Accelerating Genomic Sequence Alignment
Workloads with SVE—the Scalable Vector
Extension

Trevor Mudge
Bredt Family Professor of Computer Science and Engineering
The University of Michigan, Ann Arbor

Outline

» Motivation:
= Emerging Application: Genomics
= ARM'’s Scalable Vector Extension
» Improving Sequence Alignment
= Smith-Waterman: Batch, Sliced, and Wavefront
» Experimental Setup
» Results and Conclusion

Computational Biology e
uture Applications

Past Present On-Demand
il Diagnosis
Forensics
Sequencer

“Human Genome Project”, 2004 “SpeedSeq”, 2015

100 COST PER GENOME - $ MILLION, LOG SCALE

Moore’s Law: A long-term trend in the computer
hardware industry that involves the doubling
of ‘computer power’ every two years.
10 2001:

Human o

Genome \\ Human Genomeo

project A .

3.2 billion base pairs

$100 MILLION
- 2009:
‘ HELICOS
BIO SCIENCES
2008: $48,000 Need to sample at 30-50x coverage

0.1 454 LIFE TN
SCIENCES
$1,000,000

2007 2008

Whole Genome Sequencing Pipeline

10-20k
in length

/{

I

reference gene

Read/Extract

Sequences

Reading fragment samples of
whole genome
Signal/Image processing

I__‘-s___________..

——

Assembly

-

* Matching overlaps across I
multiple sequences
* Dynamic vs heuristic algorithm I

Reconstructing the original
sequence
de-novo vs mapping assembly

Identifying gene variants and
abnormalities
Pattern matching, HMM, DNN

Target Architecture:

Scalable Vector Extension

ARM’s Scalable Vector Extension (SVE)

* Designed to complement existing SIMD architecture (NEON)

* Key Features:
e Scalable Vector Length (128, 256, 512, and 1024-bits)
e Per-lane Predication (32 SIMD Reg. + 16 Predicate Reg.)
e Gather-load and scatter-store
* Horizontal vector operations

Vector Length Agnostic Code

ARM'’s Scalable Vector Extension (SVE)

* Genomic sequences are sampled at different lengths
depending on the device used for sampling:
* [[lumina HiSeq System: 30-300 bps
e Sanger 3730xl: 400-900 bps

Vector-Length Agnostic Code can
be used to Dynamically Choose
the Optimal SIMD Width

Target Algorithm:

Smith-Waterman
Sequence Alighment

Smith-Waterman Algorithm

Local sequence alignment algorithm developed in 1981
Smith-Waterman

Reference Sequence /

Inputs: S :‘> Scoring Ma.tr‘IX
I Construction

Query Sequence

- —— —

Output: —hi/ <

) ap——

Matrix
Backtracking

==
N
=

=

Alignment Location & Score \

Scoring Matrix Construction

Reference Sequence

E(m,n)

- clalc H(m,n) = max F(m,n)
§ ololololololo Hm—-1,n—-1)+ S(a;,, by)
o
= 0o || >
=1 — — H(m,n—1) — g,
@ 0| > E(m,n)zmax{
A | E(mn—1) -
> 0| | | |> (Tnn) Ge
. 0

. Hm—-1 —
o : F(m,n)=max{ (m=1,n) = go

F(m—1,n) — g,

Scoring Matrix Construction

Reference Sequence

E(m,n)
~|Aalc|Aajc|ala H(m,n) = max F(m,n)
§ -|0jojo|0of0|0O]oO + S(a;,, by)
= alol2l1]2]1]2]2 - .
Q| clofl1|1f1]1]1]12 E(m,n) = max (mn—1)—g,
2 3. E(mn—-—1)—g,
> | oo 352
(J]
S alof2[E2.s
T - H(m—1,n) —
° S B F(m,n) =max{ (m n) = o

Fim—-1,n) — g,

Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence

~-|A|C|A|C|A|A
Y -—-|(o|lo|o|O|O|OfO Step 1.
C
o A|lO0O|2]|1]|2]1|2]2
3 Search through the
g Gljojrptp1jry1]1 matrix and find the entry

clofo|3|2]3]|2]1 :
> with the largest score
o A|lO0|2]|2|5|4|5]|4
>
O clo|1|a|al(7))s6]es
max entry —T

Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence

~-|lAlc|A|C|A]|A
of ~loloflofolofo]o0 Step 2.
§ Afof2|1]2]|1]|2]2 Check the adjacent entries
S Gjof1|1|1]1]1]1 for the next largest score
‘:; clolo|3|2|3]|2]1
O A|O0|2|2[54k4][5]4
O clo|1]a 4*7 6|6

CDmax entry —T

Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence

~-|A|C|A|C|A|A
ol ~lolololofo]o]o Step 2.
§ Afof2|1]2]|1]|2]2 Check the adjacent entries
S Gjof1|1|1]1]1]1 for the next largest score
‘:; clolo|3|2]|3]|2]1
Y A|[O0[|2]2 |54 |54 Move to the entry with the
Sl clo|1]4 4'T7 6|6 largest score and continue

@ I the path
max entry

Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
-|A|C|A|[C|A]|A

2) Step 2.
‘ JTraverse back |_ P

through the | _ Check the adjacent entries
4 largest score | for the next largest score

‘ 3121

1
1
o

= | O
(

[N

N

Query Sequence

0
1
0
2
1

O|O0o|O|O | O
AIN|W

S5pgd | 5| 4 Move to the entry with the
4*7 6|6 largest score and continue

A
G
C
A
C
@ _T the path
max entry

Backtracking

Finds the best local alignment from the scoring matrix

Reference Sequence
~-|A|lC|A|lC|A]|A
ol 2
= Oéo 0 JTraverse back |_
g A0 lAll through the
O G| 0| 11 largest score
3 B -
S Cc|lo|o[3gg2|3]|2]1
O T
O Alo|2|2[544]|5]4
S clof1]a|a[@)e6]s
max entry —T

Step 3.

Get the resulting alignment

Horizontal
Vertical

Diagonal

Deletion
Insertion
Match

Backtracking

Finds the best local alignment from the scoring matrix

Traverse back
1 through the

2

1

‘1 largest score

1

4

Query Sequence

S5px4 | 5
4*7 6
max entry —T

6

Step 3.

Get the resulting alignment

Reference: A-CAC

Query: AGCAC

Insertion

Alignment Score: 7

Smith-Waterman Vectorization:

Batch, Sliced, and Wavefront

Vectorization earcu: —
.| ==
- l==
_SIMD_WIDTH
"~ 32bits

SLICED: [ER]
Reference wwm | SVE[O] | SVE[0] | ee- e —
L /
Query FH—d *'_,____..
|
X 1000 samples

l/

Alignment Location & Score

Wavefront:

> :
[0]

[3]

[

v

g

Batch Smith-Waterman

N
[
e SVE[O] ~\
— || Quaf‘y 0 |
| Reference0 |
. J
] —_
e SVE[].] “\
Reference Sequence — Query 1
| Referencel |
. J
Query] 1 l 1
Sequences . ,\

Reference K

Sampled SVE[K] !
I { Query K I

VL=K

Sliced Smith-Waterman ' .. [

SVE[0] | SVE[1]

Reference Sequence E(m,n)

H(m,n) = max
~|alc|alclale|r|alc]a].. + S(am, by)

_‘él) Initial Calculation of H(m,n)
| i

SVE[O]'ﬁ SVIlE[l]- své[z]‘ .

Query Sequence

Query Sequence

Sliced Smith-Waterman

Reference Sequence

_-|A

RO

SvE[0])

SVE[1]EEEE) | sve[2]mmmm) -

g

'

horizontal dependencies
between slices not accounted

VL=K
| |

SVE[O] I SVE[1] oo SVE[K-l]I

Value of F need to be re-calculated
| o

F

Sliced Smith-Waterman

Reference Sequence

VL=K

SVE[0] | SVE[1]

F(m,n) = max{

()
(&
c -
- H(m,n) = max(
o
‘; SVE[0] SVE[1] SVE[2] .
L 9 X
ol QUL [l L1}
d [N N}

. /7| Resolve Dependencies F F

: | . | L] I L] I L] I . I :
Costly resolution as one need to traverse

through the entire row

SVE[K-1]|

Hm—-1,n) — g,
Fim—-1,n)—g,

H(m, n))

Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution

-|A|C|A AlG|T|A|C|A] e

-- |FE [

>
VIV V|6

Query Sequence
> oo

Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution

C G| T|A]|C|A] .

VvV VIVIV] s

Query Sequence

Query Sequence

Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution

ClA TIA|C|A| e

e VIVIVIVIVI O

> |o]o]>]

Wavefront Smith-Waterman

Reference Sequence

All dependency comes
from previous execution

-|A|CIA|C|A|G|T|A|C
== HF)E‘ L

>|0lo|>
I
Tl
rm
VIVIVRIV] -

F [[

Query Sequence

. More book-keeping overhead than other algorithms:
* Keep track of H values of two prev. iterations
* Fand E values from preuv. iteration

Experimental Evaluation:

Smith-Waterman on gem5 w/ SVE

Experimental Setup

Gemb5 Simulator w/ ARM SVE Simulation

Component || Configuration

Single-Core out-of-order 64-bit ARM, 1GHz, 8-issue

SIMD Width: 128-bit (NEON), 128/256/512/1024-bit (SVE)
32KB private L1 instruction cache, 2-way associative

Cache 64KB private L1 data cache, 2-way associative

4AMB private L2 inclusive cache, 8-way associative

Capacity: 8GB

DRAM Latency: 30 ns

Memory Controller Bandwidth: 12.8 GB/s

Core

Experimental Setup

Application:
Smith-Waterman — Batch, Sliced, and Wavefront

e Reference:

25-400 bps samples from E. Coli 536 Gene (4.9 Mbps)
* Query:

1000 x 25-400 bps samples through WGSim

Advantage of SVE over Traditional System

* CPU, NEON implementation written in C. SVE hand-written in assembly.
e SVE outperforms both CPU and NEON implementations by at least 3x
e Batch, Sliced use 16-bit vectors. Wavefront use 64-bit vectors.

45 Alignment Time Speedup over Baseline CPU

40 M cpu batch_neon I sliced_neon batch_sve_128bit M sliced_sve_128bit M wavefront_128bit | 38.2
2 35
< 30
S 25
o
% 20
2 b 108 9.79.0
v 10 6.9 56
5 11502 3326 11504 - 11408 11414 11321
0 [

25 50 100
Sequence Length

Advantage of SVE over Traditional System

* SVE reduces the instruction execution significantly compared to CPU or NEON

Instructions Executed Compared to Baseline CPU

B cpu M batch_neon batch_sve 128bit sliced_ neon Msliced sve 128bit ™ wavefront_128bit

2.5

2

1.5

=

Instruction Executed
Compared to CPU
=
(O]

o

1 II - II - II _u II N
25 50 100 200 400
Sequence Length

Memory Bandwidth Comparison

* Sliced and Wavefront significantly reduce the memory bandwidth compared to
the Batch algorithm

Memory Bandwidth of Batch S-W: Memory Bandwidth of Sliced S-W: Memory Bandwidth of Wavefront S-W:

000 SVE 512-bit, 64kB L1D SVE 512-bit, 64kB L1D SVE 512-bit, 64kB L1D

W read_bw 120

B write_bw

=
[e)]

5000 M read_bw

M read_bw
B write_bw .

100 B write_bw
80
60
40
20 III
- - 0 m

025 1050 L1060 1200 1400 025 1050 L100 1200 L400 L025 L050 L100 L1200 L400
Sequence Length Sequence Length Sequence Length

[EEN
N

4000

Mem. Controller BW (MB/s)
o~ &
Mem. Controller BW (MB/s)

3000

2000

1000

Mem. Controller BW (MB/s)

o N b O

0

Performance Breakdown of Wavefront Algorithm

* Hand-written assembly code of Wavefront Algorithm has 4-6x speedup over C code.

Speedup of Wavefront Algorithm

18.00 CPU (naive) =~ MCPU (wav) M CPU-ASSEM SVE-128bit M SVE-256bit
16.00

14.00
12.00
10.00 8.64 8.98 3.24
8.00
6.00
4.00
2.00
0.00

15.95

14.34
11.91

5.77 5 09 5 38

2b1.00 1.591.00 1631 00
[| [[|

=25 L=50 L=100 L=200

. Sequence Length (bps) ﬂ

Speedup over CPU w/ Wavefront Alg.

Waveform Algorithm — Vector Scaling

Vector Scaling of Wavefront Algorithm at Different

Sequence Length
6.0 * Wavefront algorithm shows

m_ — — = . .
L=25 L=50 L=100 1=200 good performance scaling with

S .
g increased vector length.
<
) 4.0
a.
(@)
g 30
s * Longer sequences have better
§ 2.0 utilization of wide vector lanes,
9 I but with diminishing return.
& 10 I

0.0

128-bit (VL=2) 256-bit (VL=4) 512-bit (VL=8) 1024-bit (VL=16)
SVE Vector Width

Vector Scaling of Different Algorithms

* Batch and Sliced show marginal improvement with increasing vector length
 Difficult to keep up with increased memory demand
* Need to resolve dependencies.

Vector Performance Scaling of Batch, Sliced, Vector Performance Scaling of Batch, Sliced
and Wavefront at Sequence Length of L=100 and Wavefront at Sequence Length of L=400
3.3
. Ll
% 3.0 B Batch ™ Sliced Wavefront 24 2.6 a 3.5 M Batch ™ Sliced Wavefront 3.0
225 : E 3.0
Q2
: L 2.5
0 2.0 %
N 1.6 N 20 1.8
Els 1.01.01.0 1.0 §15 1.3
CR 0 :) 1.01.01.0 0.9 0.8
g. g— 1.0
§ 0.5 0.2 B o5 II I I 0.3
0.0] & 0.0 =
128-bit 256-bit 512-bit 1024-bit 128-bit 256-bit 512-bit 1024-bit

I SVE Vector Width I SVE Vector Width I

Fixed HW Options: Batch vs Sliced vs Waveform @512-bit

Comparison of Different Smith-Waterman Vectorization
512-bit SVE and 64kB L1D Cache

— 10000

£ ——Batch —*—Sliced -e—Waveform

§ 1000 ———

e -

[=7:]

S 100

b o—

= Batch Waveform Sliced

2

2 — _>

= 25 50 100 200 400
Sequence Length (base pairs)

Batch Sliced

* Low overhead. Waveform * High overhead.

* Poor scaling. * Efficient use of vector Lanes * Execution bypassing

- Fastest for short seq. * Fastest for medium seq. * Fastest for long seq.

HW with Variable Vector Length

 Given freedom to choose the hardware for each sequence length,
we can establish a set of optimal algorithm-hardware pair.

. Speedup Over
Read Length Algorithm Vector Length 512-bit Wavefront

< 50 bps Batch 128-bit 2.77
50-100 bps Wavefront 1024-bit 1.03
100-400 bps Sliced 256-bit 1.23-3.06

Conclusion

Smith-Waterman on SVE:

+ Select Optimal Vector Length & Algorithm depending on Input

+ Lower Instruction Footprint

* Improvements to memory controller can lead to improved

performance
* Wavefront algorithm use 64-bit vectors due to limitations on gather-

scatter instruction addressing.

Key References

Smith TF, Waterman MS, “Identification of common molecular subsequences”) Mol Biol 147

Farrar M, “Striped Smith-Waterman speeds database searches six times over other SIMD
implementations” Bioinformatics 23

Zhao M, Lee W, Garrison E., Marth G. “SSW Library: An SIMD Smith-Waterman C/C++ Library for
Use in Genomic Applications”

Li H, Durbin R. “Fast and accurate short read alignment with Burrows-Wheeler transform”
Bioinformatics 25

Steinfadt S. “SWAMPT+: Enhanced Smith-Waterman Search for Parallel Models”

Questions?

DNA Sequencing

Genomic Code Detect Abnormalities

G A T AAAT CT

Human Genome:
3.2 billion base pairs

Subject Organism

Need to sample at 30-50x coverage

Future Work

Sequence Assembly: de novo assembly

Assembling the query
samples without aligning
them to a reference

"GAG Y
.--‘\4’.' O
QGGA:. Real Kmer

\. Critical False

':IGTé:c Positive
Construct and traverse j
"'I:TG. . o False Positive

the De Bruijn graph

Target Genome (Unknown) _ ATGCTA
Sampling CTATGC Sampled
D) ATGCTATGCGT ATGCGT Sequences
K-mers (k=4): String
Graph TATG ATGC TGCG GCGT
Traversal Graph

Construction

de Bruijn Graph @ @ Eulerian path of de Bruijn

graph gives us the original

@ CTA segquence

Hybrid Alignment Selection — BWA + SW

———

E Burrow- BWT(ref) !
iref_ Wheeler &\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ Pre-Processing

Transform

Batch Smith- BWA Inexact J
Alignment S o

Location & AEClilEr ; :

Score

Batch Smith-Waterman Performance Across Different Vector Lengths: 64kB L1D Cache

m

% 2500 | —ee128 bit ==#=256 bit 512 bit 1024 bit

£ 2000

'_

S 1500

Q

g 1000

20

< 500

0= = —
25 50 100 200 400
Sequence Length
Sliced Smith-Waterman Performance Across Different Vector Lengths: 64kB L1D Cache
1400 [—+—128-bit =#—05g_pjt —*—512-bit ~—1024-bit
51200

=
0 O
o O
o O

Alignment Time (m
H O
o O
o O

N
o
o

25 50 100 200 400
Sequence Length

°r

Sequence Alignment in Multicore System

e Smith-Waterman scales efficiently with core count
* Better single-thread performance can dramatically improve performance

Multicore Smith-Waterman Performance Scaling
3.5E+10

3E+10 =e—=1-issue 2-issue 4-issue 8-issue

2.5E+10
2E+10
1.5E+10

1E+10

Execution Time (ns)

5E+09

0

1 2 4 8 16 32 64 128
Core Count

Waveform Algorithm Performance Overview

Wavefront Smith-Waterman Performance Across Different Vector Lengths:
64kB L1D Cache

T 2500 ~+—128 bit 256 bit 512 bit 1024 bit
o)
2 000
= 1500
c
(J]
£ 1000
&
= 500
<

o

25 50 100 200 400

Sequence Length (bps)

Read/Extract ©> Assembly »
Sequences

Alignment Algorithms g N
Hash Table Based
Smith-Waterman * BLAST/BLAT
* Dynamic algorithm - j
e Construct and trace 4 N
alignment matrix Prefix/Suffix Based
* BWA, STAR
Accurate, but slow _)

Target Algorithm:

Burrow-Wheeler

Why Burrow-Wheeler Alignment

* Performance of Smith-Waterman does not scale well with large
sequence lengths.

* BWA help narrow down the search space (while losing some
precision)

e Use Smith-Waterman to perform the precise alignment

Pre-
Processing

BWT(ref)

o =

N o e o e e e e e e e e mmm M e e Mmm M e M Mmm Mmm M M Mmm Mmm M M Mmm Mmm M R Mmm Mmm M M Mmm Mmm M e Mmm Mmm M e Mmm mmm M e Mmm M M e

Smith- BWA Inexact
Waterman Matching

Alignment query

Location & Score

Burrow-Wheeler Alignment

e SVE significantly reduce the overhead of invoking Smith-Waterman alignment

Burrow-Wheeler Alignment Time . .
Comparison Breakdown of Burrow-Wheeler Alighment Execution
30000 — 10 X 1000bps Reads on 4.9 Mbps E.Coli 536 Gene
7000
25000 —O-—SVE_128bit
. 6000 B bwa_index Msliced_sw score_process
,g 20000 g 5000
£ 15000 9:-’ 4000
E € 3000
10000 >
© 2000
b / 1000
I —_— I -
0 0 | || || | ||
0 1000 ~ 2000 ~ 3000 4000 5000 NEON SVE_128bit SVE_256bit SVE_512bit SVE_1024bit

Sequence Length Configuration

Batch Smith-Waterman

Execution Time for Batch Smith-Waterman with 1000 Sequences: 64kB L1D Cache
10000

W 128 bit W256bit W 512 bit 1024 bit
1000
10
| III
25 50 100 200 400 800

Sequence Length

e

Alignment Time (ms)
o

o

Read/Extract » [> J— @
Sequences

Planted Motif Search: Identifying common patterns (motifs)

Micron’s Automata Processor
* Reconfigurable automata processor built on DDR3 SDRAM
memory arrays

: Micron
(1,d) Pair 48 CPU -
(25,10) | 21 min. m 12 min.
(26,11) | 2,814 minm 14 min.

1

Sliced Smith-Waterman

Dataflow of F(m,n)

Initial Calculation
of H(m,n)

2

Iteration O

Resolving
Dependencies

Iteration 1

SVE register

coverage:

coverage:

F:

coverage:

F(m,n) = max{

SVE[0] SVE[1] SVE[2]
a——@ b flc—
F[0] F[1] F[2]
SVE[0] SVE[1] SVE[2]

F[O] F[1] F[2]
SVE[0] SVE[1] SVE[2]
F[O] F[1] F[2]

Hm—-1,n)—g,
Fim—-1,n) — g,

Sliced Smith-Waterman F(m,n)zmax{Hm—Ln)—go

F(m_lxn)_ge

Dataflow of F(m,n) I
2 | coverage: :
Resolving .
Dependencies »Sh'ft F SVE[O] SVE[1] | SVE[2]
L. ac— @b —B
FIO] FI1] i F[2]
For all vector elements: E> subsequent columns
If (_go >[El—9gc): dependency check will not change

2
Worst Case: K Iterations O (N7 + Nz)

All Dependency Resolved

e |
Best Case: Stop at first Iteration O (N?)

Energy Efficient Sequencing

MinlON: Portable, Real-time Sequencer

Up to 2.5M reads at standard speed (280bps)
$1,000 per Equipment

Sequence Read: .

Sxore GGTTGTTCTGTTCTGCC
7 YJNANOPORE.

Technologies

1hr RNA extraction —_ 1hr
(+DNase)

' 3 = 1
1 — 1 9
1 / \ 1 3h
3hr . = . 2 !
‘ e
1 - = 1
o o o o o o e e e e e e e o o
Reverse transcription and random amplification
2 SN g
=z MinION (Oxford Nanopore) MiSeq (lllumina) z
c c
E NGS library preparation LI\ g
< NGS library <
; by ?\ ﬁ // ’, \\ preparation 6 Shr rjn
3 / - oW F
S5hr ¢ .l.
(R Y
Library
d | z;z quantitation 6hr
Flowcell initialization (20 min)
—@rv Nanopore -
(w‘/’ —d sequencing ..! MiSeq Q
b (~100-300 reads/min) prily | sequencing 518 hr*
il

{
«17/ \Q) Metrichor cloud-based
AN o basecalling of l
LR

Sequence nanopore reads
data (~200-300 reads/min)
acquisition L
. SURPI bioinformatics
E MetaPORE real-time y onalysis (>2hn)
__ bicinformatics analysis -
! (~100-200 reads/min)
—

TIME TO INITAL DETECTION

GPU-based Alignment Workloads

* Cuda-SW++ - Smith-Waterman algorithm in GPU
BARRACUDA - Burrow-Wheeler Alignment (prefix-based)
e BLAST — hash table based alignment

Cache and Memory Performance Instruction Type Composition
100%
70.00% 36.79808 20
— 1 Hit (%) 62.03% o0%
60.00% e L2 Hit (%) 35 0%
52 .90% DRAM Bandwidth (GB/s)
50.00% %0 2 g T Control
g v O § oo ELDST
T 4000% £ 3 mEP
T 20 § s 50%
o 5 g EmALU
£ 30.00% S S
8 5 o g
Q = % 30%
(=]
S 20.00% o 2 3
(&) 20%
10.00% .
220% 0 00%0.6720 00% o
0.00% : : 0 o5

Cuda-sw++ BARRACUDA BLAST Cuda-sw++ BARRACUDA BLAST

Why Compute Near Memory? - Bandwidth

|/O channels cannot keep up with the bandwidth of 3-D stacked memory

— 300 Memory Bandwidth Trends
. Q o= mm mm o oy
2.0 8GB/s £ 20 I
S | 160 l
3.0 15.8 GB/s '?U 150 I :
2]
4.0* 31.5 GB/s s 100 | I
€
5.0* 63.0 GB/s g 6.4 128 = |
*Latest version of PCle is 4.0 DDR-200 DDR2-800 ppr3-1600 DDR4-3200 \ HMC1.0 HMC2.0 J

Memory Technology L S —-

Source: Wikipedia, HMC

Why Compute Near Memory? - Power
High Bandwidth DRAM Energy Trends

4000

N

o

o
~

B Row Power ’

High-bandwidth data transfer
requires wide 1/O channels

[y
o]
o

~

3500

2500
l 2000
’
v
7/

1500

Column Energy
O Power

—Bandwidth

= = =
N H o2}
o o o
~
~
~
~

~
~

w

o

o

o

Cost of transferring large chunks of data
incur significant I/0 power

[y
o
o

2]
o
Bandwidth (GB/s)

2}
o

1000

B

o
\

\

PIM helps reduce
the I/O overhead

500

D= 0 B

GDDR3 GDDRS5 HBM HBM2 1.5x
Efficient

Source: NVIDIA HBM2

N
o

Power at Peak Bandwidth with 160 Bytes/Act. (W)
o

Scoring Matrix Construction

Reference Sequence Given: S(a,b) = +2
Gap penalty =1
A
§ 0 H(3)4) —
] 2
2 [F(BA) =2- 1]
g 1
2 max
> 1
(J]
o]
@]
‘H(3,4) =5 ‘
S(AA) = +2

Burrow-Wheeler Transform

Get all possible rotations of sequence X

-

Sort the iterations by the suffix mgz spanaka :
. . asBanhy

Get the last character string, which is NANASBA anasshy |
BWT(X) ANASBAN j> Ananabs |
NASBANA BANANAS |
4. The index of the original position is the A$SBANAN NASBAA |
suffix array S SBANANA NANASPR |
1 2 3 4 5 6 7 @ w
X B< p:"i ,f ':>A>$ BWT matrix of

o 7 = "2"1~ 5 3 string ‘BANANA

BWT(X) A N N B $§ A A

BWA Inexact Matching

* Exact Matching:
Given a query W, get the lower bound L(W) and upper bound U(W) of index in
BWT matrix where W is the prefix:
L(@W) = C(a) +i +1,
where i =# ‘a’'s up to L(W) — 1 in BWT(X)
U(aW) = C(a) +],
where j = # ‘a’s up to U(W) in BWT(X)

C(a): # of characters smaller than ‘a’

* Inexact Matching: allow ‘n’ number of mismatches or gaps during
the matching process. Recursively iterate possible combinations.

Smith-Waterman Step

* Using the lower and upper bound indices from the BWA inexact
matching, perform Smith-Waterman on the selected region to get a
more accurate alignment.

* Accelerated through Sliced Smith-Waterman

Smith- BWA Inexact query
Waterman Matching

Alignment
Location & Score

