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Introduction

Arm Performance Reports is a low-overhead tool that produces one-page text and HTML reports sum-
marizing and characterizing both scalar and MPI application performance.

Arm Performance Reports provides the most effective way to characterize and understand the perfor-
mance of HPC application runs.

One single page HTML report elegantly answers a range of vital questions for any HPC site:

• Is this application optimized for the system it is running on?

• Does it benefit from running at this scale?

• Are there I/O or networking bottlenecks affecting performance?

• Which hardware, software or configuration changes can be made to improve performance further?

It is based on MAP’s low-overhead adaptive sampling technology that keeps data volumes collected and
application overhead low:

• Runs transparently on optimized production-ready codes by adding a single command to your
scripts.

• Just 5% application slowdown even with thousands of MPI processes.

Chapters 3 to 6 of this manual describe Arm Performance Reports in more detail.

Online resources

You can find links to tutorials, training material, webinars and white papers in our online knowledge
center:

Knowledge Center Arm help and tutorials

Known issues and the latest version of this user guide may be found on the support web pages:

Support Arm Developer website
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Installation

A release of Arm Performance Reports can be downloaded from the Arm Developer website.

Both a graphical and text-based installer are provided. See the following sections for details.

Linux installation

Graphical install

Untar the package and run the installer executable, using:

tar xf arm-reports-18.2-<distro>-<arch>.tar
cd arm-reports-18.2-<distro>-<arch>
./installer

replacing <distro> and <arch> with the OS distribution and architecture of your tar package, re-
spectively. For example, the tarball package for Redhat 7.4 OS and Armv8-A (AArch64) architecture is:
arm-reports-18.2-Redhat-7.4-aarch64.tar

The installer consists of a number of pages where you can choose install options. Use the Next and Back
buttons to move between pages or Cancel to cancel the installation.

The Install Type page allows you to choose which user(s) to install Arm Performance Reports for.

If you are an administrator (root) you can install Arm Performance Reports for All Users in a common
directory, such as /opt or /usr/local, otherwise only the Just For Me option is enabled.

Figure 1: Arm Performance Reports Installer—Installation type

Once you have selected the installation type, you are prompted to specify the directory you would like to
install Arm Performance Reports in. For a cluster installation, choose a directory that is shared between
the cluster login or frontend node and the compute nodes. Alternatively, install it on or copy it to the
same location on each node.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 6
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Figure 2: Arm Performance Reports Installer—Installation directory

You are shown the progress of the installation on the Install page.

Figure 3: Install in progress

Arm Performance Reports does not have a GUI and does not add any desktop icons.

It is important to follow the instructions in the README file that is contained in the tar file. In particular,
you need a valid license file. Use the following link to obtain an evaluation license Get software.

Due to the large number of different site configurations and MPI distributions that are supported by
Arm Performance Reports, it is inevitable that you may need to take further steps to get everything fully
integrated into your environment. For example, it may be necessary to ensure that environment variables
are propagated to remote nodes, and ensure that the tool libraries and executables are available on the
remote nodes.

Text-mode install

The text-mode install script textinstall.sh is useful if you are installing remotely.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 7
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To install using the text-mode install script, untar the package and run the textinstall.sh script,
using:

tar xf arm-reports-18.2-<distro>-<arch>.tar
cd arm-reports-18.2-<distro>-<arch>
./text-install.sh

replacing <distro> and <arch> with the OS distribution and architecture of your tar package, re-
spectively. For example, the tarball package for Redhat 7.4 OS and Armv8-A (AArch64) architecture is:
arm-reports-18.2-Redhat-7.4-aarch64.tar

Next, you are prompted with the license agreement. To read the license, press Return. Following the
license prompt, you are requested to enter the directory where you want to install Arm Performance
Reports. This directory must be accessible on all the nodes in your cluster. Enter a directory for the
installation.

Alternatively, to run the text-mode install script textinstall.sh, accept the license, and point to an
installation directory in one step, pass the arguments --accept-licence and <installation_-
directory> when executing textinstall.sh. For example:

./textinstall.sh --accept-licence <installation_directory>

replacing the <installation_directory> with a directory of your choice.

License files

Arm Performance Reports requires a license file for its operation.

Time-limited evaluation licenses are available from the Arm Developer website.

Workstation and evaluation licenses

Workstation and Evaluation license files for Arm Performance Reports do not require ArmLicence Server
and should be copied directly to{installation-directory}/licences, for example, /home/
user/arm/reports/licences/Licence.ddt. Do not edit the files as this prevents them from
working.

Youmay specify an alternative location of the license directory using an environment variable: ALLINEA_
LICENCE_DIR. For example:

export ALLINEA_LICENCE_DIR=${HOME}/SomeOtherLicenceDir

ALLINEA_LICENSE_DIR is an alias for ALLINEA_LICENCE_DIR.

Supercomputing and other floating licenses

Licensing!Floating licenses

For users with Supercomputing and other floating licenses, the Arm Licence Server must be running on
the designated license server machine prior to running Arm Performance Reports.

The Arm Licence Server and instructions for its installation and usage may be downloaded from the Arm
Developer website.

The license server download is on the Arm Forge download page.
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A floating license consists of two files: the server license, a file name Licence.xxxx, and a client
license file Licence.

The client file should be copied to{installation-directory}/licences, for example, /home/
user/arm/reports/licences/Licence.

You need to edit the hostname line to contain the host name or IP address of the machine running the
Licence Server.

See the Licence Server user guide for instructions on how to install the server license.

Architecture licensing

Licenses issued after the release of Arm Performance Reports 6.1 specify the compute node architectures
that they may be used with. Licenses issued prior to this release will enable the x86_64 architecture by
default.

Existing users for other architectures will be supplied with new

Using multiple architecture licenses

If you are using multiple license files to specify multiple architectures, it is recommended that you leave
the default licenses directory empty. Instead, create a directory for each architecture, and when you target
a specific architecture set ALLINEA_LICENSE_DIR to the relevant directory. Alternatively, you can
set ALLINEA_LICENSE_FILE in order to specify the license file.

By way of example, consider a site where there are two target architectures, x86_64 and aarch64. Create
two directories, licenses_x86_64 and licenses_aarch64. Then, if you want to target aarch64,
you would set the license directory as follows:

export ALLINEA_LICENSE_DIR=/path/to/licenses_aarch64

Environment variables

Report customization

Environment variables to customize your reports:

ALLINEA_NOTES

Any text in this environment variable will be included in all reports produced.

ALLINEA_MAP_TO_DCIM

Allows you to specify a .map file when using the --dcim-output argument.

ALLINEA_DCIM_SCRIPT

Path to the script to use to communicatewithDCIM.Default is${ALLINEA_TOOLS_PATH}/performance-reports/
ganglia-connector/pr-dcim.

ALLINEA_GMETRIC

Path to the gmetric instance to use. This is specific to the pr-dcim script. Default is which gmet-
ric.
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Warning suppression

Environment variables for warning suppression (for use when autodetection is resulting in erroneous
messages):

ALLINEA_NO_APPLICATION_PROBE

Do not attempt to auto-detect MPI or CUDA executables.

ALLINEA_DETECT_APRUN_VERSION

Automatically detect Cray MPT by passing --version to the aprun wrapper and parsing the out-
put.

I/O behavior

Environment variables for handling default I/O behavior:

ALLINEA_NEVER_FORWARD_STDIN

Never forward the stdin of the perf-report command stdin to the program being analyzed, even
if not using the GUI. Normally Arm Performance Reports only forwards stdin when running without
the GUI.

ALLINEA_ENABLE_ALL_REPORTS_GENERATION

Enables the option in Arm Performance Reports to generate all types of results at once, using the .all
extension.

Licensing

Environment variables to handle licensing:

ALLINEA_LICENCE_FILE

Location of the license file. Default is ${ALLINEA_TOOLS_PATH}/Licence

ALLINEA_FORCE_LICENCE_FILE

Location of the license file. This ensures the license file being pointed to is used.

ALLINEA_LICENCE_DIR

Location of the licenses directory. Default is ${ALLINEA_TOOLS_PATH}/licences.

ALLINEA_MAC_INTERFACE

Specify the host name of the network interface the license is tied to.

Timeouts

Environment variables for handling timeouts:

ALLINEA_NO_TIMEOUT

Do not time out if nodes do not connect after a specified length of time. This may be necessary if the
MPI subsystem takes unusually long to start processes.

ALLINEA_PROCESS_TIMEOUT
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Length of time (in ms) to wait for a process to connect to the front end.

ALLINEA_MPI_FINALIZE_TIMEOUT_MS

Length of time (in ms) to wait for MPI_Finalize to end and the program to exit. Default is 300000
(5 minutes). 0 waits forever.

Sampler

Environment variables for handling sampler-related setup, runtime behavior, and backend processing:

ALLINEA_SAMPLER_INTERVAL

Arm Performance Reports takes a sample in each 20 milliseconds period, giving it a default sampling
rate of 50Hz. This will be automatically decreased as the run proceeds to ensure a constant number of
samples are taken. See ALLINEA_SAMPLER_NUM_SAMPLES.

If your program runs for a very short period of time, you may benefit by decreasing the initial sampling
interval. For example, ALLINEA_SAMPLER_INTERVAL=1 sets an initial sampling rate of 1000Hz, or
once per millisecond. Higher sampling rates are not supported.

Increasing the sampling frequency from the default is not recommended if there are lots of threads or
very deep stacks in the target program because this may not leave sufficient time to complete one sample
before the next sample is started.

i{Note: Custom values forALLINEA_SAMPLER_INTERVALmay be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS). For more information, see ALLINEA_SAMPLER_INTERVAL_PER_
THREAD.

ALLINEA_SAMPLER_INTERVAL_PER_THREAD

To keep overhead low, Arm Performance Reports imposes a minimum sampling interval based on the
number of threads. By default, this is 2 milliseconds per thread, thus for eleven or more threads Arm
Performance Reports will increase the initial sampling interval to more than 20 milliseconds.

To adjust this behavior setALLINEA_SAMPLER_INTERVAL_PER_THREAD to theminimumper thread
sample time, in milliseconds.

Lowering this value from the default is not recommended if there are lots of threads as this may not leave
sufficient time to complete one sample before the next sample is started.

Notes:

• Whether OpenMP is enabled or disabled in Arm Performance Reports, the final script or scheduler
values set for OMP_NUM_THREADS will be used to calculate the sampling interval per thread
(ALLINEA_SAMPLER_INTERVAL_PER_THREAD). When configuring your job for submission,
check whether your final submission script, scheduler or the Arm Performance Reports GUI has a
default value for OMP_NUM_THREADS.

• Custom values for ALLINEA_SAMPLER_INTERVAL will be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of
threads from OMP_NUM_THREADS.

ALLINEA_MPI_WRAPPER

To direct Arm Performance Reports to use a specific wrapper library set ALLINEA_MPI_WRAPPER=
<pathofsharedobject>.
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Arm Performance Reports ships with a number of precompiled wrappers, when your MPI is supported
Arm Performance Reports will automatically select and use the appropriate wrapper.

To manually compile a wrapper specifically for your system, set ALLINEA_WRAPPER_COMPILE=1
andMPICC and run<path to Arm Performance Reports installation>/map/wrapper/
build_wrapper.

This generates thewrapper library~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>
.so with symlinks to the following files:

• ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1

• ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1.0

• ~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1.0.0.

ALLINEA_WRAPPER_COMPILE

To direct Arm Performance Reports to fall back to creating and compiling a just-in-time wrapper, set
ALLINEA_WRAPPER_COMPILE=1.

In order to be able to generate a just-in-time wrapper an appropriate compiler must be available on the
machine where Arm Performance Reports is running, or on the remote host when using remote con-
nect.

Arm Performance Reports will attempt to auto detect your MPI compiler, however, setting the MPICC
environment variable to the path to the correct compiler is recommended.

ALLINEA_MPIRUN

The path of mpirun, mpiexec or equivalent.

If set, ALLINEA\_MPIRUN has higher priority than that set in the GUI and the mpirun found in
PATH.

ALLINEA_SAMPLER_NUM_SAMPLES

Arm Performance Reports collects 1000 samples per process by default. To avoid generating too much
data on long runs, the sampling rate is automatically decreased as the run progresses to ensure only 1000
evenly spaced samples are stored.

Youmay adjust this by settingALLINEA_SAMPLER_NUM_SAMPLES=<positiveinteger>.

Note: It is strongly recommended that you leave this value at the default setting. Higher values are not
generally beneficial and add extra memory overheads while running your code. With 512 processes, the
default setting already collects half a million samples over the job, the effective sampling rate can be very
high indeed.

ALLINEA_KEEP_OUTPUT_LINES

Specifies the number of lines of program output to record in .map files. Setting to 0will remove the line
limit restriction, although this is not recommended as it may result in very large .map files if the profiled
program produces lots of output.

ALLINEA_KEEP_OUTPUT_LINE_LENGTH

The maximum line length for program output that will be recorded in .map files. Lines containing more
characters than this limit will be truncated. Setting to 0 will remove the line length restriction. This is
not recommended because it may result in very large .map files if the profiled program produces lots of
output per line.

ALLINEA_PRESERVE_WRAPPER
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To gather data from MPI calls Arm Performance Reports generates a wrapper to the chosen MPI imple-
mentation.

By default, the generated code and shared objects are deleted when Arm Performance Reports no longer
needs them.

To prevent Arm Performance Reports from deleting these files set ALLINEA_PRESERVE_WRAPPER=
1.

Note: If you are using remote launch then this variable must be exported in the remote script.

ALLINEA_SAMPLER_NO_TIME_MPI_CALLS

To prevent Arm Performance Reports from timing the time spent inMPI calls, setALLINEA_SAMPLER_
NO_TIME_MPI_CALLS.

ALLINEA_SAMPLER_TRY_USE_SMAPS

To allow Arm Performance Reports to use /proc/[pid]/smaps to gather memory usage data, set
this ALLINEA_SAMPLER_TRY_USE_SMAPS. This is not recommended since it slows down sampling
significantly.

MPICC

To create the MPI wrapper Arm Performance Reports will try to use MPICC, then if that fails search for
a suitable MPI compiler command in PATH. If the MPI compiler used to compile the target binary is not
in PATH (or if there are multiple MPI compilers in PATH) then MPICC should be set.

Simple troubleshooting

Environment variables for simple troubleshooting:

ALLINEA_DEBUG_HEURISTICS

To print the weights and heuristics used to autodetect which MPI is loaded, set to 1.
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Running with an example program

This section takes you through compiling and running one of the the example programs.

Overview of the example source code

Compiling

Arm provides a simple 1-D wave equation solver that is useful as a profiling example program. Both C
and Fortran variants are provided:

• examples/wave.c

• examples/wave.f90

Both are built using the same makefile, wave.makefile. To navigate and run wave.makefile,
use:

cd <INSTALL_DIR>/examples/
make -f wave.makefile

There is also a mixed-mode MPI+OpenMP variant in examples/wave_openmp.c, which is built
with the openmp.makefile makefile.

Note: The makefiles for all supplied examples are located in the <INSTALL_DIR>/examples direc-
tory.

Depending on the default compiler on your system you may see some errors when running the makefile,
for example:

pgf90-Error-Unknown switch: -fno-inline

By default, this example makefile is set up for the GNU compilers. To setup the makefile for a differ-
ent compiler, open the examples/wave.makefile file, uncomment the appriopriate compilation
command for the compiler you want to use, and comment those of the GNU compiler.

Note: The compilation commands for other popular compilers are already present within the makefile,
separated by compiler.

Note: Although the example makefiles include the -g flag, Arm Performance Reports does not require
this and you should not use them in your own makefiles.

Inmost cases ArmPerformance Reports can run on an unmodified binary with no recompilation or linking
required.

Cray X-series

On Cray X-series systems the example program must either be dynamically linked (using -dynamic)
or explicitly linked with the Arm profiling libraries.

Example how to dynamically link:

cc -dynamic -g -O3 wave.c -o wave -lm -lrt

ftn -dynamic -G2 -O3 wave.f90 -o wave -lm -lrt
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Example how to explicitly link with the Arm profiling libraries: First create the libraries using the com-
mand make-profiler-libraries --platform=cray --lib-type=static:

Created the libraries in /home/user/examples:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or -G2 for native Cray fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/examplesm/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Arm sampler and MPI wrapper

libraries in
the link line. There's a comprehensive description of the link

ordering
requirements in the `Preparing a Program for Profiling' section

of either
userguide-forge.pdf or userguide-reports.pdf, located in
/opt/arm/forge/doc/.

Then follow the instructions in the output to link the example programwith theArmprofiling libraries:

cc -g -O3 wave.c -o wave -g -Wl,@allinea-profiler.ld -lm -lrt

ftn -G2 -O3 wave.f90 -o wave -G2 -Wl,@allinea-profiler.ld -lm -lrt

Running

As this example uses MPI you need to run on a compute node on your cluster. Your site’s help pages and
support staff can tell you exactly how to do this on your machine. The simplest way when running small
programs is often to request an interactive session, as follows:

$ qsub -I
qsub: waiting for job 31337 to start
qsub: job 31337 ready
$ cd arm/reports/examples
$ mpiexec -n 4 ./wave_c
Wave solution running with 4 processes

0: points = 1000000, running for 30 seconds
points / second: 63.9M (16.0M per process)
compute / communicate efficiency: 94% | 97% | 100%

Points for validation:
0:0.00 200000:0.95 400000:0.59 600000:-0.59 800000:-0.95

999999:0.00
wave finished
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If you see output similar to this then the example program is compiled and working correctly.

Generating a performance report

Make sure the Arm Performance Reports module for your system has been loaded:

$ perf-report --version
Arm Performance Reports
Copyright (c) 2002-2018 Arm Limited (or its affiliates). All

rights reserved.
...

If this command cannot be found consult the site documentation to find the name of the correct mod-
ule.

Once themodule is loaded, you can add theperf-report command in front of your existingmpiexec
command-line:

perf-report mpiexec -n 4 examples/wave_c

If your program is submitted through a batch queuing system, then modify your submission script to load
the Arm module and add the ‘perf-report’ line in front of the mpiexec command you want to generate
a report for.

The program runs as usual, although startup and shutdown may take a few minutes longer while Arm
Performance Reports generates and links the appropriate wrapper libraries before running and collects
the data at the end of the run. The runtime of your code (between MPI_Init and MPI_Finalize
should not be affected by more than a few percent at most.

After the run finishes, a performance report is saved to the current working directory, using a name based
on the application executable:

$ ls -lrt wave_c*
-rwx------ 1 mark mark 403037 Nov 14 03:21 wave_c
-rw------- 1 mark mark 1911 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.txt
-rw------- 1 mark mark 174308 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.html

Note that both .txt and .html versions are automatically generated.
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Running with real programs

This section will take you through compiling and running your own programs.

Arm Performance Reports is designed to run on unmodified production executables, so in general no
preparation step is necessary. However, there is one important exception: statically linked applications
require additional libraries at the linking step.

Preparing a program for profiling

In most cases you do not need to recompile your program to use it with Performance Reports, although
in some cases it may need to be relinked, as explained in section 4.1.1 Linking.

CUDA programs

When compilingCUDAkernels do not generate debug information for device code (the-G or--device-
debug flag) as this can significantly impair runtime performance. Use -lineinfo instead, for exam-
ple:

nvcc device.cu -c -o device.o -g -lineinfo -O3

Arm®v8 (AArch64) machines

Unwind information is not always compiled in by default on this platform. For accurate results programs
that are not compiledwith debug information (-g) should at least be compiledwith the-fasynchronous-
unwind-tables flag or the -funwind-tables flag, preferably the former.

Linking

To collect data from your program, PerformanceReports uses two small profiler libraries,map-sampler
and map-sampler-pmpi. These must be linked with your program. On most systems Performance
Reports can do this automatically without any action by you. This is done via the system’s LD_PRELOAD
mechanism, which allows an extra library into your program when starting it.

Note: Although these libraries contain the word ‘map’ they are used for both Arm Performance Reports
and Arm MAP.

This automatic linking when starting your program only works if your program is dynamically-linked.
Programs may be dynamically-linked or statically-linked, and for MPI programs this is normally deter-
mined by your MPI library. Most MPI libraries are configured with --enable-dynamic by default,
and mpicc/mpif90 produce dynamically-linked executables that Performance Reports can automati-
cally collect data from.

The map-sampler-pmpi library is a temporary file that is precompiled and copied or compiled at
runtime in the directory ~/.allinea/wrapper.

If your home directory will not be accessible by all nodes in your cluster you can change where the map-
sampler-pmpi library will be created by altering the shared directory as described in G.1.3
No shared home directory.

The temporary library will be created in the .allinea/wrapper subdirectory to this shared di-
rectory.

For Cray X-Series Systems the shared directory is not applicable, instead map-sampler-pmpi
is copied into a hidden .allinea sub-directory of the current working directory.
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If Performance Reports warns you that it could not pre-load the sampler libraries, this often means that
your MPI library was not configured with --enable-dynamic, or that the LD_PRELOADmechanism
is not supported on your platform. You now have three options:

1. Try compiling and linking your code dynamically. On most platforms this allows Performance Re-
ports to use the LD_PRELOADmechanism to automatically insert its libraries into your application
at runtime.

2. Link MAP’s map-sampler and map-sampler-pmpi libraries with your program at link time
manually.

See 4.1.2 Dynamic linking on Cray X-Series systems, or 4.1.3 Static linking and 4.1.4 Static linking
on Cray X-Series systems.

3. Finally, it may be that your system supports dynamic linking but you have a statically-linked
MPI. You can try to recompile the MPI implementation with --enable-dynamic, or find a
dynamically-linked version on your system and recompile your program using that version. This
will produce a dynamically-linked program that Performance Reports can automatically collect
data from.

Dynamic linking on Cray X-Series systems

If the LD_PRELOAD mechanism is not supported on your Cray X-Series system, you can try to dynami-
cally link your program explicitly with the Performance Reports sampling libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler-
libraries --platform=cray --lib-type=shared command.

Note: Performance Reports also uses this library.

user@login:∼/myprogram$ make-profiler-libraries --platform=cray
--lib-type=shared

Created the libraries in /home/user/myprogram:
libmap-sampler.so (and .so.1, .so.1.0, .so.1.0.0)
libmap-sampler-pmpi.so (and .so.1, .so.1.0, .so.1.0.0)

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or '-G2' for native Cray Fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-dynamic -L/home/user/myprogram -lmap-sampler-pmpi -lmap-

sampler -Wl,--eh-frame-hdr

Note: These libraries must be on the same NFS/Lustre/GPFS
filesystem as your

program.

Before running your program (interactively or from a queue), set
LD_LIBRARY_PATH:
export LD_LIBRARY_PATH=/home/user/myprogram:$LD_LIBRARY_PATH
map ...
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or add -Wl,-rpath=/home/user/myprogram when linking your program.

Linking with the Arm MPI Wrapper Library

mpicc -G2 -o hello hello.c -dynamic -L/home/user/myprogram \
-lmap-sampler-pmpi -lmap-sampler -Wl,--eh-frame-hdr

PGI Compiler

When linkingOpenMP programs youmust pass the-Bdynamic command line argument to the compiler
when linking dynamically.

When linking C++ programs you must pass the -pgc++libs command line argument to the compiler
when linking.

Static linking

If you compile your program statically, that is your MPI uses a static library or you pass the -static
option to the compiler, then youmust explicitly link your programwith the Arm sampler andMPIwrapper
libraries.

Compiling the Arm MPI Wrapper Library

First you must compile the Arm MPI wrapper library for your system using the make-profiler-
libraries --lib-type=static command.

Note: Performance Reports also uses this library.

user@login:∼/myprogram$ make-profiler-libraries --lib-type=static

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/myprogram/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Arm sampler and MPI wrapper

libraries in
the link line. There's a comprehensive description of the link

ordering
requirements in the 'Preparing a Program for Profiling' section

of either
userguide-forge.pdf or userguide-reports.pdf, located in
/opt/arm/forge/doc/.

Linking with the Arm MPI Wrapper Library

The -Wl,@/home/user/myprogram/allinea-profiler.ld syntax tells the compiler to look
in /home/user/myprogram/allinea-profiler.ld for instructions on how to link with the
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Arm sampler. Usually this is sufficient, but not in all cases. The rest of this section explains how to
manually add the Arm sampler to your link line.

PGI Compiler

When linking C++ programs you must pass the -pgc++libs command line argument to the compiler
when linking.

The PGI compiler must be 14.9 or later. Using earlier versions of the PGI compiler will fail with an
error such as “Error: symbol 'MPI_F_MPI_IN_PLACE' can not be both weak and
common” due to a bug in the PGI compiler’s weak object support.

If you do not have access to PGI compiler 14.9 or later try compiling and the linking Arm MPI wrapper
as a shared library as described in 4.1.2 Dynamic linking on Cray X-Series systems Ommit the option
--platform=cray if you are not on a Cray.

Cray

When linking C++ programs you may encounter a conflict between the Cray C++ runtime and the GNU
C++ runtime used by the Performance Reports libraries with an error similar to the one below:

/opt/cray/cce/8.2.5/CC/x86-64/lib/x86-64/libcray-c++-rts.a(rtti.o)
: In function `__cxa_bad_typeid':

/ptmp/ulib/buildslaves/cfe-82-edition-build/tbs/cfe/lib_src/rtti.c
:1062: multiple definition of `__cxa_bad_typeid'

/opt/gcc/4.4.4/snos/lib64/libstdc++.a(eh_aux_runtime.o):/tmp/peint
/gcc/repackage/4.4.4c/BUILD/snos_objdir/x86_64-suse-linux/
libstdc++-v3/libsupc++/../../../../xt-gcc-4.4.4/libstdc++-v3/
libsupc++/eh_aux_runtime.cc:46: first defined here

You can resolve this conflict by removing-lstdc++ and-lgcc_eh fromallinea-profiler.ld.

-lpthread

When linking -Wl,@allinea-profiler.ldmust go before the -lpthread command line argu-
ment if present.

Manual Linking

When linking your program you must add the path to the profiler libraries (-L/path/to/profiler-
libraries), and the libraries themselves (-lmap-sampler-pmpi, -lmap-sampler).

The MPI wrapper library (-lmap-sampler-pmpi) must go:

1. After your program’s object (.o) files.

2. After your program’s own static libraries, for example -lmylibrary.

3. After the path to the profiler libraries (-L/path/to/profiler-libraries).

4. Before the MPI’s Fortran wrapper library, if any. For example -lmpichf.

5. Before the MPI’s implementation library usually -lmpi.

6. Before the Arm sampler library -lmap-sampler.

The sampler library -lmap-sampler must go:

1. After the Arm MPI wrapper library.

2. After your program’s object (.o) files.

3. After your program’s own static libraries, for example -lmylibrary.
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4. After -Wl,--undefined,allinea_init_sampler_now.

5. After the path to the profiler libraries -L/path/to/profiler-libraries.

6. Before -lstdc++, -lgcc_eh, -lrt, -lpthread, -ldl, -lm and -lc.

For example:

mpicc hello.c -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-Wl,--undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -lgcc_eh -lrt \
-Wl,--whole-archive -lpthread \
-Wl,--no-whole-archive \
-Wl,--eh-frame-hdr \
-ldl \
-lm

mpif90 hello.f90 -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-Wl,--undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -lgcc_eh -lrt \
-Wl,--whole-archive -lpthread \
-Wl,--no-whole-archive \
-Wl,--eh-frame-hdr \
-ldl \
-lm

Static linking on Cray X-Series systems

Compiling the MPI Wrapper Library

OnCrayX-Series systems usemake-profiler-libraries --platform=cray --lib-type=static
instead:

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or -G2 for native Cray Fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/myprogram/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Arm sampler and MPI wrapper

libraries in
the link line. There's a comprehensive description of the link

ordering
requirements in the 'Preparing a Program for Profiling' section

of either
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userguide-forge.pdf or userguide-reports.pdf, located in
/opt/arm/forge/doc/.

Linking with the MPI Wrapper Library

cc hello.c -o hello -g -Wl,@allinea-profiler.ld

ftn hello.f90 -o hello -g -Wl,@allinea-profiler.ld

Dynamic and static linking on Cray X-Series systems using the modules
environment

If your system has the Arm module files installed, you can load them and build your application as usual.
See section 4.1.6.

1. module load reports or ensure that make-profiler-libraries is in your PATH.

2. module load map-link-static or module load map-link-dynamic.

3. Recompile your program.

map-link modules installation on Cray X-Series

To facilitate dynamic and static linking of user programswith the ArmMPIWrapper and Sampler libraries
Cray X-Series System Administrators can integrate the map-link-dynamic and map-link-static modules
into their module system. Templates for these modules are supplied as part of the Arm Performance
Reports package.

Copy files share/modules/cray/map-link-* into a dedicated directory on the system.

For each of the two module files copied:

1. Find the line starting with conflict and correct the prefix to refer to the location the module files
were installed, for example, arm/map-link-static. The correct prefix depends on the sub-
directory (if any) under the module search path the map-link-* modules were installed.

2. Find the line starting with setMAP_LIBRARIES_DIRECTORY ”NONE” and replace ”NONE”
with a user writable directory accessible from the login and compute nodes.

After installed you can verify whether or not the prefix has been set correctly with ‘module avail’, the
prefix shown by this command for the map-link-* modules should match the prefix set in the ‘conflict’
line of the module sources.

Express Launch mode

Arm Performance Reports can be launched by typing its command name in front of an existing mpiexec
command:

$ perf-report mpiexec -n 256 examples/wave_c 30

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see an error message like this:
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$ 'MPICH 1 standard' programs cannot be started using Express
Launch syntax (launching with an mpirun command).

Try this instead:
perf-report --np=256 ./wave_c 20

Type perf-report --help for more information.

This is referred to as Compatibility Mode, in which the mpiexec command is not included and the
arguments to mpiexec are passed via a --mpiargs="args here" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts to
run your program under one of the Arm Performance Reports products.

Normal redirection syntax may be used to redirect standard input and standard output.

Compatible MPIs

The following lists the MPI implementations supported by Express Launch:

• Bullx MPI

• Cray X-Series (MPI/SHMEM/CAF)

• Intel MPI

• MPICH 2

• MPICH 3

• Open MPI (MPI/SHMEM)

• Oracle MPT

• Open MPI (Cray XT/XE/XK)

• Cray XT/XE/XK (UPC)

Compatibility Launch mode

Compatibility Mode must be used if Arm Performance Reports does not support Express Launch mode
for your MPI, or, for some MPIs, if it is not able to access the compute nodes directly (for example, using
ssh).

To use Compatibility Mode replace the mpiexec command with the perf-report command. For
example:

mpiexec --np=256 ./wave_c 20

This would become:

perf-report --np=256 ./wave_c 20

Only a small number of mpiexec arguments are supported by perf-report (for example, -n and -np).
Other arguments must be passed using the --mpiargs="args here" parameter.

For example:

mpiexec --np=256 --nooversubscribe ./wave_c 20
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Becomes:

perf-report --mpiargs="--nooversubscribe" --np=256 ./wave_c 20

Normal redirection syntax may be used to redirect standard input and standard output.

Generating a performance report

Make sure the Arm Performance Reports module for your system has been loaded:

$ perf-report --version
Arm Performance Reports
Copyright (c) 2002-2018 Arm Limited (or its affiliates). All

rights reserved.
...

If this command cannot be found consult the site documentation to find the name of the correct mod-
ule.

Once the module is loaded, you can simply add the perf-report command in front of your existing
mpiexec command-line:

perf-report mpiexec -n 4 examples/wave_c

If your program is submitted through a batch queuing system, then modify your submission script to load
the Arm module and add the ‘perf-report’ line in front of the mpiexec command you want to generate
a report for.

The program runs as usual, although startup and shutdown may take a few minutes longer while Arm
Performance Reports generates and links the appropriate wrapper libraries before running and collects
the data at the end of the run. The runtime of your code (between MPI_Init and MPI_Finalize
should not be affected by more than a few percent at most.

After the run finishes, a performance report is saved to the current working directory, using a name based
on the application executable:

$ ls -lrt wave_c*
-rwx------ 1 mark mark 403037 Nov 14 03:21 wave_c
-rw------- 1 mark mark 1911 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.txt
-rw------- 1 mark mark 174308 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.html

Note that both .txt and .html versions are automatically generated.

You can include a short description of the run or other notes on configuration and compilation settings
by setting the environment variable ALLINEA_NOTES before running perf-report:

$ ALLINEA_NOTES="Run with inp421.dat and mc=1" perf-report mpiexec
-n 512 ./parEval.bin --use-mc=1 inp421.dat

The string in the ALLINEA_NOTES environment variable is included in all report files produced.
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Specifying output locations

By default, performance reports are placed in the current working directory using an auto-generated name
based on the application executable name, for example:

wave_f_16p_2013-11-18_23-30.html
wave_f_2p_8t_2013-11-18_23-30.html

This is formed by the name, the size of the job, the date, and the time. If using OpenMP, the value of
OMP_NUM_THREADS is also included in the name after the size of the job. The name will be made
unique if necessary by adding a _1/_2/…suffix.

You can specify a different location for output files using the --output argument:

• --output=my-report.txtwill create a plain text report in the file my-report.txt in the
current directory.

• --output=/home/mark/public/my-report.html will create an HTML report in the
file /home/mark/public/my-report.html.

• --output=my-report will create a plain text report in the file my-report.txt and an
HTML report in the file my-report.html, both in the current directory.

• --output=/tmp will create reports with names based on the application executable name in
/tmp/, for example, /tmp/wave\_f\_16p\_2013-11-18\_23\-30.txt and /tmp/
wave\_f\_16p\_2013-11-18\_23\-30.html.

Support for DCIM systems

PerformanceReports includes support for Data Center InfrastructureManagement (DCIM) systems.

You can output all the metrics generated by the Performance Reports to a script using the --dcim-
output argument. By default, the pr-dcim script is called and the collected metrics are sent to Ganglia
(a System Monitoring tool).

The pr-dcim script looks for a gmetric implementation as part of the Ganglia software, and call it
as many times as there are metrics.

Customizing your DCIM script

The defaultpr-dcim script is located ininstallation-directory/performance-reports/
ganglia-connector/pr-dcim.

However, you can use your own custom script by specifying the ALLINEA_DCIM_SCRIPT environ-
ment variable.

This option is recommended if you are using a System Monitoring tool other than Ganglia.

Such a script is expecting arguments as follows, each argument can be specified once per metric:

• -V{METRIC}={VALUE} (mandatory) specifies that the metric METRIC has the value VALUE.

• -U{METRIC}={UNITS} (optional) specifies that the metric METRIC is expressed in UNITS.

• -T{METRIC}={TITLE} (optional) specifies that the metric METRIC has title TITLE.

• -t{METRIC}={TYPE} (optional) specifies that the metric METRIC has TYPE data type.
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Customising the gmetric location

You can specify the path to your gmetric implementation by using the ALLINEA_GMETRIC environ-
ment variable.

Your gmetric version must accept the following command line arguments:

• -n {NAME} (mandatory) specifies the name of the metric (starts with com.allinea).

• -t {TYPE} (mandatory) specifies the type of the metric (for example, double or int32).

• -v {VALUE} (mandatory) specifies the value of the metric.

• -g {GROUP} (optional) specifies which groups the metric belongs to (for example allinea).

• -u {UNIT} (optional) specifies the unit of the metric. For example, %, Watts, Seconds, and
so on.

• -T {TITLE} (optional) specifies the title of the metric.

Enable and disable metrics

--enable-metrics=METRICS
--disable-metrics=METRICS

Allows you to specify comma-separated lists which explicitly enable or disable metrics for which data
is to be collected. If the metrics specified cannot be found, an error message is displayed and Perfor-
mance Reports exits. Metrics which are always enabled or disabled cannot be explicitly disabled or
enabled. A metrics source library which has all its metrics disabled, either in the XML definition or via
--disable-metrics, will not be loaded. Metrics which can be explicitly enabled or disabled can be
listed using the --list-metrics option.
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Summarizing an existing MAP file

Arm Performance Reports can be used to summarize an application profile generated by Arm MAP. To
produce a performance report from an existingMAPoutput file calledprofile.map, simply run:

$ perf-report profile.map

Command-line options which would alter the execution of a program being profiled, such as specifying
the number of MPI ranks, have no effect. Options affecting how Performance Reports produces its report,
such as --output, work as expected.

For best results the Performance Reports and MAP versions should match, for example, Performance
Reports 18.2 with MAP 18.2. Performance Reports can use MAP files from versions of MAP as old as
5.0.
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Interpreting performance reports

This section takes you through interpreting the reports produced by Arm Performance Reports.

Reports are generated in both HTML and textual formats for each run of your application by default. The
same information is presented in both.

If you wish to combine Arm Performance Reports with other tools, consider using the CSV output for-
mat.

See 6.13 for more details.

HTML performance reports

Viewing HTML files is best done on your local machine. Many sites have places you can put HTML
files to be viewed from within the intranet. These directories are a good place to automatically send your
performance reports to. Alternatively, you can use scp or even the excellent sshfs to make the reports
available to your laptop or desktop:

$ scp login1:arm/reports/examples/wave_c_4p*.html .
$ firefox wave_c_4p*.html

The following report was generated by a 8 MPI processes and 2 OpenMP threads per process run of the
wave_openmp.c example program on a typical HPC cluster:
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Figure 4: A performance report for the wave_openmp.c example
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Your report may differ from this one depending on the performance and network architecture of the
machine it is run on, but the basic structure of these reports is always the same. This makes comparisons
between reports simple, direct and intuitive. Each section of the report is described in the following
sections.

Report summary

This characterizes how the application’s wallclock time was spent, broken down into compute, MPI and
I/O.

In this example file you see that Arm Performance Reports has identified the program as being compute-
bound, which simply means that most of its time is spent inside application code rather than communi-
cating or using the filesystem.

The snippets of advice, such as “this code may benefit from running at larger scales” are good starting
points for guiding future investigations and are designed to be meaningful to scientific users with no
previous MPI tuning experience.

The triangular radar chart in the top-right corner of the report reflects the values of these three key mea-
surements: compute, MPI and I/O. It is helpful to recognize and compare these triangular shapes when
switching between multiple reports.

Compute

Time spent computing. This is the percentage of wall-clock time spent in application and in library code,
excluding time spent in MPI calls and I/O calls.

MPI

Time spent communicating. This is the percentage of wall-clock time spent in MPI calls such as MPI_-
Send, MPI_Reduce and MPI_Barrier.

Input/Output

Time spent reading from and writing to the filesystem. This is the percentage of wall-clock time spent in
system library calls such as read, write and close.

Note: All time spent in MPI-IO calls is included here, even though some communication between pro-
cesses may also be performed by the MPI library. MPI_File_close is treated as time spent writing,
which is often but not always correct.

CPU breakdown

Note: All of the metrics described in this section are only available on x86_64 systems.

This section breaks down the time spent in application and library code further by analyzing the kinds of
instructions that this time was spent on.

Note that all percentages here are relative to the compute time, not to the entire application run. Time
spent in MPI and I/O calls is not represented inside this section.
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Single core code

The percentage of wall-clock in which the application executed using only one core per process, as op-
posed to multithreaded or OpenMP code. If you have a multithreaded or OpenMP application, a high
value here indicates that your application is bound by Amdahl’s law and that scaling to larger numbers
of threads will not meaningfully improve performance.

OpenMP code

The percentage of wall-clock time spent in OpenMP regions. The higher this is, the better. This metric is
only shown if the program spent a measurable amount of time inside at least one OpenMP region.

Scalar numeric ops

The percentage of time spent executing arithmetic operations such as add, mul, div. This does not
include time spent using the more efficient vectorized versions of these operations.

Vector numeric ops

The percentage of time spent executing vectorized arithmetic operations such as Intel’s SSE2 / AVX
extensions.

Generally it is good if a scientific code spends most of its time in these operations, as that is the only way
to achieve anything close to the peak performance of modern processors.

If this value is low it is worth checking the compiler’s vectorization report to understand why the most
time consuming loops are not using these operations. Compilers need a good deal of help to efficiently
vectorize non-trivial loops and the investment in time is often rewarded with 2x–4x performance im-
provements.

Memory accesses

The percentage of time spent in memory access operations, such as mov, load, store. A portion of the
time spent in instructions using indirect addressing is also included here. A high figure here shows the
application is memory-bound and is not able to make full use of the CPU resources. Often it is possible
to reduce this figure by analyzing loops for poor cache performance and problematic memory access
patterns, boosting performance significantly.

A high percentage of time spent inmemory accesses in anOpenMP program is often a scalability problem.
If each core is spending most of its time waiting for memory, even the L3 cache, then adding further cores
rarely improves matters. Equally, false sharing in which cores block attempts to access the same cache
lines and the over-use of theatomic pragma show up as increased time spent inmemory accesses.

Waiting for accelerators

The percentage of time that the CPU is waiting for the accelerator.
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CPU metrics breakdown

This section presents key CPU performance measurements gathered using the Linux perf event subsys-
tem.

Note: All of the metrics described in this section are only available on Armv8 systems. These metrics
are not available on virtual machines. Linux perf events performance events counters will need to be
accessible on all systems on which the target program will run. See section F.3.1 for details.

Cycles per instruction

The average amount of CPU cycles lapsed per retired instruction. This metric is affected by CPU fre-
quency scaling and various issues, most notably hardware interrupt counts.

Stalled cycles

The percentage of CPU cycles lapsed on which no operation instructions were issued.

L2 cache misses

The rate of level 2 data cache refills.

Mispredicted branch instructions

The rate of mispredicted branch instructions. This counts the number of incorrectly predicted retired
branches that are conditional, unconditional, branch and link, return or eret.

OpenMP breakdown

This section breaks down the time spent in OpenMP regions into computation and synchronization and
includes additional metrics that help to diagnose OpenMP performance problems. It is only shown if a
measurable amount of time was spent inside OpenMP regions.

Computation

The percentage of time threads in OpenMP regions spent computing as opposed to waiting or sleeping.
Keeping this high is one important way to ensure OpenMP codes scale well. If this is high then look at the
CPU breakdown to see whether that time is being well spent on, for example, floating-point operations,
or whether the cores are mostly waiting for memory accesses.

Synchronization

The percentage of time threads in OpenMP regions spent waiting or sleeping. By default, each OpenMP
region ends with an implicit barrier. If the workload is imbalanced and some threads are finishing sooner
and waiting then this value will increase. Equally, there is some overhead associated with entering and
leaving OpenMP regions and a high synchronization time may suggest that the threading is too fine-
grained. In general, OpenMP performance is better when outer loops are parallelized rather than inner
loops.
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Physical core utilization

Modern CPUs often have multiple logical cores for each physical cores. This is often referred to as hyper-
threading. These logical cores may share logic and arithmetic units. Some programs perform better when
using additional logical cores, but most HPC codes do not.

If the value here is greater than 100 then OMP_NUM_THREADS is set to a larger number of threads than
physical cores are available and performance may be impacted, usually showing up as a larger percentage
of time in OpenMP synchronization or memory accesses.

System load

The number of active (running or runnable) threads as a percentage of the number of physical CPU cores
present in the compute node. This value may exceed 100% if you are using hyper-threading, if the cores
are oversubscribed, or if other system processes and daemons start running and take CPU resources away
from your program. A value consistently less than 100% may indicate your program is not taking full
advantage of the CPU resources available on a compute node.

Threads breakdown

This section breaks down the time spent by worker threads (non-main threads) into computation and
synchronization and includes additional metrics that help to diagnose multicore performance problems.
This section is replaced by the OpenMP Breakdown if a measurable amount of application time was spent
in OpenMP regions.

Computation

The percentage of time worker threads spent computing as opposed to waiting in locks and synchroniza-
tion primitives. If this is high then look at the CPU breakdown to see whether that time is being well
spent on, for example floating-point operations, or whether the cores are mostly waiting for memory
accesses.

Synchronization

The percentage of time worker threads spend waiting in locks and synchronization primitives. This only
includes time in which those threads were active on a core and does not include time spent sleeping while
other useful work is being done. A large value here indicates a performance and scalability problem that
should be tracked down with a multicore profiler such as Arm MAP.

Physical core utilization

Modern CPUs often have multiple logical cores for each physical core. This is often referred to as hyper-
threading. These logical cores may share logic and arithmetic units. Some programs perform better when
using additional logical cores, but most HPC codes do not.

The value here shows the percentage utilization of physical cores. A value over 100% indicates that more
threads are executing than there are physical cores, indicating that hyper-threading is in use.

A program may have dozens of helper threads that do little except sleep and these will not be shown here.
Only threads actively and simultaneously consuming CPU time are included in this metric.
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System load

The number of active (running or runnable) threads as a percentage of the number of physical CPU cores
present in the compute node. This value may exceed 100% if you are using hyper-threading, if the cores
are oversubscribed, or if other system processes and daemons start running and take CPU resources away
from your program. A value consistently less than 100% may indicate your program is not taking full
advantage of the CPU resources available on a compute node.

MPI breakdown

This section breaks down the time spent in MPI calls reported in the summary. It is only of interest if the
program is spending a significant amount of its time in MPI calls in the first place.

All the rates quoted here are inbound + outbound rates. That is, the rate of communication from the
process to the MPI API, and not of the underlying hardware directly, is being measured.

This application-perspective is found throughout Arm Performance Reports and in this case allows the
results to capture effects such as faster intra-node performance, zero-copy transfers and so on.

Note that for programs that make MPI calls from multiple threads (MPI is in MPI_THREAD_SERI-
ALIZED or MPI_THREAD_MULTIPLE mode) Arm Performance Reports will only display metrics for
MPI calls made on the main thread.

Time in collective calls

The percentage of time spent in collective MPI operations such as MPI_Scatter, MPI_Reduce and
MPI_Barrier.

Time in point-to-point calls

The percentage of time spent in point-to-pointMPI operations such asMPI_Send andMPI_Recv.

Effective process collective rate

The average transfer per-process rate during collective operations, from the perspective of the application
code and not the transfer layer. That is, an MPI_Alltoall that takes 1 second to send 10 Mb to
50 processes and receive 10 Mb from 50 processes has an effective transfer rate of 10x50x2 = 1000
Mb/s.

Collective rates can often be higher than the peak point-to-point rate if the network topology matches the
application’s communication patterns well.

Effective process point-to-point rate

The average per-process transfer rate during point-to-point operations, from the perspective of the appli-
cation code and not the transfer layer. Asynchronous calls that allow the application to overlap commu-
nication and computation such as MPI_ISend are able to achieve much higher effective transfer rates
than synchronous calls.

Overlapping communication and computation is often a good strategy to improve application perfor-
mance and scalability.
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I/O breakdown

This section breaks down the amount of time spent in library and system calls relating to I/O, such as
read, write and close. I/O due to MPI network traffic is not included. In most cases this should be
a direct measure of the amount of time spent reading and writing to the filesystem, whether local or
networked.

Some systems, such as the Cray X-series, do not have I/O accounting enabled for all filesystems. On
these systems only Lustre I/O is reported in this section.

Time in reads

The percentage of time spent on average in read operations from the application’s perspective, not the
filesystem’s perspective. Time spent in the stat system call is also included here.

Time in writes

The percentage of time spent on average in write and sync operations from the application’s perspective,
not the filesystem’s perspective.

Opening and closing files is also included here, as measurements have shown that the latest networked
filesystems can spend significant amounts of time opening files with create or write permissions.

Effective process read rate

The average transfer rate during read operations from the application’s perspective. A cached read will
have a much higher read rate than one that has to hit a physical disk. This is particularly important to opti-
mize for as current clusters often have complex storage hierarchies with multiple levels of caching.

Effective process write rate

The average transfer rate during write and sync operations from the application’s perspective. A buffered
write will have a much higher write rate than one that has to hit a physical disk, but unless there is
significant time between writing and closing the file the penalty will be paid during the synchronous
close operation instead. All these complexities are captured in this measurement.

Lustre metrics

Lustre metrics are enabled if your compute nodes have one or more Lustre filesystems mounted. Lustre
metrics are obtained from a Lustre client process running on each node. Therefore, the data presented
gives the information gathered on a per-node basis. The data presented is also cumulative over all of
the processes run on a node, not only the application being profiled. Therefore, there may be some data
reported to be read and written even if the application itself does not perform file I/O through Lustre.
However, an assumption is made that the majority of data read and written through the Lustre client
will be from an I/O intensive application, not from background processes. This assumption has been
observed to be reasonable. For generated application profiles with more than a few megabytes of data
read or written, almost all of the data reported in Arm Performance Reports is attributed to the application
being profiled.
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The data that is gathered from the Lustre client process is the read and write rate of data to Lustre, as
well as a count of some metadata operations. Lustre does not just store pure data, but associates this
data with metadata, which describes where data is stored on the parallel file system and how to access it.
This metadata is stored separately from data, and needs to be accessed whenever new files are opened,
closed, or files are resized. Metadata operations consume time and add to the latency in accessing the
data. Therefore, frequent metadata operations can slow down the performance of I/O to Lustre. Arm
Performance Reports reports on the total number of metadata operations, as well as the total number of
file opens that are encountered by a Lustre client. With the information provided in Arm Performance
Reports you can observe the rate at which data is read and written to Lustre through the Lustre client, as
well as be able to identify whether a slow read or write rate can be correlated to a high rate of expensive
metadata operations.

Notes:

• For jobs run on multiple nodes, the reported values are the mean across the nodes.

• If you have more than one Lustre filesystem mounted on the compute nodes the values are summed
across all Lustre filesystems.

• Metadata metrics are only available if you have the Advanced Metrics Pack add-on for Arm Per-
formance Reports.

Lustre read transfer: The number of bytes read per second from Lustre.

Lustre write transfer: The number of bytes written per second to Lustre.

Lustre file opens: The number of file open operations per second on a Lustre filesystem.

Lustre metadata operations: The number of metadata operations per second on a Lustre filesystem.
Metadata operations include file open, close and create as well as operations such as readdir, rename, and
unlink.

Note: depending on the circumstances and implementation ‘file open’ may count as multiple operations,
for example, when it creates a new file or truncates an existing one.

Memory breakdown

Unlike the other sections, the memory section does not refer to one particular portion of the job. Instead,
it summarizes memory usage across all processes and nodes over the entire duration. All of these metrics
refer to RSS, that is physical RAM usage, and not virtual memory usage. Most HPC jobs attempt to stay
within the physical RAM of their node for performance reasons.

Mean process memory usage

The average amount of memory used per-process across the entire length of the job.

Peak process memory usage

The peak memory usage seen by one process at any moment during the job. If this varies greatly from
the mean process memory usage then it may be a sign of either imbalanced workloads between processes
or a memory leak within a process.

Note: This is not a true high-watermark, but rather the peak memory seen during statistical sampling.
For most scientific codes this is not a meaningful difference as rapid allocation and deallocation of large
amounts of memory is universally avoided for performance reasons.
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Peak node memory usage

The peak percentage of memory seen used on any single node during the entire run. If this is close to
100% then swapping may be occurring, or the job may be likely to hit hard system-imposed limits. If
this is low then it may be more efficient in CPU hours to run with a smaller number of nodes and a larger
workload per node.

Accelerator breakdown

Figure 5: Accelerator metrics report

This section shows the utilization of NVIDIA CUDA accelerators by the job.

GPU utilization

The average percentage of the GPU cards working when at least one CUDA kernel is running.

Global memory accesses

The average percentage of time that the GPU cards were reading or writing to global (device) mem-
ory.

Mean GPU memory usage

The average amount of memory in use on the GPU cards.

Peak GPU memory usage

The maximum amount of memory in use on the GPU cards.

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 37



Arm Performance Reports 18.2

Energy breakdown

Figure 6: Energy metrics report

This section shows the energy used by the job, broken down by component, for example CPU and accel-
erators.

CPU

The percentage of the total energy used by the CPUs.

CPU power measurement requires an Intel CPUwith RAPL support, for example Sandy Bridge or newer,
and the intel_rapl powercap kernel module to be loaded.

Accelerator

The percentage of energy used by the accelerators. This metric is only shown when a CUDA card is
present.

System

The percentage of energy used by other components not shown above. If CPU and accelerator metrics
are not available the system energy will be 100%.

Mean node power

The average of the mean power consumption of all the nodes in Watts.

Peak node power

The node with the highest peak of power consumption in Watts.
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Requirements

CPU power measurement requires an Intel CPUwith RAPL support, for example Sandy Bridge or newer,
and the intel_rapl powercap kernel module to be loaded.

Node power monitoring is implemented via one of two methods: the Arm IPMI energy agent which can
read IPMI power sensors, or the Cray HSS energy counters.

For more information on how to install the Arm IPMI energy agent please see G.4 Arm IPMI En-
ergy Agent. The Cray HSS energy counters are known to be available on Cray XK6 and XC30 ma-
chines.

Accelerator power measurement requires a NVIDIA GPU that supports power monitoring. This can be
checked on the command-line with nvidia-smi -q -d power. If the reported power values are
reported as “N/A”, power monitoring is not supported.

Textual performance reports

The same information is presented as in 6.1 HTML performance reports, but in a format better suited to
automatic data extraction and reading from a terminal:

Command: mpiexec -n 16 examples/wave_c 60
Resources: 1 node (12 physical, 24 logical cores per node, 2

GPUs per node available)
Memory: 15 GB per node, 11 GB per GPU
Tasks: 16 processes
Machine: node042
Started on: Tue Feb 25 12:14:06 2014
Total time: 60 seconds (1 minute)
Full path: /global/users/mark/arm/reports/examples
Notes:

Summary: wave_c is compute-bound in this configuration
Compute: 82.4% |=======|
MPI: 17.6% |=|
I/O: 0.0% |
This application run was compute-bound. A breakdown of this time

and advice for investigating further is found in the compute
section below.

As little time is spent in MPI calls, this code may also benefit
from running at larger scales.

...

A combination of grep and sed can be useful for extracting and comparing values between multiple
runs, or for automatically placing such data into a centralized database.

CSV performance reports

A CSV (comma-separated values) output file can be generated using the --output argument and spec-
ifying a filename with the .csv extension:

perf-report --output=myFile.csv ...
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The CSV file will contain lines in a NAME, VALUE format for each of the reported fields. This is
convenient for passing to an automated analysis tool, such as a plotting program. It can also be imported
into a spreadsheet for analyzing values among executions.

Worked examples

The best way to understand how to use and interpret performance reports is by example. You can down-
load several sets of real-world reports with analysis and commentary from the Arm Developer web-
site.

At the time of writing there are three collections available, which are described in the following sec-
tions.

Code characterization and run size comparison

A set of runs from well-known HPC codes at different scales showing different problems:

Characterization of HPC codes and problems

Deeper CPU metric analysis

A look at the impact of hyper-threading on the performance of a code as seen through the CPU instructions
breakdown:

Exploring hyperthreading

I/O performance bottlenecks

The open source MAD-bench I/O benchmark is run in several different configurations, including on a
laptop, and the performance implications analyzed:

Understanding I/O behavior
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Configuration

Arm Performance Reports generally requires no configuration before use.

If you only intend to use Arm Performance Reports and have checked that it works on your systemwithout
extra setup then you can safely ignore the rest of this section.

Compute node access

When Arm Performance Reports needs to access another machine as part of starting one ofMPICH 1–3,
Intel MPI, and SGI MPT, it attempts to use the secure shell, ssh, by default.

However, this may not always be appropriate, ssh may be disabled or be running on a different port to
the normal port 22. In this case, you can create a file called remote-exec which is placed in your
~/.allinea directory and Arm Performance Reports will use this instead.

Arm Performance Reports checks for the script at ~/.allinea/remote-exec, and it will be exe-
cuted as follows:

remote-exec HOSTNAME APPNAME [ARG1] [ARG2] ...

The script should start APPNAME on HOSTNAME with the arguments ARG1 ARG2 without further input
(no password prompts). Standard output from APPNAMEwill appear on the standard output of remote-
exec.

SSH based remote-exec

A remote-exec script using ssh running on a non-standard port could look as follows:

#!/bin/sh
ssh -P {port-number} $*

In order for this to work without prompting for a password, you should generate a public and private
SSH key, and ensure that the public key has been added to the ~/.ssh/authorized_keys file on
machines you wish to use.

See the ssh-keygen manual page for more information.

Testing

Once you have set up your remote-exec script, it is recommended that you test it from the command
line. For example:

∼/.allinea/remote-exec TESTHOST uname -n

This returns the output of uname -n on TESTHOST, without prompting for a password.

If you are having trouble setting up remote-exec, please contact Arm support at Arm support for
assistance.

Windows

The functionality described above is also provided by the Windows remote client. There are two differ-
ences:

• The script is named remote-exec.cmd rather than remote-exec.

• The default implementation uses the plink.exe executable supplied with Arm Performance
Reports.
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Getting support

While this document attempts to cover as many parts of the installation, features and uses of our tool as
possible, there will be scenarios or configurations that are not covered, or are only briefly mentioned, or
you may on occasion experience a problem using the product.

You can contact Arm support at Arm support.

Please provide as much detail as you can about the scenario in hand, such as:

• Version number of Arm Performance Reports (for example, perf-report --version) and
your operating system and the distribution, for example Red Hat Enterprise Linux 6.4.

This information is all available by using the --version option:

bash$ perf-report --version

Arm Performance Reports
Copyright (c) 2002-2018 Arm Limited (or its affiliates). All

rights reserved.

Version: 18.0.2
Build ID: 556f23c4895e
Build Platform: Ubuntu 16.04 x86_64
Build Date: Jan 25 2018 22:42:00

Frontend OS: Ubuntu 16.04.2 LTS
Nodes' OS: unknown
Last connected ddt-debugger: unknown

• The compiler used and its version number.

• The MPI library and version if appropriate.

• A description of the issue : what you expected to happen and what actually happened.

• An exact copy of any warning or error messages that you may have encountered.
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Supported platforms

A full list of supported platforms and configurations is maintained on the Arm Developer website. It is
likely that MPI distributions supported on one platform will work immediately on other platforms.

Performance Reports

See Arm Performance Reports supported platforms

Platform Operating Systems MPI Compilers
x86_64 Red Hat Enterprise

Linux and derivatives
6 and 7, SUSE Linux
Enterprise Server 11
and 12, Ubuntu 14.04
and 16.04

Bullx MPI 1.2.7 and
1.2.8, Cray MPT
(MPI/SHMEM), Intel
MPI 4.1.x and 5.0.x,
MPICH 2.x.x and
3.x.x, MVAPICH 2.0
and 2.1, Open MPI
1.6.x, 1.8.x (MPI/SH-
MEM), 1.10.x and
2.0.x, Platform MPI
9.x, SGI MPT 2.10 and
2.11

Cray, GNU 4.3.2+, In-
tel 13+, PGI 14+

Arm®v8 (AArch64) Ubuntu 16.04, SUSE
Linux Enterprise
Server 12.2, and Red
Hat Enterprise Linux
7.4

Open MPI 1.8.x, 1.10.x
and 2.0.x

Arm Compiler for
HPC, GNU

NVIDIA CUDA
Toolkit 7.0/7.5/8.0

Linux -

The Arm profiling libraries must be explicitly linked with statically linked programs whichmostly applies
to the Cray X-Series.

Batch schedulers: SLURM 2.6.3+ and 14.03+ (srun only).

Copyright © 2002-2018 Arm Limited (or its affiliates). All rights reserved. 43

https://developer.arm.com/products/software-development-tools/hpc/
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-reports/arm-performance-reports-platforms


Arm Performance Reports 18.2

Known issues

The most significant known issues for the latest release are summarized here:

• I/O metrics are not fully available on some systems, including Cray systems.

• CPU instruction metrics are only available on x86_64 systems.

• Thread activity is not sampled whilst a process is inside an MPI call with a duration spanning
multiple samples.

• Xeon Phi systems using many MPI ranks per card should set ALLINEA_REDUCE_MEMORY_-
USAGE=1.

• Version 14.9 or later of the PGI compilers is required to compile the Arm Performance Reports
MPI wrappers as a static library.

• MPICH 3.0.3 and 3.0.4 do not work with MAP, DDT or Performance Reports due to a defect in
MPICH 3.0.3/4. MPICH 3.1 addressed this and is fully supported.

• Open MPI 2.1.3 works with Arm Performance Reports. Previous versions of Open MPI 2.1.x do
not work due to a bug in the Open MPI debug interface.

• On Cray X-series systems only native SLURM is supported, hybrid mode is not supported.

• Performance Reports may fail to finalize a profiling session if the cores are oversubscribed on
AArch64 architectures. For example when attempting to profile a 64 process MPI program on a
machine with only 8 cores. This will appear as a hang after finishing a profile.

•

See also additional known issues here:

Category Known Issues
MPI Distribution D MPI distribution notes
Compiler E Compiler notes
Platform F Platform notes
General G General troubleshooting
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MPI distribution notes

This appendix has brief notes on many of the MPI distributions supported by Arm Performance Re-
ports.

Advice on settings and problems particular to a distribution are given here.

Bull MPI

Bull X-MPI is supported.

Cray MPT

Arm Performance Reports users may wish to read 4.1.3 Static linking on Cray X-Series Systems.

Arm Performance Reports has been tested with Cray XK7 and XC30 systems.

Arm Performance Reports requires Arm’s sampling libraries to be linked with the application before
running on this platform.

See 4.1.1 Linking for a set-by-step guide.

Arm supplies module files in REPORTS_INSTALLATION_PATH/share/modules/cray.

See 4.1.5Dynamic and static linking onCrayX-Series systems using themodules environment to simplify
linking with the sampling libraries.

Known Issues:

• By default scripts wrapping Cray MPT will not be detected, but you can force the detection by
setting the ALLINEA_DETECT_APRUN_VERSION environment variable to “yes” before starting
Performance Reports.

Intel MPI

Arm Performance Reports has been tested with Intel MPI 4.1.x, 5.0.x and onwards.

Known Issue: If you use Spectrum LSF as workload manager in combination with Intel MPI and you get
for example one of the following errors:

• <target program> exited before it finished starting up. One or more processes were killed or died
without warning

• <target program> encountered an error before it initialised the MPI environment. Thread 0 termi-
nated with signal SIGKILL

or the job is killed otherwise during launching then you may need to set/export I_MPI_LSF_USE_
COLLECTIVE_LAUNCH=1 before executing Arm Performance Reports. See Using IntelMPI under LSF
quick guide and Resolve the problem of the Intel MPI job …hang in the cluster for more details.
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MPICH 2

If you see the error undefined reference to MPI_Status_c2f during initialization or if
manually building the sampling libraries as described in 4.1.1 Linking, then you need to rebuild MPICH
2 with Fortran support.

MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with Arm Performance Reports due to an MPICH bug. MPICH 3.1
addresses this and is supported.

Open MPI

Arm Performance Reports products have been tested with OpenMPI 1.6.x, 1.8.x, 1.10.x and 2.0.x.

Open MPI 2.1.3 works with Arm Performance Reports. Previous versions of Open MPI 2.1.x do not
work due to a bug in the Open MPI debug interface.

Known issue: If you are using the 1.6.x series of OpenMPI configuredwith the--enable-orterun-
prefix-by-default flag then Arm Performance Reports requires patch release 1.6.3 or later due to
a defect in earlier versions of the 1.6.x series.

Platform MPI

Platform MPI 9.x is supported, but only with the mpirun command. Currently mpiexec is not sup-
ported.

SGI MPT / SGI Altix

SGI MPT 2.10+ is supported.

Some SGI systems can not compile programs on the batch nodes, for example because the gcc package
is not installed.

If this applies to your system you must explicitly compile the ArmMPI wrapper library using the make-
profiler-libraries command and then explicitly link your programs against the Arm profiler and
sampler libraries.

The mpio.h header file shipped with SGI MPT 2.10 contains a mismatch between the declaration of
MPI_File_set_view and some other similar functions and their PMPI equivalents, for example
PMPI_File_set_view. This prevents Arm Performance Reports from generating the MPI wrapper
library. Please contact SGI for a fix.

If you are using SGIMPTwith SLURM andwould normally use mpiexec_mpt to launch your program
you will need to use srun --mpi=pmi2 directly.

Preloading the Arm profiler and MPI wrapper libraries is not supported in Express Launch mode. Arm
recommends you explicitly link your programs against these libraries to work around this problem. If
this is not possible you can manually compile the MPI wrapper, and explicitly set LD_PRELOAD in the
launch line.
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SLURM

The use of the --export argument to srun (SLURM 14.11 or newer) is not supported. In this case
you can avoid using --export by exporting the necessary environment variables before running Arm
Performance Reports.

The use of the --task-prolog argument to srun (SLURM 14.03 or older) is also not supported,
as the necessary libraries cannot be preloaded. You will either need to avoid using this argument, or
explicitly link to the libraries.
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Compiler notes

AMD OpenCL compiler

Not supported by Arm Performance Reports.

Berkeley UPC compiler

Not supported by Arm Performance Reports.

Cray compiler environment

The Cray UPC compiler is not supported by Arm Performance Reports.

GNU

The -foptimize-sibling-calls optimization (used in -O2, -O3 and -Os) interfere with the
detection of some OpenMP regions.

If your code is affected with this issue add -fno-optimize-sibling-calls to disable it and allow
Arm Performance Reports to detect all the OpenMP regions in your code.

GNU UPC

Arm Performance Reports does not support this.

Intel compilers

Arm Performance Reports has been tested with versions 13 and 14.

Portland Group compilers

Arm Performance Reports has been tested with Portland Tools 14 onwards.
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Platform notes

This page notes any particular issues affecting platforms. If a supported machine is not listed on this
page, it is because there is no known issue.

Intel Xeon

Intel Xeon processors starting with Sandy Bridge include Running Average Power Limit (RAPL) coun-
ters. Performance Reports can use the RAPL counters to provide energy and power consumption infor-
mation for your programs.

Enabling RAPL energy and power counters when profiling

To enable the RAPL counters to be read by Performance Reports you must load the intel_rapl kernel
module.

The intel_rapl module is included in Linux kernel releases 3.13 and later.

For testing purposes Arm have backported the powercap and intel_rapl modules for older kernel
releases. You may download the backported modules from:

Download backported modules

Note: These backported modules are unsupported and should be used for testing purposes only. No sup-
port is provided by Arm, your system vendor or the Linux kernel team for the backported modules.

NVIDIA CUDA

• CUDA metrics are not available for statically-linked programs.

• CUDA metrics are measured at the node level, not the card level.

Arm

Arm®v8 (AArch64) known issues

There are a number of issues you should be aware of:

• Performance Reports does not support CPU time metrics on this platform. Linux perf event metrics
are available instead. To ensure access to performance counters is not restricted, use sysctl -w
kernel.perf_event_paranoid=0.

• Performance Reports may fail to finalize a profiling session if the cores are oversubscribed on
AArch64 platforms. For example, this issue is likely to occur when attempting to profile a 64
process MPI program on a machine with only 8 cores. This issue will appear as a hang after
finishing a profile.
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General troubleshooting

If you have problems with any of the Arm Performance Reports products, please read this section care-
fully.

Additionally, check the support pages on the Arm Developer website, and make sure you have the latest
version of the product.

Starting a program

Problems starting scalar programs

There are a number of possible sources for problems. The most common for users with a multi-process
license is that the Run Without MPI Support check box has not been checked.

If the software reports a problem with MPI and you know your program is not using MPI, then this is
usually the cause.

If you have checked this box and the software still mentions MPI then please contact Arm support at Arm
support.

Other potential problems are:

• A previous session is still running, or has not released resources required for the new session.
Usually this can be resolved by killing stale processes. The most obvious symptom of this is a
delay of approximately 60 seconds and a message stating that not all processes connected. You
may also see a QServerSocket message in the terminal.

• The target program does not exist or is not executable.

• Arm Performance Reports products’ backend daemon, ddt-debugger, is missing from the bin
directory. In this case you should check your installation, and contact Arm support at Arm support
for further assistance.

Problems starting multi-process programs

If you encounter problems while starting an MPI program, the first step is to establish that it is possible
to run a single-process (non-MPI) program such as a trivial “Hello, World!”, and resolve such issues that
may arise. After this, attempt to run a multi-process job and the symptoms will often allow a reasonable
diagnosis to be made.

In the first instance verify that MPI is working correctly by running a job, without Arm Performance
Reports products applied, such as the example in the examples directory.

mpirun -np 8 ./a.out

Verify that mpirun is in the PATH, or the environment variable ALLINEA_MPIRUN is set to the full
pathname of mpirun.

Sometimes problems are caused by environment variables not propagating to the remote nodes while
starting a job. The solution to these problems depend on theMPI implementation that is being used.

In the simplest case, for rsh-based systems such as a default MPICH 1 installation, correct configuration
can be verified by rsh-ing to a node and examining the environment. It is worthwhile rsh-ing with the env
command to the node as this will not see any environment variables set inside the .profile command.
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For example, if your nodes use a .profile instead of a .bashrc for each user then you may well
see a different output when running rsh node env than when you run rsh node and then run env
inside the new shell.

If only one, or very few, processes connect, it may be because you have not chosen the correct MPI
implementation. Please examine the list and look carefully at the options. Should no other suitable MPI
be found, please contact Arm support at Arm support.

If a large number of processes are reported by the status bar to have connected, then it is possible that
some have failed to start due to resource exhaustion, timing out, or, unusually, an unexplained crash. You
should verify again that MPI is still working, as some MPI distributions do not release all semaphore
resources correctly, for example MPICH 1 on Redhat with SMP support built in.

To check for time-out problems, set the ALLINEA_NO_TIMEOUT environment variable to 1 before
launching the GUI and see if further progress is made. This is not a solution, but aids the diagnosis. If
all processes now start, please contact Arm support at Arm support for further advice.

No shared home directory

If your home directory is not accessible by all the nodes in your cluster then your jobs may fail to
start.

To resolve the problem open the file ~/.allinea/system.config in a text editor. Change the
shared directory option in the [startup] section so it points to a directory that is available and
shared by all the nodes. If no such directory exists, change the use session cookies option to no
instead.

Performance Reports specific issues

My compiler is inlining functions

While compilers may inline functions, their ability to include sufficient information to reconstruct the
original call tree vary between vendors. Arm has found that the following flags work best:

• Intel: -g -O3 -fno-inline-functions

• Intel 17+: -g -fno-inline -no-ip -no-ipo -fno-omit-frame-pointer -O3

• PGI: -g -O3 -Meh_frame

• GNU: -g -O3 -fno-inline

• Cray: -G2 -O3 -h ipa0

Note: Some compilers may still inline functions even when explicitly asked not to.

There is typically a small performance penalty for disabling function inlining or enabling profiling infor-
mation.

Alternatively, you can let the compiler inline the functions and compile with -g -O3, or -g -O5, or
whatever your preferred performance flags are.

Arm Performance Reports will work correctly, but you will often see time inside an inlined function being
attributed to its parent in the Stacks view. The Source Code view will be largely unaffected.

Arm Performance Reports will not be affected by function inlining.
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Tail recursion optimization

A function may return the result of calling another function, for example:

int someFunction()
{

...
return otherFunction();

}

In this case the compiler may change the call to otherFunction into a jump. This means that, when
inside otherFunction, the calling function, someFunction, no longer appears on the stack.

This optimization is called tail recursion optimization. It may be disabled for the GNU C compiler by
passing the -fno-optimize-sibling-calls argument to gcc.

MPI wrapper libraries

Arm Performance Reports wrap MPI calls in a custom shared library. One is built for your system each
time you run Arm Performance Reports.

If this does not work please contact Arm support at Arm support.

You can also try setting MPICC directly:

$ MPICC=my-mpicc-command bin/perf-report --np=16 ./wave_c

Thread support limitations

Performance Reports provides limited support for programs when threading support is set to MPI_
THREAD_SERIALIZED or MPI_THREAD_MULTIPLE in the call to MPI_Init_thread.

MPI activity on non-main threads will contribute towards the MPI-time of the program, but not the more
detailed MPI metrics.

MPI activity on a non-main thread may result in additional profiling overhead due to the mechanism
employed by Performance Reports for detecting MPI activity.

Warnings are displayed when the user initiates and completes profiling a program which sets MPI_
THREAD_SERIALIZED or MPI_THREAD_MULTIPLE as the required thread support.

Performance Reports does support calling MPI_Init_thread with either MPI_THREAD_SINGLE
or MPI_THREAD_FUNNELED specified as the required thread support.

It should be noted that the requirements that the MPI specification make on programs using MPI_
THREAD_FUNNELED are the same as made by Performance Reports: all MPI calls must be made on
the thread that called MPI_Init_thread.

In many cases, multi-threaded MPI programs can be refactored such that they comply with this restric-
tion.

No thread activity while blocking on an MPI call

Unfortunately Arm Performance Reports is currently unable to record thread activity on a process where
a long duration MPI call is in progress.
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If you have an MPI call that takes a significant amount of time (multiple samples) to complete then Arm
Performance Reports will record no thread activity for the process executing that call for most of that
MPI call’s duration.

I’m not getting enough samples

By default sampling takes place every 20ms initially, but if you get warnings about too few samples on a
fast run, or want more detail in the results, you can change that.

To increase the frequency of sampling to every 10ms set environment variable ALLINEA_SAMPLER_
INTERVAL=10.

Note: Sampling frequency is automatically decreased over time to ensure a manageable amount of data
is collected whatever the length of the run.

Note: Whether OpenMP is enabled or disabled in Arm MAP, the final script or scheduler values set for
OMP_NUM_THREADS will be used to calculate the sampling interval per thread. When configuring your
job for submission, check whether your final submission script, scheduler or the Arm MAP GUI has a
default value for OMP_NUM_THREADS.

Note: Custom values for ALLINEA_SAMPLER_INTERVAL will be overwritten by values set from the
combination of ALLINEA_SAMPLER_INTERVAL_PER_THREAD and the expected number of threads
(from OMP_NUM_THREADS).

Increasing the sampling frequency is not recommended if there are lots of threads or there are deep stacks
in the target program as this may not leave sufficient time to complete one sample before the next sample
is started.

Performance Reports is reporting time spent in a function definition

Any overheads involved in setting up a function call (pushing arguments to the stack and so on) are
usually assigned to the function definition.

Some compilers may assign them to the opening brace ‘{’ and closing brace ‘}’ instead. If this function
has been inlined, the situation becomes further complicated and any setup time (for example, allocating
space for arrays) is often assigned to the definition line of the enclosing function.

PerformanceReports is not correctly identifying vectorized instructions

The instructions identified as vectorized (packed) are enumerated below. Arm also identifies the AVX-2
variants of these instructions (with a “v” prefix).

Contact Arm support at Arm support if you believe your code contains vectorized instructions that have
not been listed and are not being identified in the CPU floating-point/integer vector metrics.

Packed floating-point instructions: addpd addps addsubpd addsubps andnpd andnps
andpd andps divpd divps dppd dpps haddpd haddps hsubpd hsubps maxpd maxps
minpd minps mulpd mulps rcpps rsqrtps sqrtpd sqrtps subpd subps

Packed integer instructions: mpsadbw pabsb pabsd pabsw paddb paddd paddq paddsb
paddsw paddusb paddusw paddw palignr pavgb pavgw phaddd phaddsw phaddw
phminposuw phsubd phsubsw phsubw pmaddubsw pmaddwd pmaxsb pmaxsd pmaxsw
pmaxub pmaxud pmaxuw pminsb pminsd pminsw pminub pminud pminuw pmuldq pmulhrsw
pmulhuw pmulhw pmulld pmullw pmuludq pshufb pshufw psignb psignd psignw
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pslld psllq psllw psrad psraw psrld psrlq psrlw psubb psubd psubq psubsb
psubsw psubusb psubusw psubw

PerformanceReports takes a long time to gather and analyzemyOpenBLAS-
linked application

OpenBLAS versions 0.2.8 and earlier incorrectly stripped symbols from the .symtab section of the
library, causing binary analysis tools such as Arm Performance Reports and objdump to see invalid
function lengths and addresses.

This causes Arm Performance Reports to take an extremely long time disassembling and analyzing ap-
parently overlapping functions containing millions of instructions.

A fix for this was accepted into the OpenBLAS codebase on October 8th 2013 and versions 0.2.9 and
above should not be affected.

To work around this problem without updating OpenBLAS, simply run “strip libopenblas*.so”—this
removes the incomplete .symtab section without affecting the operation or linkage of the library.

Performance Reports over-reports MPI, I/O, accelerator or synchronization
time

Arm Performance Reports employs a heuristic to determine which function calls should be considered as
MPI operations.

If your code defines any function that starts with MPI_ (case insensitive) those functions will be treated
as part of the MPI library resulting in the time spent in MPI calls to be over-reported.

Starting your functions names with the prefix MPI_ should be avoided and is in fact explicitly forbidden
by the MPI specification (page 19 sections 2.6.2 and 2.6.3 of the MPI 3 specification document http:
//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49):

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must not
declare names, for example, for variables, subroutines, functions, parameters, derived types,
abstract interfaces, or modules, beginning with the prefix MPI_.

Similarly Arm Performance Reports categorizes I/O functions and accelerator functions by name.

Other prefixes to avoid starting your function names with include PMPI_, _PMI_, OMPI_, omp_-
, GOMP_, shmem_, cuda_, __cuda, cu[A-Z][a-z] and allinea_. All of these prefixes are
case-insensitive.

Also avoid naming a function start_pes or any name also used by a standard I/O or synchronisation
function (write, open, pthread_join, sem_wait etc).

Obtaining support

To receive additional support, contact Arm support at Arm support with a detailed report of the problem
you are having.

If possible, you should obtain a log file for the problem and contact Arm support at Arm support. When
describing your issue, state that you have obtained a log file and the support teamwill be in contact.

To generate a log file, start Performance Reports with the --debug and --log arguments:

$ perf-report --debug --log=<log>
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Where <log> is the name of the log file to generate.

Next, reproduce the problem using as few processors as possible. Once finished, close the program as
usual.

On some systems this file may be quite large. If so, please compress it using a program such as gzip or
bzip2 before sending it to support.

If your problem can only be replicated on large process counts, then omit the --debug argument as this
will generate very large log files.
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Arm IPMI Energy Agent

The Arm IPMI Energy Agent allows Arm MAP and Arm Performance Reports to measure the total
energy consumed by the compute nodes in a job in conjunction with the Arm Advanced Metrics Pack
add-on.

The IPMI Energy Agent is a separate download from our website: IPMI Energy Agent.

Requirements

• The compute nodes must support IPMI.

• The compute nodes must have an IPMI exposed power sensor.

• The compute nodes must have an OpenIPMI compatible kernel module installed, such as ipmi_-
devintf.

• The compute nodesmust have the corresponding device node in/dev, for example/dev/ipmi0.

• The compute nodes must run a supported operating system.

• The IPMI Energy Agent must be run as root.

To list the names of possible IPMI power sensors on a compute node use the following command:

ipmitool sdr | grep 'Watts'
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