
© 2018 Arm Limited

• Ashok Bhat, Product Manager
• Sep 2018

HPC Tools Update

Arm Research Summit 2018

Arm HPC User Group/Going Arm

2 © 2018 Arm Limited

Focus of the Arm HPC tools team
With a team of around 50 engineers mostly based in the UK

Open source tools
and frameworks
for Arm

• Arm DDT
• Arm MAP
• Arm Performance

Reports

Commercial tools
for any HPC
platform

• Arm C/C++ Compiler
• Arm Fortran Compiler
• Arm Performance

Libraries
• Arm Instruction

Emulator

Commercial tools
for Arm

DynamoRIO

3 © 2018 Arm Limited

Open Source Compiler Activities

Open source compilation tool chains are vital
• We upstream architecture & core support, optimizations, and features

• Core and architecture support can only be up-streamed when it becomes public
• Partners can upstream or optimize for their own micro-architectures

GNU
• Platform compiler for Linux

• We upstream functionality to compiler, linker, and libraries

LLVM & Clang
• Platform compiler for Android

• Architecture & core support, and other functionality and optimizations, developed as part of Arm Commercial
Compilers

• We upstream all compiler functionality that will be accepted by the community

4 © 2018 Arm Limited

GNU for A-profile highlights

Architecture support
SVE and Armv8.4-A support in upstream GCC

Performance
Continue to work on improving performance

Optimized math functions (powf, logf, expf, sinconsf), resulting in speedup on server and HPC benchmarks
(cpu2017, elefunt)

Aarch64 performance SPEC2017 CPU Int SPEC2017 CPU Floating Point

GNU 8 vs GNU 7 +2.4% +6.3%

GNU upstream vs GNU 8 (so far) +2% +1.7%

5 © 2018 Arm Limited

C/C++
Frontend

Fortran
Frontend

Optimizer Armv8-A
code-gen

SVE
code-gen

Clang based LLVM based

PGI Flang based

Enhanced optimization for
Armv8-A and SVE

C/C++ Files
(.c/.cpp)

Fortran Files
(.f/.f90)

Arm C/C++/Fortran Compiler

Armv8-A
binary

SVE
binary

LLVM IR LLVM IR
IR Optimizations

Auto-vectorization

LLVM based

LLVM based

Language specific frontend Architecture specific backendLanguage agnostic optimization

Arm Compiler – Building on LLVM, Clang and Flang projects

6 © 2018 Arm Limited

Arm Compiler
C/C++ and Fortran support

Fortran Compiler
• Fortran Directives
• Improvements in debugging
• Increased Fortran 2008

support
• Improved OpenMP 4.5

support

More features in
compilers

• Application specific tuning and
optimization

• For Cavium ThunderX2 and
other server-class Arm-based
platforms

More
optimizations for
current hardware

• Application specific tuning and
optimization in Compilers for
SVE

Getting ready for
SVE-based future
hardware

7 © 2018 Arm Limited

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• FFTW compatible interface for FFT routines
• Batched BLAS support

Best serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2 in collaboration with silicon

vendors

Validated and supported by Arm Engineers
• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard

Best serial and parallel
performance

Validated with
NAG test suite

Commercially supported
by Arm

8 © 2018 Arm Limited

0

0.5

1

1.5

2

2.5

3

1 10 100 1000

18.2 speeds up over FFTW 3.3.7
18.2 speed-up over 18.1
GROMACS
LAMMPS
NAMD
Quantum ESPRESSO
CASTEP

18.2 release vs FFTW 3.3.7
FFT timings on CTX2

• 1-d complex-complex double
precision

• Higher means new Arm Performance
Libraries FFT implementation better
than FFTW

Results show:
• Average about 30% faster than FFTW
• Lots of this comes from better usage

of vectors on CTX2
• Cases where we are still slower are:

– Very small (no major issue)
– Powers of primes
– 143, 187 and 198 times tables

FFTW better

18.2 better

FFTW

9 © 2018 Arm Limited

Open source libraries for helping increase performance

Optimized Routines
https://github.com/ARM-software/optimized-routines

These routines provide high performing
versions of many math.h functions
• Algorithmically better performance than

standard library calls
• No loss of accuracy

SLEEF library
https://github.com/shibatch/sleef/
Vectorized math.h functions
• Provided as an option for use in Arm Compiler

Perf-libs-tools
https://github.com/ARM-software/perf-libs-tools

Understanding an application’s needs for
BLAS, LAPACK and FFT calls
• Used in conjunction with Arm Performance

Libraries can generate logging info to help profile
applications for specific case breakdowns

Example
visualization:
DGEMM
cases called

10 © 2018 Arm Limited

Arm-only Compiler
and Libraries

Cross-platform debug
and profile tools

 Meets the requirements of HPC developers on Arm
| Commercial bundle

11 © 2018 Arm Limited

Arm Allinea Studio
A quick glance at what is in Arm Allinea Studio

C/C++ Compiler
• C++ 14 support
• OpenMP 4.5 without

offloading
• SVE ready

Fortran Compiler
• Fortran 2003 support
• Partial Fortran 2008

support
• OpenMP 3.1
• SVE ready

Performance Libraries
• Optimized math libraries
• BLAS, LAPACK and FFT
• Threaded parallelism with

OpenMP

Forge (DDT and MAP)
• Profile, Tune and Debug
• Scalable debugging with

DDT
• Parallel Profiling with MAP

Performance Reports
• Analyze your application
• Memory, MPI, Threads,

I/O, CPU metrics

Tuned by Arm for a wide-range of server-class Arm-based platforms

12 © 2018 Arm Limited

What’s new since Arm Research Summit 2017 (Sep 2017)?
A new tools suite that works well together, with a commercial Fortran compiler

C/C++ Compiler
• Optimizations and bug fixes
• Upgrade to LLVM 5
• Compiler Optimization report

Fortran Compiler
• Fully supported commercial

Fortran compiler on Arm

Perf Libraries
• GEMM tuning for ThunderX2

and Qualcomm Falkor
• FFT optimizations
• Batched BLAS
• Math Routines (exp,pow and

log)

Forge
• Arm hardware performance

counters support
• Interop with Arm Compiler

and Libraries

Perf Reports
• Armv8 support
• Arm hardware performance

counters support
• Interop with Arm Compiler

and Libraries

Tuning for Cavium ThunderX2 and Qualcomm Centriq based platforms

New New

© 2018 Arm Limited

SVE

14 © 2018 Arm Limited

Introducing the Scalable Vector Extension (SVE)
A vector extension to the Armv8-A architecture with some major new features

• Gather-load and scatter-store
• Loads a single register from several non-contiguous memory locations.

• Per-lane predication
• Operations work on individual lanes under control of a predicate register.

• Predicate-driven loop control and management
• Eliminate loop heads and tails and other overhead by processing partial vectors.

• Vector partitioning and software-managed speculation
• First-faulting vector load instructions allow memory accesses to cross into invalid pages.

• Extended floating-point horizontal reductions
• In-order and tree-based reductions trade-off performance and repeatability.

1 2 3 4
5 5 5 5
1 0 1 0

6 2 8 4

+

=
pred

1 2 0 0
1 1 0 0

+
pred

1 2

1 + 2 + 3 + 4

1 + 2

+

3 + 4

3 7
= =

=

=

n-2

1 01 0CMPLT n
n-1 n n+1INDEX i

for (i = 0; i < n; ++i)

15 © 2018 Arm Limited

Open source support for SVE

• Arm actively posting SVE open source patches upstream
• Beginning with first public announcement of SVE at HotChips 2016.

• Available upstream
• GNU Binutils-2.28: released Feb 2017, includes SVE assembler & disassembler.
• GCC 8: Full assembly, disassembly and basic auto-vectorization
• LLVM 7: Full assembly, disassembly
• QEMU 3: User space SVE emulation

• Under upstream review
• LLVM: since Nov 2016, as presented at LLVM conference.
• GDB: since Nov 2016.
• Linux kernel: since Mar 2017, LWN article on SVE support.

16 © 2018 Arm Limited

SVE Compiler support

Feature Upstream GCC Upstream LLVM Arm Compiler 6 (For
bare metal)

Arm HPC Compiler
(for Linux user-space)

SVE asm and disasm Yes Yes Yes Yes

SVE code generation Yes No
Planned for 2018-19

Yes Yes

SVE ACLE No
Planned for GCC9
(2019)

No
Planned for 2018-19

Yes Yes

Auto-vectorization Basic
More improvements
planned for GCC9

None
Planned for 2019-20

Advanced Advanced

17 © 2018 Arm Limited

SVE Emulation options

Fast models
• Supports SVE. A basic version freely available

Arm Instruction Emulator
• Arm provided tool, based on DynamoRIO.
• Suited for instrumentation and analysis.
• Runs natively on Arm

QEMU
• Supports user-space SVE emulation in 3.0 release. System emulation under

development.

18 © 2018 Arm Limited

Instrumenting Aarch64 and SVE

SVE Memtrace Client SVE Inscount Client

DynamoRIO

Armv8-A + SVE Binary

ArmIE
(client)

SVE Emulation API (in development)0x10000 LD
0x20000 ST
0x30000 SVE LD
0x40000 SVE LD
0x50000 SVE ST

...

XX instructions executed,
of which YY were SVE

instructions

output output

SVE custom clients

19 © 2018 Arm Limited

Instrumenting Aarch64 and SVE

• ArmIE integrates with DynamoRIO (DR)

• ArmIE can be used by external clients through an emulation API (in development for a future version)

• https://github.com/DynamoRIO/dynamorio/pull/3104

• Compile application with SVE-capable compiler (e.g. Arm HPC compiler, GCC 8.2) and
run it with DR SVE clients

• Two SVE clients come pre-packaged in latest ArmIE version (18.2)

• SVE memtrace

• SVE inscount

20 © 2018 Arm Limited

SVE Instruction Count Client

• Based on the existent DR inscount client

• Dynamic counts of Aarch64 instructions and SVE instructions are done separately

• DR counts Aarch64 instructions

• ArmIE counts SVE instructions

• If ‘-only_from_app’ is enabled, does not count instructions in shared libraries

• Final output reports the total instruction count

• XX instructions executed of which YY were SVE instructions

21 © 2018 Arm Limited

SVE Instruction Count Client

• Simple SVE loop code example:

• Compiled with Arm HPC compiler 18.4

• $ armclang –O3 -march=armv8-a+sve sve_example.c -o sve_example

#define N 42
int a[N], b[N], c[N];

int main(void) {
for(int i=0; i<N; ++i){

a[i] = b[i] + b[c[i]];
}

}

22 © 2018 Arm Limited

SVE Instruction Count Client

• 512-bit vector example:

• Each vector holds 16 32-bit integers

• 3 iterations of the main loop are needed and 7 SVE instructions are present

• 21 SVE instructions + 1 extra whilelo instruction to close the loop

.........
400580: e0 1f a9 25 whilelo p0.s, xzr, x9
400584: 8c f1 05 91 add x12, x12, #380
400588: 60 41 48 a5 ld1w {z0.s}, p0/z, [x11, x8, lsl #2]
40058c: 41 41 48 a5 ld1w {z1.s}, p0/z, [x10, x8, lsl #2]
400590: 40 41 60 85 ld1w {z0.s}, p0/z, [x10, z0.s, sxtw #2]
400594: 00 00 a1 04 add z0.s, z0.s, z1.s
400598: 80 41 48 e5 st1w {z0.s}, p0, [x12, x8, lsl #2]
40059c: e8 e3 b0 04 incw x8
4005a0: 00 1d a9 25 whilelo p0.s, x8, x9
.........

#define N 42
int a[N], b[N], c[N];

int main(void) {
for(int i=0; i<N; ++i){
a[i] = b[i] + b[c[i]];

}
}

2323

Thank You
Danke
Merci
谢谢
ありがとう
Gracias
Kiitos
감사합니다
धÛयवाद
 תודה

© 2018 Arm Limited

