© 2018 Arm Limited

+

L B

e |

Iteratively identify and resolve performance issues

Profiling is central to understanding and improving application performance.

|dentify Hotspots Focus Optimization
Yes
" Yes |
Yes
Refine the i Yes |
[No :.\ ,‘:
2 © 2018 Arm Limited N e a rm

What is high performance 1/0?

Complex data movement system optimized for parallel computing.

Looks like a normal filesystem, but data
are distributed over thousands of drives.

Latency: moving data requires multiple
network hops.

Avoid small sequential operations.

Bandwidth: can perform many I/O
operations in parallel.

Prefer parallel block-sized operations.

Complexity: performance may depend
on many non-obvious factors.

Use portable tools to investigate |/O performance.

© 2018 Arm Limited

Cori with Aries Network Edison with Aries Network

)

-

)
\

1 primary MDS,
4 additional MDS

Each OSS controls one OST. The Infiniband connects the MDS,
ADUs and OSSs to the LNET routers on the Cray XC System. The
OSTs are configured with GridRAID, similar to RAID6, (8+2), but
can restore failure 3.5 times faster than traditional RAID6. Each
OST consists of 41 disks, and can deliver 240TB capacity.

Credit: NERSC

arm

http://www.nersc.gov/users/storage-and-file-systems/file-systems/ngfdrawings/

Why does 1/0 have such a huge impact on performance?
/0 has the potential to make or break the performance of the whole system.

 Ashared resource on practically all HPC system:s.

Bandwidth to disk is shared between processes.

Bandwidth to network is shared between nodes.
* Has the potential to affect the performance of other users' jobs.

Data are physically located outside the compute node.
Using shared I/O outside the compute node has an impact on the performance of other users' jobs.

Even if other users are not using the shared filesystem, communicating with the filesystem over the network can
affect other user’s inter-node communications (e.g. MPI).

 The slowest tier of the memory hierarchy.

Small mistakes in I/O will cost you more than huge mistakes at higher tiers, e.g. cache.

Simple, low effort optimizationsin filesystem 1/O will pay out more than high effort optimizationsat higher tiers.

4 © 2018 Arm Limited q rm

Reduction isn’t an option: have to optimize I/0

Models require high resolutions to accurately describe physical conditions.

5

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

CO [ppmv]

Credit: NASA GMAO, Christoph Keller.

Denver, CO

- 0bs

= 200km

= 12km@200km = 12km

© 2018 Arm Limited

| |

15 17
June 2014

arm

https://gmao.gsfc.nasa.gov/research/science_snapshots/2017/hi-res_atmos_chem_comp.php

Data drives high performance computing
Many HPC applications are dominated by |I/O, and I/O requirements are growing.

* Applications driven by datasets

« High resolution models, and getting higher.

- Applicationsoften have low FLOPS/byte.
* Checkpointrestarts

« Periodic dumps of state to filesystem.

« Resilience, reproducibility, history, etc.

* Visualizations

- Classical pre-process / process / post-process Typical spatial resolution used in state-of-the-art
workflow is still prevalent. climate models around the times of each of the four
IPCC Assessment Reports. Credit: UCAR and the IPCC.

« Snapshots of in-situ post-processing.

6 © 2018 Arm Limited a rm

https://scied.ucar.edu/longcontent/climate-modeling

Understand your 1/0 system
Use portable, cross-platform tools and libraries.
e Storage systems host filesystems

Lustre, GPFS, BeeGFS: POSIX-compliant block storage designed for scalability.

Ceph: Object storage, block storage, and POSIX-compliant filesystem.
* Infrastructure hosts storage systems

The network fabric connects all compute nodesin a predefined (physically hard wired) topology.

I/O nodes serve multiple compute nodes (potential bottleneck)
* Infrastructure can be optimized for HPC

Small local (i.e. non-shared) filesystems, possibly in memory (e.g. /dev/shm)
Burst buffers
NVDIMMS.

7 © 2018 Arm Limited q rm

http://lustre.org/
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.beegfs.io/
https://ceph.com/

Understand how your application uses the 1/0 system

You have the greatest control over your application’s behavior.
* |/O Characteristics

How many reads vs. how many writes?
Data access pattern: sequential, aligned, random?

|/O in bursts? Streaming1/0?
* |/O Operations

Standard library calls: fopen, fread, fwrite
MPI-10 calls: MPI_File_open, MPI_File_write, MPI_File_close
|/O library: HDF5, NetCDF, ADIQOS, ...

* Non-I/O communicationthat may influence 1/O performance

Communication-heavyapplication phases.

Inter-node data movement to prepare for 1/0.

8 © 2018 Arm Limited q rm

Simple approaches to parallel 1/0
Simple approaches work for small applications, but typically don’t scale.

e 1-—1:Master and workers ‘

A master process performs |/O on behalf of many workers.
Collective operations(e.g. MPI_Gather, MPI_Scatter) move data to/from workers.

Performance bottleneck at the master.

* N —N: Every process for itself

Large number of open files can quickly degrade performance.
100

50 m N-N
II ® MPI-IO
O [|

0-4k 4k-16k 16k-160k
9 © 2018 Arm Limited Credit: Argonne National Lab q rm

Each process reads/writes it’s own datain a uniquely named file. ‘ ‘ ‘ ‘ ‘

% Core-hours

https://www.youtube.com/redirect?event=video_description&v=P-ivEZ4GyUg&redir_token=nqA4arn8Q_ZWZBITiQGlup20iLJ8MTUzMTMwNjA2NEAxNTMxMjE5NjY0&q=http://extremecomputingtraining.anl.gov/files/2017/08/ATPESC_2017_Track-3_02_8-4_9am_Carns-IO_Transformations.pdf

Treating parallel 1/0 like shared memory
Use a library like MPI-1O or HDF5 for optimal portability and performance.

e N—1: Multiple writers to same resource

Many processes read/write to the same resource, e.g. a file.
Files broken up in to lock units; boundaries determined by system.
Clients must obtain locks before performing 1/0.

Enables caching: as long as client holds the lock the cache is valid.

* N—M: Cooperating gangs
Groups of processes combine to operate on shared resources.
Mirroring physical hardware infrastructure can improve performance

Implementation best left to the libraries.

Balance gang size against available bandwidth.

10 © 2018 Arm Limited

s

arm

Arm Forge

An interoperable toolkit for debugging and profiling

'5,:’“

Commercially supported
by Arm

—+

Il Nl
Fully Scalable

‘ﬁ’-.a'
Very user-friendly

11 © 2018 Arm Limited

The de-facto standard for HPC development

- Available on the vast majority of the world's top supercomputers
- Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities

- Powerful and in-depth error detection mechanisms (including memory debugging)
- Sampling-based profiler to identify and understand bottlenecks
- Availableat any scale (from serial to petaflopicapplications)

Easy to use by everyone

- Unique capabilitiesto simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

Optimize the application

|dentify bottlenecks and rewrite some code for better performance

- Run with the representative workload you started with
- Measure all performance aspects with Arm Forge Professional

Profiled: My_code.exe on 64 processes Started: Fri Sep 20 14:59:09 2013 Runtime: 358 Time in MPI: 45% Hide Metrics...

Mamory usage (M)

Examples: o i |

)) nn!l_u:;;:“"" :"-:1-9 avg) — .é «é —”—é_’
$> map -profile mpirun -n 48 ./example unmtngponecy [R o, e, L e
14:59:09-14:59:44 (range 34.773s): Mean Memory usage 454.6 M; Mean MPI call duration 341.0 ms; Mean CPU floating-point B.2 %; o ‘Mﬂ_;m_ﬁl

T My_code.fao () |

P —

Profiled: clover_leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Wed Nov 9 2016 15:28:37 (UTC) for 309.1s Hide Metrics. . B e e e e
88 & module wall_excitation (...n)
Application activity 100 |
101 ! MODULE EXCITATION
162 !
Iterations /s it | 163 @ module derivative (...e]
Zan) 140 e E T T T
141 MAIN CODE
(. - - 142
Grind time 143
0% 144 use data_mc
— 145 use wall_excitation
Step time S . - 5 146 implicit none
aws & O GR - . .. T A . . y) 147 include ‘mpif.h'
° - — - - - e e 148 double precision :: max_omx_dt,max_omy_dt,max_omz_dt,t, time_cal
15:28:37-15:33:46 (309.138s): Main thread compute 0.2 %, OpenMP 0.0 %, MPI 19.7 %, OpenMP overhead 0.1 %, Sleeping 0 | % Zoom &1 149 integer :: eptien,i,j,k,nn, fwent, count_max,counter,ios,next_file_at,W_cnt(1:4)
150 charactert3g :: str,file_type,str_t,num_2_str
7 hydro 190 X Time spent on line 75 Ll 151
* = % = = 5 <0.1% 152 call MPI_INIT{ierr)
y.3% 2 flux_calc() i Evukswne'mostms’m.l:osponlonmlnlm‘ 153 call MPI_COMM_SIZE(MPI_COMM_WORLD, npro, ierr]
51.2% ‘l? CALL advection() . Calling other functions 4
y.an 7 ALL Teset_field()] Input/Output | Project Fies Parallel Stack View |
) . Parallel Stack View
Input/Output | Project Files | OpenMP Stacks | OpenMP Regions | Functions | Total Time. Function(s) on fine
OpenMP Stacks Ll d i 3
Total core time ~ MPI Overhead Function(s)on line c 63.0% NN 314% = time_integration call _integration My_code.f90:330
ot)l | g 16.9% il 5.3% ®mod_rank_read file... call mod_rank_read_file all_its_oen{str,nn,ios) ! Restart from last checkpoint My_code.r90:297
= 7 clover_lea 12.8% B 6.3% ® velocity_solver call velocity_solver My_code.f90:337
’_' 18% ® <unknown= anknpwn> (no debug info)
[SO SS——— 1.5%| 1.4% #vel vort_3d fp_ call cell_identifier My _code f90:190
7. A 1%l 11.3 M 91 others

12 © 2018 Arm Limited

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Onrd Gathers arich set of data
%‘ - Analyzes metrics around CPU, memory, 10, hardware counters, etc.
- Possibility for users to add their own metrics
Commercially supported
by Arm
Build a culture of application performance & efficiency awareness
- Analyzes data and reports the information that matters to users
@ - Provides simple guidance to help improve workloads’ efficiency
ACC“raitnes?;ftaSt”te Adds value to typical users’ workflows
- Define application behaviourand performance expectations
- Integrate outputs to various systems for validation (e.g. continuousintegration)
? - Can be automated completely (no user intervention)
X

Relevant advice
to avoid pitfalls

13 © 2018 Arm Limited q r m

Initial profile shows 9.2% of runtime spent just openin

16.2% of runtime is 1/O, but only 5% is spentin read/write operations.

14

© 2018 Arm Limited

[NN) =7 [Usersfjohlin02/OneDrive - Arm/2018/1SC/demos/florent-demos/Advanced_Demos/07_checkpoints/2n_checkpoints_disk.map - Arm MAP - Arm Forge 18.1.2
Profiled: hydro on 16 pr 2nodes Sampled from: Thu Jul 9 2015 10:32:13 for 164.9s Hide Metrics...

" sk M o L s

CPU floating-point b
123% =. =
Disk read transfer
0B
o
Disk write transfer e
0.03 MBs
Memory usage |
303 MB
o —
10:32:13-10:34:57 (164.911s): Main thread compute 0.3 %, OpenMP 19.6 %, MPI 63.2 %, File 1/0 16.2 %, OpenMP overhead 0.5 %, Sleeping (.2 % Zoom 81| = ©
220 W #if FTI==0
0.5% P w1221 if (H.nprec > 1) MPI_Barrier (MPI_COMM_WORLD) ;
222 fendif
223 #if FTI>0
224 if (H.mprec > 1) MPI_Barrier (FTI_COMM_WORLD);
225 fendif
226 fendif
227
228 // Write a domain per PE
229 sprintf (name, "%s/Hydro %05d %0dd.vtr", virname, H.mype, step);
8.2% . A - " 230 fic = fopen(name, “w=*);
231 if (fic == NULL) {
232 fprintf(stderr, “"Ouverture du fichier %s impossible\n", name);
233 exit(l);
234]
235 fprintf(fic, "<?xml wersion=\"1.0%"?>\n");
236 fprintf(fic, "<\ e typ rctilinearGrid\" byte_order=\"LittleEndian*>\n"):
237 fprintf(fic, " <Rect rGrid WholeExtent=\" %d ¥d %d ¥d %d %d\">\n",
238 H.box [XKMIN_BOX), H.box[XMAX_BOX], H.box[YMIN_BOX], H.box[YMAX_BOX], 0, 1)
235 fprintf(fic, " <Piece Extent=\" %d %d %d %d %d %d\" GhostLevel=\"0\">\n*,
240 H.box [XMIN_BOX), H.box[XMAX_BOX], H.box[YMIN_BOX], H.box[YMAX_BOX], 0, 1)
inpuOutput_Projec Fies | NGITNGRASIRGREN Forcions
Main Thread Stacks 20
Total core time ¥ MPI Overhead Function(s) on ine Source Position
v & hydro [program]
¥ ¢ main main(int argec, char **argv) |{ main.c:140
20.9% ga adama 29.9% MPI_Allreduce MPI_Allreduce (iflopsAri, &flopshri_t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:300
wtkfile vtkfile (++nvtk, H, &Hv); main.c:338
9.2% " Bddball) __fopen_internal fic = fopen(name, "w"); vikfile.c:230
73% o4 i ladretdetttme 7-3% MPI_Barrier if (H.nproc > 1) MPI_Barrier (MPI_COMM_WORLD); vikfile.c:343
6.4% o e A »iclose felose (fic) ; vikfile.c:335
P | »7 others
13.3% B 28% 0.2% »hydro_godunov hydroe godunow(2, dt, H, &Hv, &Hw godunov, &Hvw godunov); main.c:284

Showing data from 16,000 samples taken over 16 processes (1000 per process) Arm Forge 18.1.2 » Main Thread View 4

g files

arm

Focusing on hotspot shows almost 30% of runtime in I/O

File open and close operations are very expensive on this filesystem.

15

_checkpoints/2n_checkpoints_disk.map - Arm MAP - Arm Forge 18.1.2

Hide Metrics...

File /0 29.2 %, OpenMP overhead 0.1 %, Sleeping ©'.= %

Zoom | *

=@

=

Intermediate files for visualization are being written to disk.
Fix: write intermediate files to an in-memory filesystem, e.g. /dev/shm.

© 2018 Arm Limited

Total core time

17.5%
12.6%
11.2%

1.6%

o T Wi

Lhohdohsiabbboisllibstbhiity

v MPI

dhadida it daoddadbin buil 12.6%

b handoniddeankbadakoddbidida
| 1.6%

arm

Easy fix: write intermediate files to /dev/shm

Writing temporary files to in-memory filesystem can dramatically improve performance.

16

© 2018 Arm Limited

Profiled: hydro on 16 processes, 2 nodes Sampled from: Tue Jul 14 2015 13:07:32 for 67.7s

Main thread activity

CPU floating-point

140%

Disk read transfer
oBis

Disk write transfer
0.60 kBfs

Memory usage

281 MB

13:07:32-13:08:39 (67.666s): Main thread compute 0.4 %, OpenMP 22.4 %, MPI 75.5 %, File /0 0.9 %, OpenMP overhead 0.5 %, Sleeping 0.7 %

7 fUsersfjohlin02/OneDrive - Arm/2018/ISC/d

i_D /07 _checkpoints/2n_ct

kpoints_ram.map - Arm MAP - Arm Forge 18.1.2

Hide Metrics...

225 dandif

226 #andif

227

228 {4 Write a domain per PE

229 sprintf iname, "4s/Hydro R05d _A04d.vir", virname, H.mype, step);

230 ic = fopeniname, "w-i:]

231 if (fic == NULL) {

232 fprintf (stderr, "Cuverture du fichier ¥s impossible‘n", name);

233 exit{l):

234]

235 fprintf (fic, “"<?xml version=\"1.0%"?>\n");

236 fprintf (fic, "<VIKFile type=\"RectilinearGrid\" byte_crder=\"LittleEndian\">\n");

237 fprintfific, " <RectilinearGrid WholeExtent=\" %d kd %d %d %d kd\">\n",

238 H.box [XMIN_BOX], H.box[XMAX_BOX), H.box[¥YMIN_BOX], H.box[YMAX_BOX], 0, 1):

233 fprintf(fic, " <Piece Extent=\" %d %d %d %d %d Wd\" GhostLevel=\"0\">\n",

240 H.box [XMIN_BOX], H.box[XMAX_BOX], H.box[¥YMIN_BOX], H.box[YMAX_BOX], 0, 1):

241 fprintf(fic, * <Coordinates>\n"):

242

243 fprintfific, <bataArray type=\"Floati2\" format=\"ascii\" NumberOfComponents=\"1\">\n");

244 for {1 = H.boX[XMIN_BOX): i <= H.boX[XMAX_BOX]: i++) {

245 fprintfifie, "Wf ", i * H.dx):

246

proc Fios AMBRINBISIGRN Furcons
Main Thread Stacks 00
Total core time v MPI Overhead Function(s) on line Source Position
¥ & hydro [program]
¥ ¢ main main(int arge, char **argv) { main.c:140

M‘S%M 38.3% MPI_Allreduce MPI_Allreduce(&flopsAri, &flopsAri_t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:300
14.6% 3.3% 0.2% »hydro_godunov hydro_godunov (2, dt, H, &Hv, &Hw_godunov, &Hvw_godunov); main.c:284
14.6% 33% 0.2% »hydro_godunov hydro_godunov(l, dt, H, &Hv, &Hw_godunov, &Hvw_godunov); main.c:281
11.6% 11.6% MPI_Allreduce: MPI_Allreduce (sflopsSqr, &flepsSqgr_t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:301
9.9% 9.9% MPI_Allreduce MPI_Allreduce(&dt, &dtmin, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM WORL.. main.c:262
4.5% n . 4.5% MPI_Allreduce MPI_Allreduce (sflopsMin, &flopsMin t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:302

Showing data from 16,000 samples taken over 16 processes (1000 per process) Arm Forge 18.1.2 » Main Thread View 4

arm

After fix, only 0.9% of runtime spent in I/O

Writing temporary files to in-memory filesystem can dramatically improve performance.

@ ® = JUsers/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/07_checkpoints/2n_checkpoints_ram.map - Arm MAP - Arm Forge 18.1.2
Profiled: hydro on 16 processes, 2 nodes Sampled from: Tue Jul 14 2015 13:07:32 for 67.7s Hide Metrics...
CPU floating-point o - -) o Eee L B . h - :
ik e o TR Ry e e R e R R i el ok e sl e e Lt i
Disk read transfer .
0B/s
0
Disk write transfer o2
1501 0 ..o om0 g e o sy 2o = gy o i & = s, » fous e tings ~ioghit i gt S0/ i ot g b0 = it > e o g 1B AN g T g g U ot M oy AT ot s el e
o
Memory usage a8
28.1 MB
ol : z)
13:07:32-13:08:39 (67.666s): Main thread compute 0.4 %, OpenMP 22.4 %, MPI 75.5 %, File 1/0 0.9 %, OpenMP overhead 0.5 %, Sleeping 0.7 % Zoom | %1 H = ®
Total core time v MPI Overhead Function(s) on line
v & hydro [program]
v # main
38.3% T T r—m— 38.3% MPI_Allreduce
14.6% _ —_— 3.3% 0.2% »hydro_godunov
14.6% " s 33% 0.2% »hydro_godunov
11.6% . aideaimita. 11.6% MPI_Alireduce
9'9%.1. ettt J-9% MPI_Allreduce
4.5% N . 4.5% MPI_Allreduce

Showing data from 16,000 samples taken over 16 processes (1000 per process)

17 © 2018 Arm Limited q rm

Arm Performance Reports

High-level view of application performance shows low write rate.

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /
arm =i .
PERFORMANCE ./Bin/low_freq/../../../../Input/input_250x125_corner.nml | A breakdown of the 16.2% 1/0O time:

REPORTS 2 ners (8 physical, 8 logical cores per node) Time in reads 0.0% |
15 GiB per node
16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% N
node-1)
Thu Jul 9 2015 10:32:13 Effective process read rate 0.00 bytes/s |
éﬁf/ Szesc:’c”ds (about 3 minutes) Effective process write rate 1.38 MB/s I

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an |/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

- Time spent running application code. High values are usually good.
COITI pUte 20.6% This is very low; focus on improving MPI or I/O performance first
Time spent in MPI calls. High values are usually bad.
MPI 63.2% _ This is high; check the MPI breakdown for advice on reducing it
] O 16.2% . Time spent in filesystem 1/0. High values are usually bad.
X : This is average; check the 1/0O breakdown section for optimization advice

18 © 2018 Arm Limited q rm

After the fix, write rate has improved 41.6x

Eliminating file open/close bottleneck has dramatically improved /0O performance.

mpiexec.hydra -host node-1,node-2 -map-by |/O
socket -n 16 -ppn 8 ./Bin/../Src//hydro -i
arm ./Bin/../../../Input/input_250x125_corner.nml| A breakdown of the 0.9% 1/0 time:
PERFORMANCE 2 nodes (8 physical, 8 logical cores per node)

REPORTS 15 GiB per node Time in reads 0.0% |
igdirinlcesses, OMP_NUM_THREADS was 1 Time in writes 100.0% I
Tue Jul 14 2015 13:07:32 Effective process read rate 0.00 bytes/s |
68 seconds (about 1 minutes
Sre (’ Effective process write rate 57.5 MB/s I

Most of the time is spent in write operations with a low effective
transfer rate. This may be caused by contention for the filesystem
or inefficient access patterns. Use an 1/O profiler to investigate

Summary: hydro is MPI-bound in this configuration | which write calls are affected.

Time spent running application code. High values are usually good.
Com pUte 23.5% - This is very low; focus on improving MPI or |/O performance first
75 5o _ Time spent in MPI calls. High values are usually bad.
MPI : This is very high; check the MPI breakdown for advice on reducing it
| Time spent in filesystem 1/0. High values are usually bad.
I/O 0.9% This is very low; however single-process 1/0 may cause MPI wait times

19 © 2018 Arm Limited q rm

Initial profile of CloverLeaf shows surprisingly unequal 1/0

Each |/O operation should take about the same time, but it’s not the case.

20

© 2018 Arm Limited

e e = [Users/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/11_lustre/Large_orig.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s Hide Metrics...
Application activity
Disk read transfer 84
0.00 MB/s
Disk write transfer §
023 Mls L=
o [25 i - P = 3 2 & 24 R i
01:59:11-02:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 0.7 %, MPI 19.1 %, File /O 8.6 %, Synchronisation © ©' %, OpenMP overhead 0.1 %, Sleeping .= % qum[at| 5} ®
< @ <
137 WRITE (u, ' (a) ') "FIELD FieldData 4'
138 WRITE (u, ' (a,120,a) ') ‘density 1 ',nxc*nyc, ' double"’
139 v D0 k=chunk¥tiles(tile) $t_ymin,chunk¥tiles(tile)¥t_ymax
0.5%, N = 140 WRITE(u,'(e12.4}') (chunk$tiles(tile)$fieldddensity0(j,k),j~chunkstiles(tile)$t_xmin,chunkitiles(tile) 4t _xmax)
141 ENDDO
142 WRITE (u, ' (a,120,a) ') ‘energy 1 ',nxc*nyc,' double'
143 ¥ D0 k=chunk$tiles(tile) $t_ymin,chunki¥tiles(tile)¥t_ymax
1.2%, 3 2 144 WRITE(u,'(el2.4)') (chunk$tiles(tile) tfielddenergy0(j,k),j=chunkétiles(tile)$t_xmin,chunkitiles(tile)%t_xmax)
145 ENDDO
146 WRITE (u, ' (a,120,a) ') '‘pressure 1 ‘,nxc*nyc,' double'
147 ¥ DO k=chunk$tiles(tile) 8t ymin,chunk¥tiles(tile) ¥t ymax
1.9%, 2 = 148 WRITE(u, ' (e12.4) ') (chunkbtiles(tile)8fieldipressure (J, k), j-chunkitiles(tile) ¥t xmin chunkitiles (tile) St xmax)
149 ENDDO
150 WRITE(u, ' (a,120,a) ') ‘viscosity 1 ',nxc*nyc,' double'
151 v DO k=chunk$tiles(tile) 3t_ymin,chunk¥tiles(tile) ¥t_ymax
152 v DO j=chunk$tiles(tile)%t_xmin,chunk$tiles(tile)8t_xmax
153 temp_var=0.0
<0.1% 154 1F{chunk¥tiles(tile)¥fieldbviscosity(j,k).GT.0.00000001) temp_var<chunkitiles(tile)ifieldSviscosity(j, k) -
2.28, 155
' = 156 m
157 |
158 WRITE (u, ' (a,120) ') 'POINT_DATA ',nxv*nyv
153 WRITE (u, ' (a) ') "FIELD FieldData 2°
160 WRITE (u, ' (a,120,a) ") 'x_vel 1 ',nxv*nyv,' double'
161 = D0 k=chunkitiles(tile) &t ymin,chunkitiles(tile) &t wvmax:]
Input/Output Project Files — OpenMP Regions Functions
OpenMP Stacks 00
Total core time v MPI Overhead Function(s) on line Source Position
2.8 s s <0.1% »flux_calc_module::flux_calc CALL flux_calc() hydro.f90:60
2.3% <0.1% »reset_field_module:reset_field CALL reset_field() hydro.f90:64
wvisit IF(MOD(step, visit_frequency).EQ.0) CALL visit() hydro.f90:74 .
0.4% L 1 _gfortran_st_set_nml_var_dim WRITE (u, ' (el2.4) ') (chunkitiles(tile) $field%p (i, %), j=chunk.. Visit.f90:148
0.3% i »_gfortran_st_set_nml_var_dim WRITE (u,'(e12.4) ') (chunk%tiles(tile)%field%energy0(j, k), j=chunks.. visit.f90:144
0.3% - »_gfortran_st_write_done, _gfortran_... WRITE (u,'(el2.4)') temp_var visit.f90:155 ¢
0.3% 5 »_gfortran_st_write_done, _gfortran_... WRITE (u,'(el2.4)') temp_var visit.f90:165
0.3% 5 »_gfortran_st_write_done, _gfortran_... WRITE (u,'(el2.4)') temp var visit.f90:173

0.2% »_gfortran_st_set_nml_var_dim WRITE (u,'(el12.4) ') (chunk$tiles(tile)%field%density0(j,k),j=ch

unk.. Visit.f90:140

b e
' Showing data from 32,000 samples taken over 32 processes (1000 per process)

Arm Forge 18.1.2 OpenMP View

arm

Symptoms and causes of the 1/0 issues

Sub-optimal file format and surprise buffering.

®0e “ JUsers/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/11_lustre/Large_orig.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover leaf on 32 processes,_4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (for 408.1s

Application activity

Disk read transfer
0.00 MB/s

Disk write transfer

0.23 MB/s o 25 1 il
0 R ¥ g -

01:59:11-02:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation .0’ %, OpenMP overhead 0.1 %, Sleeping “.5 %

* Write rate is less than 14MB/s.
* Writing an ASCII output file.
* Writes not being flushed until buffer is full.

-« Some ranks have much less buffered datathan others.

- Ranks with small buffers waitin barrier for other ranks to finish flushing their buffers.

21 © 2018 Arm Limited

arm

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

22

© 2018 Arm Limited

[IO] = [Usersfjohlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/11_lustre/Large_hdf5.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 16:48:08 (UTC) for 335.58 Hide Metrics...
Application activity
CPU floating-point
378%
Memory usage
151 MB |
A T 3
10:48:08-10:53:43 (335.502s): Main thread compute 0.2 %, OpenMP 73.9 %, MPI 21.3 %, File /O 1.8 %, OpenMP overhead 0.1 %, Sleeping =.5 % Zoom | & ®
s o s I S— 00
224 !
225 CALL hbacreate_simple_f{2, dims2d, space, hdferr) Breakdown of the 0.3% time ‘m on this line:
226 !
227 ! C te the dat. t. We will u 11 default p ti for thi o &
= ; e:::‘piE‘ e datase e wi e a lelau roperties or i8 Exmut“.g |mms 0.0%
229 ! Calling other functions 100.0% IEEEGEG——————
230 dataget="pres'
231 CALL hSdcreate_f(file, dataset, HST_IEEE FG4LE, space, dset, hdferr)
232
233
234 !
235 ! Weite the data to the dataset.
236 !
0.3%, . 237 CALL hSdwrite f({dset, HST NWATIVE DOUBLE, chunk%tiles{tilej%fie ressure, dims. err
238
239 !
240 ! Close and release resources.
241 !
242 LL hSdclose_f(dset , hdferr)
243 hisclose_f (space, hdferr)
244
245 !
246
247 dims2d (1) -chunktiles (tile)¥t_xmax - chunk¥tiles(tile)%t_xmin + 1
248 dims2d{2) =chunkbtiles (tile) ¥t_ymax - chunkitiles(tile)¥t_ymin + 1
249
250 !
251 ! Create dataspace. Setting size te be the current size.
Input’Output Project Files _ OpenMP Regions Functions
OpenMP Stacks 200
Total core time v MPI Overhead Function(s) on line Source Position
¥7 others
0.7% 1 0.7% »clover_module::clover_allgather CALL clover_allgather (kernel_total,totals) hydro.f80:111
wvisit IF(MOD(step, visit_fregquency).EQ.0) CALL wisit() hydro.190:74
0.1% ;) __h5_dble_interface_MOD_hSdw... CALL h5dwrite f(dset, HS5T NATIVE_DOUBLE, chunkitiles(tile)%field.. Visit.f90:237
0.1% . »__h5_dble_interface_MOD_h5dw... CALL hSdwrite f(dset, HS5T NATIVE DOUBLE, chunk%tiles(tile)%field. visit.f90:321
<0.1% . »__h5_dble_interface_MOD_h5dw... CALL hSdwrite f (dset, HS5T NATIVE DOUBLE, chunkitiles(tile)%field. visitf90:265
<0.1% i »__h5_dble_interface_MOD_h5dw... CALL hSdwrite_f (dset, HST_NATIVE_DOUBLE, chunk%tiles(tile)%field.. visitf90:180
<0.1% »__h5_dble_interface_MOD_h5dw... CALL hSdwrite_f (dset, H5T NATIVE DOUBLE, chunk%tiles(tile)%field.. visitf80:293
<0.1% »__h5d_MOD_hsdclose_f CALL hSdclose f(dset , hdferr) visit.f90:130

Showing data from 32,000 samples taken over 32 processes (1000 per process) Arm Forge 18.1.2 & OpenMP View 4

arm

Solution: use HDF5 to write binary files

Using a library optimized for HPC I/O improves performance and portability.

[| NON | 2 [Users/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/11_lustre/Large_hdf5.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover leaf on 32 progg®es, 4 Teges, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 16:48:08 (UTC) for, “II

Application activity

Disk read transfer
0.08 kB/s

Disk write transfer

0.19 MB/s

10:48:08-10:53:43 (335.502s): Main thread compute 0.2 %, OpenMP 73.9 %, MPI 21.3 %, File /O 1.8 %, OpenMP overhead 0.1 %, Sleeping .5 % E_om

* Replace Fortran write statements with HDF5 library calls.

- Binary format reduces write volume and can improve data precision.

- Maximum transfer rate now 75.3 MB/s, over 5x faster.

* Note MPI costs (blue) in the 1/O region, so room for improvement.

23 © 2018 Arm Limited q rm

Advanced 1/0 investigation of Lustre on Archer

Simultaneously view system-level and application-level performance.

 Show data from Lustre client logs along with application data

e jPIC3D: kinetic simulation of plasma

Fully 3D implicit particle-in-cell (PIC)
C++ and MPI

Intermediate simulationresults saved in VTK binary files, single file per quantity

Checkpointingdone through HDF5 to individual filesper process

Field values saved using collective MPI-10 to single file

24 © 2018 Arm Limited q rm

Available performance data

Use MAP’s ability to measure filesystem performance at the system and application levels

System level performance data Application level performance data
* Lustre logs: each read, write, or e Approximate I/O bandwidth in a
metadata operation recorded from timeline.

each Lustre client. , o
* Approximate classification of 1/O

 Aggregate |/O data for precise instructions (methods).
bandwidth figures for read/write at
any moment in time. * In block-synchronous approach, it is

« Max/min/mean bandwidth. possible to identify different 1/O phases.

 Schedulerlogs: application run start
and end time and assigned nodes.

25 © 2018 Arm Limited q rm

MAP aligns the system timeline with the application timeline

Lustre data is read from the lustre client’s log files, while application data is read directly.

Profiled: iPIC3D on 1024 processes, 64 nodes Sarpled from: Wed Febl§ 2018 20:02:56 (UTC) for 730.3s .

Main thread activity

Lustre read rate 18.3
1.57 MB/s ot AR e saiacecany sposwrh:
ol ‘vl = s RN A AL L ERCV T oot T ety
Lustre write rate 2.26
0.01 GB/s

Lustre metadata operations %%

1.38k/s

Lustre file opens
0.68 k /s

= == = e = g = e)
oo e A e, Mel MR LERE:

te 13.0 %, OpenMi@36.5 %, MPI 21.4 %, File IO 29.1 %, H pverhead 0.0 %, Sleeping 0.0 %

20:02:56-20:15:06 (730.285s): Main thread comy

N-N file read shows spike in Checkpoint I/O corresponds
file open/read operations. to spike in Lustre write rate

26 © 2018 Arm Limited a rm

We can focus on each 1/O operation individually

Select a portion of the application timeline to view the source code performing 1/0.

File Edit View Metrics Window
Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s

Main thread activity

Lustre read rate s
1.78 MB/s

]

Lustre write rate 24z
0.00 GBfs

o
Lustre metadata operations %2
1.61k/s

o
Lustre file opens 833
0.80k /s

0
20:05:26-20:05:41 (15.3365, 2.1% of total): Main thread compute 9.2 %, OpenMP 21.4 %, MPI 18.7 %, File I/O 50.7 %, OpenMP overhead 0.0 %, Sleeping 0.0 %

Input/Output | Project Files = Main Thread Stacks | Functions | .
Main Thread Stacks

Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program] R
= # main —
= iPic3D::c_Solver::WriteQutput(int) =
43.4% = B WriteMomentsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopol...
7.4% e [WriteFieldsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopology... co.cr
0.4% .2 @1 other A
20.6% pE_ T =N =+ iPic3D::c_Solver::ParticlesMover() c1.cop
15.5% g, . 8§ ¢ # iPic3D::c_Solver::CalculateField(int) e
12.3% 4 B 1 6. = iPic3D::c_Solver::CalculateMoments()
0.3% .3 2 others

27 © 2018 Arm Limited a rm

MAP’s timeline shows 1/O overlapping with communication

We see elevated Lustre write rate when writing checkpointrestart files in HDF5.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s

Main thread activity
Lustre read rate Lz
1.04 MB/s
0
Lustre write rate a3

0.05 GBYfs

L]

Lustre metadata operations 5%
0.96 k /s

0
Lustre file opens e
0.38k/s

Input/Output | Project Files = Main Thread Stacks | Functions |

Main Thread Stacks L
Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program]
£ # _main

37.8% 2 @ oailllEm wm # iPic3D::c_Solver::CalculateField{int) jif

20.0%N 3= B - IPic30::c_Solver::ParticlesMover(J
—iPic3D::c_Solver::WriteQutput{int)

17.5% . iPic3D::c_Solver::WriteRestart(int) e B
<0.1% T other =

16.0%_H me B = 4.7 # iPic3D::c_Solver::CalculateMoments(), _ cray_memcpy SNB .

0.4%).2 + 2 others

ipic3d/iPIC3D.cpp

28 © 2018 Arm Limited

arm

It’s possible to overlap different 1/O approaches

HDF5 and VTK I/O operations occur at the same time on different ranks.

File Edit View Metrics Window
Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s

Main thread activity

Lustre read rate 193
0.52 MB/s

o

Lustre write rate 226
0.04 GB/s

0
Lustre metadata operations 5%
0.55k /s

e
Input/Output | Project Files | Main Thread Stacks | Functions |
Main Thread Stacks

Total core time A | MPI Overhead Function(s) on line
= & iPIC3D [program]
= # main
=LiPic3D::c_Solver::WriteQutput(int)
-+ WriteMomentsVTK(Grid 3DCU*, EMfields3D*, Collective*, VCtopol...
[+ WriteFieldsVTK(Grid 3DCU*, EMfields3D*, Collective*, VCtopology...
. : #IPIc3D:ic_Solver:WriteRestartiint

0% _ 71 TEZ others b
16.5%g WL hl 21 iPic3D::c_Sﬂwer::ParticlesMﬂver[] B
10.4% 3 .2 mal 21 iIPic3D::c_Solver::CalculateMoments() 3d/main/iPICIDLib.

=l iPic3D::c_Solver::CalculateField(int) 34/191C30. cpp
£ EMfields3D::calculateE(int) R
6.9% g B e "~ - [+ GMRES(void (EMfields3D::*){double*, double*), double*, int, d... 23500000

29 © 2018 Arm Limited

arm

Wrap Up

Visit arm.com/hpcto learn more about Arm Forge and download a free trial.

- Use a profiler like MAP to drive performance engineering.

arm
ALLINEA STUDIO

» C/C++ Compiler - Be aware of the filesystems available on your HPC system.

- Be aware of common I/O patterns and when to use them.

*» Fortran Compiler

% Performance Libraries
* Forge (DDT and MAP)

% Pperformance Reports Download a free trial of Arm Forge

30 © 2018 Arm Limited q rm

https://developer.arm.com/products/software-development-tools/hpc/arm-forge

Thank You!

Danke!

Merci!

i1 arm
HYMED!

Gracias!

Kiitos!
ZArehL| Cf
e dlg

