
© 2018 Arm Limited

John C. Linford, Florent Lebeau, 
Keeran Brabazon, Olly Perks, et al.

Resolving 
Inefficiencies in 

Complex I/O
12 July 2018



© 2018 Arm Limited2

Iteratively identify and resolve performance issues
Profiling is central to understanding and improving application performance.

No

No

Profile
Yes

Yes

Yes

Refine the 
Profile

File I/O

Memory

CPU

No

No

Buffers, data formats, 
in-memory filesystems

Collectives, blocking, 
non-blocking, topology, 

load balance

Bandwidth/latency, 
cache utilization

Vectors, branches, 
integer, floating point

Yes

Identify Hotspots Focus Optimization

50x

10x

5x

2x

Communication



© 2018 Arm Limited3

What is high performance I/O?
Complex data movement system optimized for parallel computing.

• Looks like a normal filesystem, but data 
are distributed over thousands of drives.

• Latency: moving data requires multiple 
network hops. 

• Avoid small sequential operations.

• Bandwidth: can perform many I/O 
operations in parallel.

• Prefer parallel block-sized operations.

• Complexity: performance may depend 
on many non-obvious factors.

• Use portable tools to investigate I/O performance.
Credit: NERSC

http://www.nersc.gov/users/storage-and-file-systems/file-systems/ngfdrawings/


© 2018 Arm Limited4

Why does I/O have such a huge impact on performance?
I/O has the potential to make or break the performance of the whole system.

• A shared resource on practically all HPC systems.

• Bandwidth to disk is shared between processes.

• Bandwidth to network is shared between nodes.

• Has the potential to affect the performance of other users' jobs.

• Data are physically located outside the compute node.

• Using shared I/O outside the compute node has an impact on the performance of other users' jobs.

• Even if other users are not using the shared filesystem, communicating with the filesystem over the network can 
affect other user’s inter-node communications (e.g. MPI).

• The slowest tier of the memory hierarchy.

• Small mistakes in I/O will cost you more than huge mistakes at higher tiers, e.g. cache.

• Simple, low effort optimizations in filesystem I/O will pay out more than high effort optimizations at higher tiers.



© 2018 Arm Limited5

Reduction isn’t an option: have to optimize I/O
Models require high resolutions to accurately describe physical conditions.

Credit: NASA GMAO, Christoph Keller.

https://gmao.gsfc.nasa.gov/research/science_snapshots/2017/hi-res_atmos_chem_comp.php


© 2018 Arm Limited6

Data drives high performance computing
Many HPC applications are dominated by I/O, and I/O requirements are growing.

• Applications driven by datasets

• High resolution models, and getting higher. 

• Applications often have low FLOPS/byte.

• Checkpoint restarts

• Periodic dumps of state to filesystem.

• Resilience, reproducibility, history, etc.

• Visualizations

• Classical pre-process / process / post-process 
workflow is still prevalent.

• Snapshots of in-situ post-processing.

Typical spatial resolution used in state-of-the-art 
climate models around the times of each of the four 
IPCC Assessment Reports. Credit: UCAR and the IPCC.

https://scied.ucar.edu/longcontent/climate-modeling


© 2018 Arm Limited7

Understand your I/O system
Use portable, cross-platform tools and libraries.

• Storage systems host filesystems

• Lustre, GPFS, BeeGFS: POSIX-compliant block storage designed for scalability.

• Ceph: Object storage, block storage, and POSIX-compliant filesystem.

• Infrastructure hosts storage systems

• The network fabric connects all compute nodes in a predefined (physically hard wired) topology.

• I/O nodes serve multiple compute nodes (potential bottleneck)

• Infrastructure can be optimized for HPC

• Small local (i.e. non-shared) filesystems, possibly in memory (e.g. /dev/shm)

• Burst buffers

• NVDIMMS.

http://lustre.org/
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.beegfs.io/
https://ceph.com/


© 2018 Arm Limited8

Understand how your application uses the I/O system
You have the greatest control over your application’s behavior.

• I/O Characteristics

• How many reads vs. how many writes?

• Data access pattern: sequential, aligned, random?

• I/O in bursts?  Streaming I/O?

• I/O Operations

• Standard library calls: fopen, fread, fwrite

• MPI-IO calls: MPI_File_open, MPI_File_write, MPI_File_close

• I/O library: HDF5, NetCDF, ADIOS, …

• Non-I/O communication that may influence I/O performance

• Communication-heavy application phases.

• Inter-node data movement to prepare for I/O.



© 2018 Arm Limited9

Simple approaches to parallel I/O
Simple approaches work for small applications, but typically don’t scale.

• 1 – 1: Master and workers

• A master process performs I/O on behalf of many workers.

• Collective operations (e.g. MPI_Gather, MPI_Scatter) move data to/from workers.

• Performance bottleneck at the master.

• N – N: Every process for itself

• Each process reads/writes it’s own data in a uniquely named file.

• Large number of open files can quickly degrade performance.

Credit: Argonne National Lab

0

50

100

0-4k 4k-16k 16k-160k

%
 C

o
re

-h
o

u
rs

N-N

MPI-IO

https://www.youtube.com/redirect?event=video_description&v=P-ivEZ4GyUg&redir_token=nqA4arn8Q_ZWZBITiQGlup20iLJ8MTUzMTMwNjA2NEAxNTMxMjE5NjY0&q=http://extremecomputingtraining.anl.gov/files/2017/08/ATPESC_2017_Track-3_02_8-4_9am_Carns-IO_Transformations.pdf


© 2018 Arm Limited10

Treating parallel I/O like shared memory
Use a library like MPI-IO or HDF5 for optimal portability and performance.

• N – 1: Multiple writers to same resource

• Many processes read/write to the same resource, e.g. a file.

• Files broken up in to lock units; boundaries determined by system.

• Clients must obtain locks before performing I/O.

• Enables caching: as long as client holds the lock the cache is valid.

• N – M: Cooperating gangs

• Groups of processes combine to operate on shared resources.

• Mirroring physical hardware infrastructure can improve performance.

• Implementation best left to the libraries.

• Balance gang size against available bandwidth.



© 2018 Arm Limited11

Arm Forge
An interoperable toolkit for debugging and profiling

The de-facto standard for HPC development
• Available on the vast majority of the world's top supercomputers
• Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
• Powerful and in-depth error detection mechanisms (including memory debugging)
• Sampling-based profiler to identify and understand bottlenecks
• Available at any scale (from serial to petaflopic applications)

Easy to use by everyone
• Unique capabilities to simplify remote interactive sessions
• Innovative approach to present quintessential information to users

Very user-friendly

Fully Scalable 

Commercially supported
by Arm



© 2018 Arm Limited12

Optimize the application
Identify bottlenecks and rewrite some code for better performance

• Run with the representative workload you started with
• Measure all performance aspects with Arm Forge Professional

Examples:
$> map -profile mpirun –n 48 ./example



© 2018 Arm Limited13

Arm Performance Reports
Characterize and understand the performance of HPC application runs

Gathers a rich set of data
• Analyzes metrics around CPU, memory, IO, hardware counters, etc.
• Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
• Analyzes data and reports the information that matters to users
• Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
• Define application behaviour and performance expectations
• Integrate outputs to various systems for validation (e.g. continuous integration)
• Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

Accurate and astute
insight

Commercially supported
by Arm



© 2018 Arm Limited14

Initial profile shows 9.2% of runtime spent just opening files
16.2% of runtime is I/O, but only 5% is spent in read/write operations.



© 2018 Arm Limited15

Focusing on hotspot shows almost 30% of runtime in I/O
File open and close operations are very expensive on this filesystem.

• Intermediate files for visualization are being written to disk.

• Fix: write intermediate files to an in-memory filesystem, e.g. /dev/shm.



© 2018 Arm Limited16

Easy fix: write intermediate files to /dev/shm
Writing temporary files to in-memory filesystem can dramatically improve performance.



© 2018 Arm Limited17

After fix, only 0.9% of runtime spent in I/O
Writing temporary files to in-memory filesystem can dramatically improve performance.



© 2018 Arm Limited18

Arm Performance Reports
High-level view of application performance shows low write rate.



© 2018 Arm Limited19

After the fix, write rate has improved 41.6x
Eliminating file open/close bottleneck has dramatically improved I/O performance.



© 2018 Arm Limited20

Initial profile of CloverLeaf shows surprisingly unequal I/O
Each I/O operation should take about the same time, but it’s not the case.



© 2018 Arm Limited21

Symptoms and causes of the I/O issues
Sub-optimal file format and surprise buffering.

• Write rate is less than 14MB/s.

• Writing an ASCII output file.

• Writes not being flushed until buffer is full.

• Some ranks have much less buffered data than others.

• Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.



© 2018 Arm Limited22

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.



© 2018 Arm Limited23

Solution: use HDF5 to write binary files
Using a library optimized for HPC I/O improves performance and portability.

• Replace Fortran write statements with HDF5 library calls.

• Binary format reduces write volume and can improve data precision.

• Maximum transfer rate now 75.3 MB/s, over 5x faster.

• Note MPI costs (blue) in the I/O region, so room for improvement.



© 2018 Arm Limited24

Advanced I/O investigation of Lustre on Archer
Simultaneously view system-level and application-level performance.

• Show data from Lustre client logs along with application data

• iPIC3D: kinetic simulation of plasma

• Fully 3D implicit particle-in-cell (PIC)

• C++ and MPI

• Intermediate simulation results saved in VTK binary files, single file per quantity

• Checkpointing done through HDF5 to individual files per process

• Field values saved using collective MPI-IO to single file



© 2018 Arm Limited25

Available performance data
Use MAP’s ability to measure filesystem performance at the system and application levels

System level performance data

• Lustre logs: each read, write, or 
metadata operation recorded from 
each Lustre client.

• Aggregate I/O data for precise 
bandwidth figures for read/write at 
any moment in time.

• Max/min/mean bandwidth.

• Scheduler logs: application run start 
and end time and assigned nodes.

Application level performance data

• Approximate I/O bandwidth in a 
timeline.

• Approximate classification of I/O 
instructions (methods).

• In block-synchronous approach, it is 
possible to identify different I/O phases.



© 2018 Arm Limited26

MAP aligns the system timeline with the application timeline
Lustre data is read from the lustre client’s log files, while application data is read directly.

Checkpoint I/O corresponds 
to spike in Lustre write rate

N-N file read shows spike in 
file open/read operations.



© 2018 Arm Limited27

We can focus on each I/O operation individually
Select a portion of the application timeline to view the source code performing I/O.



© 2018 Arm Limited28

MAP’s timeline shows I/O overlapping with communication
We see elevated Lustre write rate when writing checkpoint restart files in HDF5.



© 2018 Arm Limited29

It’s possible to overlap different I/O approaches
HDF5 and VTK I/O operations occur at the same time on different ranks.



© 2018 Arm Limited30

Wrap Up
Visit arm.com/hpc to learn more about Arm Forge and download a free trial.

• Use a profiler like MAP to drive performance engineering.

• Be aware of common I/O patterns and when to use them.

• Be aware of the filesystems available on your HPC system.

Download a free trial of Arm Forge

https://developer.arm.com/products/software-development-tools/hpc/arm-forge


3131 © 2018 Arm Limited

Thank You!
Danke!
Merci!
谢谢!
ありがとう!
Gracias!
Kiitos!
감사합니다
धन्यवाद


