
Platform Security Firmware Update for the A-profile Arm
Architecture

Non-confidential

Notice
This document is an Alpha version of a specification undergoing review by Arm partners. It is

provided to give advanced information only.

Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Document number: DEN0118

Platform Security Firmware Update for the A-profile Arm Architecture

Contents

Release information 4
Arm Non-Confidential Document Licence (“Licence”) 5

About this document 7
Terms and abbreviations 7
References 7
Feedback 7

1 Overview 9

2 System design concepts 10
2.1 Firmware banks 11
2.2 Boot stages 11

2.2.1 Platform Boot 12
2.3 Recovery Mode 13
2.4 Protocol UUIDs 13

3 Firmware update state machine 15
3.1 Staging state 16
3.2 Trial state 17

4 System management 18
4.1 FW update metadata 18

4.1.1 Metadata integrity check 19
4.1.2 Metadata integration with GPT [recommendation] 20

4.2 Image directory 20
4.3 Anti-rollback counter management 21
4.4 Protocol-updatable images 21

4.4.1 Image authentication 22

5 Normal World Client ABI 23
5.1 Transport layer 23

5.1.1 Setup phase 23
5.2 ABI definition 24

5.2.1 fwu_discover 25
5.2.2 fwu_begin_staging 26
5.2.3 fwu_end_staging 27
5.2.4 fwu_cancel_staging 28
5.2.5 fwu_open 29
5.2.6 fwu_write_stream 30
5.2.7 fwu_read_stream 31
5.2.8 fwu_commit 32
5.2.9 fwu_accept_image 34
5.2.10 fwu_select_previous 35

6 Return status 36

I In-band updates on systems with a BMC 37
ABI implementation in B2 37
Host and BMC synchronization in both models 37
Host boot 38

Page 2 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

II Normal World controlled FW store 39
State machine 39
FW directory information 39

Page 3 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

Copyright © 2021 Arm Limited. All rights reserved.

Release information

Date Version Changes

2021/Apr/06 1.0ALP3 • Removed the trial_run state variable
• Added per-image accepted flags.

2021/Jan/18 1.0ALP2 • Document name changed

2021/Jan/15 1.0ALP1 • First external release
• Document name changed

2021/Jan/11 1.0ALP0 • First internal release

Page 4 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of Arm’s intellectual
property (including, without limitation, any copyright) embodied in the document accompanying this Licence
(“Document”). Arm licenses its intellectual property in the Document to you on condition that you agree to
the terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the
terms of this Licence.

“Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled,
directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control
exists.

This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to
the terms of this Licence between you and Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to Licensee under the intellectual
property in the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable,
royalty-free, worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply
with the Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)
above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

Licensee hereby agrees that the licences granted above shall not extend to any portion or function
of a product that is not itself compliant with part of the Document.

Except as expressly licensed above, Licensee acquires no right, title or interest in any Arm technology or any
intellectual property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS
FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. Arm may make changes to the
Document at any time and without notice. For the avoidance of doubt, Arm makes no representation with
respect to, and has undertaken no analysis to identify or understand the scope and content of, third party
patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST
EXTENT PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT,
TORT OR OTHERWISE, IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING
WITHOUT LIMITATION) (I) LICENSEE’S USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF
THE DOCUMENT IN ANY PRODUCT CREATED BY LICENSEE UNDER THIS LICENCE). THE EXISTENCE
OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR EXTEND THE LIMIT. LICENSEE
RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS OF THIS
LIMITATION.

This Licence shall remain in force until terminated by Licensee or by Arm. Without prejudice to any of its other
rights, if Licensee is in breach of any of the terms and conditions of this Licence then Arm may terminate this
Licence immediately upon giving written notice to Licensee. Licensee may terminate this Licence at any time.
Upon termination of this Licence by Licensee or by Arm, Licensee shall stop using the Document and destroy
all copies of the Document in its possession. Upon termination of this Licence, all terms shall survive except
for the licence grants.

Any breach of this Licence by a Subsidiary shall entitle Arm to terminate this Licence as if you were the party
in breach. Any termination of this Licence shall be effective in respect of all Subsidiaries. Any rights granted
to any Subsidiary hereunder shall automatically terminate upon such Subsidiary ceasing to be a Subsidiary.

Page 5 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

The Document consists solely of commercial items. Licensee shall be responsible for ensuring that any use,
duplication or disclosure of the Document complies fully with any relevant export laws and regulations to
assure that the Document or any portion thereof is not exported, directly or indirectly, in violation of such
export laws.

This Licence may be translated into other languages for convenience, and Licensee agrees that if there is any
conflict between the English version of this Licence and any translation, the terms of the English version of
this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names
mentioned in this document may be the trademarks of their respective owners. No licence, express, implied
or otherwise, is granted to Licensee under this Licence, to use the Arm trade marks in connection with the
Document or any products based thereon. Visit Arm’s website at http://www.arm.com/company/policies/
trademarks for more information about Arm’s trademarks.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2021 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-21585 version 4.0

Page 6 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

http://www.arm.com/company/policies/trademarks
http://www.arm.com/company/policies/trademarks

Platform Security Firmware Update for the A-profile Arm Architecture

About this document

Terms and abbreviations

Term Meaning

BMC Baseboard management controller

Client The entity that holds the FW images to be updated.

FF-A implementation The supervisory software in EL2, EL3, S-EL2 that implements the FF-A protocol.

FSM Finite state machine

FW Firmware

GPT GUID Partition Table

GUID Globally Unique Identifier

MBZ Must be zero

NV Non-volatile

Protocol-updatable
bank

A collection of FW images updatable using the protocol defined in this document.

RoT Root of trust

ROTPK Root of trust public key

Secure State The Arm Execution state that enables access to the Secure and Non-secure
systems resources, for example memory, peripherals, and System registers.

Update Agent The entity that receives the FW images sent from the Client and which serializes
these to the NV memory.

References

This section lists publications by Arm and by third parties.

See Arm Developer (http://developer.arm.com) for access to Arm documentation.

[1] Platform Security Boot Guide. (1.1) Arm.

[2] Unified Extensible Firmware Interface. (2.8) UEFI Forum Inc.

[3] Arm Firmware Framework for Armv8-A. (1.0) Arm.

Feedback

Arm welcomes feedback on its documentation.

If you have comments on the content of this manual, send an e-mail to errata@arm.com. Give:

• The title (Platform Security Firmware Update for the A-profile Arm Architecture).
• The document ID and version (DEN0118 1.0ALP3).

Page 7 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

• The page numbers to which your comments apply.
• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

Page 8 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

1 Overview

This document defines a firmware update protocol. The protocol assumes that the firmware images, provided
by the Client, are stored in a NV memory that is managed by a separate entity, termed the Update Agent.

A common system design will place the Update Agent in the Secure World while the Client executes in the
Non-secure World.

This document defines a set of primitives to transfer the FW images from the Client to the Update Agent. The
document also defines the state variables used to govern the system execution.

Guidelines are provided in this document on anti-rollback counter management.

The security properties of the protocol defined in this document rely on a trusted boot procedure to be
implemented. The trusted boot procedure must comply with PSBG [1].

This document defines an ABI meant for a Normal world entity to transmit the FW images to an FW Update
Agent.

A common platform design would have a UEFI [2] interface, within the Non-secure State, exposed to the host
OS. In those platform designs, the OS should install new FW by passing a FMP [2] formatted capsule to the
capsule update abstraction[2] defined in UEFI. The ABI defined in this document should be entirely used from
within the UEFI abstraction, an OS should not call any of the ABI primitives directly.

Note

This document is one of a set of resources provided by Arm that can help organisations develop products
that meet the security requirements of PSA Certified on Arm-based platforms. The PSA Certified scheme
provides a framework and methodology that helps silicon manufacturers, system software providers
and OEMs to develop more secure products. Arm resources that support PSA Certified range from
threat models, standard architectures that simplify development and increase portability, and open-source
partnerships that provide ready-to-use software. You can read more about PSA Certified here: www.
psacertified.org and find more Arm resources here: developer.arm.com/platform-security-resources.

Page 9 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

www.psacertified.org
www.psacertified.org
https://developer.arm.com/platform-security-resources

Platform Security Firmware Update for the A-profile Arm Architecture

2 System design concepts

Client

Staging
Area

FW update
TA

Secure
storage TA

NV memory

bank1 bank0 metadata

EL3

EL2

EL1

EL0

Implementation

SecureNon-secure

new FW

Figure 1: System diagram

The diagram in Figure 1 depicts a possible system architecture where the Client and Update Agent execute
in the Non-secure and Secure World respectively. In this example system, there exist two FW image banks
(bank0 and bank1). At any point in time there is a single active image bank and a single update image bank.
The number of banks in the system is platform defined, see Section 2.1 for more information.

A system must contain the following entities:

1. FW update client (Client)
• Originator of the FW images to be updated.

2. FW update agent (Update Agent)
• Execution context isolated from the Client. It receives the FW images transmitted from the Client

and is responsible for serializing those to a NV storage.
• Optionally, the Update Agent can perform FW image authentication before updating the NV storage.

Messages exchanged between the Client and the Update Agent are forwarded by FW compliant with the
FF-A protocol [3] running at EL2/EL3/S-EL2/S-EL1.

The Update Agent context is identified by the update_agent_uuid UUID (see Table 3)

Page 10 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

2.1 Firmware banks

bank0 bank1 bank#banks-1

uuid1

uuid0

uuid#images-1

uuid1

uuid0

uuid#images-1

uuid1

uuid0

uuid#images-1

Figure 2: FW banks

The Update Agent maintains an IMPLEMENTATION DEFINED number of FW banks (#banks), each bank contains
an IMPLEMENTATION DEFINED number of FW images (#images). All the banks contain the exact same type of
images, each FW image type is identified by a UUID.

At any point in time, there exits an active and an update bank.

The active_index is maintained by the Update Agent in the metadata, see Section 4.1.

The update_index is only visible to the Update Agent. The update_index value is set by the Update Agent
during its initialization and kept as a volatile variable.

Additionally the Update Agent records, in the metadata, the previous active bank (previous_active_index).
The bank identified by previous_active_index can be used as a fallback to boot the platfrom when an updated
bank fails to properly boot.

All bank indices take values in the {0, . . . , #banks-1} range.

The initialization of the FW banks at system provisioning is IMPLEMENTATION DEFINED.

The bank classification is determined by the active_index and update_index state variables in the following
manner:

update bank: bankupdate_index

active bank: bankactive_index

A Client can only read from or write to images in the update bank.

When coming out of a cold reset, the platform attempts to boot with bankactive_index. For further information
about banks and the boot process see Section 2.2.1.

The Update Agent must keep track of the previous_active_index in the metadata (see Section 4.1). This is
the index of the last active bank, it is used as an indication of a potentially viable fallback FW bank.

Note: a scenario where active_index = update_index is legal if #banks=1. For systems where #banks = 1
then active_index = update_index = 0.

2.2 Boot stages

The system boot process has the following stages:

Page 11 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

• immutable
– FW present in a (generally) non-writable memory.
– If a secondary stage is not present, the immutable stage must be aware of the protocol-updatable

stage presence and it must be able to read and interpret the image metadata (see Table 5).
• (optional) secondary

– single image FW present in a writable NV memory. This stage cannot be updated using the protocol
defined in this document, its update procedure is IMPLEMENTATION DEFINED, see Section 2.3.

– this stage must be aware of the protocol-updatable stage presence and it must be able to read and
interpret the image metadata (see Table 5).

• protocol-updatable
– The stage that is updated using the protocol defined in this document.
– The protocol-updatable images can contain any other FW images not involved in the boot process.
– The protocol-updatable images are duplicated. Each instance of the protocol-updatable images is

termed a bank. Each bank is identified by a bank index, see Section 2.1.

The trusted boot procedure starts at the immutable stage, optionally flowing to the secondary stage and
afterwards to the protocol-updatable stage.

2.2.1 Platform Boot

bankboot_index (protocol-updatable)

Normal
World

Bootloader

BMC/
Immutable Secondary

Warm reset
(Failed boot)

Successful
bootSecure

World FW

Cold reset

authenticate
bankboot_index

Figure 3: Boot overview

The immutable or secondary stage select the protocol-updatable bank to boot the system with (bankboot_index).
Out of a cold reset: boot_index=active_index.

max_failed_boots: the maximum number of consecutive failed attempts to boot with a given bank. The
immutable or secondary stages can identify a failed bank boot attempt by, for instance, inspecting the
watchdog state. The mechanism to determine a failed bank boot attempt is IMPLEMENTATION DEFINED.

The max_failed_boots is a platform constant, its value is IMPLEMENTATION DEFINED.

Each boot_index assignment in the following list is attempted at most max_failed_boot times. After
max_failed_boots consecutive warm rests, caused by a failure to boot the patform with a given assignment,
the next assignment in the list must be attempted:

1. boot_index ← active_index
2. boot_index ← previous_active_index, if active_index 6= previous_active_index, otherwise attempt item

3)
3. boot_index ← IMPLEMENTATION DEFINED bank index.

Page 12 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

The active_index and previous_active_index are fields maintained by the Update Agent in the metadata, see
Section 4.1.

The immutable or secondary stages can detect a boot failure during the protocol-updatable stage by inspecting
a reset syndrome register. The nature of the reset syndrome register is IMPLEMENTATION DEFINED.

An authentication failure of a protocol-updatable bank implies a boot failure of that bank. An authentication
failure is permanent until a bank is updated.

The boot_index must be propagated to the Update Agent. The mechanism to propagate the boot_index to
the Update Agent is IMPLEMENTATION DEFINED.

2.3 Recovery Mode

The FW update protocol (defined in this document) allows for a fail-safe update of the protocol-updatable
images. The FW update functionality relies on several FW components. Some of these components can
themselves be updated using the FW update protocol defined in this document.

It is recommended that a new FW image bank is tested, prior to field updates, to ensure that it will be able to
perform a subsequent FW update.

In rare scenarios, a system may become unable to perform FW updates. In such a scenario, or when the
secondary stage must be updated, a recovery mode is used. The existence of a recovery mode is mandatory.
The recovery mode implementation details are IMPLEMENTATION DEFINED.

The recovery mode can be implemented as:

• BMC assisted update.
• recovery mode executed from the immutable stage.

The recovery mode must:

• be able to write to the NV memory where the protocol-updatable images are stored at rest.
• be able to correctly update the FW update metadata (See Section 4.1)
• if a secondary stage exists, be able to write to the medium where the secondary stage is stored at.

2.4 Protocol UUIDs

The following UUIDs are used in the protocol definition. The UUIDs are referred to, in this document, by their
UUID name.

The update_agent_uuid value is the identifier of the Update Agent, it can be used to bootstrap the
communication between the Client and the Update Agent, as is detailed in Section 5.1.1.

The fwu_directory_uuid is the identifier of the image directory provided by the Update Agent. The image
directory contains details about the FW images managed by the Update Agent, for more information see
Section 4.2.

The metadata_uuid is the identifier of the metadata partition type when the metadata is stored within a GPT
[2], see Section 4.1.2 for more information.

Table 3: protocol defined UUIDs

UUID UUID name description

6823a838-1b06-470e-9774-0cce8bfb53fd update_agent_uuid Update Agent context UUID

Page 13 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

UUID UUID name description

deee58d9-5147-4ad3-a290-77666e2341a5 fwu_directory_uuid The image directory UUID, see
Section 4.2

8a7a84a0-8387-40f6-ab41-a8b9a5a60d23 metadata_uuid The UUID of the metadata type,
see Section 4.1

Page 14 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

3 Firmware update state machine

At any given time the system can be in one of the following states:

• Regular - the system has booted from a verified FW bank.
• Staging - the procedure to update bankupdate_index is undergoing.
• Trial - the system updated a FW bank, some images in this bank have not been accepted.

Regular bank0
- active_index=0
- update_index=1

Trial bank1
- active_index=1
- update_index=0

fwu_begin_staging

Regular bank1
- active_index=1
- update_index=0

Trial bank0
- active_index=0
- update_index=0

all FW images in bank1 accepted

fwu_select_previous

Staging bank1
- active_index=0
- update_index=1

fail
fwu_end_staging

Staging bank0
- active_index=1
- update_index=0

fwu_begin_staging
fwu_end_staging

fail

fwu_select_previous

all FW images in bank0 accepted

Figure 4: High level FSM

The diagram in Figure 4 depicts the state machine of a particular implementation of the firmware update
protocol. In this example the Update Agent maintains 2 different FW banks (bank0 and bank1). For more
information on the FW banks see Section 2.1.

The state transitions occur at the following boundaries:

• Regular to Staging:
– when a fwu_begin_staging call returns successfully (see Section 5.2).

• Staging to Trial:
– when the call fwu_end_staging returns successfully.

• Trial to Regular:
– once all FW images in the active bank are accepted.

A detailed description of the Staging state is provided in Section 3.1, the Trial state if covered in Section 3.2.

The FW update protocol requires the following state variables:

1. active_index : integer indicating which FW bank is currently active. The variable is kept in the metadata
region, see Table 5. Its value is updated, by the Update Agent, during the handling of a fwu_end_staging
call (see Section 5.2).

2. previous_active_index : integer indicating which FW bank was active prior to the last FW update. The
variable is kept in the metadata region, see Table 5. Its value is updated, by the Update Agent, during
the handling of a fwu_end_staging call (see Section 5.2).

3. update_index : integer indicating which FW bank will be overwritten during a Staging state. This variable
is set by the Update Agent at system boot and only visible to the Update Agent. The update_index must

Page 15 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

respect the following contraint:

• if #banks > 1: update_index 6= active_index.

4. image accepted status: Field recorded per-image and per-bank (see Table 7). The accepted status of all
images in the bankactive_index determine if the system is in the Trial state, see Section 3.2.

3.1 Staging state

New FW images can only be communicated from the Client to the Update Agent during a Staging state.

The system transitions from the Regular to the Staging state once the fwu_begin_staging call successfully
completes.

The Client must open an image, by invoking fwu_open, before writing to the image

Once a FW image context is open, a sequence of fwu_write_stream calls transmit the FW image to the
Update Agent. The sequence diagram of the FW image transfer is shown in Figure 5.

transfer
bank

Implementation

fwu_open

Client

transfer
image

fwu_write_stream

status

fwu_commit

status

handle

Figure 5: Staging procedure

The Update Agent can authenticate the staged FW images before committing those to the NV memory. This
optional procedure is performed at the fwu_commit call. The image authentication procedure is detailed in
Section 4.4.1.

The FW image authentication procedure before committing images to NV memory is:

• optional: if #banks > 1
• mandatory: if #banks = 1

The image authentication may fail, this is communicated to the Client by the fwu_commit call returning a
AUTH_FAIL status code, see Section 5.2.8 for further details.

The Update Agent overwrites the images in bankupdate_index.

Page 16 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

While handling a successful fwu_end_staging call, the Update Agent must:

• update previous_active_index, see Section 5.2.3.
• update active_index, see Section 5.2.3.

The Staging state correctly terminates when the fwu_end_staging call returns successfully.

The Staging state fails if:

1. the system resets prior to the Client calling fwu_end_staging.
2. the Client calls cancel_staging.

When the staging fails the system will transition back to the Regular state.

3.2 Trial state

The system is in the Trial state if any of the FW images in bankactive_index is pending acceptance, see
Section 4.4.

While in the Trial state, the anti-rollback counters must not be updated.

Anti-rollback counter values must be updated while booting in the Regular state.

While booting in the Trial state, the trusted boot procedure must check that a FW image meets the version
requirements of a subsequent Regular state boot. If the FW image does not meet the version requirements of
a subsequent Regular state, the boot procedure fails.

The Client must invoke fwu_accept_image, for all the images currently unaccepted, in order for the Trial state
to successfully terminate.

The Trial state fails if the Client calls fwu_select_previous_bank.

Page 17 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

4 System management

4.1 FW update metadata

The metadata is a collection of fields, maintained by the Update Agent, as defined in Table 5.

The NV memory where the metadata is stored is IMPLEMENTATION DEFINED and agreed between the Update
Agent and the immutable or secondary stages.

The metadata must:

• be readable by the immutable and secondary stages.
• be writable by the Update Agent.
• hold field values in a little-endian representation at the offsets defined in Table 5

The metadata is versioned using a 4 byte integer – version field in Table 5.

The metadata size is determined by the metadata version, the number of images per bank (#images) and the
number of banks (#banks). The values #images and #banks are assumed to be constant from the point of
view of this specification. The values of #images and #banks must be the same in the Update Agent and the
immutable or secondary stages.

The metadata size, as a function of metadata version, is shown in Table 4.

Table 4: Metadata size per version

metadata version metadata_size

1 10h + #images.(20h + #banks.18h)

The metadata representation is replicated to ensure reliable operation. The two metadata replicas must be
updated in sequence.

There exists a CRC-32 field in the metadata, crc_32. The crc_32 value is updated in the following manner:

• crc_32← CRC32(metadata[4: metadata_size]).

During system boot, the immutable or secondary stage must use the procedure described in Section 4.1.1 to
ensure that the metadata is intact.

During initialization, the Update Agent must correct a corrupted metadata region by copying the intact replica
over.

The metadata replication and update in series guarantees reliability against system failures while the metadata
is being updated. The replication and update in series does not detect malicious updates nor does it protect
against erroneous updates to the metadata.

Note: The metadata can be maliciously crafted, it should be treated as an insecure information source.

Table 5: Metadata version 1

field
offset
(bytes) size (bytes) Description

crc_32 0h 4h

version 4h 4h

Page 18 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

field
offset
(bytes) size (bytes) Description

active_index 8h 4h

previous_active_index Ch 4h

img_entry [#images] 10h #images.(30h + #banks.18h) array of aggregate in Table 6

Table 6: Metadata image entry version 1

field
offset
(bytes)

size
(bytes) Description

img_type_uuid 0h 10h UUID identifying the image type

location_uuid 10h 10h the UUID of the storage volume where the
image is located

img_bank_info[#banks] 20h 18h.#banks the properties of images with
img_type_uuid in the different FW banks

Table 7: Image properties in a given FW bank version 1

field
offset
(bytes)

size
(bytes) Description

img_uuid 0h 10h the uuid of the image in this bank

accepted 10h 4h • [0] : bit describing the image
acceptance status – 1 means the
image is accepted

• [31:1] : MBZ

reserved 14h 4h reserved (MBZ)

The metadata layout is defined in Table 5. The metadata contains an array of image entries (defined in
Table 6) with #images elements.

4.1.1 Metadata integrity check

The integrity of the metadata must be verified before its information is consumed. The procedure to check the
metadata integrity is detailed below:

metadata_check_integrity(metadata):

if metadata.version = 1:
metadata_size <- 10h + #images .(20h + #banks .18h)

else:
return False

crc <- CRC32(metadata [4: metadata_size])

Page 19 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

if crc != metadata.crc_32:
return False

return True

4.1.2 Metadata integration with GPT [recommendation]

This is a guidance section, the aspects described in this section are not mandatory.

It is recommended that the layout of any NV medium containing FW images is defined by a GPT [2].

When embedded in a GPT, each metadata replica occupies a single partition with PartitionTypeGUID =
metadata_uuid.

The platform may possess diferent NV mediums where FW images can be locatted at. All FW images of the
same type should be located in the same NV medium. The location_uuid of each image type should match
the DiskUUID [2] of the medium the image is located on.

4.2 Image directory

The Client can obtain details about the FW images handled by the Update Agent via the image directory. The
Client reads the image directory by using the ABI defined in Section 5.2.

All fields in the image directory have a little-endian byte ordering.

The image directory is created by the Update Agent and reflects the information of the bankboot_index.

The contents of the directory are represented as an image_directory aggregate holding a list of im-
age_info_entries with num_images (#images) elements. The image_info aggregate contains a subset
of the information in the Metadata.

The Client opens the image directory with handle_imgdir = fwu_open(fwu_directory_uuid). The Client obtains
the image_info, from the Update Agent, by calling fwu_read_stream(handle_imgdir, . . .) until the EOF.

Table 8: image_directory

field
offset
(bytes)

size
(bytes) Description

directory_version 0h 4h the version of the fields in the
img_info_entry array.

num_images 4h 4h the number of entries in the img_info_entry
array.

active_index 8h 4h the active_index field in the metadata.

boot_index Ch 4h the index of the bank that booted the
platform, see Section 2.2.1.

img_info_entry[] 10h – array of Table 9 elements

The directory_version field determines the version of the image_info_entry.

Page 20 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

Table 9: img_info_entry version 1

field
offset
(bytes)

size
(bytes) Description

img_uuid 0h 10h

client_permissions 10h 4h bitfield specifying the access permissions
that the Client has on the image:

• [31:2] : MBZ
• [1] : Read
• [0] : Write

img_max_size 14h 4h the maximum image size that can be
installed.

lowest_accepted_version 18h 4h the lowest version of the image that can
execute on the platform (Table 6).

img_version 1Ch 4h the image version in the bankboot_index
(Table 7).

accepted 20h 4h the acceptance status of the image in the
bankboot_index (Table 7).

reserved 24h 4h MBZ

4.3 Anti-rollback counter management

There exists at least one anti-rollback counter in the platform, as required in PSBG [1]. The anti-rollback
counter value is monotonically increasing.

During image authentication, the image version is compared against the value of the anti-rollback counter the
image is bound to. If an image has a lower value than the anti-rollback counter, then that image must not
execute on the platform.

Every anti-rollback counter must:

• be readable by the immutable or secondary bootloader stages.
• be readable by the Update Agent, if the Update Agent performs the optional FW image authentication.
• be writable to by its managing entity.

The managing entity of each anti-rollback counter is IMPLEMENTATION DEFINED.

The Client can only communicate new anti-rollback counter values to the Update Agent during the Staging
state. The format by which a new anti-rollback counter value is communicated to the Update Agent is
IMPLEMENTATION DEFINED.

The anti-rollback counter must be updated, by its managing entity, after the end of a Trial state and before the
completion of the subsequent system boot in the Regular state.

4.4 Protocol-updatable images

The protocol-updatable FW images are transferred from the Client to the Update Agent using the ABI defined
in Section 5.2. The FW image format is IMPLEMENTATION DEFINED.

Page 21 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

A FW image in a bank can have either an accepted or unaccepted status. The acceptance status of the image
for a bankindex is recorded in the following metadata image entry field:

• img_bank_info[index].accepted.

A value of 0 in the accepted field means the image is not accepted. A value of 1 in the accepted field means
the image is accepted.

The Client can set the accepted status of an image by calling:

• fwu_commit: the client sets the accepted status of an image in the bankupdate_index, see Section 5.2.
• fwu_image_accept: the Client changes the accepted status of an image in the bankactive_index to be

accepted, see Section 5.2.

A bank must have certificates for each of the FW images in the bank.

4.4.1 Image authentication

Updated firmware images must be authenticated prior to the first execution on the platform. The image
authentication should be PSBG compliant [1].

The authentication procedure:

1. must happen during a PSBG compliant trusted boot procedure [1].
2. is optionally performed by the Update Agent, prior to writing the image to the NV memory, as part of the

fwu_commit function handling.

The (optional) image authentication procedure, implemented in the Update Agent, requires the Update Agent
to have access to the ROTPK and the entire chain of trust. The method of provisioning the ROTPK and the
chain of trust to the Update Agent is IMPLEMENTATION DEFINED.

Every FW image is bound to a specific anti-rollback counter. The image to anti-rollback counter binding is
IMPLEMENTATION DEFINED.

Any FW image must have a version greater or equal than its associated anti-rollback counter to be allowed
execution in the platform.

The image authentication procedure is composed of the following checks:

• FW image creator authenticity check, the procedure is IMPLEMENTATION DEFINED.
• Verification that the FW image version is greater than the NV anti-rollback counter.

A failure of either check results in an image authentication failure.

Note: Prior to updating the images using the protocol described in this document, the Client may opt to
perform an image authentication using a different chain of trust. This procedure is IMPLEMENTATION DEFINED.

Page 22 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5 Normal World Client ABI

5.1 Transport layer

The FW update ABI uses FF-A as the transport layer [3].

Prior to calling any FW update function the Client must perform a setup procedure where a shared buffer is
established between the Client and the Update Agent.

5.1.1 Setup phase

The Client must trigger the following procedure with the Update Agent:

1. Client obtains the SP id of the Update Agent (update_agent_id) using the ffa_partition_info_get call with
update_agent_uuid as a parameter.

2. Client shares the page pointed to by client_buffer_va with the Update Agent by calling ffa_mem_share
passing update_agent_id and client_buffer_va as parameters. The Client receives a globally unique
handle (buffer_handle) to the shared buffer.

3. Client sends a synchronous message to the Update Agent communicating buffer_handle.
4. Update Agent retrieves the VA of the page referred to by buffer_handle (update_agent_buffer_va).
5. Update Agent sends a synchronous response to the Client signaling a successful buffer exchange.

FF-A
implemenatation

Client

ffa_partition_info_get(update_agent_uuid)

update_agent_id

ffa_mem_share(update_agent_id, client_buffer_ipa, ...)

buffer_handle

ffa_msg_send_direct_req(update_agent_id, 0, buffer_handle)

Update Agent

ffa_mem_retrieve_req(buffer_handle, ...)

ffa_retrieve_resp(update_agent_buffer_ipa)

ffa_msg_send_direct_resp(client_id, 0, success, interface_version)

Figure 6: Transport layer setup

After a successful completion of the setup phase, the FW update ABI calls can be issued. In case of failure in
the setup phase, the Client must assume the FW update protocol to be unavailable.

Page 23 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2 ABI definition

The ABI calls rely on FF-A synchronous messages and the buffer exchanged during the setup phase. The
communication buffer has a size of comm_buffer_size bytes. The Client keeps the VA of the shared buffer in
client_buffer_va. The Update Agent keeps the VA of the shared buffer in update_agent_buffer_va.

The calls defined in this ABI are a contract between the caller (Client) and the callee (Update Agent).

The caller must:

1. fill in the argument structure, as defined in the function argument definition below, onto the shared buffer.
2. call ffa_msg_send_direct_req with a update_agent_id destination.

The callee must:

1. fill in the return structure, as defined in the function return definition below, onto the shared buffer.
2. call ffa_msg_send_direct_resp.

The Client and the Update Agent may agree on a transport protocol level header placed at the start of the
communication buffer, before the argument/result headers. This is outside the scope of this document.

Both the argument and result headers must be aligned at a 8 byte boundary.

All fields in the Argument and Return structures are little-endian.

Page 24 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.1 fwu_discover

This call indicates the version of the ABI alongside a list of the implemented functions. The array func-
tion_presence contains num_func entries. The entry at function_presence[index] is an 8 bit integer indicating
if the function is implemented and additional function features.

If function_presence[index]:

• = 0: function with function_id = index is not implemented.
• = 1: function with function_id = index is implemented.
• > 1: function with function_id = index is implemented, additionally the returned value indicates function

features specified in the function definition.

5.2.1.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=0 0 4

5.2.1.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS

version_major 4 1 the ABI major version

version_minor 5 1 the ABI minor version

num_func 6 2 the number of entries in the function_presence array.

function_presence[] 8 num_func array of bytes indicating functions that are
implemented. The value function_presence[index]
specifies the features of the function with function_id
= index.

Page 25 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.2 fwu_begin_staging

This call indicates to the Update Agent that a new staging process will commence. The Client can only
invoke this call during the Regular and Staging states. When the call is invoked during the Staging state, any
transient state that might be held by the Update Agent is discarded.

This call is disallowed when boot_index 6= active_index.

5.2.2.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=1 0 4

5.2.2.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNAVAILABLE: The system is in the Trial state

or boot_index 6= active_index.

Page 26 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.3 fwu_end_staging

The Client informs the Update Agent that all the images meant to be updated have been transferred to the
Update Agent and that the staging has terminated. This call can only be invoked from the Staging state. The
Client must ensure that all image handles are closed before invoking this call.

During a successful call the Update Agent performs the following steps in order:

1. if update_index 6= active_index then previous_active_index is updated: previous_active_index ←
active_index.

2. the active_index is updated: active_index ← update_index.

5.2.3.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=2 0 4

5.2.3.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNAVAILABLE: The system is not in a Staging

state.
• DENIED: There are open image handles.
• AUTH_FAIL: At least one of the images in in
bankupdate_index fails to authenticate.

Page 27 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.4 fwu_cancel_staging

The Client cancels the staging procedure and the system transitions back to the Regular state. This call can
only be invoked from the Staging state.

5.2.4.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=3 0 4

5.2.4.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNAVAILABLE: The system is not in a Staging

state

Page 28 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.5 fwu_open

The open call returns a handle to the image with UUID=image_uuid. The Client uses the handle in subsequent
calls to read from or write to the image. An image can have a single active handle. If multiple fwu_open calls
are performed on a given UUID, only the last returned handle is valid. This call cannot be invoked in the trial
state.

5.2.5.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=4 0 4

image_uuid 4 16 UUID of the image to be opened

5.2.5.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS: Call completed correctly.
Remaining return fields are valid

• UNKNOWN: image with UUID=image_uuid does
not exist

• UNAVAILABLE: The system is in the Trial state

handle 4 4 staging context identifier

Page 29 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.6 fwu_write_stream

The call writes at most max_payload_size bytes to the Update Agent context pointed to by handle, where
max_payload_size = comm_buffer_size - offset_of(fwu_write_stream_arguments, payload). The data to be
written is passed in the payload present in the shared buffer, after the end of the arguments header. A Client
can only invoke the call during a Staging state.

arguments header

client_buffer_va

payloadmax_payload_size

comm_buffer_size

Figure 7: fwu_write_stream arguments in shared buffer

5.2.6.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=5 0h 4

handle 4h 4 The handle of the context being written to.

data_len 8h 4 Size of the data present in the payload

payload Ch – The data to be transferred

5.2.6.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNKNOWN: unrecognized handle
• OUT_OF_BOUNDS: less than data_len bytes

available in the image.
• NO_PERMISSION: The image cannot be

written to.
• UNAVAILABLE: The system is not in a Staging

state

Page 30 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.7 fwu_read_stream

The call reads at most max_payload_size bytes from the Update Agent context pointed to by handle.

The data to be read is passed in the payload contained in the shared buffer, after the end of the returns
header.

• The field total_bytes, in the return, can be used by the Client after a first invocation to reserve enough
memory to store the file being read.

• The field total_bytes can also be used by the Client to track when EOF is reached.
• EOF is also detected by a read_stream if 0 6 read_bytes < max_payload_size, where max_payload_size

= comm_buffer_size - offset_of(read_stream_return, payload).

return header

client_buffer_va

payloadmax_payload_size

comm_buffer_size

Figure 8: fwu_read_stream returns in shared buffer

5.2.7.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=6 0 4

handle 4 4 The handle of the context being read from.

5.2.7.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0h 4 • SUCCESS: remaining return fields are valid.
• UNKNOWN: handle is not recognized.
• NO_PERMISSION: The image cannot be read

from.
• UNAVAILABLE: The image cannot be

temporarily read from.

read_bytes 4h 4

total_bytes 8h 4

payload Ch –

Page 31 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.8 fwu_commit

The call closes the image pointed to by handle. A return of AUTH_FAIL signals an image authentication failure
in the Update Agent. As with SUCCESS, an AUTH_FAIL return status implies that the handle is closed.

The Update Agent must set the image entry metadata field img_bank_info[update_index].accepted to:

• 0: if acceptance_req > 0;
• 1: if acceptance_req = 0;

The Client passes the max_atomic_len hint argument, specifying the length of time (in ns) that the Client
can widstand the Update Agent to execute continuously without yielding back. If max_atomic_len=0 then the
Client can tolerate an unbounded execution time by the Update Agent. The Update Agent should yield back
to the Client before max_atomic_len ns elapse.

When the Update Agent yields before completing the call, it must return the RESUME status. If the Update
Agent returns the RESUME status, then it must return the total_work and progress fields.

Note: The ratio of progress and total_work gives the proportion of outstanding work.

The Update Agent must continue calling fwu_commit, while the return is RESUME. The acceptance_req
argument is ignored, by the Update Agent, for any subsequent fwu_commit call following a RESUME return
status.

5.2.8.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=7 0h 4

handle 4h 4 The handle of the context being closed.

acceptance_req 8h 4 If positive, the Client requests the image to be marked
as unaccepted.

max_atomic_len Ch 4 Hint, maximum time (in ns) that the Update Agent can
execute continuously without yielding back to the
Client. A value of 0 means that the Update Agent can
execute for an unbounded time.

5.2.8.2 Returns

field
offset
(bytes)

size
(bytes) description

total_work 0 4 • Units of work the Update Agent must perform
until fwu_commit returns successfully.

progress 0 4 • Units of work already completed by the Update
Agent.

Page 32 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNKNOWN: unrecognized handle.
• AUTH_FAIL: image closed, authentication

failed.
• RESUME: the Update Agent yielded, the Client

must invoke the call again.

Page 33 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.9 fwu_accept_image

The call sets the metadata img_bank_info[active_index].accepted=1 for the image with type =
image_type_uuid. This call can only be invoked if the system booted with bankactive_index.

5.2.9.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=9 0 4

reserved 4 4 MBZ

image_type_uuid 8 10h

5.2.9.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNKNOWN: image with type=image_type_uuid

is not managed by the Update Agent.
• UNAVAILABLE: the system has not booted with
bankactive_index.

Page 34 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

5.2.10 fwu_select_previous

The call sets the active_index in the metadata to previous_active_index. This call is only available when:

• the system is in the Trial state.
• boot_index = previous_active_index.

While handling this call:

• the active_index is updated: active_index ← previous_active_index.
• the previous_active_index is updated: IMPLEMENTATION DEFINED assignment.

5.2.10.1 Arguments

field
offset
(bytes)

size
(bytes) description

function_id=10 0 4

5.2.10.2 Returns

field
offset
(bytes)

size
(bytes) description

status 0 4 • SUCCESS
• UNAVAILABLE: the system is not in the Trial

state.
• AUTH_FAIL: At least one of the images in in
bankprevious_update_index fails to authenticate.

Page 35 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

6 Return status

status value

SUCCESS 0

UNKNOWN -1

UNAVAILABLE -2

OUT_OF_BOUNDS -3

AUTH_FAIL -4

NO_PERMISSION -5

DENIED -6

RESUME -7

Page 36 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

Part I

In-band updates on systems with a BMC

Some systems have a BMC between the NV FW storage and the Host SoC.

The BMC can restrict the Host from accessing NV FW storage.

The Host may be unable to directly update the FW images in the NV storage.

There are two possible models (B1 and B2) with respect to how the BMC obstructs the view that the Host has
to the NV storage:

B1 B2

Host has direct R/W access to NV storage Y N

Host accesses the NV storage indirectly via the BMC Y Y

• B1: Host has read and write access to the entire NV storage.
• B2: Host can only indirectly read and write to the NV storage by delegating to the BMC.

In B1 the Host must synchronize with the BMC to ensure that the BMC will not concurrently access the update
bank.

In B2 the Host must send the FW images to the BMC using the ABI previously defined.

ABI implementation in B2

The ABI implementation between the BMC and the Host requires:

• a shared buffer between the Host and the BMC;
• an event triggered by the Host, delivered to the BMC which the BMC must acknowledge back to the

Host.
• an event triggered by the BMC, delivered to the Host, where the BMC signals request termination.

Host and BMC synchronization in both models

Whether the Host can access the NV storage directly (B1) or indirectly via the BMC (B2), the Host must inform
the BMC when the Host intends to enter a phase where it will write to the NV storage.

When transitioning to the Staging state, the Host performs an IMPLEMENTATION DEFINED synchronization with
the BMC. This synchronization mechanism gives the Host full permission to directly, or indirectly via the BMC,
access the NV storage.

The synchronization mechanism requires:

• an event triggered by the Host and delivered to the BMC, which the BMC must acknowledge.

While the Host is in the Staging state, the BMC can only write to the NV storage if the Host commands it to.

The BMC can deny the Host entrance into the Staging state via an IMPLEMENTATION DEFINED return to the
request from the Host.

The Staging state terminates:

Page 37 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

• if the Host resets
• if the Host explicitly calls fwu_end_staging.

Once the Staging state terminates the BMC regains the right to access the NV storage.

If the Host takes too long in the Staging state, the BMC can send an IMPLEMENTATION DEFINED termination
event. That event signals to the Host that the BMC can resume writing to NV storage and that the Host must
cease any direct accesses or that indirect write requests, via the BMC, will be denied. Once the BMC has
sent this event it can resume writing to NV storage immediately.

Host boot

In B2 the BMC can create the illusion that there exists a single FW bank in the NV storage. In this case, the
platform does not require a FWU metadata exposed to the Host.

In B1 the BMC must maintain a FWU Metadata such that the Host bootloader knows which bank to boot with.

Page 38 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

Platform Security Firmware Update for the A-profile Arm Architecture

Part II

Normal World controlled FW store

Some platform designs assign the NV memory, where the FW store resides, to the direct control of the Normal
World. In these platform designs the Client may execute from within the context that has read/write access to
the FW store. In that case, the Client takes the role of the Update Agent and is responsible for writing the FW
images to the FW store.

State machine

The FW update state machine is composed only of the Regular and Trial states. The state transitions occur at
the following boundaries:

• Regular to Trial: Once the Client updates the active_index field in the metadata and the new
bankactive_index has any un-accepted FW images.

• Trial to Regular: Once the Client has marked all images in the bankactive_index as accepted in the
metadata.

After writing each FW image, the Client must set the image entry metadata field img_bank_info[update_index].accepted
to:

• 0: if the Client intends to defer the image acceptance;
• 1: if the Client intends to accept the image immediately.

The system is in the Trial state while any image in the current bankactive_index is not accepted.

FW directory information

The Client must be able to obtain the data otherwise provided by the FW directory (see Section 4.2).

The following fields are present in the metadata:

• active_index
• per-image img_uuid
• per-image bankactive_index accepted flag.

The remaing FW directory fields must be obtained by the Client via an IMPLEMENTATION DEFINED procedure.

Page 39 of 39 Copyright © 2021 Arm Limited or its affiliates. All rights reserved.
Non-confidential

DEN0118
1.0ALP3

	Release information
	Arm Non-Confidential Document Licence (``Licence'')
	About this document
	Terms and abbreviations
	References
	Feedback

	1 Overview
	2 System design concepts
	2.1 Firmware banks
	2.2 Boot stages
	2.2.1 Platform Boot

	2.3 Recovery Mode
	2.4 Protocol UUIDs

	3 Firmware update state machine
	3.1 Staging state
	3.2 Trial state

	4 System management
	4.1 FW update metadata
	4.1.1 Metadata integrity check
	4.1.2 Metadata integration with GPT [recommendation]

	4.2 Image directory
	4.3 Anti-rollback counter management
	4.4 Protocol-updatable images
	4.4.1 Image authentication

	5 Normal World Client ABI
	5.1 Transport layer
	5.1.1 Setup phase

	5.2 ABI definition
	5.2.1 fwu_discover
	5.2.1.1 Arguments
	5.2.1.2 Returns

	5.2.2 fwu_begin_staging
	5.2.2.1 Arguments
	5.2.2.2 Returns

	5.2.3 fwu_end_staging
	5.2.3.1 Arguments
	5.2.3.2 Returns

	5.2.4 fwu_cancel_staging
	5.2.4.1 Arguments
	5.2.4.2 Returns

	5.2.5 fwu_open
	5.2.5.1 Arguments
	5.2.5.2 Returns

	5.2.6 fwu_write_stream
	5.2.6.1 Arguments
	5.2.6.2 Returns

	5.2.7 fwu_read_stream
	5.2.7.1 Arguments
	5.2.7.2 Returns

	5.2.8 fwu_commit
	5.2.8.1 Arguments
	5.2.8.2 Returns

	5.2.9 fwu_accept_image
	5.2.9.1 Arguments
	5.2.9.2 Returns

	5.2.10 fwu_select_previous
	5.2.10.1 Arguments
	5.2.10.2 Returns

	6 Return status
	I In-band updates on systems with a BMC
	ABI implementation in B2
	Host and BMC synchronization in both models
	Host boot

	II Normal World controlled FW store
	State machine
	FW directory information

