing all MOM nodes.

If the program is dynamically linked, DDT supports preloading of C/Fortran (no threads / threads) on
XK6/7 (requires aprun/ALPS 4.1 or later). Preloading of C++ (no threads / threads) is not supported
at this time.

If the program is dynamically linked,MAP supports preloading of the sampling libraries (requiresaprun/ALPS
4.1 or later), else MAP requires Arm’s sampling libraries to be linked with the application before running
on this platform. See 17.2.2 Linking for a set-by-step guide.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 217

Arm Forge 18.1.3

Using DDT with Cray ATP (the Abnormal Termination Process)

DDT is compatible with the Cray ATP system, which will be default on some XE systems. This runtime
addition to applications automatically gathers crashing process stacks, and can be used to let DDT attach
to a job before it is cleaned up during a crash.

To debug after a crash when an application is run with ATP but without a debugger, initialize the ATP_
HOLD_TIME environment variable before launching the job. For a large Petascale system, a value of 5
is sufficient, giving 5 minutes for the attach to complete.

The following example shows the typical output of an ATP session:

n10888@kaibab:∼> aprun -n 1200 ./atploop
Application 1110443 is crashing. ATP analysis proceeding...
Stack walkback for Rank 23 starting:
_start@start.S:113
__libc_start_main@libc-start.c:220
main@atploop.c:48
__kill@0x4b5be7
Stack walkback for Rank 23 done
Process died with signal 11: 'Segmentation␣fault'
View application merged backtrace tree file 'atpMergedBT.dot'
with 'statview'

You may need to 'module␣load␣stat'.

atpFrontend: Waiting 5 minutes for debugger to attach...

To debug the application at this point, launch DDT.

DDT can attach using the Attaching dialogs described in Section 5.9 Attaching to running programs, or
given the PID of the aprun process, the debugging set can be specified from the command line.

For example, to attach to the entire job:

ddt --attach-mpi=12772

If a particular subset of processes are required, then the subset notation could also be used to select
particular ranks.

ddt --attach-mpi=12772 --subset=23,100-112,782,1199

HP MPI

Select HP MPI as the MPI implementation.

A number of HPMPI users have reported a preference to using mpirun -f jobconfigfile instead
of mpirun -np 10 a.out for their particular system. It is possible to configure DDT to support this
configuration using the support for batch (queuing) systems.

The role of the queue template file is analogous to the -f jobconfigfile.

If your job config file normally contains:

-h node01 -np 2 a.out
-h node02 -np 2 a.out

Then your template file should contain:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 218

Arm Forge 18.1.3

-h node01 -np PROCS_PER_NODE_TAG /usr/local/ddt/bin/ddt-debugger
-h node02 -np PROCS_PER_NODE_TAG /usr/local/ddt/bin/ddt-debugger

Also the Submit Command box should be filled with the following:

mpirun -f

Select the Template uses NUM_NODES_TAG and PROCS_PER_NODE_TAG radio button. After this has
been configured by clicking OK, you will be able to start jobs. Note that the Run button is replaced with
Submit, and that the number of processes box is replaced by Number of Nodes.

IBM PE

Ensure that poe is in your path, and select IBM PE as the MPI implementation.

A sample Loadleveler script, which starts debugging jobs on POE systems, is included in the{installation-
directory}/templates directory.

To attach to already running POE jobs, SSH access to the compute nodes is required. Without SSH, DDT
has no way to connect to the ranks running on the nodes.

Known issue: IBM PE 2.1 and newer currently do not provide the debugging interface required for MPI
message queue debugging.

Intel MPI

Select Intel MPI from the MPI implementation list. DDT and MAP have been tested with Intel MPI
4.1.x, 5.0.x and later.

Make sure to pay attention to the changes in the mpivars.sh script with Intel MPI 5.0. You can pass
it an argument to say whether you want to use the debug or release version of the MPI libraries. The
default, if you omit the argument, is the release version, but message queue debugging will not work if
you use this version. The debug version must be explicitly used.

DDT also supports the Intel Message Checker tool that is included in the Intel Trace Analyser and Col-
lector software. A plugin for the Intel Trace Analyser and Collector version 7.1 is provided in DDT’s
plugins directory. Once you have installed the Intel Trace Analyser and Collector, you should make sure
that the following directories are in your LD_LIBRARY_PATH:

{path to intel install directory}/itac/7.1/lib
{path to intel install directory}/itac/7.1/slib

The Intel Message Checker only works if you are using the Intel MPI. Make sure Intel’s mpiexec is in
your path, and that your application was compiled against Intel’s MPI, then launch DDT, check the plugin
checkbox and debug your application as usual. If one of the above steps has been missed out, DDT may
report an error and say that the plugin could not be loaded.

Once you are debugging with the plugin loaded, DDT will automatically pause the application whenever
Intel Message Checker detects an error. The Intel Message Checker log can be seen in the standard error
(stderr) window.

Note that the Intel Message Checker will abort the job after 1 error by default. You can modify this by
adding -genv VT_CHECK_MAX_ERRORS0 to thempiun arguments box in the Runwindow. See Intel’s
documentation for more details on this and other environment variable modifiers.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 219

Arm Forge 18.1.3

Attach dialog: DDT cannot automatically discover existing running MPI jobs that use Intel MPI if the
processes are started using the mpiexec command (which uses the MPD process starting daemon). To
attach to an existing job you will need to list all potential compute nodes individually in the dialog.

Please note thempiexecmethod of startingMPI processes is deprecated by Intel and you are encouraged
to use mpirun or mpiexec.hydra (which use the newer scalable Hydra process starting daemon).
All processes that are started by either mpirun and mpiexec.hydra are discovered automatically by
Arm DDT.

If you use Spectrum LSF as workload manager in combination with Intel MPI and you get for example
one of the following errors:

• <target program> exited before it finished starting up. One or more processes were killed or died
without warning

• <target program> encountered an error before it initialised the MPI environment. Thread 0 termi-
nated with signal SIGKILL

or the job is killed otherwise during launching/attaching then you may need to set/export I_MPI_LSF_
USE_COLLECTIVE_LAUNCH=1 before executing the job. See Using IntelMPI under LSF quick guide
and Resolve the problem of the Intel MPI job …hang in the cluster for more details.

MPC

DDT supports MPC version 2.5.0 and upwards. MPC is not supported by MAP.

In order to debug an MPC program, a script needs adding to the MPC installation. This script is obtained
from DownloadMPC script and should be saved into the bin/mpcrun_opt subdirectory of your MPC
framework installation.

MPC in the Run window

When the MPC framework is selected as the MPI implementation, there is an additional field in the MPI
configuration within the Run window:

Number of MPC Tasks: The number of tasks that you wish to debug. MPC uses threads to split these
tasks over the number of processes specified.

Also, the mpirun arguments field is replaced with the field:

mpcrun arguments: (optional): The arguments that are passed to mpcrun. This should be used for
arguments to mpcrun not covered by the number of MPC tasks and number of processes fields.

An example usage is to override default threadingmodel specified in theMPC configuration by entering-
-multithreading=pthreads for POSIX threads or --multithreading=ethreads for user-
level threads.

The documentation for these arguments can be found at http://mpc.paratools.com/UsersGuide/Running.
This field is only displayed if the selected MPI implementation is the MPC framework.

Note: The OpenMP options are not available in the Run window, as MPC uses the number of tasks to
determine the number of OpenMP threads rather than OMP_NUM_THREADS.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 220

http://www-01.ibm.com/support/docview.wss?uid=isg3T1023404
http://www-01.ibm.com/support/docview.wss?uid=isg3T1020816
http://content.allinea.com/hidden/mpcrun_mpiexec_allinea
http://mpc.paratools.com/UsersGuide/Running

Arm Forge 18.1.3

MPC on the command line

There are two additional command-line arguments to DDT when using MPC that can be used as an
alternative to configuration in the GUI.

--mpc-task-nb The total number of MPC tasks to be created.

--mpc-process-nb The total number of processes to be started by mpcrun.

MPICH 1 p4

ChooseMPICH 1 Standard as the MPI implementation.

MPICH 1 p4 mpd

This daemon based distribution passes a limited set of arguments and environments to the job programs.
If the daemons do not start with the correct environment for DDT to start, then the environment passed
to the ddt-debugger backend daemons will be insufficient to start.

It should be possible to avoid these problems if .bashrc or .tcshrc/.cshrc are correct.

However, if unable to resolve these problems, you can pass HOME and LD_LIBRARY_PATH, plus any
other environment variables that you need.

This is achieved by adding-MPDENV -HOME={homedir} LD_LIBRARY_PATH= {ld-library-
path} to the Arguments area of the Run window.

Alternatively from the command-line you may simply write:

ddt {program-name} -MPDENV- HOME=$HOME LD_LIBRARY_PATH=
$LD_LIBRARY_PATH

Your shell will then fill in these values for you.

ChooseMPICH 1 Standard as the MPI implementation.

MPICH 2

If you see the error undefined reference to MPI_Status_c2f while building the MAP li-
braries then you need to rebuild MPICH 2 with Fortran support. See 17.2.2 Linking for more information
on linking.

MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with Arm Forge due to an MPICH. MPICH 3.1 addresses this and
is supported.

There are twoMPICH 3 modes: Standard and Compatibility. If the standard mode does not work on your
system select MPICH 3 (Compatibility) as the MPI Implementation on the System Settings page of the
Options window.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 221

Arm Forge 18.1.3

MVAPICH 2

Known issue: If memory debugging is enabled in DDT, this will interfere with the on-demand con-
nection system used by MVAPICH2 above a threshold process count and applications will fail to start.
This threshold default value is 64. To work around this issue, set the environment variable MV2_ON_
DEMAND_THRESHOLD to the maximum job size you expect on your system and then DDT will work
with memory debugging enabled for all jobs. This setting should not be a system wide default as it may
increase startup times for jobs and memory consumption.

MVAPICH 2 now offers mpirun_rsh instead of mpirun as a scalable launcher binary. To use this
with DDT, from File→Options (Arm Forge→ Preferences on Mac OS X) go to the System page, check
Override default mpirun path and enter mpirun_rsh. You should also add -hostfile <hosts>,
where <hosts> is the name of your hosts file, within the mpirun_rsh arguments field in the Run win-
dow.

To enable message Queue Support MVAPICH 2 must be compiled with the flags --enable-debug
--enable-sharedlib. These are not set by default.

Open MPI

Arm Forge has been tested with Open MPI 1.6.x, 1.8.x, 1.10.x and 2.0.x. Select Open MPI from the list
of MPI implementations.

Open MPI 2.1.x does not work with Arm Forge due to a bug in the Open MPI debug interface.

There are three different Open MPI choices in the list of MPI implementations to choose from in Arm
Forge when debugging or profiling for Open MPI.

• Open MPI – the job is launched with a custom ‘launch agent’ that, in turn, launches the Arm
daemons.

• Open MPI (Compatibility) – mpirun launches the Arm daemons directly. This startup method does
not take advantage of Arm’s scalable tree.

• Open MPI for Cray XT/XE/XK/XC – for OpenMPI running on Cray XT/XE/XK/XC systems. This
method is fully able to use Arm’s scalable tree infrastructure.

To launch with aprun (instead of mpirun) simply type the following on the command line:

ddt --mpi="OpenMPI␣(Cray␣XT/XE/XK)" --mpiexec aprun [arguments]
or
map --mpi="OpenMPI␣(Cray␣XT/XE/XK)" --mpiexec aprun [arguments]

The following section lists some known issues:

• Early versions of Open MPI 1.8 do not properly support message queue debugging. This is fixed
in Open MPI 1.8.6.

• If you are using the 1.6.x series of OpenMPI configuredwith the--enable-orterun-prefix-
by-default flag then DDT requires patch release 1.6.3 or later due to a defect in earlier versions
of the 1.6.x series.

• The version of Open MPI packaged with Ubuntu has the Open MPI debug libraries stripped. This
prevents the Message Queues feature of DDT from working.

• With Open MPI 1.3.4 and Intel Compiler v11, the default build will optimize away a vital call
during the startup protocol which means the default Open MPI start up will not work. If this is

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 222

Arm Forge 18.1.3

your combination, either update your Open MPI, or select Open MPI (Compatibility) instead as
the DDT MPI Implementation.

• On Infiniband systems, Open MPI and CUDA can conflict in a manner that results in failure to
start processes, or a failure for processes to be debuggable. To enable CUDA interoperability with
Infiniband, set the CUDA environment variable CUDA_NIC_INTEROP to 1.

Platform MPI

Platform MPI 9.x is supported, but only with the mpirun command. Currently mpiexec is not sup-
ported.

SGI MPT / SGI Altix

For SGI use one of the following configurations:

• If using SGI MPT 2.10+, select SGI MPT (2.10+, batch) as the MPI implementation.

• If using SGI MPT 2.08+, select SGI MPT (2.08+, batch) as the MPI implementation.

• If using an older version of SGI MPT (2.07 or before) select SGI MPT as the MPI implementation.

If you are using SGI MPT with PBS or SLURM and would normally use mpiexec_mpt to launch
your program you will need to use the pbs-sgi-mpt.qtf queue template file and select SGI MPT
(Batch) as the MPI implementation.

If you are using SGIMPTwith SLURM andwould normally use mpiexec_mpt to launch your program
you will need to use srun --mpi=pmi2 directly.

mpiexec_mpt from versions of SGI MPT prior to 2.10 may prevent MAP from starting when preload-
ing the Arm profiler and MPI wrapper libraries. Arm recommends you explicitly link your programs
against these libraries to work around this problem.

Preloading the Arm profiler and MPI wrapper libraries is not supported in express launch mode. Arm
recommends you explicitly link your programs against these libraries to work around this problem.

Some SGI systems cannot compile programs on the batch nodes (one reason might be because the gcc
package is not installed). If this applies to your system you must explicitly compile the ArmMPI wrapper
library using the make-profiler-libraries command and then explicitly link your programs
against the Arm profiler and MPI wrapper libraries.

The mpio.h header file shipped with SGI MPT 2.09 and SGI MPT 2.10 contains a mismatch between
the declaration of MPI_File_set_view and some other similar functions and their PMPI equivalents,
for example PMPI_File_set_view. This prevents MAP from generating the MPI wrapper library.
Please contact SGI for a fix.

SGI MPT 2.09 requires the MPI_SUPPORT_DDT environment variable to be set to 1 to avoid startup
issues when debugging with DDT, or profiling with MAP.

SLURM

To start MPI programs using the srun command instead of your MPI’s usual mpirun command (or
equivalent) select SLURM (MPMD) as the MPI Implementation on the System Settings page of the Op-
tions.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 223

Arm Forge 18.1.3

While this option will work with most MPIs, it will not work with all. On Cray, ‘Hybrid’ SLURM mode
(that is, SLURM + ALPS) is not supported. Instead, you must start your program with Cray’s aprun.
See Section E.3 Cray MPT.

SLURM may be used as a job scheduler with DDT and MAP through the use of a queue template file.
See templates/slurm.qtf in the Arm Forge installation for an example and section A.2 Integration
with queuing systems for more information on how to customize the template.

Spectrum MPI

Spectrum MPI 10.1.0 is supported for IBM Power (PPC64le little-endian, POWER8) with the mpirun
and mpiexec commands. SpectrumMPI 10.1.1 is additionally supported with the jsrun (PMIx mode)
command. For x86-64 platforms mpirun and mpiexec commands are supported.

Message queue information is currently not available with Spectrum MPI.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 224

Arm Forge 18.1.3

Compiler notes and known issues

When compiling for a DDT debugging session, always compile with a minimal amount of optimization,
or no optimization. Some compilers reorder instruction execution and omit debug information when
compiled with optimization turned on.

AMD OpenCL compiler

Not supported by MAP.

The AMD OpenCL compiler can produce debuggable OpenCL binaries. However, the target must be
the CPU rather than the GPU device. The build flags -g -O0 must be used when building the OpenCL
kernel, typically by setting the environment variable:

AMD_OCL_BUILD_OPTIONS_APPEND="-g␣-O0"

The example codes in the AMD OpenCL toolkit are able to run on the CPU by adding a parameter --
device cpu and will result, with the above environment variable set, in debuggable OpenCL.

Arm Fortran compiler

Debugging of Fortran code may be incomplete or inaccurate. For more information, check the known
issues section in the ARM HPC Compiler release notes.

Berkeley UPC compiler

Not supported by MAP.

The Berkeley UPC compiler is fully supported by Arm DDT, but only when using the MPI conduit (other
conduits are not supported).

Warning: If you do not compile the program fixing the number of threads (using the -fupc-threads-
<numberOfThreads> flag), a known issue arises at the end of the program execution.

Note: Source files must end with the extension .upc in order for UPC support to be enabled.

Cray compiler environment

DDT supports Cray Fast Track Debugging. In DDT 5.0 it is only supported when using GDB 7.2 and not
when using GDB 7.6.2. You can select GDB 7.2 on the System Settings page of the Options window. To
enable Fast Track Debugging compile your program with -Gfast instead of -g.

See the Using Cray Fast-track Debugging section of the Cray Programming Environment User’s Guide
for more information.

Call-frame information can also be incorrectly recorded, which can sometimes lead to DDT stepping into
a function instead of stepping over it. This may also result in time being allocated to incorrect functions
in MAP.

C++ pretty printing of the STL is not supported by DDT for the Cray compiler.

Known Issue: If compiling static binaries then linking in the DDT memory debugging library is not
straightforward for F90 applications. You will need to do the following:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 225

Arm Forge 18.1.3

1. Manually rerun the compiler command with the -v (verbose) option to get the linker command
line. It is assumed that the object files are already created.

2. Run ld manually to produce the final statically linked executable. For this, the following path
modifications will be needed in the previous ld command: Add -L{ddt-path}/lib/64 -
ldmalloc immediately prior to where -lc is located. For multi-threaded programs you have to
add -ldmallocth -lpthread before the -lc option.

See CUDA/GPU debugging notes for details of Cray OpenMP Accelerator support.

Arm DDT fully supports the Cray UPC compiler. Not supported by MAP.

Compile serial programs on Cray

To debug serial (non-MPI) code with DDT on Cray, first you have to load the PMI module and then
compile your code using the Cray compiler adding the flags -Wl,-u,PMI_Init to link against the
Cray PMI.

When you launch DDT with your serial program, the run dialog will automatically detect the Cray MPI
even though it is a serial program and you just have to set one process and press run.

Additionally, the following environment variables should be exported in your job submission script:

DDT_MPI_INIT=main
DDT_HOLD_MPI_INIT=1

GNU

The compiler flag -fomit-frame-pointer should never be used in an application which you intend
to debug or profile. Doing so can mean Arm Forge cannot properly discover your stack frames and you
will be unable to see which lines of code your program has stopped at.

For GNU C++, large projects can often result in vast debug information size, which can lead to large
memory usage by DDT’s back end debuggers. For example, each instance of an STL class used in
different object files will result in the compiler generating the same information in each object file.

The -foptimize-sibling-calls optimization (used in -O2, -O3 and -Os) interfere with the
detection of some OpenMP regions. If your code is affected with this issue add -fno-optimize-
sibling-calls to disable it and allow MAP to detect all the OpenMP regions in your code.

Using the -dwarf-2 flag together with the -strict-dwarf flag may cause problems in stack un-
winding, resulting in a “cannot find the frame base” error. DWARF 2 does not provide all the information
neceesary for unwinding the call stack, so many compilers add DWARF 3 extensions with the missing
information. Using the -strict-dwarf flag prevents compilers from doing so, resulting in the afore-
mentioned message. Removing -strict-dwarf should fix this problem.

GNU UPC

DDT also supports the GCC-UPC compiler (upc_threads_model_process only; the pthread-
tls threads model is not supported). MAP does not support this.

To compile and install GCC UPC 4.8 without TLS it is necessary to modify the configuration file path/
to/upc/source/code/directory/libgupc/configure, replacing all the entries upc_cv_-
gcc_tls_supported=“yes” to upc_cv_gcc_tls_supported=“no”.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 226

Arm Forge 18.1.3

To run a UPC program in DDT you have to select the MPI implementation “GCC libupc SMP (no
TLS)”

IBM XLC/XLF

It is advisable to use the -qfullpath option to the IBM compilers (XLC/XLF) in order for source files
to be found automatically when they are in directories other than that containing the executable. This
flag has been known to fail for mpxlf95, and so there may be circumstances when you must right click
in the project navigator and add additional paths to scan for source files.

Module data items behave differently between 32 and 64 bit mode, with 32-bit mode generally enabling
access to more module variables than 64-bit mode.

Missing debug information in the binaries produced by XLF can prevent DDT from showing the values in
Fortran pointers and allocatable arrays correctly, and assumed-size arrays cannot be shown at all. Please
update to the latest compiler version before reporting this to Arm support at Arm support.

Sometimes, when a process is paused inside a system or library call, DDT will be unable to display the
stack, or the position of the program in the Code view. To get around this, it is sometimes necessary to
select a known line of code and choose Run to here. If this bug affects you, please contact Arm support
at Arm support.

For the best OpenMPdebug experience, compile your codewith -�qsmp=omp:noopt instead of-qsmp=omp.
For more information about the issues you may encounter when debugging OpenMP, see 5.5 Debugging
OpenMP programs.

DDT has been tested against the C compiler xlc version 13.1 and Fortran/Fortran 90 compiler xlf version
15.1 on Linux.

To view Fortran assumed size arrays in DDT you must first right click on the variable, select Edit Type..,
and enter the type of the variable with its bounds, for example integer arr(5).

MAP only supports xlc and xlf on Linux.

Intel compilers

DDT and MAP have been tested with versions 13 and 14.

If you experience problems with missing or incomplete stack traces (for example [partial trace]
entries in MAP or no stack traces for allocations in DDT’s View Pointer Detailswindow) try recompiling
your program with the -fno-omit-frame-pointer argument. The Intel compiler may omit frame
pointers by default which can mean Arm Forge cannot properly discover your stack frames and you will
be unable to see which lines of code your program has stopped at.

Some optimizations performed when -ax options are specified to IFC/ICC can result in programs which
cannot be debugged. This is due to the reuse by the compiler of the frame-pointer, which makes DDT
unable to obtain a stack trace.

Some optimizations performed using Interprocedural Optimization (IPO), which is implicitly enabled by
the-O3 flag, can interfere withMAP’s ability to display call stacks, making it more difficult to understand
what the program is doing. To prevent this, it is recommended that IPO be disabled by adding -no-ip
-no-ipo to the compiler flags. The -no-ip flag disables IPO within files while -no-ipo disables
IPO between files.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 227

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

The Intel compiler does not always provide enough information to correctly determine the bounds of
some Fortran arrays when they are passed as parameters, in particular the lower-bound of assumed-shape
arrays.

The Intel OpenMP compiler will always optimize parallel regions, regardless of any -O0 settings. This
means that your code may jump around unexpectedly while stepping inside such regions, and that any
variables which may have been optimized out by the compiler may be shownwith nonsense values. There
have also been problems reported in viewing thread-private data structures and arrays. If these affect you,
please contact Arm support at Arm support.

Files with a .F or .F90 extension are automatically preprocessed by the Intel compiler. This can also
be turned on with the -fpp command-line option. Unfortunately, the Intel compiler does not include the
correct location of the source file in the executable produced when preprocessing is used. If your Fortran
file does not make use of macros and does not need preprocessing, you can simply rename its extension
to .f or .f90 and/or remove the -fpp flag from the compile line instead. Alternatively, you can help
DDT discover the source file by right clicking in the Project Files window and then selecting Add/view
source directory and adding the correct directory.

Some versions of the compiler emit incorrect debug information for OpenMP programs which may cause
some OpenMP variables to show as <not allocated>.

By default Fortran PARAMETERS are not included in the debug information output by the Intel com-
piler. You can force them to be included by passing the -debug-parameters all option to the
compiler.

Known Issue: If compiling static binaries, for example on a Cray XT/XE machine, then linking in the
DDT memory debugging library is not straightforward for F90 applications. You need to manually rerun
the last ld command (as seen with ifort -v) to include -L{ddt-path}/lib/64-ldmalloc in
two locations:

1. Immediately prior to where -lc is located.

2. Include the -zmuldefs option at the start of the ld line.

STL sets, maps and multi-maps cannot be fully explored as only the total number of items is displayed.
Other data types are unaffected.

To disable pretty printing set the environment variable ALLINEA_DISABLE_PRETTY_PRINTING to
1 before starting DDT. This will enable you to manually inspect the variable in the case of, for example,
the incomplete std::set implementations.

Pathscale EKO compilers

Not supported by MAP.

There are some known issues as shown in the following list:

• The default Fortran compiler options may not generate enough information for DDT to showwhere
memory was allocated from. View Pointer Detailswill not showwhich line of source code memory
was allocated from. To enable this, compile and link with the following flags:

-Wl,--export-dynamic -TENV:frame_pointer=ON -funwind-tables

• For C programs, simply compiling with -g is sufficient.

• When using the Fortran compiler, you may have to place breakpoints in myfile.i instead of
myfile.f90 or myfile.F90. Arm is currently investigating this. Please contact Arm support
at Arm support if this applies to your code.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 228

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

• Procedure names in modules often have extra information appended to them. This does not other-
wise affect the operation of DDT with the Pathscale compiler.

• The Pathscale 3.1 OpenMP library has an issue which makes it incompatible with programs that
call the fork system call on some machines.

• Some versions of the Pathscale compiler (for example, 3.1) do not emit complete DWARF de-
bugging information for typedef’ed structures. These may show up in DDT with a void type
instead of the expected type.

• Multi-dimensional allocatable arrays can also be given incorrect dimension upper or lower bounds.
This has only been reproduced for large arrays, small arrays seem to be unaffected. This has been
observed with version 3.2 of the compiler, newer and older versions may also exhibit the same
issue.

Portland Group compilers

DDT has been tested with Portland Tools 9 onwards.

MAP has been tested with version 14 of the PGI compilers. Older versions are not supported as they do
not allow line level profiling. Always compile with -Meh_frame to provide sufficient information for
profiling.

If you experience problems with missing or incomplete stack traces (that is [partial trace] entries
in MAP or no stack traces for allocations in DDT’s View Pointer Details window) try recompiling your
program with the -Mframe argument. The PGI compiler may omit frame pointers by default which can
mean Arm Forge cannot properly discover your stack frames and you will be unable to see which lines
of code your program has stopped at.

Some known issues are listed here:

• Included files in Fortran 90 generate incorrect debug information with respect to file and line in-
formation. The information gives line numbers which refer to line numbers from the included file
but give the including file as the file.

• The PGI compiler may emit incorrect line number information for templated C++ functions or omit
it entirely. This may cause DDT to show your program on a different line to the one expected, and
also mean that breakpoints may not function as expected.

• The PGI compiler does not emit the correct debugging tags for proper support of inheritance in
C++, which prevents viewing of base class members.

• When using memory debugging with statically linked PGI executables (-Bstatic) because of
the in-built ordering of library linkage for F77/F90, you will need to add a localrc file to your
PGI installation which defines the correct linkage when using DDT and (static) memory debugging.
To your {pgi-path}/bin/localrc append the following:

switch -Bstaticddt is
help(Link for DDT memory debugging with static binding)
helpgroup(linker)
append(LDARGS=--eh-frame-hdr -z muldefs)
append(LDARGS=-Bstatic)
append(LDARGS=-L{DDT-Install-Path}/lib/64)
set(CRTL=$if(-Bstaticddt,-ldmallocthcxx -lc -lns$(PREFIX)c
-l$(PREFIX)c, -lc -lns$(PREFIX)c -l$(PREFIX)c))

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 229

Arm Forge 18.1.3

set(LC=$if(-Bstaticddt,-ldmallocthcxx -lgcc -lgcc_eh -lc -
lgcc

-lgcc_eh -lc, -lgcc -lc -lgcc));

pgf90 -helpwill now list -Bstaticddt as a compilation flag. You should now use that flag
for memory debugging with static linking.

This does not affect the default method of using PGI and memory debugging, which is to use
dynamic libraries.

Note that some versions of ld (notably in SLES 9 and 10) silently ignore the --eh-frame-hdr
argument in the above configuration, and a full stack for F90 allocated memory will not be shown
in DDT. You can work around this limitation by replacing the system ld, or by including a more
recent ld earlier in your path. This does not affect memory debugging in C/C++.

• When you pass an array splice as an argument to a subroutine that has an assumed shape array
argument, the offset of the array splice is currently ignored by DDT. Please contact Arm support
at Arm support if this affects you.

• DDT may show extra symbols for pointers to arrays and some other types. For example if your
program uses the variable ialloc2d then the symbol ialloc2d$sd may also be displayed.
The extra symbols are added by the compiler and may be ignored.

• The Portland compiler also wraps F90 allocations in a compiler-handled allocation area, rather than
directly using the systems memory allocation libraries directly for each allocate statement. This
means that bounds protection (Guard Pages) cannot function correctly with this compiler.

• DDT passes on all variables that the compiler has told gdb to be in scope for a routine. For the
PGI compiler this can include internal variables and variables from Fortran modules even when the
only clause has been used to restrict access. DDT is unable to restrict the list to variables actually
used in application code.

• Versions of the PGI compiler prior to 14.9 are unable to compile a static version of the Arm MPI
wrapper library, attempting to do so will result in messages such as “Error: symbol 'MPI_-
F_MPI_IN_PLACE' can not be both weak and common”. This is due to a bug in the
PGI compiler’s weak object support.

For information concerning the Portland Accelerator model and debugging this with DDT, please
see the 15 CUDA GPU debugging of this userguide.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 230

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Platform notes and known issues

This chapter notes any particular issues affecting platforms. If a supported machine is not listed in this
chapter, it is because there is no known issue.

CRAY

There are a number of issues you should be aware of:

• For ‘Native’ SLURM mode systems GDB 7.6.2 must be selected as the debugger or the job might
not start properly. See section A.5.1 System for more information on selecting the debugger.

• MAP users on Cray need to read 17.2.1 Debugging symbols and 17.2.5 Static linking on Cray X-
Series systems. Arm supplies module files in FORGE_INSTALLATION_PATH/share/mod-
ules/cray.

See 17.2.6 Dynamic and static linking on Cray X-Series systems using the modules environment.

• Note that the default mode for compilers on this platform is to link statically. Section F.9 Portland
Group compilers describes how to ensure that DDT’s memory debugging capabilities will work
with the PGI compilers in this mode.

• Message queue debugging is not provided by the XT/XE/XK environment.

• Cray XK6/7 GPU debugging requires the CUDA Toolkit 5 or above to be installed.

• Cray XK6/7 GPU debugging requires a working TMPDIR to be available, if /tmp is not available.
It is important that this directory is not a shared filesystem such as NFS or Lustre. To set TMPDIR
for the compute nodes only use the DDT_BACKEND_TMPDIR environment variable instead. DDT
will automatically propagate this environment variable to the compute nodes.

• Running single process scalar codes, that is non-MPI/SHMEM/UPC applications, on the compute
nodes requires an extra step, as these are required to be executed by aprun but aprun will not
execute these via the ordinary debug-supporting protocols.

The preferred and simpleworkaround is to use the.qtf templates, for examplecray-slurm.qtf
or cray-pbs.qtf, which handle this automatically by (for non-MPI codes) ensuring that an al-
ternative protocol is followed. To use these qtf files, select File → Options (Arm Forge →
Preferences on Mac OS X) , go to the Job Submission page and enable submission via the queue,
and ensure that the Also submit scalar jobs via the queue setting is enabled. The change is to
explicitly use aprun for non-MPI processes and this can be seen in the provided queue template
files:

if ["MPI_TAG" == "none"]; then
aprun -n 1 env AUTO_LAUNCH_TAG

else
AUTO_LAUNCH_TAG

fi

• Running a dynamically-linked single process non-MPI program that will run on a compute node,
that is non-MPI CUDA or OpenACC code, will require an additional flag to the compiler: -
target=native. This prevents the compiler linking in the MPI job launch routines that will
otherwise interfere with debuggers on this platform. Alternatively, convert the program to an MPI
one by adding MPI_Init and MPI_Finalize statements and run it as a one-process MPI job.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 231

Arm Forge 18.1.3

GNU/Linux systems

General

There are a number of items you should be aware of:

• When using a 64-bit Linux please note that it is essential to use the 64-bit version of Arm Forge on
this platform. This applies regardless of whether the debugged program is 32-bit or 64-bit.

• POSIX thread cancellation does not work when running under a debugger. This is because the
‘signal info’ associated with a signal is lost when the signal is intercepted and sent again by the
debugger, causing the cancellation request to be ignored by the receiving thread. More generally
the ‘signal info’ associated with a signal is not available when running under a debugger.

• Some 64-bit GNU/Linux systemswhich have a bug in theGNUC library, specificallylibthread_-
db.so.1. This can crash the debugger when debugging multi-threaded programs. Check with
your Linux distribution for a fix. As a workaround you can try compiling your program as a stati-
cally linked executable using the -static compiler flag.

• For the Arm architecture breakpoints can be unreliable and will randomly be passed without stop-
ping for some multicore processors (including the NVIDIA Tegra 2) unless a kernel option (fix) is
built-in. The required kernel option is:

CONFIG_ARM_ERRATA_720789=y

This option is not present by default in many kernel builds.

SUSE Linux

There are a number of known issues you should be aware of:

• There is a known issue with SUSE 11 which may cause you to experience a crash similar to the
following:

Other: *** glibc detected *** /home/user/wave_c: free(): invalid
pointer: 0x00007ffff7e02a80 ***

Other: ======= Backtrace: =========
Other: /lib64/libc.so.6[0x7fffeef81118]
Other: /lib64/libc.so.6(cfree+0x76)[0x7fffeef82c76]
Other: /lib64/libnss_nis.so.2(_nss_nis_getpwuid_r+0xe9)[0

x7fffecd4f089]
Other: /lib64/libnss_compat.so.2[0x7fffed125ab8]

The implementation of libnss_nis.so.2 attempts to resolve symbol names using its direct
dependencies before using the global namespace. This causes the libc implementation of, for ex-
ample, free to be linked instead of the intended libdmalloc implementation.

If you encounter this crash, then the only solution is to disable memory debugging and contact
SUSE about the availability of a fix.

• There is a known issue with SUSE 11 using the 2.6 kernel where some small fraction of samples
may have invalid or incorrect stack traces. This has been observed on the 2.6.27.19-5 kernel and
typically affected<1% of samples. This is caused by some bad unwind information in the kernel’s
vdso, the Virtual Dynamic Shared Object. The solution is to upgrade to a newer version of the
kernel (>3).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 232

Arm Forge 18.1.3

Attaching

To attach to a running job:

1. Open the Attach window by clicking on the Attach button on the Welcome page.

2. DDT needs to know which login / batch node runjob is running on. Click the Choose Hosts…
button to add the necessary login / batch node if not already present. You must be able to SSH into
the login / batch node without a password.

3. Select the Automatically-detected jobs tab. Do not use the List of processes tab.

4. Optionally specify a subset of ranks to attach to in the Attach to processes box.

5. Click the Attach to… button.

The following caveats apply:

• Reattaching to a job is not supported. You may only attach to a job once.

• No other tool must be attached, or have been attached, to the job.

• It is possible to attach to a subset of ranks. However, because reattaching is not supported, it is not
possible to subsequently change the subset.

• It may take a little time for a job to show up in the Attach window after you submit it. If a newly
started job does not show up wait a while then click Rescan nodes.

Intel Xeon

Intel Xeon processors starting with Sandy Bridge include Running Average Power Limit (RAPL) coun-
ters. MAP can use the RAPL counters to provide energy and power consumption information for your
programs.

Enabling RAPL energy and power counters when profiling

To enable the RAPL counters to be read byMAP you must load the intel_rapl kernel module.

The intel_rapl module is included in Linux kernel releases 3.13 and later. For testing purposes
Arm have backported the powercap and intel_rapl modules for older kernel releases. You may
download the backported modules from:

Download backported modules

Note: These backported modules are unsupported and should be used for testing purposes only. No sup-
port is provided by Arm, your system vendor or the Linux kernel team for the backported modules.

Intel Xeon Phi (Knight’s Landing)

The Intel Xeon Phi Knight’s Landing platform is only supported in self-hosted mode, like an x86_64
platform.

You may experience higher than normal overhead when using MAP on this platform.

See section H.9.12 for more information.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 233

http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2

Arm Forge 18.1.3

NVIDIA CUDA

CUDA known issues

There are a number of issues you should be aware of:

• DDT’s memory leak reports do not track GPU memory leaks.

• Debugging paired CPU/GPU core files is possible but is not yet fully supported.

• CUDA metrics in MAP are not available for statically-linked programs.

• CUDA metrics in MAP are measured at the node level, not the card level.

Arm

Arm®v8 (AArch64) known issues

There are a number of issues you should be aware of:

• For best operation, DDT requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, DDT may show the incorrect values for
local variables in program code if the program is currently stopped inside a runtime library. At a
minimum Arm recommends the glibc and OpenMP (if applicable) debug symbols are installed.

• For best operation, MAP requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, MAP may report time in partial traces
or unknown locations without debug symbols. At a minimum Arm recommends the glibc and
OpenMP (if applicable) debug symbols are installed.

• Unwind information is not always compiled in by default on this platform. This may result in
partial trace nodes being displayed in the the MAP parallel stack view. To avoid this, pro-
grams that are not compiled with debug information (-g) should at least be compiled with either
the -fasynchronous-unwind-tables flag or the -funwind-tables flag, preferably
the former.

• MAP does not support CPU instruction metrics on this platform. Linux perf event metrics are
available instead. To ensure access to performance counters is not restricted, use sysctl -w
kernel.perf_event_paranoid=0.

• MAP may fail to finalize a profiling session if the cores are oversubscribed on AArch64 platforms.
For example, this issue is likely to occur when attempting to profile a 64 process MPI program
on a machine with only 8 cores. This issue will appear as a hang after finishing a profile or after
pressing the ‘Stop and analyze’ button.

POWER

POWER8 (POWER 64-bit) known issues

There are a number of issues you should be aware of:

• For best operation, DDT requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, DDT may show the incorrect values for
local variables in program code if the program is currently stopped inside a runtime library. At a
minimum Arm recommends the glibc and OpenMP (if applicable) debug symbols are installed.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 234

Arm Forge 18.1.3

• For best operation, MAP requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, MAP may report time in partial traces
or unknown locations without debug symbols. At a minimum Arm recommends the glibc and
OpenMP (if applicable) debug symbols are installed.

• MAP does not support CPU instruction metrics on this platform.

MAC OS X

The following menu items are not supported:

• Edit→ Special Characters...

• Edit→ Start Dictation

• View→ Enter Full Screen

• View→ Show Tab Bar

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 235

Arm Forge 18.1.3

General troubleshooting and known issues

If you have problems with any of the Arm Forge products, please take a look at the topics in this sec-
tion.

Additionally, check the support pages on the Arm Developer website, and make sure you have the latest
version of the product.

General troubleshooting

Problems starting the GUI

If the GUI is unable to start, this is usually due to one of the following reasons:

1. Cannot connect to an X server. If you are running on a remote machine, make sure that your
DISPLAY variable is set appropriately and that you can run simple X applications such as xterm
from the same command-line.

2. The license file is invalid. In this case the software will issue an error message. You should verify
that you have a license file for the correct product in the license directory and check that the date
inside it is still valid. If the program still refuses to start, please contact Arm support at Arm support.

3. You are using Licence Server, but the Arm Forge products cannot connect to it. See the Licence
Server user guide for more information on troubleshooting these problems.

Problems reading this document

If when pressing F1 a blank screen appears instead of this document, there may be corrupt files that are
preventing the documentation system (Qt Assistant) from starting. You can resolve this by removing the
stale files, which are found in $HOME/.local/share/data/Allinea.

Starting a program

Problems starting scalar programs

There are a number of possible sources for problems. The most common is, for users with a multi-
process license, that the Run Without MPI Support check box has not been checked. If the software
reports a problem with MPI and you know your program is not using MPI, then this is usually the cause.
If you have checked this box and the software still mentions MPI then please contact Arm support at Arm
support.

Other potential problems are:

• A previous Arm session is still running, or has not released resources required for the new session.
Usually this can be resolved by killing stale processes. The most obvious symptom of this is a
delay of approximately 60 seconds and a message stating that not all processes connected. You
may also see, in the terminal, a QServerSocket message.

• The target program does not exist or is not executable.

• Arm Forge products’ backend daemon, ddt-debugger, is missing from the bin directory. In
this case you should check your installation, and contact Arm support at Arm support.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 236

https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Problems starting multi-process programs

If you encounter problems while starting an MPI program, the first step is to establish that it is possible
to run a single-process (non-MPI) program such as a trivial “Hello, World!”, and resolve such issues that
may arise. After this, attempt to run a multi-process job, and the symptoms will often allow a reasonable
diagnosis to be made.

In the first instance verify that MPI is working correctly by running a job, without any of Arm Forge
products applied, such as the example in the examples directory.

mpirun -np 8 ./a.out

Verify that mpirun is in the PATH, or the environment variable ALLINEA_MPIRUN is set to the full
pathname of mpirun.

If the progress bar does not report that at least process 0 has connected, then the remote ddt-debugger
daemons cannot be started or cannot connect to the GUI.

Sometimes problems are caused by environment variables not propagating to the remote nodes while
starting a job. To a large extent, the solution to these problems depends on the MPI implementation that
is being used.

In the simplest case, for rsh based systems such as a default MPICH 1 installation, correct configuration
can be verified by rsh-ing to a node and examining the environment. It is worthwhile rsh-ing with the env
command to the node as this will not see any environment variables set inside the .profile command.
For example if your nodes use a .profile instead of a .bashrc for each user then you may see a
different output when running rsh node env than when you run rsh node and then run env inside
the new shell.

If only one, or very few, processes connect, it may be because you have not chosen the correct MPI
implementation. Please examine the list and look carefully at the options. Should no other suitable MPI
be found, please contact Arm support for advice at Arm support.

If a large number of processes are reported by the status bar to have connected, then it is possible that
some have failed to start due to resource exhaustion, timing out, or, unusually, an unexplained crash. You
should verify again that MPI is still working, as some MPI distributions do not release all semaphore
resources correctly, for example MPICH 1 on Redhat with SMP support built in.

To check for time-out problems, set the ALLINEA_NO_TIMEOUT environment variable to 1 before
launching the GUI and see if further progress is made. This is not a solution, but aids the diagnosis. If
all processes now start, please contact Arm for support at Arm support.

No shared home directory

If your home directory is not accessible to all the nodes in your cluster then your jobs may fail to
start.

To resolve the problem open the file ~/.allinea/system.config in a text editor. Change the
shared directory option in the [startup] section so it points to a directory that is available and
shared by all the nodes. If no such directory exists, change the use session cookies option to no
instead.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 237

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

DDT or MAP cannot find your hosts or the executable

This can happen when attempting to attach to a process running on other machines. Ensure that the host
name(s) that DDT complains about are reachable using ping.

If DDT fails to find the executable, ensure that it is available in the same directory on everymachine.

See section A.4 Connecting to remote programs (remote-exec) for more information on configuring ac-
cess to remote machines.

The progress bar does not move and Arm Forge times out

It is possible that the program ddt-debugger has not been started by mpirun or has aborted. You
can log onto your nodes and confirm this by looking at the process list before clicking Ok when Arm
Forge times out. Ensure ddt-debugger has all the libraries it needs and that it can run successfully
on the nodes using mpirun.

Alternatively, there may be one or more processes (ddt-debugger, mpirun, rsh) which could not
be terminated. This can happen if Arm Forge is killed during its startup or due to MPI implementation
issues. You will have to kill the processes manually, using ps x to get the process ids and then kill or
kill -9 to terminate them.

This issue can also arise formpich-p4mpd, and the solution is explained inAppendix EMPI distribution
notes and known issues.

If your intended mpirun command is not in your PATH, you may either add it to your PATH or set the
environment variable ALLINEA_MPIRUN to contain the full pathname of the correct mpirun.

If your home directory is not accessible by all the nodes in your cluster then your jobs may fail to start in
this fashion.

See section H.2.3 No shared home directory.

Attaching

The system does not allow connecting debuggers to processes (Fedora,
Ubuntu)

The Ubuntu ptrace scope control feature does not allow a process to attach to other processes it did not
launch directly.

See http://wiki.ubuntu.com/Security/Features#ptrace for details.

To disable this feature until the next reboot run the following command:

echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope

To disable it permanently, add this line to/etc/sysctl.d/10-ptrace.conf (or/etc/sysctl.
conf):

kernel.yama.ptrace_scope = 0

This will take effect after the next reboot.

On Fedora, ptrace may be blocked by SELinux in addition to Yama. See section H.3.2.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 238

http://wiki.ubuntu.com/Security/Features#ptrace

Arm Forge 18.1.3

The system does not allow connecting debuggers to processes (Fedora,
Red Hat)

The deny_ptrace boolean in SELinux (used by Fedora and Red Hat) does not allow a process to attach
to other processes it did not launch directly.

See http://fedoraproject.org/wiki/Features/SELinuxDenyPtrace for details.

To disable this feature until the next reboot run the following command:

setsebool deny_ptrace 0

To disable it permanently run this command:

setsebool -P deny_ptrace 0

As of Fedora 22, ptracemay be blocked byYama in addition to the SELinux boolean. See sectionH.3.1.

Running processes do not show up in the attach window

Running processes that do not show up in the attach window is usually a problem with either your
remote-exec script or your node list file.

First check that the entry in your node list file corresponds with either localhost (if you are running on
your local machine) or with the output of hostname on the desired machine.

Secondly try running /path/to/arm/forge/libexec/remote-exec manually.

For example, /path/to/arm/forge/libexec/remote-exec<hostname>ls. Then check
the output of this.

If this fails then there is a problem with your remote-exec script. If rsh is still being used in your
script check that you can rsh to the desired machine. Otherwise check that you can attach to your machine
in the way specified in the remote-exec script.

See also A.4 Connecting to remote programs (remote-exec).

If you still experience problems with your script then contact Arm support for assistance at Arm sup-
port.

Source Viewer

No variables or line number information

You should compile your programs with debug information included, this flag is usually -g.

Source code does not appear when you start Arm Forge

If you cannot see any text at all, perhaps the default selected font is not installed on your system. Go to
File→Options (Arm Forge→ Preferences on Mac OS X) and choose a fixed width font such as Courier
and you should now be able to see the code.

If you see a screen of text telling you that Arm Forge could not find your source files, follow the instruc-
tions given. If you still cannot see your source code, check that the code is available on the same machine

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 239

http://fedoraproject.org/wiki/Features/SELinuxDenyPtrace
https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

as you are running the software on, and that the correct file and directory permissions are set. If some files
are missing, and others found, try adding source directories and rescanning for further instruction.

If the problem persists, contact Arm support at Arm support.

Code folding does not work for OpenACC/OpenMP pragmas

This is a known issue. If an OpenACC or OpenMP pragma is associated with a multi-line loop, then the
loop block may be folded instead.

Input/Output

Output to stderr is not displayed

Arm Forge automatically captures anything written to stdout / stderr and display it.

Some shells, such as csh, do not support this feature in which case you may see your stderr mixed
with stdout, or you may not see it at all.

In any case Arm strongly recommends writing program output to files instead, since theMPI specification
does not cover stdout / stderr behavior.

Unwind errors

When using MAP you may see errors reported in the output of the form:

Arm Sampler: 3 libunwind: Unspecified (general) error (4/172 samples)
Arm Sampler: 3 Maximum backtrace size in sampler exceeded, stack too

deep. (1/172 samples)

These indicate that MAP was only able to obtain a partial stack trace for the sample. If the proportion of
samples that generate such errors is low, then they can safely be ignored.

If a large proportion of samples exhibit these errors, then consult the advice on partial traces in F.7 Intel
compilers or F.9 Portland Group compilers if you are using these compilers.

If this does not help, then please contact Arm support at Arm support.

Controlling a program

Program jumps forwards and backwards when stepping through it

If you have compiled with any sort of optimisations, the compiler will shuffle your programs instructions
into a more efficient order. This is what you are seeing. Arm recommends compiling with -O0 when
debugging, which disables this behavior and other optimisations.

If you are using the Intel OpenMP compiler, then the compiler will generate code that appears to jump in
and out of the parallel blocks regardless of your -O0 setting. Stepping inside parallel blocks is therefore
not recommended.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 240

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

DDTmay stop respondingwhen using the Step Threads Together option

DDT may stop responding if a thread exits when the Step Threads Together option is enabled. This is
most likely to occur on Linux platforms using NPTL threads. This might happen if you tried to Play to
here to a line that was never reached, in which case your program ran all the way to the end and then
exited.

A workaround is to set a breakpoint at the last statement executed by the thread and turn off Step Threads
Together when the thread stops at the breakpoint.

If this problem affects you please contact Arm support at Arm support.

Evaluating variables

Some variables cannot be viewed when the program is at the start of a
function

Some compilers produce faulty debug information, forcing DDT to enter a function during the prologue
or the variable may not yet be in scope.

In this region, which appears to be the first line of the function, some variables have not been initialized
yet. To view all the variables with their correct values, it may be necessary to play or step to the next line
of the function.

Incorrect values printed for Fortran array

Pointers to non-contiguous array blocks, allocatable arrays using strides, are not supported.

If this issue affects you, please contact Arm support at Arm supportfor a workaround or fix.

There are also many compiler limitations that can cause this. See Appendix F for details.

Evaluating an array of derived types, containing multiple-dimension ar-
rays

The Locals, Current Line and Evaluate views may not show the contents of these multi-dimensional
arrays inside an array of derived types.

However, you can view the contents of the array by clicking on its name and dragging it into the evaluate
window as an item on its own, or by using the MDA.

C++ STL types are not pretty printed

The pretty printers provided with DDT are compatible with GNU compilers version 4.7 and above, and
Intel C++ version 12 and above.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 241

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Memory debugging

The View Pointer Details window says a pointer is valid but does not show
you which line of code it was allocated on

The Pathscale compilers have known issues that can cause this.

Please see the compiler notes in section C of this appendix for more details.

The Intel compiler may need the -fp argument to allow you to see stack traces on some machines.

If this happens with another compiler, please contact Arm support at Arm support with the vendor and
version number of your compiler.

mprotect fails error when usingmemory debuggingwith guard pages

This can happen if your program makes more than 32768 allocations; a limit in the kernel prevents DDT
from allocating more protected regions than this. Your options are:

• Running echo 123456 >/proc/sys/vm/max_map_count (requires root) will increase
the limit to 61728 (123456 / 2, as some allocations use multiple maps).

• Disable guard pages completely. This will hinder DDT’s ability to detect heap over/underflows.

• Disable guard pages temporarily. You can disable them at program start, add a breakpoint before
the allocations you wish to add guard pages for, and then reenable the feature.

See 12.3 Configuration for information on how to disable guard pages.

Allocations made before or during MPI_Init show up in Current Memory
Usage but have no associated stack back trace

Memory allocations that are made before or during MPI_Init appear in Current Memory Usage along
with any allocations made afterwards.

However, the call stack at the time of the allocation is not recorded for these allocations and will not show
up in the Current Memory Usage window.

Deadlock when calling printf or malloc from a signal handler

The memory allocation library calls (for example, malloc) provided by the memory debugging library
are not async-signal-safe unlike the implementations in recent versions of the GNU C library.

POSIX does not require malloc to be async-signal-safe but some programs may expect this behav-
ior.

For example, a program that calls printf from a signal handler may deadlock when memory debugging
is enabled in DDT since the C library implementation of printf may call malloc.

The web page below has a table of the functions that may be safely called from an asynchronous signal
handler:

http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03/

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 242

https://developer.arm.com/products/software-development-tools/hpc/get-support
http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03/

Arm Forge 18.1.3

Program runs more slowly with Memory Debugging enabled

The Memory Debugging library performs more checks than the normal runtime’s memory allocation
routines.

However, those checks also makes the library slower.

If your program is running too slow when Memory Debugging is enabled there are a number of options
you can change to speed it up.

Firstly try reducing theHeap Debugging option to a lower setting. For example, if it is currently onHigh,
try changing it toMedium or Low.

You can increase the heap check interval from the default of 100 to a higher value. The heap check
interval controls how many allocations may occur between full checks of the heap, which may take some
time.

A higher setting (1000 or above) is recommended if your program allocates and deallocates memory very
frequently, for example from inside a computation loop.

You can disable the Store backtraces for memory allocations option, at the expense of losing backtraces
in the View Pointer Details and Current Memory Usage windows.

MAP specific issues

My compiler is inlining functions

Compilers often inline functions.

A compiler’s ability to include sufficient information to reconstruct the original call tree can vary between
vendors.

Arm has found that the following flags work best:

• Intel: -g -O3 -fno-inline-functions

• Intel 17+: -g -fno-inline -no-ip -no-ipo -fno-omit-frame-pointer -O3

• PGI: -g -O3 -Meh_frame

• GNU: -g -O3 -fno-inline

• Cray: -G2 -O3 -h ipa0

Be aware that some compilers may still inline functions even when explicitly asked not to.

There is typically some small performance penalty for disabling function inlining or enabling profiling
information.

Alternatively, you can let the compiler inline the functions and just compile with -g -O3. Or -g -O5
or whatever your preferred performance flags are.

MAP will work fine, but you will often see time inside an inlined function being attributed to its parent
in the Stacks view. The Source Code view should be largely unaffected.

Tail call optimization

A function may return the result of calling another function, for example:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 243

Arm Forge 18.1.3

int someFunction()
{

...
return otherFunction();

}

In this case the compiler may change the call to otherFunction into a jump. This means that, when
inside otherFunction, the calling function, someFunction, no longer appears on the stack.

This optimization is called tail recursion optimization. It may be disabled for the GNU C compiler by
passing the -fno-optimize-sibling-calls argument to gcc.

MPI wrapper libraries

Unlike DDT, MAP wraps MPI calls in a custom shared library. A precompiled wrapper is copied that is
compatible with your system, or one is built for your system each time you run MAP.

See section C.2 MAP for the list of supported MPIs.

You can also try setting ALLINEA_WRAPPER_COMPILE=1 and MPICC directly:

$ MPICC=my-mpicc-command bin/map -n 16 ./wave_c

If you have problems please contact Arm support at Arm support.

Thread support limitations

MAPprovides limited support for programswhen threading support is set toMPI_THREAD_SERIALIZED
or MPI_THREAD_MULTIPLE in the call to MPI_Init_thread.

MPI activity on non-main threads will contribute towards the MPI-time of the program, but not the MPI
metric graphs.

Additionally, MPI activity on a non-main thread may result in additional profiling overhead due to the
mechanism employed by MAP for detecting MPI activity.

It is recommended that the pthread viewmode is used for interpretingMPI activity instead of the OpenMP
viewmode, since OpenMP viewmode will scale MPI-time depending on the resources requested. Hence,
non-main thread MPI activity may provide nonintuitive results when detected outside of OpenMP re-
gions.

Warnings are displayed when the user initiates and completes profiling a program which sets MPI_
THREAD_SERIALIZED or MPI_THREAD_MULTIPLE as the required thread support.

MAP does fully support calling MPI_Init_thread with either MPI_THREAD_SINGLE or MPI_
THREAD_FUNNELED specified as the required thread support.

It should be noted that the requirements that the MPI specification make on programs using MPI_
THREAD_FUNNELED are the same as made by MAP: all MPI calls must be made on the thread that
called MPI_Init_thread.

In many cases, multi-threaded MPI programs can be refactored such that they comply with this restric-
tion.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 244

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

No thread activity while blocking on an MPI call

Unfortunately MAP is currently unable to record thread activity on a process where a long-duration MPI
call is in progress.

If you have an MPI call that takes a significant amount of time to complete, as indicated by a sawtooth
on theMPI call durationmetric graph, MAP will display no thread activity for the process executing that
call for most of that MPI call’s duration.

See also section 25.6.

I am not getting enough samples

By default starting sampling interval is every 20ms, but if you get warnings about too few samples on a
fast run, or want more detail in the results, you can change the sampling rate.

To increase the interval to every 10ms set environment variable ALLINEA_SAMPLER_INTERVAL=
10.

Note: Sampling frequency is automatically decreased over time to ensure a manageable amount of data
is collected whatever the length of the run.

Increasing the sampling frequency is not recommended if there are lots of threads and/or very deep stacks
in the target program as this may not leave sufficient time to complete one sample before the next sample
is started.

Note: Whether OpenMP is enabled or disabled in MAP, the final script or scheduler values set for
OMP_NUM_THREADSwill be used to calculate the sampling interval per thread (ALLINEA_SAMPLER_
INTERVAL_PER_THREAD). When configuring your job for submission, check whether your final sub-
mission script, scheduler or the MAP GUI has a default value for OMP_NUM_THREADS.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL will be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS).

I just see main (external code) and nothing else

This can happen if you compile without -g. It can also happen if you move the executable out of the
directory it was compiled in.

Check your compile line includes -g and try right-clicking on the Project Files panel in MAP and choos-
ing Add Source Directory….

Contact Arm support at Arm support if you have any further issues.

MAPis reporting time spent in a function definition

Any overheads involved in setting up a function call (pushing arguments to the stack and so on) are
usually assigned to the function definition. Some compilers may assign them to the opening brace ‘{’
and closing brace ‘}’ instead.

If this function has been inlined, the situation becomes further complicated and any setup time, such as
for allocating space for arrays, is often assigned to the definition line of the enclosing function.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 245

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

MAP is not correctly identifying vectorized instructions

The instructions identified as vectorized (packed) are listed here:

• Packed floating-point instructions: addpd addps addsubpd addsubps andnpd and-
nps andpd andps divpd divps dppd dpps haddpd haddps hsubpd hsubps maxpd
maxps minpd minps mulpd mulps rcpps rsqrtps sqrtpd sqrtps subpd subps

• Packed integer instructions: mpsadbw pabsb pabsd pabsw paddb paddd paddq paddsb
paddsw paddusb paddusw paddw palignr pavgb pavgw phaddd phaddsw phaddw
phminposuw phsubd phsubsw phsubw pmaddubsw pmaddwd pmaxsb pmaxsd pmaxsw
pmaxub pmaxud pmaxuw pminsb pminsd pminsw pminub pminud pminuw pmuldq
pmulhrsw pmulhuw pmulhw pmulld pmullw pmuludq pshufb pshufw psignb
psignd psignw pslld psllq psllw psrad psraw psrld psrlq psrlw psubb
psubd psubq psubsb psubsw psubusb psubusw psubw

Arm also identifies the AVX-2 variants of these instructions, with a “v” prefix.

Contact Arm support at Arm support if you believe your code contains vectorized instructions that have
not been listed and are not being identified in the CPU floating-point/integer vector metrics.

Linking with the static MAP sampler library fails with an undefined refer-
ence to __real_dlopen

When linking with the static MAP sampler library you may get undefined reference errors similar to the
following:

../lib/64/libmap-sampler.a(dl.o): In function `__wrap_dlopen':
/build/overnight/ddt-2015-01-28-12322/code/ddt/map/sampler/build64-

static/../src/dl.c:21:␣undefined␣reference␣to␣`__real_dlopen'
../lib/64/libmap-sampler.a(dl.o): In function `__wrap_dlclose':
/build/overnight/ddt-2015-01-28-12322/code/ddt/map/sampler/build64-

static/../src/dl.c:28:␣undefined␣reference␣to␣`__real_dlclose'
collect2: ld returned 1 exit status

To avoid these errors follow the instructions in section 17.2.4 Static linking.

Note the use of the -Wl,@/home/user/myprogram/allinea-profiler.ld syntax.

Linkingwith the staticMAP sampler library fails with FDEoverlap errors

When linking with the static MAP sampler library you may get FDE overlap errors similar to:

ld: .eh_frame_hdr table[791] FDE at 0000000000822830 overlaps table
[792] FDE at 0000000000825788

This can occur when the version of binutils on a system has been upgraded to 2.25 or later and is most
common seen on Cray machines using CCE 8.5.0 or higher.

To fix this issue rerun make-profiler-libraries --lib-type=static and use the freshly
generated static libraries and allinea-profiler.ld to link these with your program.

See section 17.2.4 Static linking for more details.

If you are not using a Cray or SUSE build of Arm Forge and you require a binutils 2.25 compatible static
library please contact Arm support at Arm support.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 246

https://developer.arm.com/products/software-development-tools/hpc/get-support
https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

The error message occurs because the version of libmap-sampler.a you attempted to link was not
compatible with the version of ld in binutils versions ≥ 2.25.

For Cray machines there is a separate library libmap-sampler-binutils-2.25.a provided for
use with this updated linker.

Themake-profiler-libraries script will automatically select the appropriate library to use based
on the version of ld found in your PATH.

If you erroneously attempt to link libmap-sampler-binutils-2.25.a with your program using
a version of ld prior to 2.25 you will get errors such as:

/usr/bin/ld.x: libmap-sampler.a(dl.o): invalid relocation type 42

If this happens check that the correct version of ld is in your PATH and rerun make-profiler-
libraries --lib-type=static.

MAP adds unexpected overhead to my program

MAP’s sampler library will add a little overhead to the execution of your program. Usually this is less
than 5% of the wall clock execution time.

Under some circumstances, however, the overhead may exceed this, especially for short runs. This is par-
ticularly likely if your program has high OpenMP overhead, for example, if it is greater than 40%.

In this case the measurements reported by MAP will be affected by this overhead and therefore less
reliable. Increasing the run time of your program for example, by changing the size of the input, decreases
the overall overhead, although the initial few minutes still incurs the higher overhead.

At high per-process thread counts, for example on the Intel Xeon Phi (Knight’s Landing), MAP’s sampler
library may incur a more significant overhead.

By default, whenMAP detects a large number of threads it will automatically reduce the sampling interval
in order to limit the performance impact.

Sampling behavior can be modified by setting the ALLINEA_SAMPLER_INTERVAL and ALLINEA_
SAMPLER_INTERVAL_PER_THREAD environment variables. Formore information on the use of these
environment variables, see 17.11.

MAP takes an extremely long time to gather and analyze my OpenBLAS-
linked application

OpenBLAS versions 0.2.8 and earlier incorrectly stripped symbols from the .symtab section of the
library, causing binary analysis tools such as MAP and objdump to see invalid function lengths and
addresses.

This causes MAP to take an extremely long time disassembling and analyzing apparently overlapping
functions containing millions of instructions.

A fix for this was accepted into the OpenBLAS codebase on October 8th 2013 and versions 0.2.9 and
above should not be affected.

To work around this problem without updating OpenBLAS, simply run strip libopenblas*.so,
this removes the incomplete.symtab sectionwithout affecting the operation or linkage of the library.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 247

Arm Forge 18.1.3

MAPover-reportsMPI, Input/Output, accelerator or synchronization time

MAPemploys a heuristic to determinewhich function calls should be considered asMPI operations.

If your code defines any function that starts with MPI_ (case insensitive) those functions will be treated
as part of theMPI library resulting in the time spent inMPI calls to be over-reported by the activity graphs
and the internals of those functions to be omitted from the Parallel Stack View.

Starting your functions names with the prefix MPI_ should be avoided and is in fact explicitly forbidden
by the MPI specification. This is described on page 19 sections 2.6.2 and 2.6.3 of the MPI 3 specification
document http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49:

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must not
declare names, for example, for variables, subroutines, functions, parameters, derived types,
abstract interfaces, or modules, beginning with the prefix MPI_.

Similarly MAP categorizes I/O functions and accelerator functions by name.

Other prefixes to avoid starting your function names with include PMPI_, _PMI_, OMPI_, omp_-
, GOMP_, shmem_, cuda_, __cuda, cu[A-Z][a-z] and allinea_.

All of these prefixes are case-insensitive.

Also avoid naming a function start_pes or any name also used by a standard I/O or synchronization
function, write, open, pthread_join, sem_wait and so on.

MAP collects very deep stack traces with boost::coroutine

A known bug in Boost (https://svn.boost.org/trac/boost/ticket/12400) prevents MAP from unwinding the
call stack correctly.

This can be worked around by applying the patch attached to the bug report to your boost installation, or
by specifying a manual stack allocator that correctly initializes the stack frame.

First add the following custom stack allocator:

#include <boost/coroutine/coroutine.hpp>
#include <boost/coroutine/stack_context.hpp>

struct custom_stack_allocator {
void allocate(

boost::coroutines::stack_context & ctx,
std::size_t size) {

void * limit = std::malloc(size);
if (! limit)

throw std::bad_alloc();

//Fix. RBP in the 1st frame of the stack will contain 0
const int fill=0;

std::size_t stack_hdr_size=0x100;
if (size<stack_hdr_size)

stack_hdr_size=size;
memset(static_cast< char * >(limit)+size-stack_hdr_size,

fill,

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 248

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49
https://svn.boost.org/trac/boost/ticket/12400

Arm Forge 18.1.3

stack_hdr_size);

ctx.size = size;
ctx.sp = static_cast< char * >(limit) + ctx.size;

}

void deallocate(boost::coroutines::stack_context & ctx) {
void * limit = static_cast< char * >(ctx.sp) - ctx.size;
std::free(limit);

}
};

Then modify your program to use the custom allocator whenever a coroutine is created:

boost::coroutines::coroutine<int()> my_coroutine(<func>,
boost::coroutines::attributes(),custom_stack_allocator());

For more information, see the boost::coroutine documentation on stack allocators for your version
of Boost.

Obtaining support

If this guide has not helped you, then the most effective way to get support is to contact Arm with a
detailed report.

If possible, you should obtain a log file for the problem and contact Arm support at Arm support. When
describing your issue, state that you have obtained a log file and the support teamwill be in contact.

To generate a log file, either check the Help→ Logging→ Automatic menu item or start Forge with the
--debug and --log arguments:

$ ddt --debug --log=<log>
$ map --debug --log=<log>

Where <log> is the name of the log file to generate.

Next, reproduce the problem using as few processors and commands as possible. Once finished, close
the program as usual.

On some systems this file may be quite large. If so, please compress it using a program such as gzip or
bzip2 before sending it to support.

If your problem can only be replicated on large process counts, then please do not use theHelp→ Logging
→ Debug menu item or --debug argument as this will generate very large log files. Instead use the
Help→ Logging→ Standard menu option or just the --log argument.

If you are connecting to a remote system, then the log file is generated on the remote host and copied back
to the client when the connection is closed. The copy will not happen if the target application crashes or
the network connection is lost.

In these cases, the remote copy of the log file can be found in the tmp subdirectory of the Arm configu-
ration directory for the remote user account. The directory is is ~/.allinea, unless overridden by the
ALLINEA_CONFIG_DIR environment variable.

Sometimes it may be helpful to illustrate your problem with a screenshot of Arm Forge’s main window.
To take a screenshot, choose the Take Screenshot… option under theWindowmenu. You will be prompted
for a file name to save the screenshot to.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 249

https://developer.arm.com/products/software-development-tools/hpc/get-support

Arm Forge 18.1.3

Queue template script syntax

Queue template tags

Each of the tags that will be replaced is listed in the following table, and an example of the text that will
be generated when Arm Forge submits your job is given for each.

Note: It is often sufficient to simply use AUTO_LAUNCH_TAG. See section A.3.1 The template script for
an example.

Tag Description After Submission Example
AUTO_LAUNCH_TAG This tag expands to the entire

replacement for your ‘mpirun’
command line.

ddt-mpirun -np 4
myexample.bin

DDTPATH_TAG The path to the Arm Forge instal-
lation

/opt/arm/forge

WORKING_DIRECTORY_TAG The working directory Arm
Forge was launched in

/users/ned

NUM_PROCS_TAG Total number of processes 16
NUM_PROCS_PLUS_ONE_
TAG

Total number of processes + 1 17

NUM_NODES_TAG Number of compute nodes 8
NUM_NODES_PLUS_ONE_
TAG

Number of compute nodes + 1 9

PROCS_PER_NODE_TAG Processes per node 2
PROCS_PER_NODE_PLUS_
ONE_TAG

Processes per node + 1 3

NUM_THREADS_TAG Number of OpenMP threads per
node (empty if OpenMP if “off”)

4

OMP_NUM_THREADS_TAG Number of OpenMP threads per
node (empty if OpenMP is “off”)

4

MPIRUN_TAG mpirun binary (can vary with
MPI implementation)

/usr/bin/mpirun

AUTO_MPI_ARGUMENTS_
TAG

Required command line flags for
mpirun (can vary with MPI im-
plementation)

-np 4

EXTRA_MPI_ARGUMENTS_
TAG

Additional mpirun arguments
specified in the Run window

-partition DEBUG

PROGRAM_TAG Target path and filename /users/ned/a.out
PROGRAM_ARGUMENTS_TAG Arguments to target program -myarg myval
INPUT_FILE_TAG The stdin file specified in the

Run window
/users/ned/input.dat

Additionally, any environment variables in the GUI environment ending in _TAG are replaced throughout
the script by the value of those variables.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 250

Arm Forge 18.1.3

Defining new tags

As well as the pre-defined tags listed in the table above you can also define new tags in your template
script whose values can be specified in the GUI.

Tag definitions have the following format:

EXAMPLE_TAG: { key1=value1, key2=value2, ... }

Where key1, key2, are attribute names and value1, value2, are the corresponding values.

The tag will be replaced wherever it occurs with the value specified in the GUI, for example:

#PBS -option EXAMPLE_TAG

The following attributes are supported:

Attribute Purpose Example
type text: General text input.

select: Select from two or more options.
check: Boolean.
file: File name.
number: Real number.
integer: Integer number.

type=text

label The label for the user interface widget. label="Account"
default Default value for this tag default="interactive"

text type
mask Input mask:

0: ASCII digit permitted but not required.
9: ASCII digit required. 0–9.
N: ASCII alphanumeric character required.
A–Z, a–z, 0–9.
n: ASCII alphanumeric character permitted
but not required.

mask="09:09:09"

options type
options Options to use, separated by the | character options="not_-

shared|shared"
check type

checked Value of a check tag if checked. checked="enabled"
unchecked Value of a check tag if unchecked. unchecked="enabled"

integer and number types
min Minimum value. min="0"
max Maximum value. max="100"
step Amount to step by when the up or down ar-

rows are clicked.
step="1"

decimals Number of decimal places. decimals="2"
suffix Display only suffix (will not be included in tag

value).
suffix="s"

prefix Display only prefix (will not be included in
tag value).

prefix="$"

file type

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 251

Arm Forge 18.1.3

mode open-file: an existing file.
save-file: a new or existing file.
existing-directory: an existing direc-
tory.
open-files: one or more existing files,
separated by spaces.

mode="open-file"

caption Window caption for file chooser. caption="Select File"
dir Initial directory for file chooser. dir="/work/output"
filter Restrict the files displayed in the file chooser

to a certain file pattern.
filter="Text files
(*.txt)"

Examples

JOB_TYPE_TAG: {type=select,options=parallel| \
serial,label="Job␣Type",default=parallel}

WALL_CLOCK_LIMIT_TAG: {type=text,label="Wall Clock Limit", \
default="00:30:00",mask="09:09:09"}

NODE_USAGE_TAG: {type=select,options=not_shared| \
shared,label="Node␣Usage",default=not_shared}

ACCOUNT_TAG: {type=text,label="Account",global}

See the template files in {installation-directory} /templates for more examples.

To specify values for these tags click the Edit Template Variables button on the Job Submission Options
page (see Figure 119 Queuing Systems shown previously) or the Run window. You will see a window
similar to the one below:

Figure 120: Queue Parameters Window

The values you specify are substituted for the corresponding tags in the template file when you run a
job.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 252

Arm Forge 18.1.3

Specifying default options

A queue template file may specify defaults for the options on the Job Submission page so that when a
user selects the template file these options are automatically filled in.

Name Job Submission Setting Example
submit Submit command

Note: the command may
include tags.

qsub -n NUM_NODES_TAG
-t WALL_CLOCK_LIMIT_-
TAG --mode script -A
PROJECT_TAG

display Display command The output
from this command is shown
while waiting for a job to start.

qstat

job regexp Job regexp (\d+)
cancel Cancel command qdel JOB_ID_TAG
submit scalar Also submit scalar jobs through

the queue
yes

show num_procs Number of processes: Specify in
Run window

yes

show num_nodes Number of nodes: Specify in
Run Window

yes

show procs_per_node Processes per node: Specify in
Run window

yes

procs_per_node Processes per node: Fixed 16

Example

submit: qsub -n NUM_NODES_TAG -t WALL_CLOCK_LIMIT_TAG \
--mode script -A PROJECT_TAG

display: qstat
job regexp: (\d+)
cancel: qdel JOB_ID_TAG

Launching

Usually, your queue script will end in a line that starts mpirun with your target executable.

In a template file, this needs to bemodified to run a command that will also launch the Arm Forge backend
agents.

Some methods to do this are mentioned in this section.

Using AUTO_LAUNCH_TAG

This is the easiest method, and caters for the majority of cases. Simply replace your mpirun com-
mand line with AUTO_LAUNCH_TAG. Arm Forge will replace this with a command appropriate for your
configuration (one command on a single line).

For example an mpirun line that looks like this:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 253

Arm Forge 18.1.3

mpirun -np 16 program_name myarg1 myarg2

Becomes:

AUTO_LAUNCH_TAG

AUTO_LAUNCH_TAG is roughly equivalent to:

DDT_MPIRUN_TAG DDT_DEBUGGER_ARGUMENTS_TAG \
MPI_ARGUMENTS_TAG PROGRAM_TAG ARGS_TAG

A typical expansion is:

/opt/arm/forge/bin/ddt-mpirun --ddthost login1,192.168.0.191 \
--ddtport 4242 --ddtsession 1 \
--ddtsessionfile /home/user/.allinea/session/login1-1 \
--ddtshareddirectory /home/user --np 64 \
--npernode 4 myprogram arg1 arg2 arg3

Using ddt-mpirun

If you needmore control than is available usingAUTO_LAUNCH_TAG, Arm Forge also provides a drop-in
mpirun replacement that can be used to launch your job.

Note: this is only suitable for use in a queue template file when Arm Forge is submitting to the queue
itself.

You should replace mpirun with DDTPATH_TAG/bin/ddt-mpirun.

For example, if your script currently has the line:

mpirun -np 16 program_name myarg1 myarg2

Then (for illustration only) the equivalent that Arm Forge needs to use would be:

DDTPATH_TAG/bin/ddt-mpirun -np 16 program_name myarg1 myarg2

For a template script you use tags in place of the program name, arguments and so on, so they can be
specified in the GUI rather than editing the queue script each time:

DDTPATH_TAG/bin/ddt-mpirun -np NUM_PROCS_TAG \
EXTRA_MPI_ARGUMENTS_TAG DDTPATH_TAG/bin/ddt-debugger \
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

See I.1 Queue template tags for more information on template tags.

MPICH 1 based MPI

If AUTO_LAUNCH_TAG or ddt-mpirun are not suitable, you can also use the following method for
MPICH 1 based MPIs.

If your mpirun command line looks like:

mpirun -np 16 program_name myarg1 myarg2

You need to export theTOTALVIEW environment variable, and add the-tv parameter tompirun.

For example:

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 254

Arm Forge 18.1.3

export TOTALVIEW=DDTPATH_TAG/bin/ddt-debugger-mps
MPIRUN_TAG -np NUM_PROCS_TAG \
-tv PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

Scalar programs

If AUTO_LAUNCH_TAG is not suitable, you can also use the following method to launch scalar jobs with
your template script:

DDTPATH_TAG/bin/ddt-client DDT_DEBUGGER_ARGUMENTS_TAG \
PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

Using PROCS_PER_NODE_TAG

Some queue systems allow you to specify the number of processes, others require you to select the number
of nodes and the number of processes per node.

The software caters for both of these but it is important to knowwhether your template file and queue sys-
tem expect to be told the number of processes (NUM_PROCS_TAG) or the number of nodes and processes
per node (NUM_NODES_TAG and PROCS_PER_NODE_TAG).

If these terms seem strange, see sample.qtf for an explanation of the queue template system.

Job ID regular expression

The Regexp for job id regular expression is matched on the output from your submit command. The first
bracketed expression in the regular expression is used as the job ID. The elements listed in the table are
in addition to the conventional quantifiers, range and exclusion operators.

Element Matches
C A character represents itself
\t A tab
. Any character
\d Any digit
\D Any non-digit
\s White space
\S Non-white space
\w Letters or numbers (a word character)
\W Non-word character

For example, your submit program might return the output job id j1128 has been submit-
ted. One possible regular expression for retrieving the job ID is id\s(.+)\shas.

If you would normally remove the job from the queue by typing job_remove j1128 then you should
enter job_removeJOB_ID_TAG as the cancel command.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 255

Arm Forge 18.1.3

Arm IPMI Energy Agent

The Arm IPMI Energy Agent allows Arm MAP and Arm Performance Reports to measure the total
energy consumed by the compute nodes in a job in conjunction with the Arm Advanced Metrics Pack
add-on.

The IPMI Energy Agent is a separate download from our website: IPMI Energy Agent.

Requirements

• The compute nodes must support IPMI.

• The compute nodes must have an IPMI exposed power sensor.

• The compute nodes must have an OpenIPMI compatible kernel module installed, such as ipmi_-
devintf.

• The compute nodesmust have the corresponding device node in/dev, for example/dev/ipmi0.

• The compute nodes must run a supported operating system.

• The IPMI Energy Agent must be run as root.

To list the names of possible IPMI power sensors on a compute node use the following command:

ipmitool sdr | grep 'Watts'

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 256

https://developer.arm.com/products/software-development-tools/hpc/documentation/ipmi-energy-agent

Index
Arm DDT

Getting started, 27
Introduction, 12
Online resources, 13
Starting a program, 61

Arm IPMI Energy Agent, 256
Requirements, 256

Arm MAP
Introduction, 13
Online resources, 13

DDT
Controlling program execution, 57
Getting Support, 210
Installation, 14
Starting
From a job script, 44

Mac OS X , 25
MAP

Getting Support, 210
Installation, 14

Accelerator, 159
Align stacks, 70
Altix, 211
AMD

OpenCL, 225
Apple

Mac OS X , 23
Application, 28, 143
Arbitrary expressions and global variables, 77
Architecture licensing, 18

Multiple architectures, 18
Arm, 211, 212, 232, 234

Known issues, 234
Array

Distributed, 86
Expression, 85
Filtering, 86
Multi-dimensional
Viewing, 84

Array data
Viewing, 82

Arrays
Auto Update, 89
Comparing elements across processes, 89
Export, 89
Layout
Data table, 86

Multi-dimensional, 83
Statistics, 89

Visualization, 90
Attaching, 37, 40, 123

Choose hosts, 40
Command line, 40
Configuring
Remote hosts, 40

Hosts file, 40
Attaching to running programs, 37
AUTO_LAUNCH_TAG, 253

Backtrace, 70
Batch schedulers, 213
Berkeley UPC, 217
Bounds checking, 102
Branch instructions, 183
Breakpoints, 62

Conditional, 64
CUDA, 65
Default, 65
Deleting, 64
Focus, 59
Loading, 65
Saving, 65
Setting, 62
Pending, 63
Using source code viewer, 62
Using theAddBreakpoint window, 63

Buffer overflow, 54
Building applications, 50, 163
Bull MPI, 217

C++ STL, 241
C++ STL support, 81
Checkpointing, 113

How to checkpoint, 113
Overview, 113
Restoring a checkpoint, 113

Cobalt, 212, 213
Colour Scheme, 209
Compile serial programs on Cray, 226
Compilers

AMD, 225
Cray, 225
GNU, 226
IBM XLC/XLF, 227
Intel, 227
Known issues, 225
OpenCL, 225
Pathscale EKO compilers, 228
Portland Group, 229

257

Arm Forge 18.1.3

Completed instructions, 183
Complex numbers, 80
Configuration, 33, 202

Appearance, 209
Code viewer, 209
Configuration files, 202
Connecting to remote programs, 207
Converting legacy sitewide configuration files,

203
Importing legacy, 203
Job size, 206
Job submission, 209
Optional, 207
Queue commands, 206
Queuing systems, 204
Quick restart, 206
Sitewide, 202
Startup scripts, 203
System, 208
Template script, 206
Template tutorial, 205
Using a shared installation onmultiple systems,

204
Using shared home directories onmultiple sys-

tems, 203
Connecting to a remote system, 19
Consistency checking

Heap, 104
Core Files, 123
Core files, 37
CPU branch, 174
CPU cycles, 174
CPU floating-point, 173
CPU floating-point vector, 173
CPU instructions, 173
CPU integer, 173
CPU integer vector, 173
CPU memory access, 173
CPU power usage, 178
CPU time, 175
Cray, 125, 231

Compiling serial programs, 226
Cray ATP, 218
Cray compiler environment, 225
Cray MPT, 217
Cray Native SLURM, 223, 231
Cray X, 217
Cray X-Series, 137, 138, 141, 142
Cray XK6, 231
Cross-process comparison, 91, 108
Cross-thread comparison, 91

CUDA
Breakpoints, 65, 120
Controlling GPU threads, 120
CUDA Fortran, 126
DDT: CUDA, 119
DebuggingmultipleGPUprocesses, 124
Examining GPU threads and data, 121
GPU Debugging, 119
GPU device information, 123
Launching, 119
Licensing, 119
Memory debugging, 102
NVIDIA, 119
Preparing to debug, 119
Running, 29
Running and pausing, 121
Selecting GPU threads, 121
Source code viewer, 123
Stepping, 120
Thread control, 124
Understanding kernel progress, 122
Viewing GPU thread locations, 121

CUDA profiling, 198
Current line, 76
Custom MPI scripts, 149
Cycles per instruction, 174, 183

Data
Changing, 83

DDT
Logbook, 97

Deadlock, 101
Debugging

Scalar, 33
Debugging symbols, 137
Detecting leaks, 111
Disassembler, 93
Disk read transfer, 175
Disk write transfer, 175
DP FLOPS, 182
Duration, 144
Dynamic linking

Cray X-Series, 138

Editing source code, 50, 162
End Session, 30
Energy metrics

Requirements, 178
Environment variables, 30, 145
Express Launch, 31, 135

Run dialog box, 31
Expression

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 258

Arm Forge 18.1.3

Changing language, 79
External Editor, 209

Fencepost checking, 109
Files

Viewing multiple, 74
Find in Files, 52
Floating-point scalar instructions, 183
Floating-point vector instructions, 183
Focus

Breakpoints, 59
Changing, 59
Code viewer, 59
Parallel stack view, 60
Playing, 60
Process group viewer, 59
Step threads together, 60
Stepping, 60
Stepping threads window, 60

Focus control, 58
Font, 209
Fortran intrinsics, 79
Fortran Modules, 79
Function Listing, 51
Functions view, 170

gdbserver, 44
Attaching, 44

General troubleshooting, 236
GNU compiler, 226
GNU UPC, 226
GNU/Linux systems, 232
Go To Line, 53
GPU, 119

Attaching, 123
Device information, 123
GPU Language support, 125

GPU kernels tab, 198
GPU memory usage, 178
GPU power usage, 178
GPU profiling, 198
GPU temperature, 177
GPU utilization, 177

Heap Overflow, 108
HP MPI, 218

I/O, 175
I/O time, 159
IBM XLC/XLF, 227
Inf, 74
Installation, 14

Mac OS X , 16

Linux, 14
Graphical, 14
Text-mode install, 15

Windows, 17
Instructions, 174
Intel Compiler, 30, 222
Intel compiler, 227
Intel Message Checker, 219
Intel MPI, 219

MPMD, 36
remote-exec, 32

Intel Xeon, 233
Intel Xeon RAPL, 233
Introduction, 12
Involuntary context switches, 175
IPMI, 256

Job ID regular expression, 255
Job submission, 41, 148

Cancelling, 41, 149
Custom, 41
Regular expression, 41, 149, 255

JSON, 190
Jump To Line

Double clicking, 57

Kernel-mode CPU time, 175
Known issues

Arm Forge times out, 238
MAPspecific issues, 243
MAP adds unexpected overhead, 247
MAP collects very deep stack traceswith boost::coroutine,

248
MAP not correctly identifying vectorized in-

structions, 246
MAP over-reports MPI time, 248
MAP reporting time spent in function defini-

tion, 245
MAP takes long time to analyze OpenBLAS

app, 247
Attaching, 238
Cannot find executable, 238
Cannot find hosts, 238
Compiler, 225
Compiler inlining functions, 243
Controlling a program, 240
DDT stops responding, 241
Program jumps while stepping, 240

Deadlock callings printf or malloc from a sig-
nal handler, 242

Evaluating variables, 241
C++ STL are not pretty printed, 241

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 259

Arm Forge 18.1.3

Evaluating an array of derived types, 241
Incorrect values printed for Fortran array, 241
Variables cannot be viewed, 241

F1 Help, 236
General, 236
Input/Output, 240
Output to stderr not displayed, 240
Unwind errors, 240

Linking with static MAP sampler library fails,
246

Memory debugging, 242
MPI, 217
MPI wrapper libraries, 244
mprotect fails, 242
No shared home directory, 237
Not enough samples, 245
Only main code visible, 245
Platform, 231
Programs run slowly, 243
Progress bar does not move, 238
Running processes do not show up in the attach

window, 239
Source code, 239
No variables or line number information, 239
Source code does not appear, 239
Source code folding does not work, 240

Starting multi-process programs, 237
Starting scalar programs, 236
Starting the GUI, 236
System does not allow debuggers to connect to

processes, 238, 239
Tail call optimization, 243
Thread support limitations, 244

L1 cache misses, 183
L2 cache accesses, 174
L2 cache misses, 174, 183
L2 data cache misses, 183
L3 cache misses, 183
Licensing

Architecture licensing, 18
Multiple architectures, 18

Floating licenses, 18
License files, 17
Single process license, 33
Single-process license, 147
Supercomputing and other floating licenses, 18
Workstation and evaluation licenses, 17

Linking, 137
Dynamic
On Cray X-Series using modules environ-
ment, 142

Static, 139
On Cray X-Series using modules environ-
ment, 142

Loadleveler, 212, 213
Local variables, 77
Log file, 249
Logbook

Annotation, 98
Comparison window, 98
DDT, 97
Usage, 97

Lustre file opens, 178
Lustre metadata operations, 178
Lustre read transfer, 178
Lustre write transfer, 178

MACOSX, 235
Macros, 79
Main Window

Overview, 48
Manual launch

ddt-client, 35
Debugging multi-process non-MPI programs,

35
Manual process selection, 38
MAP

Custom metrics, 180
Displaying selected processes, 156
Environment variables, 153
Functions view, 170
Getting started, 134
JSON, 190
Activities, 191
Categories, 191
Example, 195
Metrics, 193

Metrics view, 172
Program output, 156
Project files view, 171
Restricting output, 156
Running from the command line, 188
Saving output, 157
Standard error, 156
Standard output, 156
Starting from job script, 151
View modes, 185
Main thread only, 185
OpenMP mode, 185
Pthread mode, 185

Viewing totals, 180
Map-link modules, 142

Installation

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 260

Arm Forge 18.1.3

Cray X-Series, 142
Memory debugging, 102, 242

Available checks, 105
Changing settings at run time, 105
Configuration, 102, 103
Detecting leaks, 111
Enabling, 30
Library usage errors, 106
Memory Statistics, 111
mprotect fails, 242
Pointer error detection, 106
Static linking, 104
Suppressing an error, 109
Validity checking, 106
Writing beyond an allocated area, 108

Memory leak, 54
Memory leak report, 130
Memory usage, 109, 176
Message Queues, 219
Message queues, 99

Deadlock, 101
Interpreting, 100
Viewing, 99

Metrics, 144
Accelerator, 159, 177
CPU branch, 174
CPU cycles, 174
CPU floating-point, 173
CPU floating-point vector, 173
CPU instructions, 173
CPU integer, 173
CPU integer vector, 173
CPU memory access, 173
CPU power usage, 178
CPU time, 175
Cycles per instruction, 174
Detecting MPI imbalance, 177
Disk read transfer, 175
Disk write transfer, 175
Energy, 178
GPU memory usage, 178
GPU power usage, 178
GPU temperature, 177
GPU utilization, 177
I/O, 175
I/O time, 159
Instructions, 174
Involuntary context switches, 175
Kernel-mode CPU time, 175
L2 cache accesses, 174
L2 cache misses, 174

Lustre, 178
Lustre file opens, 178
Lustre metadata operations, 178
Lustre read transfer, 178
Lustre write transfer, 178
Memory, 176
Memory usage, 176
Mispredicted branch instructions, 174
MPI, 176
MPI call duration, 176
MPI communication andwaiting time, 159
MPI point-to-point and collective bytes, 177
MPI point-to-point and collective operations,

176
MPI sent and received, 176
Node memory usage, 176
Non-stalled cycles, 174
OpenMP
Multi-threaded computation time, 160
Multi-threadedMPI computation time, 160
Overhead, 160
Thread synchronization time, 160
Time inside an OpenMP region, 160

OpenMP Overhead, 160
Perf metrics, 174
POSIX I/O read rate, 175
POSIX I/O write rate, 175
POSIX read syscall rate, 175
POSIX write syscall rate, 175
Single-threaded computation time, 159
Stalled backend cycles, 174
Stalled cycles, 174
Stalled frontend cycles, 174
System load, 175
System power usage, 178
Time in global memory accesses, 177
User-mode CPU time, 175
Voluntary context switches, 175
Zooming, 179

Metrics view, 172
Mispredicted branch instructions, 174, 183
Moab, 212, 213
MOM nodes, 217
MPC, 220

mpirun, 220
MPI, 144

Distributions, 217
Function Counters, 116
History/Logging, 115
MPI rank, 57
MPI Ranks, 92

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 261

Arm Forge 18.1.3

mpirun, 29
Running, 29
Troubleshooting, 237

MPI call duration, 176
MPI communication and waiting time, 159
MPI job

Attaching to a subset, 38
Automatic detection, 38

MPI point-to-point and collective bytes, 177
MPI point-to-point and collective operations, 176
MPI sent and received, 176
MPI wrapper libraries, 244
MPI_Init

remote-exec, 32
MPICH, 147

p4, 221
p4 mpd, 221

MPICH 1
remote-exec, 32

MPICH 1 based MPI, 254
MPICH 2, 221

MPMD, 36
remote-exec, 32

MPICH 3, 221
MPMD, 36
remote-exec, 32

mpirun
remote-exec, 32

mpirun_rsh, 222
MPMD

Compatibility mode, 36
Intel MPI, 36
MPICH 2, 36
MPICH 3, 36
remote-exec, 147
Running, 36, 189

MPMD programs
Debugging, 36
Compatibility mode, 36
Without Express Launch, 36

Multi-dimensional array viewer (MDA), 84
Multi-threaded computation time, 160
Multi-threaded MPI computation time, 160
MVAPICH 2, 222

Navigating through source code history, 53
Node memory usage, 176
Non-stalled cycles, 174
Numactl

DDT, 45
MAP, 152

Number bases

Viewing, 83
nvcc, 119
Nvidia CUDA, 234

Known issues, 234
NVIDIA Tegra 2, 232

Obtaining Help, 210
Obtaining support, 249
Offline debugging, 127

HTML report, 129
Periodic snapshots, 132
Plain text report, 132
Reading a file for standard input, 128
Run-time job progress reporting, 132
Signal-triggered snapshots, 132
Using, 127
Writing a file from standard output, 128

Online resources, 13
Open MPI, 222

MPMD, 36
Compatibility mode, 36

OpenACC, 125
OpenCL, 119
OpenGL, 90
OpenMP, 145

Debugging, 33
OMP_NUM_THREADS, 33
Regions, 168
Running, 29, 33

OpenMP overhead, 160
OpenMP Regions view, 168
Oracle Grid Engine, 212, 213

PAPI, 182
Branch instructions, 183
Branch prediction, 183
Cache misses, 183
Completed instructions, 183
Config file, 182
Cycles per instruction, 183
DP FLOPS, 182
Floating-point, 183
Floating-point scalar instructions, 183
Floating-point vector instructions, 183
Install, 182
L1 cache misses, 183
L2 cache misses, 183
L2 data cache misses, 183
L3 cache misses, 183
Metrics, 182
Mispredicted branch instructions, 183
Overview metrics, 182

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 262

Arm Forge 18.1.3

Vector instructions, 183
Parallel Stack View, 71
Pathscale EKO compilers, 228
PBS, 212, 213
Pending breakpoints, 63
Perf metrics, 174
PGI Accelerators, 126
Platform MPI, 223
Plugins, 114

Enabling, 30
Installing, 115
Reference, 117
Supported, 114
Using, 115
Writing, 116

Pointer details, 106, 108
Pointer error detection, 106
Pointers, 83
Portland Group, 229
POSIX I/O read rate, 175
POSIX I/O write rate, 175
POSIX read syscall rate, 175
POSIX write syscall rate, 175
POWER8, 234

Known issues, 234
Pretty printers, 81
Process details, 93
Process Group Viewer, 57
Process groups, 57

Deleting, 57
Detailed view, 57
Summary view, 58

Processes and cores view, 187
PROCS_PER_NODE_TAG, 255
Profiling, 143, 145

Preparing a program, 136
Program part, 146

Programming errors, 209
Python

Running, 46

Queue submission, 41
Cancelling, 41

Queue submission via Express Launch, 41
Queue template syntax, 250

Environment variables
PROCS_PER_NODE_TAG, 255

Queue template tags, 250
Defining new tags, 251
Environment variable
AUTO_LAUNCH_TAG, 253

Launching, 253

Specifying default options, 253
Using ddt-mpirun, 254

Raw command, 94
Raw Command Window, 94
Rebuilding applications, 50, 163
Receive queue, 101
Registers

Viewing, 93
Remote Client

Installation
Mac OS X , 16
Windows, 17

Remote client, 19
Configuration, 19
Multiple hops, 20
Remote launch, 20
Remote script, 21
Using X forwarding or VNC, 23

remote-exec
Required, 32

Requirements
Energy metrics, 178

Restarting, 61
Reverse Connect, 21
Run-time

Job progress reporting, 132
Running

MPMD, 36, 189
Scalar, 33

Running a program, 28
Running programs

Attaching, 37
Manual process selection, 38

Saving output, 95
Scalar

Debugging, 33
Running, 33

Scalar programs, 255
Search, 52
Selected Lines View, 164
Send queue, 101
Send signal, 75
Sending signals, 75
Session

Saving, 49
Session menu, 61

SGI, 223
SGI MPT

remote-exec, 32
Shared arrays, 83

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 263

Arm Forge 18.1.3

Signal Handling
Divisions by zero, 74
Floating Point Exception, 74
Segmentation fault, 74
SIGFPE, 74
SIGILL, 74
SIGPIPE, 74
SIGSEGV, 74
SIGUSR1, 75
SIGUSR2, 75

Signal handling, 74
Custom, 75
Sending signals, 75

Single stepping, 62
Single-threaded computation time, 159
SLURM, 212, 213, 223
SMP

Performance, 236
Source Code, 49
Source code, 72, 158

Application and external code split, 51
Commiting, 50
Committing, 163
Editing, 50, 162
Find in Files, 52
Missing files, 51
Project files, 50
Rebuilding, 50, 163
Searching, 52
Viewing, 49, 158

Sparkline, 91
Sparklines, 76
Spectrum MPI, 224
Stack frame, 70
Stacks table, 129
Stacks view, 167
Stalled backend cycles, 174
Stalled cycles, 174
Stalled frontend cycles, 174
Standard error, 95
Standard input, 95, 148
Standard output, 95
Starting, 25
Starting MAP, 134
Static analysis, 54
Static checking, 209
Static linking, 139

On Cray X-Series, 141
Step threads together, 60
Stop messages, 62
Stopping, 61

Supported platforms, 211
DDT, 211
MAP, 212
Batch schedulers, 213

Suspending breakpoints, 64
Synchronizing processes, 65
System load, 175
System power usage, 178

Tab size, 209
Tail call optimization, 243
Thread synchronization time, 160
Time in global memory accesses, 177
Time inside an OpenMP region, 160
Time spent on selected lines, 164
TORQUE, 212, 213
Tracepoints, 67

Setting, 67
Tracepoint output, 68

Unexpected queue, 101
Unified Parallel C, 225, 226
Unwind errors, 240
UPC, 82

Berkeley, 225
GNU, 226

User-mode CPU time, 175
Using custom MPI scripts, 41

Validity checking, 106
Variables, 76

Searching, 52
Unused variables, 54

Vector instructions, 183
Version control

Breakpoints and tracepoints, 68
Version control information, 54
Viewing multiple files, 74
Viewing stacks, 70

Overview, 70
Parallel Stack View, 71

Viewing stacks in parallel, 70
Visualize Whitespace, 209
VNC, 23, 24
Voluntary context switches, 175

Warning Symbols, 54
Watchpoints, 66
Welcome Page, 25
Welcome Screen, 135

X forwarding, 23
X11, 236

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 264

Arm Forge 18.1.3

XK6, 231

Zooming, 179

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 265

	Contents
	I Arm Forge
	1 Introduction
	1.1 Arm DDT
	1.2 Arm MAP
	1.3 Online resources

	2 Installation
	2.1 Linux installation
	2.1.1 Graphical install
	2.1.2 Text-mode install

	2.2 Mac installation
	2.3 Windows installation
	2.4 License files
	2.5 Workstation and evaluation licenses
	2.6 Supercomputing and other floating licenses
	2.7 Architecture licensing
	2.7.1 Using multiple architecture licenses

	3 Connecting to a remote system
	3.1 Remote connections dialog
	3.2 Remote launch settings
	3.2.1 Remote script

	3.3 Reverse Connect
	3.3.1 Overview
	3.3.2 Usage
	3.3.3 Connection details

	3.4 Treeserver or general debugging ports
	3.5 Using X forwarding or VNC

	4 Starting

	II DDT
	5 Getting started
	5.1 Running a program
	5.1.1 Application
	5.1.2 MPI
	5.1.3 OpenMP
	5.1.4 CUDA
	5.1.5 Memory debugging
	5.1.6 Environment variables
	5.1.7 Plugins

	5.2 Express Launch
	5.2.1 Run dialog box

	5.3 remote-exec required by some MPIs
	5.4 Debugging single-process programs
	5.5 Debugging OpenMP programs
	5.6 Manual launching of multi-process non-MPI programs
	5.7 Debugging MPMD programs
	5.7.1 Debugging MPMD programs without Express Launch
	5.7.2 Debugging MPMD programs in Compatibility mode

	5.8 Opening core files
	5.9 Attaching to running programs
	5.9.1 Automatically detected MPI jobs
	5.9.2 Attaching to a subset of an MPI job
	5.9.3 Manual process selection
	5.9.4 Configuring attaching to remote hosts
	5.9.5 Using DDT command-line arguments

	5.10 Starting a job in a queue
	5.11 Using custom MPI scripts
	5.12 Starting DDT from a job script
	5.13 Attaching via gdbserver
	5.14 UPC
	5.14.1 GCC UPC
	5.14.2 Berkeley UPC

	5.15 Numactl
	5.15.1 MPI and SLURM
	5.15.2 Non-MPI Programs

	5.16 Python
	5.16.1 Overview
	5.16.2 Prerequisites
	5.16.3 Running

	6 Overview
	6.1 Saving and loading sessions
	6.2 Source code
	6.2.1 Viewing
	6.2.2 Editing
	6.2.3 Rebuilding and restarting
	6.2.4 Committing changes

	6.3 Project Files
	6.3.1 Application and external code

	6.4 Finding lost source files
	6.5 Finding code or variables
	6.5.1 Find Files or Functions
	6.5.2 Find
	6.5.3 Find in Files

	6.6 Go To Line
	6.7 Navigating through source code history
	6.8 Static analysis
	6.9 Version control information

	7 Controlling program execution
	7.1 Process control and process groups
	7.1.1 Detailed view
	7.1.2 Summary view

	7.2 Focus control
	7.2.1 Overview of changing focus
	7.2.2 Process group viewer
	7.2.3 Breakpoints
	7.2.4 Code viewer
	7.2.5 Parallel stack view
	7.2.6 Playing and stepping
	7.2.7 Step threads together
	7.2.8 Stepping threads window

	7.3 Starting, stopping and restarting a program
	7.4 Stepping through a program
	7.5 Stop messages
	7.6 Setting breakpoints
	7.6.1 Using the source code viewer
	7.6.2 Using the Add Breakpoint window
	7.6.3 Pending breakpoints
	7.6.4 Conditional breakpoints

	7.7 Suspending breakpoints
	7.8 Deleting a breakpoint
	7.9 Loading and saving breakpoints
	7.10 Default breakpoints
	7.11 Synchronizing processes
	7.12 Setting a watchpoint
	7.13 Tracepoints
	7.13.1 Setting a tracepoint
	7.13.2 Tracepoint output

	7.14 Version control breakpoints and tracepoints
	7.15 Examining the stack frame
	7.16 Align stacks
	7.17 Viewing stacks in parallel
	7.17.1 Overview
	7.17.2 The Parallel Stack View in detail

	7.18 Browsing source code
	7.19 Simultaneously viewing multiple files
	7.20 Signal handling
	7.20.1 Custom signal handling (signal dispositions)
	7.20.2 Sending signals

	8 Viewing variables and data
	8.1 Sparklines
	8.2 Current line
	8.3 Local variables
	8.4 Arbitrary expressions and global variables
	8.4.1 Fortran intrinsics
	8.4.2 Changing the language of an expression
	8.4.3 Macros and #defined constants

	8.5 Help with Fortran modules
	8.6 Viewing complex numbers in Fortran
	8.7 C++ STL support
	8.8 Custom pretty printers
	8.8.1 Example

	8.9 Viewing array data
	8.10 UPC support
	8.11 Changing data values
	8.12 Viewing numbers in different bases
	8.13 Examining pointers
	8.14 Multi-dimensional arrays in the Variable View
	8.15 Multi-dimensional array viewer (MDA)
	8.15.1 Array expression
	8.15.2 Filtering by value
	8.15.3 Distributed arrays
	8.15.4 Advanced: how arrays are laid out in the data table
	8.15.5 Auto Update
	8.15.6 Comparing elements across processes
	8.15.7 Statistics
	8.15.8 Export
	8.15.9 Visualization

	8.16 Cross-process and cross-thread comparison
	8.17 Assigning MPI ranks
	8.18 Viewing registers
	8.19 Process details
	8.20 Disassembler
	8.21 Interacting directly with the debugger

	9 Program input and output
	9.1 Viewing standard output and error
	9.2 Saving output
	9.3 Sending standard input

	10 Logbook
	10.1 Usage
	10.2 Annotation
	10.3 Comparison window

	11 Message queues
	11.1 Viewing the message queues
	11.2 Interpreting the message queues
	11.3 Deadlock

	12 Memory debugging
	12.1 Enabling memory debugging
	12.2 CUDA memory debugging
	12.3 Configuration
	12.3.1 Static linking
	12.3.2 Available checks
	12.3.3 Changing settings at run time

	12.4 Pointer error detection and validity checking
	12.4.1 Library usage errors
	12.4.2 View pointer details
	12.4.3 Cross-process comparison of pointers
	12.4.4 Writing beyond an allocated area
	12.4.5 Fencepost checking
	12.4.6 Suppressing an error

	12.5 Current memory usage
	12.5.1 Detecting leaks when using custom allocators/memory wrappers

	12.6 Memory Statistics

	13 Checkpointing
	13.1 Overview
	13.2 How to checkpoint
	13.3 Restoring a checkpoint

	14 Using and writing plugins
	14.1 Supported plugins
	14.2 Installing a plugin
	14.3 Using a plugin
	14.4 Writing a plugin
	14.5 Plugin reference

	15 CUDA GPU debugging
	15.1 Licensing
	15.2 Preparing to debug GPU code
	15.3 Launching the application
	15.4 Controlling GPU threads
	15.4.1 Breakpoints
	15.4.2 Stepping
	15.4.3 Running and pausing

	15.5 Examining GPU threads and data
	15.5.1 Selecting GPU threads
	15.5.2 Viewing GPU thread locations
	15.5.3 Understanding kernel progress
	15.5.4 Source code viewer

	15.6 GPU devices information
	15.7 Attaching to running GPU applications
	15.8 Opening GPU core files
	15.9 Known issues / limitations
	15.9.1 Debugging multiple GPU processes
	15.9.2 Thread control
	15.9.3 General
	15.9.4 Pre sm_20 GPUs
	15.9.5 Debugging multiple GPU processes on Cray limitations

	15.10 GPU language support
	15.10.1 Cray OpenACC
	15.10.2 PGI Accelerators and CUDA Fortran

	16 Offline debugging
	16.1 Using offline debugging
	16.1.1 Reading a file for standard input
	16.1.2 Writing a file from standard output

	16.2 Offline report output (HTML)
	16.3 Offline report output (plain text)
	16.4 Run-time job progress reporting
	16.4.1 Periodic snapshots
	16.4.2 Signal-triggered snapshots

	III MAP
	17 Getting started
	17.1 Express Launch
	17.1.1 Run dialog box

	17.2 Preparing a program for profiling
	17.2.1 Debugging symbols
	17.2.2 Linking
	17.2.3 Dynamic linking on Cray X-Series systems
	17.2.4 Static linking
	17.2.5 Static linking on Cray X-Series systems
	17.2.6 Dynamic and static linking on Cray X-Series systems using the modules environment
	17.2.7 map-link modules installation on Cray X-Series

	17.3 Profiling a program
	17.3.1 Application
	17.3.2 Duration
	17.3.3 Metrics
	17.3.4 MPI
	17.3.5 OpenMP
	17.3.6 Environment variables
	17.3.7 Profiling
	17.3.8 Profiling only part of a program
	17.3.8.1 C
	17.3.8.2 Fortran

	17.4 remote-exec required by some MPIs
	17.5 Profiling a single-process program
	17.6 Sending standard input
	17.7 Starting a job in a queue
	17.8 Using custom MPI scripts
	17.9 Starting MAP from a job script
	17.10 Numactl
	17.11 MAP environment variables

	18 Program output
	18.1 Viewing standard output and error
	18.2 Displaying selected processes
	18.3 Restricting output
	18.4 Saving output

	19 Source code
	19.1 Viewing
	19.2 OpenMP programs
	19.3 GPU programs
	19.4 Dealing with complexity: code folding
	19.5 Editing
	19.6 Rebuilding and restarting
	19.7 Committing changes

	20 Selected lines view
	20.1 Limitations
	20.2 GPU profiling

	21 Stacks view
	22 OpenMP Regions view
	23 Functions view
	24 Project Files view
	25 Metrics View
	25.1 CPU instructions
	25.1.1 Per-line CPU instructions

	25.2 Perf metrics
	25.3 CPU time
	25.4 I/O
	25.5 Memory
	25.6 MPI
	25.7 Detecting MPI imbalance
	25.8 Accelerator
	25.9 Energy
	25.9.1 Requirements

	25.10 Lustre
	25.11 Zooming
	25.12 Viewing totals across processes and nodes
	25.13 Custom metrics

	26 PAPI metrics
	26.1 Installation
	26.2 PAPI config file
	26.3 PAPI overview metrics
	26.4 PAPI cache misses
	26.5 PAPI branch prediction
	26.6 PAPI floating-point

	27 Main-thread, OpenMP and Pthread view modes
	27.1 Main thread only mode
	27.2 OpenMP mode
	27.3 Pthread mode

	28 Processes and cores view
	29 Running MAP from the command line
	29.1 Profiling MPMD programs
	29.1.1 Profiling MPMD programs without Express Launch

	30 Exporting profiler data in JSON format
	30.1 JSON format
	30.2 Activities
	30.2.1 Description of categories
	30.2.2 Categories available in main_thread activity
	30.2.3 Categories available in openmp and pthreads activities

	30.3 Metrics
	30.4 Example JSON output

	31 GPU profiling
	31.1 Kernel analysis
	31.2 Compilation
	31.3 Performance impact
	31.4 Customizing GPU profiling behavior
	31.5 Known issues

	IV Appendix
	A Configuration
	A.1 Configuration files
	A.1.1 Sitewide configuration
	A.1.2 Startup scripts
	A.1.3 Importing legacy configuration
	A.1.4 Converting legacy sitewide configuration files
	A.1.5 Using shared home directories on multiple systems
	A.1.6 Using a shared installation on multiple systems

	A.2 Integration with queuing systems
	A.3 Template tutorial
	A.3.1 The template script
	A.3.2 Configuring queue commands
	A.3.3 Configuring how job size is chosen
	A.3.4 Quick restart

	A.4 Connecting to remote programs (remote-exec)
	A.5 Optional configuration
	A.5.1 System
	A.5.2 Job submission
	A.5.3 Code viewer settings
	A.5.4 Appearance

	B Getting support
	C Supported platforms
	C.1 DDT
	C.2 MAP

	D Known issues
	D.1 MAP
	D.2 XALT Wrapper
	D.3 MPICH 3
	D.4 Open MPI
	D.5 CUDA
	D.6 SLURM
	D.7 PGI compilers
	D.8 64-bit Arm/Power platforms
	D.9 F1 user guide
	D.10 See also

	E MPI distribution notes and known issues
	E.1 Berkeley UPC
	E.2 Bull MPI
	E.3 Cray MPT
	E.3.1 Using DDT with Cray ATP (the Abnormal Termination Process)

	E.4 HP MPI
	E.5 IBM PE
	E.6 Intel MPI
	E.7 MPC
	E.7.1 MPC in the Run window
	E.7.2 MPC on the command line

	E.8 MPICH 1 p4
	E.9 MPICH 1 p4 mpd
	E.10 MPICH 2
	E.11 MPICH 3
	E.12 MVAPICH 2
	E.13 Open MPI
	E.14 Platform MPI
	E.15 SGI MPT / SGI Altix
	E.16 SLURM
	E.17 Spectrum MPI

	F Compiler notes and known issues
	F.1 AMD OpenCL compiler
	F.2 Arm Fortran compiler
	F.3 Berkeley UPC compiler
	F.4 Cray compiler environment
	F.4.1 Compile serial programs on Cray

	F.5 GNU
	F.5.1 GNU UPC

	F.6 IBM XLC/XLF
	F.7 Intel compilers
	F.8 Pathscale EKO compilers
	F.9 Portland Group compilers

	G Platform notes and known issues
	G.1 CRAY
	G.2 GNU/Linux systems
	G.2.1 General
	G.2.2 SUSE Linux
	G.2.3 Attaching

	G.3 Intel Xeon
	G.3.1 Enabling RAPL energy and power counters when profiling

	G.4 Intel Xeon Phi (Knight's Landing)
	G.5 NVIDIA CUDA
	G.5.1 CUDA known issues

	G.6 Arm
	G.6.1 Arm®v8 (AArch64) known issues

	G.7 POWER
	G.7.1 POWER8 (POWER 64-bit) known issues

	G.8 MAC OS X

	H General troubleshooting and known issues
	H.1 General troubleshooting
	H.1.1 Problems starting the GUI
	H.1.2 Problems reading this document

	H.2 Starting a program
	H.2.1 Problems starting scalar programs
	H.2.2 Problems starting multi-process programs
	H.2.3 No shared home directory
	H.2.4 DDT or MAP cannot find your hosts or the executable
	H.2.5 The progress bar does not move and Arm Forge times out

	H.3 Attaching
	H.3.1 The system does not allow connecting debuggers to processes (Fedora, Ubuntu)
	H.3.2 The system does not allow connecting debuggers to processes (Fedora, Red Hat)
	H.3.3 Running processes do not show up in the attach window

	H.4 Source Viewer
	H.4.1 No variables or line number information
	H.4.2 Source code does not appear when you start Arm Forge
	H.4.3 Code folding does not work for OpenACC/OpenMP pragmas

	H.5 Input/Output
	H.5.1 Output to stderr is not displayed
	H.5.2 Unwind errors

	H.6 Controlling a program
	H.6.1 Program jumps forwards and backwards when stepping through it
	H.6.2 DDT may stop responding when using the Step Threads Together option

	H.7 Evaluating variables
	H.7.1 Some variables cannot be viewed when the program is at the start of a function
	H.7.2 Incorrect values printed for Fortran array
	H.7.3 Evaluating an array of derived types, containing multiple-dimension arrays
	H.7.4 C++ STL types are not pretty printed

	H.8 Memory debugging
	H.8.1 The View Pointer Details window says a pointer is valid but does not show you which line of code it was allocated on
	H.8.2 mprotect fails error when using memory debugging with guard pages
	H.8.3 Allocations made before or during MPI_Init show up in Current Memory Usage but have no associated stack back trace
	H.8.4 Deadlock when calling printf or malloc from a signal handler
	H.8.5 Program runs more slowly with Memory Debugging enabled

	H.9 MAP specific issues
	H.9.1 My compiler is inlining functions
	H.9.2 Tail call optimization
	H.9.3 MPI wrapper libraries
	H.9.4 Thread support limitations
	H.9.5 No thread activity while blocking on an MPI call
	H.9.6 I am not getting enough samples
	H.9.7 I just see main (external code) and nothing else
	H.9.8 MAPis reporting time spent in a function definition
	H.9.9 MAP is not correctly identifying vectorized instructions
	H.9.10 Linking with the static MAP sampler library fails with an undefined reference to __real_dlopen
	H.9.11 Linking with the static MAP sampler library fails with FDE overlap errors
	H.9.12 MAP adds unexpected overhead to my program
	H.9.13 MAP takes an extremely long time to gather and analyze my OpenBLAS-linked application
	H.9.14 MAP over-reports MPI, Input/Output, accelerator or synchronization time
	H.9.15 MAP collects very deep stack traces with boost::coroutine

	H.10 Obtaining support

	I Queue template script syntax
	I.1 Queue template tags
	I.2 Defining new tags
	I.3 Specifying default options
	I.4 Launching
	I.4.1 Using AUTO_LAUNCH_TAG
	I.4.2 Using ddt-mpirun
	I.4.3 MPICH 1 based MPI
	I.4.4 Scalar programs

	I.5 Using PROCS_PER_NODE_TAG
	I.6 Job ID regular expression
	I.7 Arm IPMI Energy Agent
	I.7.1 Requirements

