
Baptiste Gerondeau, Takeharu Kato, Renato Golin

ISC18, Arm Workshop, 28th June 2018

OpenHPC Automation with Ansible

Agenda
● Linaro’s HPC-SIG Lab
● OpenHPC Ansible Automation
● Results

The HPC-SIG Lab

Linaro High Performance Computing
Special Interest Group
The Linaro HPC SIG drives open source
software development for the Arm
architecture. It aims to lower barriers to
deployment and management through
standardisation, interoperability,
orchestration and use case
development.

linaro.org/hpc

Open Source

Arm

HXT

Optimisation

HiSilicon

Red Hat

Fujitsu

Qualcomm

Cavium

The HPC-SIG Lab
Goals:

● Cluster Automation & Validation

● Benchmarking & Performance Investigation

Requirements:

● Stability & Repeatability

● Close-to-production environment

● Upstream technology (reproducibility)

● Vendor isolation (hardware, results)

The HPC-SIG Lab
Network Layout

● Flat Ethernet

○ Uplink/Provision

● BMC subnet (VLAN)

● File System subnet

○ 10/40GB Ethernet

○ Lustre/Ceph (future)

● MPI subnet

○ 100GB InfiniBand

○ Slave provision

The HPC-SIG Lab
● Stability & Repeatability

○ Critical external components cached locally

○ Strict migration plans (staging)

● Close-to-production environment

○ Hardware and firmware updated frequently

● Upstream technology (reproducibility)

○ All components are open source / upstream

● Vendor isolation (hardware, results)

○ VPN, Provisioner, Jenkins, SSH control

Open Source and Upstream
Lab admin & tools:

● Jenkins: https://jenkins.io/
● Mr-Provisioner: https://github.com/Linaro/mr-provisioner

Lab Automation:
● https://github.com/Linaro/ans_setup_jenkins
● https://github.com/Linaro/mr-provisioner-role
● https://github.com/Linaro/mr-provisioner-kea-dhcp4-role
● https://github.com/Linaro/ansible-role-mr-provisioner
● https://github.com/Linaro/mr-provisioner-client

HPC-specific automation:
● https://github.com/Linaro/hpc_lab_jenkins
● https://github.com/Linaro/hpc_deploy_benchmarks
● https://github.com/Linaro/benchmark_harness
● https://github.com/Linaro/ansible-playbook-for-ohpc

https://jenkins.io/
https://github.com/Linaro/mr-provisioner
https://github.com/Linaro/ans_setup_jenkins
https://github.com/Linaro/mr-provisioner-role
https://github.com/Linaro/mr-provisioner-kea-dhcp4-role
https://github.com/Linaro/ansible-role-mr-provisioner
https://github.com/Linaro/mr-provisioner-client
https://github.com/Linaro/hpc_lab_jenkins
https://github.com/Linaro/hpc_deploy_benchmarks
https://github.com/Linaro/benchmark_harness
https://github.com/Linaro/ansible-playbook-for-ohpc

Test Suite
Most tests green, however:

● Intel-specific tests (CILK, TBB, IMB) disabled
● Others need package install (PDF, CDF, HDF) but pass when installed
● TAU fails because LMod defaults to openmpi (needs openmpi3)
● Lustre fails as package depends on kernel 4.2 (which won’t work on our machines)
● MiniDFT and PRK had make failures, but we haven’t investigated yet
● --enable-long doesn’t really, need to look into why not

The plan from now on is:

1. Automate package install conditional on enabled tests, fix remaining errors
2. Work with members to prioritise long term ones (like Lustre)
3. Use it for additional packages, so we can test them before sending upstream
4. Add a benchmark mode, making sure to use entire cluster

OpenHPC Ansible Automation

Existing OpenHPC Automation
● A recipe with all rules described in the official documents
● LaTex snippets containing shell code

● Are converted and merged into a (OS-dependent) bash script

● Plus a input.local file, with some cluster-specific configuration / environment

https://github.com/openhpc/ohpc/tree/obs/OpenHPC_1.3.4_Factory/docs/recipes/install/centos7/aarch64/warewulf/slurm

Existing OpenHPC Automation
Shortcomings:

● The input.local file exports shell variables, and don’t have enough information

● The recipe.sh is not idempotent

● Extensibility is impossible without editing the files (downstream work)

Ansible Playbooks
Ansible is a widely used automation tool which can describe the structure and

configuration of IT infrastructure with YAML “playbooks”.

OpenHPC with Ansible:

● Ansible playbooks can more easily be idempotent

● Ansible can manage nodes/tasks according to the the structure of the cluster

● Configuration is passed as a YAML file (no environment handling)

● Composition, using playbooks and roles, building on third-party content

Ansible OpenHPC Recipes
● Flexible cluster configuration

○ Fine grained / composable
○ Cluster wide / node group wide / node specific

● Works on both x86_64 and AArch64
○ Ansible gathers information about architecture
○ Same playbook runs on both

● OS is directly inferred by Ansible (gather_facts)
○ Yum, apt, zypper… can be switched in the roles’ logic

Ansible OpenHPC Recipes
The basic structure of the Ansible playbook

playbook
 +---- group_vars/
 +-- all.yml cluster wide configurations
 +-- group1,group2 … node group(e.g., computing nodes) specific configurations
 +---- host_vars/
 +--- host1,host2 … host specific configurations
 +---- roles/ package specific tasks, templates, config files, and config variables
 +--- package-name/
 +--- tasks/main.yml … YAML file to describe installation method of package-name
 +--- vars/main.yml … package specific configuration variables
 +--- templates/*.j2 … template files to generate configuration files

Ansible OpenHPC Recipes

Upstreaming our work
Option #1:

● Generate from LaTex sources at the same time as recipe.sh
○ One bundle per recipe (warewulf/xcat, slurm/pbs, centos/suse, arm/x86)
○ Provide as a zip/tar file on the docs package, like the recipes

● Problems:
○ Still need to install package to get recipes that will install OpenHPC
○ Still don’t have one recipe to rule them all

Option #2:

● Keep as a separate repository, updated in parallel with the doc
○ Easier to integrate to existing automation, update and collaborate

● Problems:
○ Out-of-sync with LaTex sources, can end up meaningless

Results

Thank You!

