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Whole Genome Sequencing Pipeline
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in length
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Target Architecture:

Scalable Vector Extension



ARM’s Scalable Vector Extension (SVE)

* Designed to complement existing SIMD architecture (NEON)

* Key Features:
e Scalable Vector Length (128, 256, 512, and 1024-bits)
e Per-lane Predication (32 SIMD Reg. + 16 Predicate Reg.)
e Gather-load and scatter-store
* Horizontal vector operations

Vector Length Agnostic Code



ARM'’s Scalable Vector Extension (SVE)

* Genomic sequences are sampled at different lengths
depending on the device used for sampling:
* [[lumina HiSeq System: 30-300 bps
e Sanger 3730xl: 400-900 bps

Vector-Length Agnostic Code can
be used to Dynamically Choose
the Optimal SIMD Width




Target Algorithm:

Smith-Waterman
Sequence Alighment



Smith-Waterman Algorithm

Local sequence alignment algorithm developed in 1981
Smith-Waterman
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Scoring Matrix Construction

Reference Sequence
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Scoring Matrix Construction

Reference Sequence

E(m,n)
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Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
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Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
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Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
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Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
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Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
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Backtracking

Finds the best local alignment from the scoring matrix

Traverse back
1 through the

2

1

‘1 largest score
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Query Sequence

S5px4 | 5
4*7 6
max entry —T

6

Step 3.

Get the resulting alignment

Reference: A-CAC

Query: AGCAC

Insertion

Alignment Score: 7



Smith-Waterman Vectorization:

Batch, Sliced, and Wavefront
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Batch Smith-Waterman
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VL=K

Sliced Smith-Waterman ' .. [

SVE[0] | SVE[1]

Reference Sequence E(m,n)
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Query Sequence

Sliced Smith-Waterman

Reference Sequence
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Sliced Smith-Waterman
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Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution
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Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution

C G| T|A]|C|A] .

VvV VIVIV] s

Query Sequence




Query Sequence

Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution

ClA TIA|C|A| e

e VIVIVIVIVI O

> |o]o]>]




Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution
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. More book-keeping overhead than other algorithms:
* Keep track of H values of two prev. iterations
* Fand E values from preuv. iteration




Experimental Evaluation:

Smith-Waterman on gem5 w/ SVE



Experimental Setup

Gemb5 Simulator w/ ARM SVE Simulation

Component || Configuration

Single-Core out-of-order 64-bit ARM, 1GHz, 8-issue

SIMD Width: 128-bit (NEON), 128/256/512/1024-bit (SVE)
32KB private L1 instruction cache, 2-way associative

Cache 64KB private L1 data cache, 2-way associative

4AMB private L2 inclusive cache, 8-way associative

Capacity: 8GB

DRAM Latency: 30 ns

Memory Controller Bandwidth: 12.8 GB/s

Core




Experimental Setup

Application:
Smith-Waterman — Batch, Sliced, and Wavefront

e Reference:

25-400 bps samples from E. Coli 536 Gene (4.9 Mbps)
* Query:

1000 x 25-400 bps samples through WGSim



Advantage of SVE over Traditional System

* CPU, NEON implementation written in C. SVE hand-written in assembly.
e SVE outperforms both CPU and NEON implementations by at least 3x
e Batch, Sliced use 16-bit vectors. Wavefront use 64-bit vectors.

45 Alignment Time Speedup over Baseline CPU

40 M cpu batch_neon I sliced_neon batch_sve_128bit M sliced_sve_128bit M wavefront_128bit | 38.2
2 35
< 30
S 25
o
% 20
2 b 108 9.79.0
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5 11502 3326 11504 - 11408 11414 11321
0 [

25 50 100
Sequence Length



Advantage of SVE over Traditional System

* SVE reduces the instruction execution significantly compared to CPU or NEON

Instructions Executed Compared to Baseline CPU

B cpu M batch_neon batch_sve 128bit sliced_ neon Msliced sve 128bit ™ wavefront_128bit
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Instruction Executed
Compared to CPU
=
(O]

o

1 II - II - II _u II N
25 50 100 200 400
Sequence Length



Memory Bandwidth Comparison

* Sliced and Wavefront significantly reduce the memory bandwidth compared to
the Batch algorithm

Memory Bandwidth of Batch S-W: Memory Bandwidth of Sliced S-W: Memory Bandwidth of Wavefront S-W:
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Performance Breakdown of Wavefront Algorithm

* Hand-written assembly code of Wavefront Algorithm has 4-6x speedup over C code.

Speedup of Wavefront Algorithm

18.00 CPU (naive) =~ MCPU (wav) M CPU-ASSEM SVE-128bit M SVE-256bit
16.00

14.00
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0.00
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5.77 5 09 5 38

2b1.00 1.591.00 1631 00
[ | [ [ |
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. Sequence Length (bps) ﬂ

Speedup over CPU w/ Wavefront Alg.



Waveform Algorithm — Vector Scaling

Vector Scaling of Wavefront Algorithm at Different

Sequence Length
6.0 * Wavefront algorithm shows

m_ — — = . .
L=25 L=50 L=100 1=200 good performance scaling with

S .
g increased vector length.
<
) 4.0
a.
(@)
g 30
s * Longer sequences have better
§ 2.0 utilization of wide vector lanes,
9 I but with diminishing return.
& 10 I

0.0

128-bit (VL=2) 256-bit (VL=4) 512-bit (VL=8) 1024-bit (VL=16)
SVE Vector Width



Vector Scaling of Different Algorithms

* Batch and Sliced show marginal improvement with increasing vector length
 Difficult to keep up with increased memory demand
* Need to resolve dependencies.

Vector Performance Scaling of Batch, Sliced, Vector Performance Scaling of Batch, Sliced
and Wavefront at Sequence Length of L=100 and Wavefront at Sequence Length of L=400
3.3
. Ll
% 3.0 B Batch ™ Sliced Wavefront 24 2.6 a 3.5 M Batch ™ Sliced Wavefront 3.0
225 : E 3.0
Q2
: L 2.5
0 2.0 %
N 1.6 N 20 1.8
Els 1.01.01.0 1.0 §15 1.3
CR 0 : ) 1.01.01.0 0.9 0.8
g. g— 1.0
§ 0.5 0.2 B o5 II I I 0.3
0.0 ] & 0.0 =
128-bit 256-bit 512-bit 1024-bit 128-bit 256-bit 512-bit 1024-bit
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Fixed HW Options: Batch vs Sliced vs Waveform @512-bit

Comparison of Different Smith-Waterman Vectorization
512-bit SVE and 64kB L1D Cache

— 10000

£ ——Batch —*—Sliced -e—Waveform

§ 1000 ———

e -

[=7:]

S 100

b o—

= Batch Waveform Sliced

2

2 — _>

= 25 50 100 200 400
Sequence Length (base pairs)

Batch Sliced

* Low overhead. Waveform * High overhead.

* Poor scaling. * Efficient use of vector Lanes * Execution bypassing

- Fastest for short seq. * Fastest for medium seq. * Fastest for long seq.



HW with Variable Vector Length

 Given freedom to choose the hardware for each sequence length,
we can establish a set of optimal algorithm-hardware pair.

. Speedup Over
Read Length Algorithm Vector Length 512-bit Wavefront

< 50 bps Batch 128-bit 2.77
50-100 bps Wavefront 1024-bit 1.03
100-400 bps Sliced 256-bit 1.23-3.06



Conclusion

Smith-Waterman on SVE:

+ Select Optimal Vector Length & Algorithm depending on Input

+ Lower Instruction Footprint

* Improvements to memory controller can lead to improved

performance
* Wavefront algorithm use 64-bit vectors due to limitations on gather-

scatter instruction addressing.
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DNA Sequencing

Genomic Code Detect Abnormalities

G A T AAAT CT

Human Genome:
3.2 billion base pairs

Subject Organism

Need to sample at 30-50x coverage




Future Work

Sequence Assembly: de novo assembly

Assembling the query
samples without aligning
them to a reference

"GAG Y
.--‘\4’.' O
QGGA:. Real Kmer

\. Critical False

':IGTé:c Positive
Construct and traverse j
"'I:TG. . o False Positive

the De Bruijn graph




Target Genome (Unknown) _ ATGCTA
Sampling CTATGC Sampled
D) ATGCTATGCGT ATGCGT Sequences
K-mers (k=4): String
Graph TATG ATGC TGCG GCGT
Traversal Graph

Construction

de Bruijn Graph @ @ Eulerian path of de Bruijn

graph gives us the original

@ CTA segquence




Hybrid Alignment Selection — BWA + SW

———————————————————————————————————————————————————————
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Batch Smith-Waterman Performance Across Different Vector Lengths: 64kB L1D Cache
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Sequence Alignment in Multicore System

e Smith-Waterman scales efficiently with core count
* Better single-thread performance can dramatically improve performance

Multicore Smith-Waterman Performance Scaling
3.5E+10

3E+10 =e—=1-issue 2-issue 4-issue 8-issue

2.5E+10
2E+10
1.5E+10

1E+10

Execution Time (ns)

5E+09

0

1 2 4 8 16 32 64 128
Core Count




Waveform Algorithm Performance Overview

Wavefront Smith-Waterman Performance Across Different Vector Lengths:
64kB L1D Cache

T 2500 ~+—128 bit 256 bit 512 bit 1024 bit
o )
2 000
= 1500
c
(J]
£ 1000
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= 500
<

o

25 50 100 200 400

Sequence Length (bps)



Read/Extract ©> Assembly »
Sequences

Alignment Algorithms g N
Hash Table Based
Smith-Waterman * BLAST/BLAT
* Dynamic algorithm - j
e Construct and trace 4 N
alignment matrix Prefix/Suffix Based
* BWA, STAR
Accurate, but slow \_ )







Target Algorithm:

Burrow-Wheeler



Why Burrow-Wheeler Alignment

* Performance of Smith-Waterman does not scale well with large
sequence lengths.

* BWA help narrow down the search space (while losing some
precision)

e Use Smith-Waterman to perform the precise alignment

Pre-
Processing

BWT(ref)

o =

N o e o e e e e e e e e mmm M e e Mmm M e M Mmm Mmm M M Mmm Mmm M M Mmm Mmm M R Mmm Mmm M M Mmm Mmm M e Mmm Mmm M e Mmm mmm M e Mmm M M e

Smith- BWA Inexact
Waterman Matching

Alignment query

Location & Score




Burrow-Wheeler Alignment

e SVE significantly reduce the overhead of invoking Smith-Waterman alignment

Burrow-Wheeler Alignment Time . .
Comparison Breakdown of Burrow-Wheeler Alighment Execution
30000 — 10 X 1000bps Reads on 4.9 Mbps E.Coli 536 Gene
7000
25000 —O-—SVE_128bit
. 6000 B bwa_index Msliced_sw score_process
,g 20000 g 5000
£ 15000 9:-’ 4000
E € 3000
10000 >
© 2000
b / 1000
I —_— I -
0 0 | || || | ||
0 1000 ~ 2000 ~ 3000 4000 5000 NEON SVE_128bit SVE_256bit SVE_512bit  SVE_1024bit

Sequence Length Configuration




Batch Smith-Waterman

Execution Time for Batch Smith-Waterman with 1000 Sequences: 64kB L1D Cache
10000

W 128 bit  W256bit W 512 bit 1024 bit
1000
10
| III
25 50 100 200 400 800

Sequence Length

e

Alignment Time (ms)
o
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Read/Extract » [> J— @
Sequences

Planted Motif Search: Identifying common patterns (motifs)

Micron’s Automata Processor
* Reconfigurable automata processor built on DDR3 SDRAM
memory arrays

: Micron
(1,d) Pair 48 CPU -
(25,10) | 21 min. m 12 min.
(26,11) | 2,814 minm 14 min.




1

Sliced Smith-Waterman

Dataflow of F(m,n)

Initial Calculation
of H(m,n)

2

Iteration O

Resolving
Dependencies

Iteration 1

SVE register

coverage:

coverage:

F:

coverage:

F(m,n) = max{

SVE[0] SVE[1] SVE[2]
a——@ b flc—
F[0] F[1] F[2]
SVE[0] SVE[1] SVE[2]

F[O] F[1] F[2]
SVE[0] SVE[1] SVE[2]
F[O] F[1] F[2]

Hm—-1,n)—g,
Fim—-1,n) — g,



Sliced Smith-Waterman F(m,n)zmax{Hm—Ln)—go

F(m_lxn)_ge

Dataflow of F(m,n) I
2 | coverage: :
Resolving .
Dependencies »Sh'ft F SVE[O] SVE[1] | SVE[2]
L. ac— @b —B
FIO] FI1] i F[2]
For all vector elements: E> subsequent columns
If (_go >[El—9gc): dependency check will not change

2
Worst Case: K Iterations O (N7 + Nz)

All Dependency Resolved

e |
Best Case: Stop at first Iteration O (N?)




Energy Efficient Sequencing

MinlON: Portable, Real-time Sequencer

Up to 2.5M reads at standard speed (280bps)
$1,000 per Equipment

Sequence Read: .

Sxore GGTTGTTCTGTTCTGCC
7 YJNANOPORE.

Technologies




1hr RNA extraction —_ 1hr
(+DNase)
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GPU-based Alignment Workloads

* Cuda-SW++ - Smith-Waterman algorithm in GPU
BARRACUDA - Burrow-Wheeler Alignment (prefix-based)
e BLAST — hash table based alignment

Cache and Memory Performance Instruction Type Composition
100%
70.00% 36.79808 20
— 1 Hit (%) 62.03% o0%
60.00% e L2 Hit (%) 35 0%
52 .90% DRAM Bandwidth (GB/s)
50.00% %0 2 g T Control
g v O § oo ELDST
T 4000% £ 3 mEP
T 20 § s 50%
o 5 g EmALU
£ 30.00% S S
8 5 o g
Q = % 30%
(=]
S 20.00% o 2 3
(&) 20%
10.00% .
220% 0 00%0.6720 00% o
0.00% : : 0 o5

Cuda-sw++ BARRACUDA BLAST Cuda-sw++ BARRACUDA BLAST




Why Compute Near Memory? - Bandwidth

|/O channels cannot keep up with the bandwidth of 3-D stacked memory

— 300 Memory Bandwidth Trends
. Q o= mm mm o oy
2.0 8GB/s £ 20 I
S | 160 l
3.0 15.8 GB/s '?U 150 I :
2]
4.0* 31.5 GB/s s 100 | I
€
5.0* 63.0 GB/s g 6.4 128 = |
*Latest version of PCle is 4.0 DDR-200  DDR2-800 ppr3-1600 DDR4-3200 \ HMC1.0  HMC2.0 J

Memory Technology L S —-

Source: Wikipedia, HMC



Why Compute Near Memory? - Power
High Bandwidth DRAM Energy Trends
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Scoring Matrix Construction

Reference Sequence Given: S(a,b) = +2
Gap penalty =1
A
§ 0 H(3)4) —
] 2
2 [F(BA) =2- 1]
g 1
2 max
> 1
(J]
o ]
@]
‘H(3,4) =5 ‘
S(AA) = +2




Burrow-Wheeler Transform

Get all possible rotations of sequence X

-

Sort the iterations by the suffix mgz spanaka :
. . asBanhy

Get the last character string, which is NANASBA anasshy |
BWT(X) ANASBAN j> Ananabs |
NASBANA BANANAS |
4. The index of the original position is the  A$SBANAN NASBAA |
suffix array S SBANANA NANASPR |
1 2 3 4 5 6 7 @ w
X B< p:"i ,f ':>A>$ BWT matrix of

o 7 = "2"1~ 5 3 string ‘BANANA

BWT(X) A N N B $§ A A



BWA Inexact Matching

* Exact Matching:
Given a query W, get the lower bound L(W) and upper bound U(W) of index in
BWT matrix where W is the prefix:
L(@W) = C(a) +i +1,
where i =# ‘a’'s up to L(W) — 1 in BWT(X)
U(aW) = C(a) + ],
where j = # ‘a’s up to U(W) in BWT(X)

C(a): # of characters smaller than ‘a’

* Inexact Matching: allow ‘n’ number of mismatches or gaps during
the matching process. Recursively iterate possible combinations.



Smith-Waterman Step

* Using the lower and upper bound indices from the BWA inexact
matching, perform Smith-Waterman on the selected region to get a
more accurate alignment.

* Accelerated through Sliced Smith-Waterman

Smith- BWA Inexact query
Waterman Matching

Alignment
Location & Score




