PORTING AND ADAPTING
APPLICATIONS TO ARM’S SVE

Jonathan Beaumont, Dong-hyeon Park, Subhankar Pal, Trevor
Mudge

University of Michigan

Introduction
Scalable Vector Extension (SVE)

Extends Advanced SIMD (NEON) beyond 128 bit vectors

NEON designed for DSP, media codecs etfc.
Fixed vector sizes (128 bits)
Simple control flow
Regular, contiguous data structures

SVE extends to HPC applications

Longer, per-implementation vector sizes (128-2048 bits)
Complex control flow
Irreqular data structures

University of Michigan

Scalable vectors

Different PPA restrictions require distinct hardware vector
lengths (e.g. mobile processors versus server hardware)

SVE enables hardware implementations to choose vector
length multiple of 128 bits (up to 2048)

Program code is agnostic; hardware manages automatically

ld1w z1.s, p1/z, [x1, x2, Isl #2] ; load VL sized vector from
memory location [x1+4*x2]

incw x2 ; Increment x2 counter by VL
whilelt p1.s, x2, x3 ; loop while x2 < x3
b.mi loop

University of Michigan

Per-lane predication

Hardware dynamically masks inactive lanes
Support if/else statements

Handles scalar loops which do not iterate an exact multiple of
vector length

No fix-up code or strip-mining

whilelt p1.s, w11, w12
b.pl end_loop
while(i < end) { loop:
if(check[i]) ld1w z1.s, p1/z, [x4, x11, Isl #2]
//do stuff > cmpeq p2.s, pl/z, z1.s #0
[++; //do stuff [p2/z]
} incw x11
whilelt p1.s, w11, w12
b.mi loop
end_loop:

University of Michigan

Vector load-stores

HPC data structures often use complex data structures using
pointers
SVE supports gather-load and scatter-store instructions

Allows indirect-access to non-contiguous memory arrays within a single
instruction

ld1w z2.s, p1/z, [x5, x11, Isl #2]
int new_val = arr[idxs[i]] + 1; >l ld1w z3.s, p1/z, [x1, z2.s, uxtw #2]
fadda s13, p1, s13,

University of Michigan)

Horizontal reductions

Dependencies between elements in a vector can be resolved
with special instructions

Summation, minimum, maximum, and logical reductions supported in
single instructions

Example Sparse Matrix-Vector Multiplication:

scvtf s13, xzr sum =0
loop:

ld1w z1.s, p1/z, [x4, x11, Isl #2] ; Id valg]i]
ld1w z2.s, p1/z, [x5, x11, Isl #2] ; Id cols]i]

ld1w z3.s, p1/z, [x1, z2.s, uxtw #2] ; Id vec[cols[i]]
fmul z1.s,p1/m, z1.s, z3.s ; vals[i] * vec]cols]i]]

|:> fadda s13, p1,s13,21.s ; sum += sum(z1)
incw x11

whilelt p1.s, w11, w12
b.mi loop
lend_loop:

University of Michigan

Target Workloads

Many scientific workloads make use of vector operations
through linear algebra subroutines

These workloads have wide range of sparsity in their
structures, which affects

Control flow regularity
Memory access patterns

We look at two case studies with complementary sparsity:

University of Michigan

Target Workloads

Genetic sequence alignment
Dense vectors
Fine grained parallelism

Moderate control irregularity
Moderate memory irregularity

Graph analytics
Extremely sparse (1 in 10°) matrices

Emphasis on effective data movement over minimizing computation
Employ outer-product on matrix multiplications

Little control divergence
Significant memory irregularity

PageRank @ @

University of Michigan

Sequence Alignment

Before analysis can be performed on genome fragments, they
must be aligned to a reference gene

reference gene
|

Multiple alignments corresponding to various insertions,
deletions, and offsets must be evaluated, leading to a dense,

vectorized workload

We evaluate the Smith-Waterman Algorithm

University of Michigan

Smith-Waterman Algorithm

= Local sequence alignment algorithm developed in 1981
= Smaller amount of parallelism (100s of elements or less)

Local sequence alignment algorithm developed in 1981

Reference Sequence

Inputs: [
Query Sequence
Output: -7—fm

Alignment Location & Score

E—
-

Smith-Waterman

(Scoring Matrix \

Construction

Matrix
Backtracking

==
4
=

\S ~

University of Michigan

10

Scoring Matrix Construction

Reference Sequence
Scoring

E(m,n)

H(m,n) = max F(m,n)
Hm-1,n-1)+ S(a,,, b,)

Hmn-1)—-g,
E(mn—-1)—g,

E(m,n) = max{

Query Sequence

>o|o|>
VWV |V

Hm—-1,n)—g,
F(m—1,n) — g,

F(m,n) = max{

University of Michigan 11

Scoring Matrix Construction

Reference Sequence
Scoring

e — E(m’n)
H(m,n) = max F(m,n)
AIC/IA[C|A|A + S(am, by)

Hmn-1)—-g,
E(mn—-1)—g,

E(m,n) = max{

Query Sequence

Hm—-1,n)—g,
F(m—1,n) — g,

>0 |>

‘ F(m,n) = max{

University of Michigan 12

Scoring Matrix Construction

Ref S ven:
ererence sequence Given: S(Cl, b) — 12

S Gap penalty= 1

H(3,4) =

[F34)=2-1|
max| £(3,4)=2—1

R

Query Sequence

A
G
|

H(3,4) =5

S(AA) = +2

University of Michigan

Backtracking

Backtracking Reference Sequence

Finds the best local alighnment from the scoring matrix

1
max entry

University of Michigan

-|lAajlc|lAlc|lAlA
§ -|lo|lo|lo|lo|lo|lo]o
o Alol2|1l212]2
)

8 G|lo|1|1|l21|l1]1]1
(Vp)]

> clo|lo|3]|2|3]|]2]1
o A|lo|2|2]|5|4|5]|24
>

O clo|1]|4a]a 6|6

Step 1.

Search through the
matrix and find the entry
with the largest score

14

Backtracking

Finds the best local alighnment from the scoring matrix

Backtracking Reference Sequence

Step 2.

-|A|lc|lAa|lc|A|A
o _[olo|ofd : :
O 4 Traverse back | Check the adjacent entries
9 AlO ! through the | for the next largest score
S 610 1~1 largest score
‘; clo|o[3 L2321
o A|0]|2]2 4|5 |4 .
8 clol 1l ala c | e Move to the entry W|th the

largest score and continue
? the path
max entry

University of Michigan

Backtracking

Finds the best local alignment from the scoring matrix

Step 3.
e I Reference Sequence Get the resulting alignment
- | A C| A C|A|A
§ - °~0 0 ‘ZJTraverse back [_
A 0 1 a
o R through the | Path Alignment
o G|0|1.L1 largest score : :
A <loloTs L Lasibes Direction
o Alol227s51lal|s]a] .
g Horizontal | Deletion
d C 0 1 4 4 7 6 6
1 Vertical Insertion
max entry

Diagonal Match

University of Michigan

Backtracking

Finds the best local alignment from the scoring matrix

Step 3.

Backtracking Reference Sequence Get the resulting alignment

- A

OF | = |

Q 0’0 0 ‘JTraverse back |_

O Bl R S through the |

ol _C1L° 1~1 largest score | Reference: @ A-CAC

">’ clofo 3‘2 321

ol Alo|2|2Vsla|s]|a

8 clTol1lala c e Query: AGCAC
1 Insertion

max entry

Alignment Score: 7

University of Michigan 17

Smith-Waterman Vectorization

_ SIMD_WIDTH
32 bits

L
—
Reference wwmm

Query —
O

X 1000 samples

BATCH:

VL

SVE[O]

SVE[1]

SVE[VL-1]

I SLICED:

X (1000/VL) iterations

SVE[0]

« | SVE[VL-1]

| P N

Alignment Location & Score

X 1000 iterations

University of Michigan

18

Batch Smith-Waterman

[N
ol o
L N
m— || QubyO]
I —

Reference0 |
J

_
.
—Q
Reference Sequence | Query 1 |

Referencel |
. J
| | | | |

Query . E—

I
Sequences ==
I

N
Sampled o Lolg

—
— Query K
—

Reference K

v No data dependencies between lanes
X Divergent memory access
X More memory bandwidth needed

University of Michigan

Sliced Smith-Waterman

Reference Sequence

|alcl|a

ClA

G

T

A|C

‘é Initial Calculation of H(m,n)

SVE[0] ‘

SVE[1]

SVE[2]

Query Sequence
>|lolo >|

University of Michigan

VL=K

SVE[O] | SVE[1]

SVE[K-l]I

H(m,n) = max

E(m,n)
F(m,n)
+ S(am, byp)

20

Sliced Smith-Waterman

VL=K
i |

SVE[O] | SVE[1] | +e- SVE[K-l]I

Reference Sequence

Value of F need to be re-calculated
|A clAa|lc|lAal|lGg|T|AlC]|A

‘é Initial Calculation of H(m,n) o o
sve[o] EEEEE) | sve(1)mmEE) || SVE[2] . |
LN H

b i

horizontal dependencies
between slices not accounted

Query Sequence
>|lolo >|

University of Michigan

Sliced Smith-Waterman

VL=K
i |

SVE[O] | SVE[1] | +e- SVE[K-l]I

Reference Sequence

Hm—-1,n) — g,
F(m_ 1;n) — Ye

F(m,n) = max{

>
@]

A(C(A(G|T|A|C|A

Initial Calculation of H(m,n) vee H(m,n) = max(F(m, n), H(m, Tl))
sve[o]) | SVE[1] SVE[2]
oL (el Tl le

| | | | |
. 4@: Resolve Dependencies | «
. e | o | o | e | e | e | e

Costly resolution as one need to traverse
through the entire row

Query Sequence
> |o]o]>

University of Michigan

Sliced Smith-Waterman

Reference Sequence

v’ Smaller memory footprint
|alclalc|ala|T]alc|Aa

= v/ Coalesced memory access

‘é Initial Calculation of H(m,n) cee x Inter_lane dependenC|eS
sve[o] EEEE) | SVE[1] SVE[2] .

Query Sequence
>|lolo >|

University of Michigan 23

Experimental Setup

Custom implementations run on modified gem5 setup
supporting SVE instruction set

Component

Configuration

Single-Core out-of-order 64-bit ARM, 1GHz, 8-issue

Core SIMD Width: 128-bit (NEON), 128/256/512/1024-bit (SVE)
32KB private L1 instruction cache, 2-way associative

Cache 64KB private L1 data cache, 2-way associative
4AMB private L2 inclusive cache, 8-way associative
Capacity: 8GB

DRAM Latency: 30 ns

Memory Controller Bandwidth: 12.8 GB/s

Current gemb model serializes memory accesses across

cache lines

25 to 400 sequence length

University of Michigan

24

Performance

4 N
45 N . o
20 Alignment Time Speedup over Baseline CPU 38.2
35
30 28.1
s
s 25
o
g 20 16.7
2 15
9.4 9.790
10 ia 8.2 7.8
5 1150, . 11504 1 1408 1 1414
0 = | = | e |
25 50 100 200
Sequence Length
Bcpu Mbatch_neon sliced_neon ®batch_sve_128bit Msliced_sve_128bit
\ 4
4 55 N
' Normalized Instructions Executed
2
2
.g 1.5
Q
2
g 1
0.5
0 L — - . I
25 50 100 200 400
Sequence Size
Bcpu Mbatch_neon sliced_neon ™ batch_sve_128bit Msliced_sve_128bit
_ J

University of Michigan

25

Batch vs Sliced: Memory Bandwidth

= Sliced reduces memory bandwidth

4000

3500

3000

2500

2000

1500

1000

Memory Controller Bandwidth (MB/s)

500

Memory Bandwidth of Batch S-W:

SVE 256-bit, 64kB L1D

Hread_bw M write_bw

L025 LO50 L100 L200

Sequence Length

L400

L800

Memory Controller Bandwidth (MB/s)

20
18
16
14
12

10

A O

N

L025

Memory Bandwidth of Sliced S-W:
SVE 256-bit, 64kB L1D

LO50

L100 L200

Sequence Length

Hread_bw Hwrite_bw

L400 L800

University of Michigan

26

Sliced Smith-Waterman

Larger vector length only beneficial for longer sequences

Execution Time for Sliced Smith-Waterman with 1000 Sequences
64kB L1D Cache

1600

1400
——128-bit ~o—256 it 512-bit 1024-bit

1200

Alignment Time (ms
[N
(o] (0] o
o o o
o o o

IS
o
o

7 /

0 ~
25 50 100 200 400

Sequence Length

/-

800

University of Michigan

27

Memory coalescing

Short bursts of memory divergence is a problem in our current
Implementation

While work is being done to implement scatter-gather
functionality, we believe more can be done to exploit memory
level parallelism

We've demonstrated appreciable speedup on GPUs by
coalescing not just across lanes in a vector, but across
Instructions as well

We believe this can be exploited to a lesser degree on SIMD
pipelines as well

University of Michigan 28

Hazards in Benchmarks

30
M Cache lines per load/store
25 — M Waiting loads/stores
20
15
10
. |||. .|I“I|||
v o/ ’ @
S <<“\ ’b & '»‘@ co% & @‘@Q («OQ& ‘é\ o csé"\)@
I\/IemoryDlvergent BandW|dth L|m|ted Cache-Limited 79

UnlverS|ty of Michigan 29

Memory Coalesing

Intra-Warp
Warp Coalescer

Scheduler

Intra-Warp
Coalescer

Intra-Warp
Coalescers

= 1 1>

Warp = [>
Scheduler - | }>
- 1 1>

"WarpPool: sharing requests with inter-warp coalescing for throughput processors." MICRO 2015.

University of Michigan

Inter-Warp
Coalescer

N

L1

L1

/

Coalescing Speedup on GPUs

2.353.17 5.16
2
1.38x
1.5
3
a
S
©
]
a 1 7 _ I
n
0.5 A
O —
(;\% Q‘\ G\Q* 6\;\\/% & ° 5 ®® 0@@ R @@ (JOQg\ ?1\5‘\\ Q/’bo(j

O 8-way banked cache @ MRPB B Custom Coalescer

[1] MRPB: Memory request prioritization for massively parallel processors: HPCA 2014

University of Michigan

31

Conclusion

SVE instructions are well tailored to significantly reduce code
size and execution overhead of HPC applications

For fine-grained applications such as genomics, lack of
scalable memory resources result in diminishing returns for
Increased vector size

Future focus on improving memory coalescing may be the key
to better performance

University of Michigan 32

Questions?

University of Michigan

33

Batch vs Sliced: Execution Time

= Batch performs better for short sequences, sliced performs
better for long

Comparison of Different Smith-Waterman Speedup of Choosing Sliced over Batch
Implementation for 256-bit SVE 256-bit SVE and 64kB L1D Cache
10000 14.00
—8—Batch —®—Sliced w/o Bypass —®—Sliced 12.19
12.00
3 1000
B 10.00
£ 8.00 757
= 100
< 6.00
£ 4.24
o0 4.00
< 10
500 - 1.48
0.27 ' .
. 0.00 — =
- . 100 500 400 200 L025 LO50 L100 L1200 L400 L80O

Sequence Length (bps)

University of Michigan 34

