CO-DESIGN OPPORTUNITIES WITH ARM-BASED ARCHITECTURES

Ananta Tiwari, PhD
Director of Research Operations
EP Analytics, Inc.

Collaboration with Ames Lab (Dr. Mark Gordon)

EP Analytics Overview

- We are performance and power modeling and analysis experts. We utilize in-house specialized tools to develop power & performance characterizations of the software/applications and the hardware.
 - Optimized tools enable working efficiently on large scale systems and production HPC applications
 - Methodologies to determine computations within applications that are affected by (or are sensitive to) the limitations of the hardware
 - ✓ Identify sections of source code that map well to future hardware & why
 - ✓ Identify what architectural components affect performance
 - ✓ Develop efficient porting & optimization strategies for new hardware
- Expertise analyzing HPC workloads from DoE, NNSA, NSF, & DoD
- Research collaborations with DOE: Ames, LLNL, LBL, NERSC, ORNL, ANL, Sandia, PNNL, Los Alamos; DOD: HPCMP, CREATE, PETTT, MHPCC; & NSF: TACC, PSC, NCSA

What is co-design?

"Co-design refers to a computer system design process where scientific problem requirements influence architecture design and technology and constraints inform formulation and design of algorithms and software."

[From: http://science.energy.gov/ascr/research/scidac/co-design/]

Co-design challenges

- Investment in software is large decades of application development in "legacy" applications (same for ISVs)
 - Heterogeneous architectures with accelerators require even larger investment in development
- Performance constraints
 - Solutions need to exploit different types of parallelism with minimal investment in development
- Power constraints
 - Operational costs dominating overall cost of total purchase.
 - DOE recommends a 20MW power budget for a >100X performance improvement

Addressing co-design challenges

- Power and performance → co-design solutions that enhance energy efficiency
- Software development investment → solutions that are easy to deploy and use
- Potential solutions:
 - Reactive: wait for traditional processors to improve in energy efficiency
 - Single-path solution: you get what hardware designers offer you; slow process
 - Proactive: leverage ARM's extensible ISA model and low-power design to influence the design of future supercomputers
 - Many-path solution: work with multiple vendors within the ARM ecosystem to design HPC processor architectures
 - Ever maturing system software stack

(Credit: Jim Ang's presentation titled "ARM as an Enabler for HPC co-design" at ISC 2014)

Enabling components -- co-design w ARM64

- Performance analysis framework that allows co-designers to develop clear understanding of:
 - Application requirements (i.e., code characterizations) in the form of memory requirements, data parallelism opportunities, communication requirements, etc.
 - Properties and capabilities of hardware (i.e., machine characterizations)
 in the form of memory bandwidth/latency, size of vector units,
 communication bandwidth/latency, etc.
- Combine the code and machine characterizations to find:
 - What architectural elements might be bottlenecking application performance
 - What changes can be made on application side to make better use of the hardware

Our ARM-based co-design efforts

- DOE funded SBIR grants: developing binary instrumentation toolkit (EPAX) for ARM architectures
 - Full-featured static analysis toolkit (EPAX) complete
 - Released as open-source to foster tool ecosystem for ARM
 - Performance efficiency of instrumented binaries at scale is key
- AFOSR CODAASH (A co-design approach for advances in software and hardware, PI: Mark Gordon, IA State)
 - Analyze multiple ARM-based systems for performance and power specifically for GAMESS, which is a quantum chemistry code, and other computational chemistry codes

Example co-design efforts

- Energy efficiency and performance implications of many-core ARM64 designs (Cavium ThunderX) (paper under preparation)
- Analysis of architectural bottlenecks for X-Gene1 [1, 2] and ThunderX processors
- Impact of reduced per-core memory bandwidth to application performance [3]

[1] Tiwari, A., Keipert, K., Jundt, A., Peraza, J., Leang, S., Laurenzano, M., Gordon, M., Carrington, L. (2015): **Performance and Energy Efficiency Analysis of 64-bit ARM using GAMESS**. Second International Workshop on Hardware-Software Co-Design for High Performance Computing (Co-HPC).

[2] Laurenzano, M., Tiwari, A., Cauble-Chantrenne, A., Jundt, A., Peraza, J., Ward, W., Campbell, R., and Carrington, L. (2016): **Characterization and Bottleneck Analysis of a 64-bit ARMv8 Platform.** *In International Symposium on Performance Analysis of Systems and Software (ISPASS)*

[3] Tiwari, A., Gamst, A., Laurenzano, M., Schulz, M., Carrington, L. (2014): **Modeling the impact of Reduced Memory Bandwidth on HPC Applications**. *In 20th International Conference in Parallel Processing (Euro-Par)*.

Conclusions

- ARM enables transformational research and development in co-design with its extensible ISA model
- Community needs performance analysis framework to be able to understand the requirements of applications and map that to proposed new innovations in hardware
- We look forward to working with the community to advance HPC performance on ARM

Come talk to us to learn more about EPAX and our codesign efforts!

Acknowledgements

Some of the work presented in the talk was supported by the U.S. Air Force Office of Scientific Research under AFOSR Award No. FA9550-12-1-0476 and DOE SBIR funding [DE-SC0009497 and DE-SC0013164].

Contributors:
Laura Carrington
Mark Gordon
Kris Keipert
Adam Jundt

Allyson Cauble-Chantrenne

QUESTIONS:

ananta.tiwari@epanalytics.com laura.carrington@epanalytics.com

http://www.epanalytics.com/

