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K computer om

R-CCS
Specifications

B Massively parallel, general purpose
supercomputer

B No. of nodes : 88,128
B Peak speed: 11.28 Petaflops
B Memory: 1.27 PB
B Network: 6-dim mesh-torus (Tofu) e
Graph 500 ranking
Top 500 ranking “Big Data” supercomputer ranking

Measures the ability of data-intensive loads
B No.1in Nov. 2017

HPCG ranking
Measures the speed and efficiency of

LINPACK measures the speed and
efficiency of linear equation calculations
Real applications require more complex

computations. solving linear equation using HPCG

H No.l in_ Jun. & Nov. 2011 Better correlate to actual applications
Bm No.10 in Nov. 2017 ®m No. 1in Nov. 2017

K computer achieved balance of processor speed, memory, and network.
high performance for wide areas of science.
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Japan Flagship 2020 “Post K” Rets
v CPU Supercomputs ~

* Many core, Xeon-Class ARM v8 cores + 512
bit SVE (scalable vector extensions)
* Multi-hundred petaflops peak total
* Power Knob feature
v'"Memory
v'3-D stacked DRAM, Terabyte/s BW /chip
v'Interconnect
e TOFU3 CPU-integrated 6-D torus network
* |/O acceleration with massive SDs
 30MW+ Power, liquid cooled

* Riken co-design with Fujitsu . premErEErrEErTES

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 @4 Q1 Q2 Q3 Q4 Q1 Q2 Q) @4 Q1 Q2 Q3 Q4 @1 Q2 @3 Q4 @1 Q2 @3 Q4 1 Q@ Q@3 Q4

*? Million cores in system [

Manufacturing,
allation, and Tunin




Post K: The Game Changer n

Heritage of the K-Computer, HP in simulation via extensive Co-Design
N . High performance: up to x100 performance of K in real applications
 Multitudes of Scientific Breakthroughs via Post-K application programs

: e Simultaneous high performance and ease-of-programming
2. New Technology Innovations of Post-K Global leadership not just in
« High Performance, esp. via hlgh memory BW the machine & apps, but as
Performance boost by “factors” c.f. mainstream CPUs in many . dee IT
HPC & Society5.0 apps cutting edge

 Very Green e.g. extreme power efficiency
Ultra Power efficient design & various power control knobs

« Arm Global Ecosystem & SVE contribution
ARM Ecosystem: 21 billion chips/year, SVE co-design and

ARM: Massive ecosystem
from embedded to HPC

world’s first implementation by Fujitsu, to become global std. |

- High Perf. on Society5.0 apps incl. Al i
Architectural features for high perf on Society 5.0 apps based C PU
on Big Data, AI/ML, CAE/EDA, Blockchain security, etc. postk

Technology not just limited to Post-K, but into societal IT infrastructures e.q. Clouds



ARM for HPC - Co-design Opportunities, ISC 2018 BOF

June 25, 2018

Co-design for Post-K

(slides by Mitsuhisa Sato team Leader of Architecture Development Team)
Deputy project leader, FLAGSHIP 2020 project
Deputy Director, RIKEN Center for Computational Science (R-CCS)

Analysis of applications to devise
the most efficient solutions

 pppm————

Applications

Execution Model

Programming System |

Richard F. BARRETT, et.al. “On the

Architecture Role of Co-design in High Performa
nce Computing”, Transition of HPC
Circuits & Design Towards Exascale Computing
Issues and opportunities S ||

to exploit avn R-CCS



Co-design from Apps to Architecture cn

e Architectural Parameters to be determined
e #SIMD, SIMD length, #core, #NUMA node, O3 resources, specialized hardware
e cache (size and bandwidth), memory technologies
Target applications representatives of

 Chip die-size, power consumption almost all our applications in terms of

e Interconnect computational methods and
communication patterns in order to
design architectural features.

e We have selected a set of target applications
e Performance estimation tool

Performance projection using Fujitsu FX100 : —
execution profile to a set of arch. parameters.

e Co-design Methodology (at early design i e RS

h @ Genomon Genome processing (Genome alignment)
p a Se) ® GAMERA Earthquake simulator (FEMin unstructured & structured
grid)
1. Settl n g Set Of SySte m pa Fam ete 'S @ NICAM+LETK Weather prediction system using Big data (structured grid
stencil & ensemble Kalman filter)
2. TLI nin g ta rg et d p pl I Catlo ns un d er th e ® NTChem molecular electronic (structure calculation)
SySte m pa Fam ete I'S @ ® FFB Large Eddy Simulation (unstructured grid)
3. Evaluating execution time using prediction @ RSDFT an ab-initio program (density functional theory)
to o I S At Computational Mechanics System for Large Scale Analysis

and Design (unstructured grid)

©

CCS-QCD Lattice QCD simulation (structured grid Monte Carlo)

4. Identifying hardware bottlenecks and
p. changing the set of system parameters

RIKEN



? Genesis MD: proteins in a cell environment _m

B Simulation of a protein in isolation _ _ _ _
N - . W all atom simulation of a cell interior
Folding simulation of Villin, a small protein

with 36 amino acids B cytoplasm of Mycoplasma genitalium

~

14

Fllynsmir e n

ratelns

Tnnimr



3 NICAM: Global Climate Simulation o

B Global cloud resolving model with 0.87 km-mesh which allows
resolution of cumulus clouds
B Month-long forecasts of Madden-Julian oscillations in the tropics is realized.

VAVAVAVAY

Global cloud resolving
model

Miyamoto et al (2013) , Geophys. Res. Lett., 40, 4922-4926, doi:10.1002/grl.50944.



Co-design of Apps for Architecture oy
e Tools for performance tuning

Analysis of applications to devise

e Performance estimation tool the most efficient solutions
Performance projection using Fujitsu FX100 Applicanons |
execution profile _Erecution Model_|
Gives “target” performance e |
e Post-K processor simulator | cmseoswm |
Based on gem5, O3, cycle-level simulation BGes eIty

to exploit

Very slow, so limited to kernel-level evaluation

4000

e Co-design of apps
1 1 1/4 . 3000
e 1. Estimate “target” performance using = 2500 2
. . E &/
performance estimation tool = 200 :E[
. i 1500
e 2. Extract kernel code for simulator 000 | -
e 3. Measure exec time using simulator @ o B
e 4. Feed-back to code optimization s | ok | ouke | e
e 5. Feed-back to compiler e o el e

r4_asis r4_asis r4_tune01 r4_tune02

RIKEN



ARM for HPC - Co-design Opportunities s

e ARM SVE Vector Length Agnostic feature is very interesting, since we can
examine vector performance using the same binary.

e We have investigated how to improve the performance of SVE keeping
hardware-resource the same. (in “Rev-A"” paper)
o ex. ”“512 bits SVE x 2 pipes” vs. “1024 bits SVE x 1 pipe”

e Evaluation of Performance and Power ( in “coolchips” paper) by using our gem-5
simulator (with “white” parameter) and ARM compiler.

e Conclusion: Wide vector size over FPU element size will improve performance if there are
enough rename registers and the utilization of FPU has room for improvement.

Note that these researches are not relevant to 1.40
“post-K” architecture.

1.20
® Y. Kodama, T. Oajima and M. Sato. “Preliminary

Performance Evaluation of Application Kernels Using 1.00
ARM SVE with Multiple Vector Lengths”, In Re- 2 0.80
Emergence of Vector Architectures Workshop (Rev-

A) in 2017 IEEE International Conference on Cluster 0.60
Computing, pp. 677-684, Sep. 2017. 2 0.40

® T.Odajima, Y. Kodama and M. Sato, “Power i

Performance Analysis of ARM Scalable Vector 0.20
Extension”, In IEEE Symposium on Low-Power and 0.00

High-Speed Chips and Systems (COOL Chips 21), Apr. triad nbody dgemm
2018 mLEN=4 mLEN=8 LEN=8 (x2)

Relative Execution Time

\J Faster

RIKEN



3 Post K Processor is:: e
e an Many-Core ARM CPU-- PCie Totu
o 48 compute cores + 2 or 4 assistant (OS) cores| - C_°_"t[°"eb_ﬁ'"*f,"‘f°_e __________ \

e Brand new core design . —: T -
 Near Xeon-Class Integer performance core | [£[T| <7 . T2
e ARM V8 --- 64bit ARM ecosystem :::::::::;;:::: 0 :::::::::::::::
o Tofu 3 + PCle 3 external connection =L ‘{C—»f gk
T L U e T8
e ---but also a GPU-like processor e ’ T ’

o SVE 512 bit vector extensions (ARM & Fujitsu)
. Integer (1, 2, 4, 8 bytes) + Float (16, 32, 64 bytes)
e Cache + scratchpad local memory (sector cache)

e Multi-stack 3D mem - ~TB/s Mem BW (Bytes/DPF ~0.4)
. Streaming memory access, strided access, scatter/gather etc.
e Intra-chip barrier synch. and other memory enhancing features

>00183@PU-like High performance in HPC, AI/Big Data, Blockchain-- 11



Post K Processor and other Details REGS
o Aug_ 21, HotChipS me Hot Chips: A Symposium on High Performance Chips

Tt Conference Sponsor IEEE Technical Committee on Microprocessors and Microcomputers.

2018 @ Stanford U I

Program Registration Attendees Archives In The News Blog Corporate Sponsors About

)
mn
=0

Search

e Other details (new ——
- yHot Chips Teaser
TOFU, detailed Program i Y
pe rfo rm a n Ce, Po St- Please join us at the Flint Center for the Performing Arts, Cupertino, California, Sunday-Tuesday, August 19- #

21, 2018.

K maChine COnfig ny SPONSORETEBEE
etc.) forthcoming @ computer

towa rd S Fa I I, 20 1 8 . At A Glance Tutorials Conf. Day1 Conf. Day2 Posters (TBD) SOCIety

ORPORATE SPONSORS
Conference Day2 CORPORATE SPONSORS

I 1 .
. G e m 5 S I m u I a to r Tue 8/21  Session Title Presenter Affiliation Pladnum:

= mgm 7:45AM  Breakfast fleX
ava I Ia bl I Ity u n d e r 5:00PM  Server The IBM POWERY Scale Up Processor  Jeffrey Stuecheli IBM 2017

- ’--- rocgs(Ts----------------------------"HotChip329(2017)Program
N DA fro m RI ke n : 5:30 PM Fujitsu’s HPC processor for the Post-K Toshio YoshidZ Fujitsu Limited | Anncumcadt May 13, 2011
i computer |
) A i Y 59 O R R S o R e e s e e e i 56 Gy ot e (N THE NEWS

-
. Ea rly C h I p Brand-New supercomputer SX-Aurora Shintaro Momose HC30 (2018)

TSUBASA

= : 1 = Hot Chips Symposium
ava I Ia bl I Ity u p to 6:30 PM Next Generation Intel Xeon(R) Scalable  Sailesh Kottapalli and Intel
) Rethinks Performance
processor: Cascade Lake Akhilesh Kumar
- .
FuJ Its u 7-00PM  Closing

Remarks

(more...)

SISTER CONFERENCES
7:15PM  End of

Conference M ”"'
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Post-K Chassis, PCB (w/DLC), and CPU Package FUJITSU
-":* f /i(’ 1
R © | FUjiTSU
_ -.\ CPU 60
. B % P ] or the mm
? wl v ® F:ost-K
280 | supercomputer
4 mm | v
3 ‘ 60 )
- 1 mm
W 800mm gy
D1400mm e WSS O CPU Package
154 rdes \ | AO Chip Booted in J
384 nodes W om I _ INn June
CMU | Undergoing Tests
FUJITSU CONFIDENTIAL

Copyright 2018 FUJITSU LIMITED



JST-CREST “Extreme Big Data” Project (2013-2018)

Future Non Sllo Ex‘l'r'eme Big Data Scientific Apps

Ul‘rr‘a Large Scale
Graphs and Social

Massive Sensors and

| Lar'ge Sale Infrastructures Data Assimilation in
Given a top_class Metagenomics ] Wea‘rher' Prediction Bring HPC rigOr in
Co-Desiy Cﬁ _
supercomputer, OGN R eemte  architectural,
how fast can we ‘sl incl. EBD Object System M= Aﬂi algorithmic, and

accelerate next Graph Store
generation big
data c.f. Clouds?

system software
performance and

C'om/ergem" Ach/fecfur'e (Phases 1~4) modeling into big
Large C'apacv ty NVM, High-Bisection NW  data
Cloud IDC e Supercomputers

Very low BW & Efficiency i W ComputedBatch-Oriented

Highly available, resilient More fragile
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> Pioneering “Big Data Assimilation” Era <

High-precision Simulations @ A 1 o e

B Future-generation technologies
M available 10 years in advance

High-precision
observations

Mutual feedback



. Takemasa Miyoshi, Riken-CCS (Weather Data Assimilation) (il

Big Data Assimilation
- for severe weather forecast

Goal : Pinpoint (100-m resol.) forecast of severe local weather by

updating 30-min forecast every 30 sec!
Revolutionary super-rapid 30-sec. cycle

\ll llllllllllllllllllllllllllllllllll :
' 1 Obs data . Obs data
! processing | |~2GB . processing | |~2GB
:,‘%O-sec. :30-sec.
DA 380GH  Bnsemble |2.5T DA 380GB| Ensemble |2-5T DA
(4.5PFLOP) fdrecasting (4.5PFLOP) fdrecasting (4.5PFLOP)
3Gi| (216PFLOP) 3GB| (2§6PFLOP)
30-min. forccasting (1.6PFLOP) 30-inin. forecasting (1.6PFLOP)
I .r IIIIIIIIIII l IIIIIIIIIII 1 IIIIIIIIIII T |
| 1 | I I I iy
-10 0 40 Time (sec.)

120 times more rapld than hou rIy update cycles




9/11/2014, sudden Iocal ram

'RIKEN Advanced Instatute for Computational SC|ence ’ ', *“,* L ng 'l
,Data Assmrlatlon Research Team L ! u l LIL

Observatlon a Slmlllatlon




K computer: 65536nodes
No. of edges The 5|ze Of graphs Graph500: 17977 GTEP

Human Brain ProjIe
45 | 1 trillion .
edges A
Graph500 (Large)
ot o) @@ |
Graph500 (Medium)
< 1 billion .
—, 35 f_edges 'Y Graph500 (Sma i
(@)) A S whal e
O Graph500 (Mini)
Iy - A _
30( f Graph500 (To
O
25 .
UsA-road-d.LKS.
L J T 1 trillion ]
| ¢ S,lA-road- | | | nodes
15 /9269 o5 30 35 40 45
Mobile Phone : SONY SO-01F
Snapdragon $4 1.7GHz 4core: 2GB RAM Iogz(n) No. of nodes

1.03GTEPS: 235.06 MTEPS/W



Sparse BYTES: The Graph500 — 2015~2016 — world #1 x 4
K Computer #1 Tokyo Tech[Matsuoka EBD CREST] Univ.
Kyushu [Fujisawa Graph CREST], Riken AICS, Fu Ojltsu

nodes

73% total exec 660 000 CPU Core#’
~ 1200 Communl_ —  time wait in 1.3 Petabyte mem s N 3
£ 10002 Computati-;-  communication 20GB/s Tofu NW V...,
o 800 ﬁ 7
£ o B 560 % Grep
F 400 -
o 7 10.51?5afop500)
220 mm BN E A S
o el
L 0 -
LLl
64 nodes 65536 nodes
(Scale 30) (Scale 40) N4 Eie;;g':':‘ance c.f.
November 2013 4 5524.12 Top-down oi  BYTES algoithm ' 1.3 Petabyte mem
June 2014 1 17977.05 Efficient hybrid
November 2014 2 19585.2 Efficient hybrid - YAy EP O
June, Nov 2015 Hybrid + Node
June Nov 2016 - 38621.4 Compression BYTES nOt FLOPS!




K-computer No.1 on Graph500: 5 Consecutive Times

* What is Graph500 Benchmark?

45000
— 40000
£
i 35000
g 30000
£ 25000
§ 20000
$ 15000
a.
10000
5000

graph data.

-B-K computer (Japan)

Sequoia (U.S.A.)

Sunway TaihulLight (China)

7

Jun 2012 Nov Jun 2013 Nov
2012 2013

Jun 2014 Nov
2014

Jul 2015

- u
Nov Jun 2016
2015

* Supercomputer benchmark for data intensive applications.
* Rank supercomputers by the performance of Breadth-First Search for very huge

This is achieved by a combination
of high machine performance and
our software optimization.

» Efficient Sparse Matrix Representation with
Bitmap

* Vertex Reordering for Bitmap Optimization
* Optimizing Inter-Node Communications
* Load Balancing

etc.

* Koji Ueno, Toyotaro Suzumura, Naoya Maruyama, Katsuki Fujisawa, and Satoshi Matsuoka, "Efficient Breadth-First Search on
Massively Parallel and Distributed Memory Machines", in proceedings of 2016 IEEE International Conference on Big Data (IEEE
BigData 2016), Washington D.C., Dec. 5-8, 2016 (to appear)



Modern Al is enabled by Supercomputing

e 25 years of Al winter after failure of symbolic logic based methods
(e.g., Prolog, ICOT) -> resurrection by DNN, basic algorithms in the
1980s but too expensive -> HPC made machines 10 million times
faster in 30 years -> expensive training now possible

* Recent trends require more supercomputing power iy deep feaming
— Deeper, more complex networks (Capsule Networks)
— Complex, multidimensional data (e.g., 3-D Hi-Res images)

@
(&)
| =
I
£
o
o
=
[
o

— Increasing training sets (incl. GANs) e o
_ Coupling With high_fidelity Simulations How do data science techniques scale with amount of data?

Fig. 2: Andrew Ng (Baidu) “What Data Scientists Should
— Etc.

Know about Deep Learning”




4 Layers of Parallelism in DNN Training well supported in Post-K

* Hyper Parameter Search
* Searching optimal network configs & parameters
* Parallel search, massive parallelism required

e Data Parallelism 1g:g.=‘ S SRS
. < R < PRI RS> DXSK
* Copy the network to compute nodes, feed different batch data, =4§:{< =4§:{:« S B Y
RIS SRS

z:d

0
b

N
\Y/;
X

X

)

average => network reduction bound
e TOFU: Extremely strong reduction, x6 EDR Infiniband

* Model Parallelism (domain decomposition)

/
y

b
W
X

* Split and parallelize the layer calculations in propagation
e Low latency required (bad for GPU) -> strong latency tolerant  —— —
cores + low latency TOFU network —:
* Intra-Chip ILP, Vector and other low level Parallelism ] =

* Parallelize the convolution operations etc.

* SVE FP16+INT8 vectorization support + extremely high memory
bandwidth w/HBM?2

Post-K could become world’s biggest & fastest platform
for DNN training! N



TOKYO INSTITUTE OF TECHNOLOGY

risi

« Data-parallel training with (Asynchronous)
Stochastic Gradient Descent

— Replicate network to all the nodes, feed different data, average the
gradients periOdica”y Deep learning

Why deep learning

()]
— Network All-Reduce Reduction in Megabytes~Gigabytes becomes §
the bottleneck at scale g
— NVIDIA: NVLink Hardware + NICL library (up to 8 GPUs on DGX-1, S
16 on DGX-2 w/ NVL Switch) a-
- Node 1 _ _ Node n pa:;:r?'l?ﬂers J
O ye, A C //é A C //O A Amount of data
Oi\(“:j/o gi\ioj/o /i\(? 0 How do data science techniques scale with amount of data?

Fig. 2: Andrew Ng (Baidu) “What Data Scientists Should
Know about Deep Learning”

3. Update
parameters
3. Update
parameters

‘E"""
1. Compute

L w
L= )
c
o
=
©
L
-— a0

gradients
3. Update
parameters

Y —>

3. Update
parameters

I

I}

gradients
gradients

l%
(]

Fig. 3: Simplified DL workflow with ASGD per iteration:
1. Compute gradient
2. Exchange gradients via all-reduce; and

llb e _llb 3. Update network parameters Jens Domke

J u Iy 9, 20 1 8 2. Compute the sum using all-reduce 23

—




Backgﬁ.&mgrcomputers

LAITIPYIT Al IZWCotTdalull. FITUILLUTg dldlioliLo Ul MOy

for a Large-Scale Distributed Deep Learning System on GPU

In large-scale Asynchronous Stochastic Gradient Descent e
(ASGD), mini-batch size and gradient staleness tend to be
large and unpredictable, which increase the error of trained

DENSO TTLAB

4 Objective function E

DENSO IT LABORATORY, INC.

Mini-batch size

Staleness=0 TSUBAME

Tokyo Institute of Technology

Twice asynchrbnous
updates within
gradient computation

Staleness=2

DNN parameters space
—p

Proposal

HICIHITVUIHIUUOS OJUW 1rdialliciLClo

We propose a empirical performance model for an ASGD
deep learning system SPRINT which considers probability
distribution of mini-batch size and staleness

Probability

Probability

0.10

0.00

0.10

0.00

Mini-batch size

Nsubbatch = 1

4 nodes

16 nodes

| | | | | |
100 200 300 400 500 600

Nsubbatch = 11

Predicted

U.8

s

100 200 300 400N

<
o

Q
o

Staleness

Nsubbatch = 1

Predicted

Measured

| | |
0 2 4 6 8 10

Nsubbatch = 11

| | |
0 2 4

NMmlbatch M ea Su red NStaIeness

(Ngyppatcn: # of samples per one GPU iteration)

Yosuke Oyama, Akihiro Nomura, lkuro Sato, Hiroki Nishimura, Yukimasa Tamatsu, and Satoshi Matsuoka, "Predicting Statistics of
Asynchronous SGD Parameters for a Large-Scale Distributed Deep Learning System on GPU Supercomputers", in proceedings of
2016 IEEE International Conference on Big Data (IEEE BigData 2016), Washington D.C., Dec. 5-8, 2016



TOKYO INSTITUTE OF TECHNOLOGY

- 1TOKyO TECFF—— ;
ﬂ"’"f’f‘“”mInterconnect Performance as important
as GPU Performance to accelerate DL

« ASGD DL system SPRINT (by DENSO IT Lab) and DL speedup prediction
with performance model

he Optimal Predicted Configurations of CNN-A on TSUBAME-KFC/DL

NFite X Tapu A .
TEpoch = Nuo X Nepo X Newmron N voie | Nsubsatch mini-\!;(:;gr\esize Epoch time[s] Speedup
8 8 165.1 1779 :
— Data measured on T2 and KFC O 2 1707 1462 122
(both FDR) fitted to formulas 12 R 166.6 , 1.43
— Allreduce time (€ Tepru) dep. on £ = > e Lo
#nodes and #DL parameters Fig. 4: Oyama et al. “Predicting Statistics of Asynchronous SGD Parameters for a
T _+_ — Large-Scale Distributed Deep Learning System on GPU Supercomputers
Barrier

(a 10g2(NNode) + .B) X {VParam
 Other approaches == similar improvements:

— Cuda-Aware CNTK optimizes communication pipeline = 15%—23% speedup
(Banerjee et al. “Re-designing CNTK Deep Learning Framework on Modern GPU Enabled Clusters”)

— Reduced precision (FP[16]8|1]) to minimize msg. size w/ no or minor accuracy loss



f Massive Scale Deep Learning on Post-K

R-CCS

Post-K Processor

@ High perf FP16&Int8 Unprecedened DL scalability
€ High mem BW for convolution .
@ Built-in scalable Tofu network High Performance and Ultra-Scalable Network

, _ for massive scaling model & data parallelism
High Performance DNN Convolution

~ | TOFU Network w/high
injection BW for fast
reduction

Low Precision ALU + High Memory Bandwi ynprecedented Scalability of Data/
dth + Advanced Combining of Convolution

Algorithms (FFT+Winograd+GEMM)




Selecting the Optimal Convolution Kernel i

e NEW! Micro Batching: Tokyo Tech. and Bvaluation: WRusing Dynamic Programming
ETH [Oyama, Tan, HOeﬂeI‘ & MatSUOka] * u-cuDNN achieved speedup on forward convolution of

o Use the “micro-batch” technique to select .
the best convolution kernel
. Direct, GEMM, FFT, Winograd
« Optimize both speed and memory size

cudnnConvolutionForward of AlexNet conv2 on NVIDIA Tesla P100-SXM2
Workspace size of 64 MiB, mini-batch size of 256

e On high-end GPUs, in many cases
Winograd or FFT chosen over GEMM Bvaluation: WD using Integer L
. They are faster but use more memory ) F : i

o Currently implemented as cuDNN wrapper, °C€% e
applicable to all frameworks ] e

o For Post-K, (1) Winograd/FFT are selected Tt //%“_
more often, and (2) performance will be

Mini-batch size of 256, P100-SXM2

similar to GPUs in such cases o bar eSO PR gt



@ Large Scale simulation and AI coming together Sm
« [Ichimura et. al. Univ. of Tokyo, IEEE/ACM SC17 Best Poster] RCCS

Earthquake

N

130 billion freedom
earthquake of entire Tokyo
=1 on K-Computer (ACM
"= Gordon Bell Prize Finalist,
=== SC16,17 Best Poster)

4000

Candidate Candidate

Underground A| Trained by Simulation undergrounc
Structure 1 Structure 2

to generate candidate
Too Many Instances soft soil structure 28



Post-K CPU New Innnovations: Summall

1 Ultra high bandwidth using on-package memory & matching CPU core

e Recent studies show that maljorlty of apps are memory bound, some
compute bound but can use lower precision e.g. FP16

e Comparison w/mainstream CPU: much faster FPU, almost order magnitude
faster memory BW, and ultra high performance accordlngly

e Memory controller to sustain massive on package memory (OPM) BW:
difficult for coherent memory CPU, first CPU in the world to support OPM

2. Very Green e.g. extreme power efficiency
e Power optimized design, clock gating & power knob, efficient cooling
e Power efficiency much better than CPUs, comparable to GPU systems
3. Arm Global Ecosystem & SVE contribution
e Annual processor production: x86 3-400mil, ARM 21bil, (2~3 bil high end) :
e Rapid upbringing HPC&IDC Ecosystem (e.g. Cavium, HPE, Sandia, Bristol,---) |
e SVE(Scalable Vector Extension) -> Arm-Fujitsu co-design, future global std. |
3. High Performance on Society5.0 apps including Al

e Next gen AI/ML requires massive speedup => high perf chips + HPC
massive scalability across chips

e Post-K processor: support for AI/ML acceleration e.g. Int8/FP16+fast
memory for GPU-class convolution, fast interconnect for massive scaling

e Top performance in Al as well as other Society 5.0 apps




