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Introduction
Scalable Vector Extension (SVE)

Extends Advanced SIMD (NEON) beyond 128 bit vectors

NEON designed for DSP, media codecs etfc.
Fixed vector sizes (128 bits)
Simple control flow
Regular, contiguous data structures

SVE extends to HPC applications

Longer, per-implementation vector sizes (128-2048 bits)
Complex control flow
Irreqular data structures
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Scalable vectors

Different PPA restrictions require distinct hardware vector
lengths (e.g. mobile processors versus server hardware)

SVE enables hardware implementations to choose vector
length multiple of 128 bits (up to 2048)

Program code is agnostic; hardware manages automatically

ld1w z1.s, p1/z, [x1, x2, Isl #2] ; load VL sized vector from
memory location [x1+4*x2]

incw x2 ; Increment x2 counter by VL
whilelt p1.s, x2, x3 ; loop while x2 < x3
b.mi  loop
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Per-lane predication

Hardware dynamically masks inactive lanes
Support if/else statements

Handles scalar loops which do not iterate an exact multiple of
vector length

No fix-up code or strip-mining

whilelt p1.s, w11, w12
b.pl end_loop
while(i < end) { loop:
if(check[i]) ld1w  z1.s, p1/z, [x4, x11, Isl #2]
//do stuff > cmpeq p2.s, pl/z, z1.s #0
[++; //do stuff [p2/z]
} incw  x11
whilelt p1.s, w11, w12
b.mi  loop
end_loop:
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Vector load-stores

HPC data structures often use complex data structures using
pointers
SVE supports gather-load and scatter-store instructions

Allows indirect-access to non-contiguous memory arrays within a single
instruction

ld1w  z2.s, p1/z, [x5, x11, Isl #2]
int new_val = arr[idxs[i]] + 1; >l ld1w  z3.s, p1/z, [x1, z2.s, uxtw #2]
fadda s13, p1, s13,
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Horizontal reductions

Dependencies between elements in a vector can be resolved
with special instructions

Summation, minimum, maximum, and logical reductions supported in
single instructions

Example Sparse Matrix-Vector Multiplication:

scvtf s13, xzr sum =0
loop:

ld1w  z1.s, p1/z, [x4, x11, Isl #2] ; Id valg]i]
ld1w  z2.s, p1/z, [x5, x11, Isl #2] ; Id cols]i]

ld1w  z3.s, p1/z, [x1, z2.s, uxtw #2] ; Id vec[cols[i]]
fmul z1.s,p1/m, z1.s, z3.s ; vals[i] * vec]cols]i]]

|:> fadda s13, p1,s13,21.s ; sum += sum(z1)
incw  x11

whilelt p1.s, w11, w12
b.mi  loop
lend_loop:
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Target Workloads

Many scientific workloads make use of vector operations
through linear algebra subroutines

These workloads have wide range of sparsity in their
structures, which affects

Control flow regularity
Memory access patterns

We look at two case studies with complementary sparsity:
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Target Workloads

Genetic sequence alignment
Dense vectors
Fine grained parallelism

Moderate control irregularity
Moderate memory irregularity

Graph analytics
Extremely sparse (1 in 10°) matrices

Emphasis on effective data movement over minimizing computation
Employ outer-product on matrix multiplications

Little control divergence
Significant memory irregularity

PageRank @ @
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Sequence Alignment

Before analysis can be performed on genome fragments, they
must be aligned to a reference gene

reference gene
|

Multiple alignments corresponding to various insertions,
deletions, and offsets must be evaluated, leading to a dense,

vectorized workload

We evaluate the Smith-Waterman Algorithm
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Smith-Waterman Algorithm

= Local sequence alignment algorithm developed in 1981
= Smaller amount of parallelism (100s of elements or less)

Local sequence alignment algorithm developed in 1981

Reference Sequence

Inputs: [
Query Sequence
Output: -7—fm

Alignment Location & Score
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Scoring Matrix Construction

Reference Sequence
Scoring

E(m,n)

H(m,n) = max F(m,n)
Hm-1,n-1)+ S(a,,, b,)

Hmn-1)—-g,
E(mn—-1)—g,

E(m,n) = max{

Query Sequence

>o|o|>
VWV |V

Hm—-1,n)—g,
F(m—1,n) — g,

F(m,n) = max{
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Scoring Matrix Construction

Reference Sequence
Scoring

e — E(m’n)
H(m,n) = max F(m,n)
AIC/IA[C|A|A + S(am, by)

Hmn-1)—-g,
E(mn—-1)—g,

E(m,n) = max{

Query Sequence

Hm—-1,n)—g,
F(m—1,n) — g,

>0 |>

‘ F(m,n) = max{
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Scoring Matrix Construction

Ref S ven:
ererence sequence Given: S(Cl, b) — 12

S Gap penalty= 1

H(3,4) =

[ F34)=2-1|
max| £(3,4)=2—1

R

Query Sequence

A
G
|

H(3,4) =5

S(AA) = +2
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Backtracking

Backtracking Reference Sequence

Finds the best local alighnment from the scoring matrix

1
max entry
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Step 1.

Search through the
matrix and find the entry
with the largest score
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Backtracking

Finds the best local alighnment from the scoring matrix

Backtracking Reference Sequence

Step 2.

-|A|lc|lAa|lc|A|A
o _[olo|ofd : :
O 4 Traverse back | Check the adjacent entries
9 AlO ! through the | for the next largest score
S 610 1~1 largest score
‘; clo|o[3 L2321
o A|0]|2]2 4|5 |4 .
8 clol 1l ala c | e Move to the entry W|th the

largest score and continue
? the path
max entry
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Backtracking

Finds the best local alignment from the scoring matrix

Step 3.
e I Reference Sequence Get the resulting alignment
- | A C| A C|A|A
§ - °~0 0 ‘ZJTraverse back [_
A 0 1 a
o R through the | Path Alignment
o G|0|1.L1 largest score : :
A <loloTs L Lasibes Direction
o Alol227s51lal|s]a ] .
g Horizontal | Deletion
d C 0 1 4 4 7 6 6
1 Vertical Insertion
max entry

Diagonal Match
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Backtracking

Finds the best local alignment from the scoring matrix

Step 3.

Backtracking Reference Sequence Get the resulting alignment

- A

OF | = |

Q 0’0 0 ‘JTraverse back |_

O Bl R S through the |

ol _C1L° 1~1 largest score | Reference: @ A-CAC

">’ clofo 3‘2 321

ol Alo|2|2Vsla|s]|a

8 clTol1lala c e Query: AGCAC
1 Insertion

max entry

Alignment Score: 7
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Smith-Waterman Vectorization

_ SIMD_WIDTH
32 bits

L
—
Reference wwmm

Query —
O

X 1000 samples

BATCH:

VL

SVE[O]

SVE[1]

SVE[VL-1]

I SLICED:

X (1000/VL) iterations

SVE[0]

« | SVE[VL-1]

| P N

Alignment Location & Score

X 1000 iterations
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Batch Smith-Waterman
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v No data dependencies between lanes
X Divergent memory access
X More memory bandwidth needed
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Sliced Smith-Waterman

Reference Sequence

|alcl|a

ClA

G

T

A|C

‘é Initial Calculation of H(m,n)

SVE[0] ‘

SVE[1]

SVE[2]

Query Sequence
>|lolo >|
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VL=K

SVE[O] | SVE[1]

SVE[K-l]I

H(m,n) = max

E(m,n)
F(m,n)
+ S(am, byp)
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Sliced Smith-Waterman

VL=K
i |

SVE[O] | SVE[1] | +e- SVE[K-l]I

Reference Sequence

Value of F need to be re-calculated
|A clAa|lc|lAal|lGg|T|AlC]|A

‘é Initial Calculation of H(m,n) o o
sve[o] EEEEE) | sve(1)mmEE) || SVE[2] . |
LN H

b i

horizontal dependencies
between slices not accounted

Query Sequence
>|lolo >|
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Sliced Smith-Waterman

VL=K
i |

SVE[O] | SVE[1] | +e- SVE[K-l]I

Reference Sequence

Hm—-1,n) — g,
F(m_ 1;n) — Ye

F(m,n) = max{

>
@]

A(C(A(G|T|A|C|A

Initial Calculation of H(m,n) vee H(m,n) = max(F(m, n), H(m, Tl))
sve[o] ) | SVE[1] SVE[2]
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| | | | |
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Costly resolution as one need to traverse
through the entire row

Query Sequence
> |o]o]>
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Sliced Smith-Waterman

Reference Sequence

v’ Smaller memory footprint
|alclalc|ala|T]alc|Aa

= v/ Coalesced memory access

‘é Initial Calculation of H(m,n) cee x Inter_lane dependenC|eS
sve[o] EEEE) | SVE[1] SVE[2] .

Query Sequence
>|lolo >|
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Experimental Setup

Custom implementations run on modified gem5 setup
supporting SVE instruction set

Component

Configuration

Single-Core out-of-order 64-bit ARM, 1GHz, 8-issue

Core SIMD Width: 128-bit (NEON), 128/256/512/1024-bit (SVE)
32KB private L1 instruction cache, 2-way associative

Cache 64KB private L1 data cache, 2-way associative
4AMB private L2 inclusive cache, 8-way associative
Capacity: 8GB

DRAM Latency: 30 ns

Memory Controller Bandwidth: 12.8 GB/s

Current gemb model serializes memory accesses across

cache lines

25 to 400 sequence length

University of Michigan
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Performance
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Batch vs Sliced: Memory Bandwidth

= Sliced reduces memory bandwidth
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Sliced Smith-Waterman

Larger vector length only beneficial for longer sequences

Execution Time for Sliced Smith-Waterman with 1000 Sequences
64kB L1D Cache
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Memory coalescing

Short bursts of memory divergence is a problem in our current
Implementation

While work is being done to implement scatter-gather
functionality, we believe more can be done to exploit memory
level parallelism

We've demonstrated appreciable speedup on GPUs by
coalescing not just across lanes in a vector, but across
Instructions as well

We believe this can be exploited to a lesser degree on SIMD
pipelines as well
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Hazards in Benchmarks
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Memory Coalesing

Intra-Warp
Warp Coalescer

Scheduler

Intra-Warp
Coalescer

Intra-Warp
Coalescers

= 1 1>

Warp = [ >
Scheduler - | }>
- 1 1>

"WarpPool: sharing requests with inter-warp coalescing for throughput processors." MICRO 2015.
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Coalescing Speedup on GPUs
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Conclusion

SVE instructions are well tailored to significantly reduce code
size and execution overhead of HPC applications

For fine-grained applications such as genomics, lack of
scalable memory resources result in diminishing returns for
Increased vector size

Future focus on improving memory coalescing may be the key
to better performance
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Questions?
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Batch vs Sliced: Execution Time

= Batch performs better for short sequences, sliced performs
better for long

Comparison of Different Smith-Waterman Speedup of Choosing Sliced over Batch
Implementation for 256-bit SVE 256-bit SVE and 64kB L1D Cache
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