
© 2017 Arm Limited

Cross-platform
Performance
Engineering

Enabling cross-platform developers

ISC Workshop “X86, ARM, GPUs, Oh My!”
John C. Linford,

Chris Goodyer, Will Lovett, Ashok Bhat, Patrick Wohlschlegel,
David Lecomber, Sandra Boynton, et al.

© 2017 Arm Limited2

OpenFOAM and ParaView across the Arm ecosystem
Cross-platform ecosystem and standards make this possible

© 2017 Arm Limited3

© 2017 Arm Limited4

Can you tell me how to port my code?

© 2017 Arm Limited

Arm Allinea Studio
and Friends

© 2017 Arm Limited6

Our solution for any architecture, at any scale
Commercial tools for aarch64, x86_64, ppc64 and accelerators

Arm Performance Libraries

BLAS, LAPACK and FFT

Arm Compiler for HPC

Linux user space compiler
for HPC applications

Arm Performance Reports

Interoperable application
performance insight

Arm Allinea Studio All-inclusive development toolkit for Arm hardware

Arm Forge Professional

Multi-node interoperable
profiler and debugger

Arm MAP Professional

Speed-up applications with a
lightweight scalable profiler

Arm DDT Professional

Slash your time to debug on
any hardware, at any scale.

Arm Performance Reports

Find the most efficient
settings for your workloads.

Arm Cross-Platforms Tools Debug, optimize and analyze any platform

Arm Forge Professional

Arm DDT and MAP in
One Single Package

© 2017 Arm Limited7

Commercial C/C++/Fortran compiler with best-in-class performance

Tuned for Scientific Computing, HPC and Enterprise workloads
• Processor-specific optimizations for various server-class Arm-based platforms
• Optimal shared-memory parallelism using latest Arm-optimized OpenMP runtime

Linux user-space compiler with latest features
• C++ 14 and Fortran 2003 language support with OpenMP 4.5*
• Support for Armv8-A and SVE architecture extension
• Based on LLVM and Flang, leading open-source compiler projects

Commercially supported by Arm
• Available for a wide range of Arm-based platforms running leading Linux

distributions – RedHat, SUSE and Ubuntu

Compilers tuned for Scientific
Computing and HPC

Latest features and
performance optimizations

Commercially supported
by Arm

© 2017 Arm Limited8

C/C++
Frontend

Fortran
Frontend

Optimizer Armv8-A
Backend

SVE
Backend

Clang based LLVM based

PGI Flang based

Enhanced optimization for
ARMv8-A and SVE

C/C++ Files
(.c/.cpp)

Fortran Files
(.f/.f90)

Arm C/C++/Fortran Compiler

Armv8-A
binary

SVE
binary

LLVM IR LLVM IR
IR Optimizations

Auto-vectorization

LLVM based

LLVM based

Language specific frontend Architecture specific backendLanguage agnostic optimization

Arm Compiler – Building on LLVM, Clang and Flang projects

© 2017 Arm Limited9

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• Provides FFTW compatible interface for FFT routines
• Batched BLAS support

Best-in-class serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2 in collaboration with silicon

vendors

Validated and supported by Arm
• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard

Best in class performance

Validated with
NAG test suite

Commercially supported
by Arm

© 2017 Arm Limited10

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable

Commercially supported
by Arm

© 2017 Arm Limited11

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyses metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyses data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm

© 2017 Arm Limited12

Arm Instruction Emulator 18.0
Develop your user-space applications for future hardware today

Start porting and tuning for future architectures early
• Reduce time to market, Save development and debug time with Arm support

Run 64-bit user-space Linux code that uses new hardware features
on current Arm hardware

• SVE support available now. Support for 8.x planned.
• Tested with Arm Architecture Verification Suite (AVS)

Near native speed with commercial support
• Integrates with DynamoRIO allowing arbitrary instrumentation extension
• Emulates only unsupported instructions
• Integrated with other commercial Arm tools including compiler and profiler
• Maintained and supported by Arm for a wide range of Arm-based SoCsCommercially Supported

by ARM

Runs at close to
native speed

Develop software for
tomorrow’s hardware today

© 2017 Arm Limited13

Arm Instruction Emulator
Develop your user-space applications for future hardware today

Run Linux user-space code that uses new
hardware features (SVE) on current Arm
hardware

Simple “black box” command line tool
$ armclang hello.c --march=armv8+sve
$./a.out
Illegal instruction
$ armie -a=armv8+sve ./a.out
Hello

Arm v8-A

Linux

Converts unsupported
instructions to native
Armv8-A instructions

Arm v8-A Binary Arm v8-A Binary
with new features

Arm Instruction Emulator

© 2017 Arm Limited14

VI-HPS and the tools ecosystem
See the http://www.vi-hps.org/tools/ for an excellent view of the tools ecosystem.

© 2017 Arm Limited

Step 0: Get it to run

© 2017 Arm Limited16

Arm Porting Cheat Sheet
Ensure all dependencies have been ported.

•Arm HPC Packages Wiki: https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages

Update or patch autotools and libtool as needed
•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess
•wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub
•sed -i -e 's#wl=""#wl="-Wl,"#g' libtool
•sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

Update build system to use the right compiler and architecture
•Check #ifdef in Makefiles. Use other architectures as a template.

Use the right compiler flags
•Start with -mcpu=native -Ofast.
•See slides further on for details.

Avoid non-standard compiler extensions and language features
•Arm compiler team is actively adding new “unique” features, but it’s best to stick to the standard.

Update hard-wired intrinsics for other architectures
•https://developer.arm.com/technologies/neon/intrinsics
•Worst case: default to a slow code.

Update, and possibly fix, your test suite
•Regression tests are a porter’s best friend.
•Beware of tests that expect exactly the same answer on all architectures!

Know architectural features and what they mean for your code
•Arm’s weak memory model.
•Division by zero is silently zero on Arm.

https://gitlab.com/arm-hpc/packages/wikis/categories/allPackages
https://developer.arm.com/technologies/neon/intrinsics

© 2017 Arm Limited17

“A maze of twisty little passages, all alike” -- ADVENT, 1976
...I’ve got dependencies, and those dependencies have dependencies!
Scientific software may be quite monolithic - but it is rarely self-contained.

Use of external libraries is increasingly common, and a conscious design choice for many projects.
• IO libraries are very common: HDF5, NetCDF (C, parallel and Fortran flavours)

• as are linear solvers: (PETSc, HYPRE, Trilinos...)*

• and FFTs: (FFTW...)*

• Some applications utilise a separate communications layer or parallel execution environment: Charm++, GA...

• Some go even further to try and deliver performance portability and memory abstraction: Kokkos, RAJA...

– The physics kernels can end up being abstracted some way from the hardware.

Ultimately, the more applications that are ported to arm, the more of these packages get ported,
and the less likely you are to encounter an unknown one!

The Arm UG GitLab wiki is a great place to look for recipes for building libraries and dependencies,
and the OpenHPC spec files (which support Arm hardware and LLVM) may also help.
*Arm Performance libraries provide optimized BLAS, LAPACK and FFT routines (-L${ARMPL_DIR}/lib -larmpl_lp64 -lflang -lflangrti)

© 2017 Arm Limited18

Arm HPC Packages Wiki
https://gitlab.com/arm-hpc/packages/wikis/home

Dynamic list of common HPC applications Up-to-date summary of package status
Provides focus for porting progress

Community driven.

Maintained by Arm, but anyone can join
and contribute.

Allows developers to share recipes, and
learn from progress on other applications

Provides a mechanism for tracking status
of applications and package sets (e.g.
OpenHPC packages, Mantevo, etc.)

https://gitlab.com/arm-hpc/packages/wikis/summary.xlsx

© 2017 Arm Limited19

Older autotools need an update
...I’m relying on a config.guess that’s way out-of-date!
Often, the config.guess supplied with an application and used by configure will not
correctly identify the platform.

This can be true for a config.guess already installed on the system and used by some
configure scripts.

Obtaining up-to-date versions will fix this problem:
wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -O config.guess

wget 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -O config.sub

© 2017 Arm Limited20

What is this armclang of which you speak?
...I’m relying on libtool, but it knows nothing of this “Arm compiler”
configure may not correctly identify the Arm compiler. It may not set the correct flags for
libtool to use for position independent code and passing arguments through to the linker.
When building libraries, this can cause problems down-the-road

Following configure, patch libtool as follows:

sed -i -e 's#wl=""#wl="-Wl,"#g' libtool

sed -i -e 's#pic_flag=""#pic_flag=" -fPIC -DPIC"#g' libtool

© 2017 Arm Limited21

Use the right compiler
...I’ve got the compiler binary defined in several different ways!
$CC, $CXX, $FC set?

How about $F77 and $F90?

Maybe $MPICC, $MPIF90 and $MPIFORT?

...is it a parallel application that also wants to know where the serial compilers are?

...I’ve got gcc/icc/... hard-coded into a Makefile somewhere!
Very difficult to spot... But not to worry, I’ll silently soldier on and select GCC

And since your architecture didn’t match I’ll just accumulate some random flags that
didn’t get overridden - and then I’ll continue to compile. . .

© 2017 Arm Limited22

Arm HPC Compiler OpenMP scaling
Better scaling at higher thread count

Zo
ne

s p
er

 S
ec

on
d

Number of threads

Lulesh – size 40

armclang 18.0 gcc 7.1

© 2017 Arm Limited23

Use the right compiler flags
General guidance for all Arm architectures when building with Arm HPC compilers.

1. Start with -Ofast -mcpu=native.

2. If Fortran application runs into issues with -Ofast, try
-Ofast -fno-stack-arrays to force automatic arrays on the heap.

3. If -Ofast is not acceptable and produces wrong results due to reordering of math
operations, use -O3 -ffp-contract=fast.

4. If -ffp-contract=fast does not produce correct results, then use -O3.

Power users: armflang -### shows the expanded compile line.

© 2017 Arm Limited24

Stick to the standard
...but I’m relying on non-standard extensions…
For example ISNAN, COSD, or very very long lines...

Or compiler-specific intrinsics, mm_prefetch, SSE calls etc.

There may be an alternate code path that can be used already. Of possibly the code isn’t
critical and can be deactivated for now, or an equivalent call can be used, or you could
write one?

...I’m relying on a very forgiving, and non-pedantic compiler!
some compilers let you get a away with an awful lot.

A developer can get used to that.

© 2017 Arm Limited25

Pragmas to control vectorization

#pragma clang loop vectorize(assume_safety)

• Allows the compiler to assume that there are no aliasing issues in a loop

#pragma clang loop unroll_count(_value_)

• Forces a scalar loop to unroll by a given factor

#pragma clang loop interleave_count(_value_)

• Forces a vectorized loop to be interleaved by a given factor

© 2017 Arm Limited26

Do you support language feature X?
...I’m relying on some language features you don't support!

For example, ArmFlang has excellent support for Fortran 2003:

https://developer.arm.com/products/software-development-
tools/hpc/arm-fortran-compiler/fortran-2003-status

But the 2008 standard isn’t fully supported yet:

https://developer.arm.com/products/software-development-
tools/hpc/arm-fortran-compiler/fortran-2008-status

...while the 2018 standard is on the horizon. And Fortran 202X will
add yet more capability.

© 2017 Arm Limited27

./configure && make && sudo make install … almost
If root has a minimal environment, using sudo can break compiler license verification

If your application uses libtool during installation, you may see something like this:

/home/user.0004/johlin02/openmpi-3.1.0/build/libtool: line 10554: armclang: command
not found

Or maybe this:

clang-5.0: error: Failed to check out a license. See below for more details.

Don’t panic! Break it into steps. Instead of `sudo make install` just do:

$ sudo -i
$ module load <compiler module>
$ make install

© 2017 Arm Limited28

Test your tests; talk to the expert
...my test suite never passes, everyone knows that!
Often the test suites are a work in progress.

For example, out-of-the-box test appears to have the wrong reference solution. Earlier
commits give the conditions used for reference solutions (intel, IEEE etc.), repeating gives
a new reference solution, for which Arm and GCC agree!

...I’ve got some Arm support, but no one is looking after it!
Someone had a go, a while back, possibly just-for-fun.

Committed it to the repo and moved on.

Hasn’t been maintained, and doesn’t actually work.

...but looks like it might, briefly.

© 2017 Arm Limited29

Test your tests; talk to the expert
...my test suite never passes, everyone knows that!
Often the test suites are a work in progress.

For example, out-of-the-box test appears to have the wrong reference solution. Earlier
commits give the conditions used for reference solutions (intel, IEEE etc.), repeating gives
a new reference solution, for which Arm and GCC agree!

...I’ve got some Arm support, but no one is looking after it!
Someone had a go, a while back, possibly just-for-fun.

Committed it to the repo and moved on.

Hasn’t been maintained, and doesn’t actually work.

...but looks like it might, briefly.

© 2017 Arm Limited30

Arm uses a weak memory model
...I’m not doing anything wrong but seemingly get a weird race condition!

Some HPC codes we came across had their
own parallelization implementations

• Usually based directly on top of pthreads

• Written to have more control over the threads of
execution and how they synchronize

• Some had no problems working with AArch64’s
weakly ordered memory system

• Others exhibited issues in multi-threaded modes that
were particularly hard to diagnose without a detailed
investigation into how the multi-threaded mode was
implemented

– Problems are almost always down to a lock-free
thread interaction implementation

– Key symptom: correct operation on a strongly
ordered architecture, failure on weakly ordered

© 2017 Arm Limited31

Psst! 1/0 == 0 on ARM
… my results are all zero, but tests for division by zero never fail?

For example…
#include <stdio.h>

int main(int argc, char ** argv)

{

int x = argc - 1;

printf("%d\n", 1 / x);

return 0;

}

Skylake

$ gcc x.c && ./a.out

Floating point exception: 8

ThunderX2

$ gcc x.c && ./a.out

0

© 2017 Arm Limited

Step 1: Optimization by
Linker

© 2017 Arm Limited33

Optimized BLAS, LAPACK and FFT

Commercial 64-bit Armv8-A math libraries
• Commonly used low-level math routines - BLAS, LAPACK and FFT
• Provides FFTW compatible interface for FFT routines
• Batched BLAS support

Best-in-class serial and parallel performance
• Generic Armv8-A optimizations by Arm
• Tuning for specific platforms like Cavium ThunderX2 in collaboration with silicon

vendors

Validated and supported by Arm
• Available for a wide range of server-class Arm-based platforms
• Validated with NAG’s test suite, a de-facto standard

Best in class performance

Validated with
NAG test suite

Commercially supported
by Arm

© 2017 Arm Limited34

DGEMM performance on Cavium ThunderX2
Excellent serial and parallel performance

Achieving very high performance at the
node level leveraging high core counts and
large memory bandwidth

Single core performance at
95% of peak for DGEMM

Parallel performance significantly higher
than OpenBLAS

0%

20%

40%

60%

80%

100%

0 2000 4000 6000 8000 10000

Pe
rc

en
ta

ge
 o

f p
ea

k

Matrix dimension (M=N=K)

DGEMM – 56 threads on Cavium ThunderX2
CN99

ARM Performance Libraries OpenBLAS

© 2017 Arm Limited35

DGEMM performance
Arm Performance Libraries using Arm Compiler+Arm PL vs GCC+OpenBLAS

DGEMM shows good
single socket
performance from
tiny cases upwards.

Peak performance of
serial cases at over
97% is over 10%
better than
OpenBLAS.

Parallel scaling is also
high, +90% of peak

0

20

40

60

80

100

0 2000 4000 6000 8000

Pe
rc

en
ta

ge
 o

f p
ea

k
pe

rf
or

m
an

ce

N for DGEMM on matrix sizes M=N=K

ARM Performance
Libraries - Serial

Arm Performance
Libraries - 46
threads
OpenBLAS - Serial

OpenBLAS - 46
threads

© 2017 Arm Limited36

Arm Performance Libraries

© 2017 Arm Limited37

Micro-architectural tuning

In order to achieve the best performance possible on all partner systems we need to do
different micro-architectural tuning

All BLAS kernels are handwritten in assembly code in order to maximise overall
performance

Different micro-architectures sometimes need fundamental differences in the instruction
ordering – or even the instructions used

At run-time this work should all be transparent to the user

However multiple packages are typically available for users to choose from, and they need
to load the appropriate module to set up their paths

Currently available are versions for:
 A57
 A72

 Cavium ThunderX
 Cavium ThunderX2

 Generic AArch64

© 2017 Arm Limited

Step 2: Optimization by
Iteration

© 2017 Arm Limited39

Identifying and Resolving Performance Issues

No

No

Profile Yes

Yes

Yes

Refine the
Profile

File I/O

Memory

Compute

No

No

Buffers, data formats,
in-memory filesystems

Collectives, blocking,
non-blocking, topology,

load balance

Bandwidth/latency,
cache utilization

Vectors, branches,
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication

© 2017 Arm Limited40

VI-HPS and the tools ecosystem
See the http://www.vi-hps.org/tools/ for an excellent view of the tools ecosystem.

© 2017 Arm Limited41

Arm Forge Professional
A cross-platform toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the Top500 machines in the world
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to usersVery user-friendly

Fully Scalable

Commercially supported
by Arm

© 2017 Arm Limited42

Run and ensure application correctness
Scalable tool for interactive and automated debugging

• Run with the representative workload you started with
• Ensure application correctness with Arm Forge Professional
• Integrate Arm Forge to your CI workflows for automated & non-interactive debugging

Examples:
$> ddt -offline mpirun –n 48 ./example
$> ddt mpirun –n 48 ./example

© 2017 Arm Limited43

Optimize the application for Arm
Identify bottlenecks and rewrite some code for better performance

• Run with the representative workload you started with
• Measure all performance aspects with Arm Forge Professional

Examples:
$> map -profile mpirun –n 48 ./example

© 2017 Arm Limited44

Performance metrics in MAP

• MAP has a set of available metrics
• Designed to support generic case of performance profiling
• Presented along with call stack timelines

• Time classification
• Based on call stacks – MPI, OpenMP, I/O, Synchronization

• Specific metrics
• MPI call and message rates (P2P and collective bandwidth)
• I/O data rates (POSIX or Lustre)
• Energy data (IPMI or RAPL for Intel)

• Instruction information (hardware counters)
• X86 – instruction breakdown + PAPI
• Aarch64 – Perf metric for hardware counters

© 2017 Arm Limited45

Custom metrics interface

• MAP supports the development of user metrics
• We provide a custom metric interface

• API for safe calls to common functions

• Let’s you develop your own metrics of interest
• Link to application metrics (units / s, error values)
• Link to libraries (specialist communication or I/O)
• System metrics (custom energy monitors)

• Integrates directly into MAP and Performance Reports
• XML files for aggregation methods

• Need to consider overheads and thread safety

© 2017 Arm Limited46

Custom metric – MUSCLE2 & LU error terms

Instrumentation of MUSCLE2 library

Record communication volumes and times

Data collected along with ‘normal’ MAP metrics

• Instrumentation of NPB LU application
• Record error terms of solve
• Plot over time and step count for optimisation

© 2017 Arm Limited47

JSON Export
Export map profile data to JSON file

• Command line or GUI

• Provides meta data + samples

© 2017 Arm Limited

Quantum Collisions
Success Story

© 2017 Arm Limited49

CCC and the ORNL GPU Hackathon @ Pawsey
Quantum collisions in atomic and molecular physics

CCC: Quantum mechanics
• Fusion energy

• Laser science

• Lighting industry

• Medical imaging / therapy

• Astrophysics

Igor Bray, Head of Physics and Astronomy, and the Theoretical Physics Group, in
the Faculty of Science and Engineering, at Curtin University

© 2017 Arm Limited50

Initial Profile

© 2017 Arm Limited51

Load balancer is imbalanced?
Before:

0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

1 8 0 -7 591 573 872 1.97 45150 0 350 0 80% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

© 2017 Arm Limited52

Initial Profile

Surprise! Didn’t expect that.

© 2017 Arm Limited53

Results and Final Profile

© 2017 Arm Limited54

Results and Final Profile

© 2017 Arm Limited55

Balanced load balancer
Before:

0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

1 8 0 -7 591 573 872 1.97 45150 0 350 0 80% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

After:
0 8 0 -10 174 329 492 1.06 13530 0 85 -1 93% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

1 8 0 -11 415 577 872 1.40 43956 0 340 0 97% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

2 8 0 -11 616 757 1153 1.55 79003 0 592 1 97% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

3 8 0 -12 667 874 1331 1.46 105111 0 734 2 96% LG,node,ipar,inc,vt,i1,i2,tperi,nch,naps,mt,prev LG,eff

© 2017 Arm Limited

Wrap Up

© 2017 Arm Limited57

Takeaways

Applications ecosystem is
mature and growing

Tools ecosystem is mature
and growing

arm.com/hpc for porting and
tuning training and resources

For cross-platform
performance improvements,

use Arm Forge

5858 © 2017 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद

	Cross-platform Performance Engineering
	OpenFOAM and ParaView across the Arm ecosystem
	Slide Number 3
	Can you tell me how to port my code?
	Slide Number 5
	Our solution for any architecture, at any scale
	Slide Number 7
	Arm Compiler – Building on LLVM, Clang and Flang projects
	Slide Number 9
	Arm Forge
	Arm Performance Reports
	Arm Instruction Emulator 18.0
	Arm Instruction Emulator
	VI-HPS and the tools ecosystem
	Slide Number 15
	Arm Porting Cheat Sheet
	“A maze of twisty little passages, all alike” -- ADVENT, 1976
	Arm HPC Packages Wiki
	Older autotools need an update
	What is this armclang of which you speak?
	Use the right compiler
	Arm HPC Compiler OpenMP scaling
	Use the right compiler flags
	Stick to the standard
	Pragmas to control vectorization
	Do you support language feature X?
	./configure && make && sudo make install … almost
	Test your tests; talk to the expert
	Test your tests; talk to the expert
	Arm uses a weak memory model
	Psst! 1/0 == 0 on ARM
	Slide Number 32
	Slide Number 33
	DGEMM performance on Cavium ThunderX2
	DGEMM performance
	Arm Performance Libraries
	Micro-architectural tuning
	Slide Number 38
	Identifying and Resolving Performance Issues
	VI-HPS and the tools ecosystem
	Arm Forge Professional
	Run and ensure application correctness
	Optimize the application for Arm
	Performance metrics in MAP
	Custom metrics interface
	Custom metric – MUSCLE2 & LU error terms
	JSON Export
	Slide Number 48
	CCC and the ORNL GPU Hackathon @ Pawsey
	Initial Profile
	Load balancer is imbalanced?
	Initial Profile
	Results and Final Profile
	Results and Final Profile
	Balanced load balancer
	Slide Number 56
	Takeaways
	Slide Number 58

