

Isolation using virtualization in the Secure
world

Secure world software architecture on Armv8.4

 Version 1.0

Isolation using virtualization in the Secure world

Secure world software
architecture on Armv8.4

Version 1.0

Copyright © 2018 Arm Limited or its affiliates. All rights reserved. 1

Non-Confidential Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document

may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means

without the express prior written permission of Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is

granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for

the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING,

WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A

PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and has

undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT,

INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document

complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or

indirectly, in violation of such export laws. Use of the word “partner” in reference to Arm’s customers is not intended to create or refer to any

partnership relationship with any other company. Arm may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any click through or signed written agreement covering this

document with Arm, then the click through or signed written agreement prevails over and supersedes the conflicting provisions of these terms. This

document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this

document and any translation, the terms of the English version of the Agreement shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or

elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please

follow Arm’s trademark usage guidelines at http://www.arm.com/company/policies/trademarks.

Copyright © [2018] Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20349

http://www.arm.com/company/policies/trademarks

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Introduction

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

2

Contents

Non-Confidential Proprietary Notice..1

1 Introduction... 3

2 Background .. 4

3 Today’s challenges in the Secure world ... 6

3.1. Trusted application ecosystem challenges ...6

3.2. Integration of code from multiple vendors in the Secure world ...6

3.3. The principle of least privilege ...6

3.4. Required solution ..7

4 Virtualization in Secure world ... 8

5 Secure partitions .. 11

6 Migration of the secure ecosystem to Secure EL2... 13

6.1. Impacts on trusted operating systems ..13

6.2. Impacts on Normal world software ...13

7 Conclusion ... 14

8 Glossary .. 15

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Introduction

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

3

1 Introduction
Armv8.4 architecture adds virtualization support in the Secure world. This whitepaper describes why this feature has been introduced, and the

improvements in security that it provides. The paper introduces a software architecture to leverage these benefits. Secure EL2, and this software

architecture provide the basis for an A-Profile processor version of the Platform Security Architecture (PSA) Firmware Framework.

https://developer.arm.com/products/architecture/security-architectures/platform-security-architecture

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Background

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

4

2 Background
A brief history of Arm TrustZoneTM

Arm TrustZone was introduced to the Arm architecture A-profile in 2003. At the heart of the TrustZone approach is the concept of Secure and

Normal worlds that are hardware separated. Secure hardware resources are only accessible by the software running in the Secure world. Software in

the Normal world is blocked by the hardware from accessing these resources. This concept of Secure (trusted) and Normal (non-trusted) worlds

extends beyond the processor to encompass memory, software, bus transactions, interrupts, and peripherals within an SoC.

The introduction of TrustZone paved the way for an ecosystem of trusted operating systems (OS) vendors. Initially, trusted OSs provided basic device

security services, such as trusted boot, or handling of platform secrets. Today trusted OSs have evolved to support bespoke applications that might

be used in a number of security use cases, such as secure payment or media protection.

Originally, trusted OSs occupied all processor modes associated with TrustZone, and included code devoted to switching between the Normal and

Secure worlds, as well as code for providing secure services. In systems based on Armv7, and prior architecture revisions, the switching code runs in

monitor mode, whereas services code runs in secure supervisor and secure user modes. In Armv8 monitor mode evolved into an exception level, EL3,

with its own memory translation regime and interrupt vectors. This allowed for cleaner separation of code, making it easier to provide separate

binary images for switching and for services.

The advent of EL3, provided new opportunities to standardize key platform management functions. Until then, these were implemented in Normal

world software, leading to fragmentation, and solutions that had to be repeated for each OS and each individual platform. The addition of an

exception level made it possible to provide standard firmware solutions for these management functions, removing the fragmentation and

generalizing code in Normal world operating systems. The most prevalent example of this service is power management. These standardization

efforts gave rise to some key specifications:

SMC Calling Convention (SMCCC) This document provides the standard methodology to be followed when requesting a service from the secure world.

It describes how registers are to be used for arguments and return values, as well how the Secure Monitor Call (SMC) instruction is to be

invoked.

Power State Coordination Interface (PSCI) A standard for system and processor power management, covering a number of use cases including boot,

hotplug, idle, and system shutdown and reset.

Software Delegated Exceptions Interface (SDEI) Primarily used in enterprise systems, this specification provides a software equivalent to non-

maskable interrupts.

This standardization momentum didn’t stop at specifications, it also included the Trusted Firmware open source project, formerly known as the Arm

Trusted Firmware project. Trusted Firmware implements the specifications above and provides a reference for trusted boot. Today, this project

provides the Secure world firmware basis for most Arm vendors and supports a number of popular trusted OSs. In addition to the specifications

above, Trusted Firmware can be used to provide other services, such as errata management, or silicon vendor specific services.

Figure 1 shows the kinds of services offered by the Secure world in today's systems, based on the Armv8-A architecture. The figure also shows the

software agents that provide these services and the broad partitioning by exception level. A trusted OS provides security services. This typically spans

Secure EL1 and Secure EL0. Services are often provided through trusted applications that run in Secure EL0. In order to support these services, the

trusted OS will have drivers for trusted hardware resources, such as secure crypto accelerators, or secure storage devices. EL3, in addition to hosting

https://developer.arm.com/technologies/trustzone
http://infocenter.arm.com/help/topic/com.arm.doc.den0028b/ARM_DEN0028B_SMC_Calling_Convention.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022d/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0054a/index.html
https://www.trustedfirmware.org/

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Background

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

5

code to transition between the Normal and Secure worlds, provides platform services, such as core power management through PSCI. This code is

provided by the silicon vendor platform firmware, and it is often based on code from the Trusted Firmware open source project.

Figure 1 Typical services and partitioning of software agents in the Secure world

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Today’s challenges in the Secure world

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

6

3 Today’s challenges in the Secure world
The success of TrustZone has also created some architectural challenges, described in the following sections.

3.1. Trusted application ecosystem challenges

The success of TrustZone has spawned a number of trusted OSs from different vendors. Although these provide similar services, and there are some

standards around trusted OS APIs, trusted applications are trusted OS specific. This is illustrated in Figure 1, which shows how both the Normal world

client applications, and the trusted applications require linkage to trusted OS vendor specific libraries. This limits the scope of portability of

applications from one trusted OS to another. The cost of porting means that applications tend to get tied to specific trusted OSs.

This presents a problem for OEMs that need to ship a rich set of applications, with different applications tied to different trusted OSs. While there are

methods to host multiple trusted OS in Secure EL1, this requires trusted OS modification, and collaboration between different trusted OS vendors.

3.2. Integration of code from multiple vendors in the Secure world

A trusted OS needs to access trusted hardware resources to provide its services. In some cases, this is provided through silicon vendor drivers, which

need to be integrated into the trusted OS. In other cases, the silicon vendor provides its own trusted OS, again leading the OEM to a situation where

they might need to integrate more than one trusted OS. Both approaches require the OEM to integrate sources from separate vendors.

As described above, in addition to security services, platform services will be provided by platform firmware in EL3. The services require silicon

vendor specific code to perform functions, such as power management. Running alongside these services is dispatcher code, which is involved in

dispatching SMC calls to one or more trusted OSs, as well as silicon vendor firmware. The dispatching code includes trusted OS specific code, as well

as generic code, which often originates from the Trusted Firmware project.

Figure 1 illustrates an example software stack that arises from the considerations above. As can be seen, there are a number of vendors involved. The

key Secure world software components and vendors that make up this picture are:

• Trusted OSs to support security services to applications. Provided by one or more third party trusted OS vendors.

• A trusted OS, or driver model, to support trusted hardware resources on the platform, such as secure storage or a secure element.

Provided by the silicon vendor.

• EL3 firmware to provide platform services, such as PSCI. Provided by the silicon vendor.

• EL3 firmware to provide switching between Normal world and appropriate Secure world payloads, which can have sources from various

vendors.

3.3. The principle of least privilege

The principle of least privilege requires that a component must be able to access only the information and resources that are necessary for its correct

operation. This contrasts with the current approaches to Secure world software, as depicted in Figure 1. EL3 and secure EL1 are privileged exception

levels, both have the same level of access to the system address map and physical interrupts, on Armv8.3 or earlier. This means that it is not possible

to isolate components running in EL3 firmware, from those running in secure EL1. In particular:

Firmware in EL3 cannot be isolated from a trusted OS. Firmware running in EL3 cannot constrain the visibility of the secure and non-secure system

address maps from a trusted OS in Secure EL1.

https://globalplatform.org/specs-library/
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Today’s challenges in the Secure world

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

7

EL3 firmware components cannot be isolated from each other. As depicted in Figure 1, generic firmware components, silicon vendor or third-party

trusted OS vendor components, can merge in EL3. All arise from different vendors, and yet cannot be isolated from each other, as they

have the same visibility of the physical address map, and of physical interrupts.

Normal world cannot be protected from trusted OSs in secure EL1. Secure EL1 has unconstrained access to the whole physical address map, both

secure and non-secure. Unconstrained access to the system address map has been used in privilege escalation attacks on some trusted OS

implementations.

Overall, these constraints make it impossible to enforce the principle of least privilege to each of the software components. This increases the

complexity of auditing and certification, as all of the software entities need to implicitly trust each other, and therefore, cannot be audited

separately. This approach also makes it hard to isolate trusted hardware resources to a particular software entity. A System MMU (SMMU) can

alleviate this problem, however it does not eliminate it, as the software component programming the SMMU cannot be isolated from other Secure

world software components.

3.4. Required solution

Solving the challenges listed above requires an architecture that can facilitate componentization and hardware isolation. The solution requires

extending from the security separation provided by TrustZone, which provides just isolation between two worlds, to an architecture that can provide

isolation between multiple, mutually-mistrusting software images. In particular, the solution requires:

• A method to provide hardware isolation between software components. This removes the need for mutual trust and allows components to

be audited separately from each other.

o Isolation requires restricting access to physical address space, registers, for processors and Direct Memory Access (DMA)-capable

trusted peripherals.

• To enable the ecosystem of vendors to work together, the architecture will require standard APIs for common boundaries.

o Standard APIs will enable the various software images to communicate and allow generalization and componentization of code.

This enables removing trusted OS vendor specific code from EL3 and non-secure EL2.

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Virtualization in Secure world

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

8

4 Virtualization in Secure world

The Armv8.4 architecture introduces the Secure EL2 extension, adding support for virtualization in the Secure world. This brings the features that are

available for virtualization in the non-secure state, to the secure state.

A key feature in virtualization support is the addition of a hypervisor-controlled second stage of translation. This allows a hypervisor to control which

areas of physical memory are available to a virtual machine. Figure 2 illustrates the basic idea. A guest operating system controls the first stage of

translation, which translates between the virtual address space (VA) and the intermediate physical address space (IPA). A second stage of translation,

controlled by the hypervisor, translates between IPA and physical address space (PA). This enables a hypervisor to control which portions of the

physical address space are visible to a given virtual machine.

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Virtualization in Secure world

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

9

Figure 2 Stage 2 translation

Secure EL2 adds stage 2 translations to the secure state of processors. Further, the Arm System MMU architecture 3.2 and higher supports stage 2

translations in the secure state for other IO masters. Together, these features bring virtualization support to the Secure world and provide a

hardware basis that meets a number of the architectural requirements described above. Secure virtualization enables:

1. The isolation of EL3 software from Secure EL1 software.

2. The isolation of Normal world software from Secure EL1 software.

3. Isolation of distinct Secure EL1 software components from each other.

The architecture extensions provided by Secure EL2 enable the isolation of Secure world software from different vendors. This architecture also

enables isolating software stacks that have different purposes.

https://developer.arm.com/products/system-ip/system-controllers/system-memory-management-unit

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Virtualization in Secure world

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

10

Traditionally, trusted OSs can access any location in the system address map. As the trusted OS is a privileged entity, a weakness in its

implementation could be exploited to access any memory address in the system, secure or non-secure. Indeed, privilege escalation attacks of this

nature have been reported on some trusted OS implementations. Secure EL2 prevents this escalation by restricting the memory regions accessible by

software resident in Secure EL1 or Secure EL0. This is enabled by the use of stage 2 translations. Control of stage 2 translations in the secure state of

a System MMU, extends this protection to include DMA-capable trusted hardware resources.

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Secure partitions

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

11

5 Secure partitions
Secure EL2 and SMMU provide the hardware isolation needed to meet the challenges described above. This section describes a software

architecture that leverages these features to meet these challenges. This architecture also establishes standard APIs that enable collaboration

between vendors of Secure world software.

Figure 3 Software stack with secure partitions

Figure 3 describes the basic elements of a software architecture for the Secure world, in a system that includes Secure EL2. The basic elements are:

Secure partitions in Secure EL1. A secure partition is a sand-boxed environment, which has an isolated address space. This space cannot be directly

accessed by other secure partitions. With Secure EL2, a secure partition is implemented through virtualization support and is essentially a

Secure world virtual machine. The secure partition can be used to host a trusted OS, or may contain a driver stack for a trusted hardware

resource. Figure 3 depicts one secure partition hosting a trusted OS, and another hosting silicon-vendor-provided platform drivers.

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Secure partitions

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

12

Secure Partition Manager. Generic firmware in EL3 and Secure EL2 is responsible for managing these secure partitions. A key component here is the

Secure Partition Manager (SPM), which is responsible for directing requests to the correct secure partition, and for policing accesses by

secure partitions. The SPM can be thought of as a minimal partitioning hypervisor.

Figure 3 illustrates a software architecture in which the platform-specific firmware component, provided by the silicon vendor, is isolated from the

firmware in Secure EL2 and EL3, as well as the trusted OS. This is achieved by placing the trusted OS and the platform firmware into separate secure

partitions. To enable this architecture, the SPM needs to know which resources are required for each partition. This allows it to put in place the

appropriate memory map restrictions, and to dispatch partitions when messages or interrupts are sent to them. This can be achieved through the

use of a resource description manifest for each partition, which primarily describes:

1. The system resources it needs, memory, ownership of interrupts, and access to regions in the physical system address map.

2. A list of secure services that it implements through a combination of the requested resources and specified attributes.

At boot time, the SPM consumes the resource description to:

1. Validate and allocate resources requested by a secure partition.

2. Perform architectural and system setup, required by a secure partition e.g. maintenance of the vGIC and stage 2 translations.

3. Initialize the secure partition once its execution environment has been established.

In order to keep EL3 and Secure EL2 code generic, this software architecture will require standard APIs at the boundaries between the various

software agents. APIs are needed between clients of secure services in the Normal world, and providers of services in secure partitions. The desired

features for such an interface are:

1. Enable message passing between a client in the Normal world and a service in a secure partition.

2. Enable discovery of a secure service in a partition.

3. Enable memory sharing between a client and a secure partition.

4. A generic interface that requires no trusted OS specific drivers in the Normal world hypervisor and the SPM, and by consequence EL3 and

Secure EL2.

Arm’s proposal for this interface is described in the Secure Partition Client Interface (SPCI). Arm welcomes collaboration and feedback on this

proposal.

In addition, standard APIs are required between secure partitions and the Secure Partition Manager. This provides the basis for secure partition

runtime environment. The basic requirements for such an API:

1. Enable message passing between secure partitions.

2. Enable reception of messages and interrupts in secure partitions.

3. Enable initialization of secure partitions.

Together with resource management, message passing between secure partitions provides a means to create services for Secure world clients, and a

way to securely share trusted hardware resources. Arm proposes the Secure Partition Run Time (SPRT), as the basis for secure partition runtime APIs.

This is a specification that describes the run time model that a secure partition can rely on to implement secure services. It specifies the mandatory

information that must be included in the resource description of a secure partition, as well as the run time model and interface to the SPM. The SPRT

and SPCI can be thought of as the firmware framework of the Platform Security Architecture in A-profile processors. Both specifications cover

approaches for systems with and without Secure EL2 (S-EL2). This enables software migration to these specifications, prior to the availability of

hardware with S-EL2.

https://connect.arm.com/dropzone/systemarch/DEN0077A-Secure_Partition_Interface_Specification-1.0alp0.pdf
https://connect.arm.com/dropzone/systemarch/DEN0078A-Secure_Partition_Run-time_Specification-0.1alp0.pdf

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Migration of the secure ecosystem to Secure EL2

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

13

6 Migration of the secure ecosystem to
Secure EL2
The software architecture described above, brings about changes and impacts to vendors for Secure world software. These are discussed below.

6.1. Impacts on trusted operating systems

Virtualizing trusted OSs changes the way they interact with physical resources on the platform. The SPM constrains access to the system address map

and physical interrupts.

In systems without Secure EL2, secure physical interrupts are typically routed to Secure EL1. With Secure EL2, the interrupts are managed by secure

firmware in a manner similar to how a hypervisor in the Normal world manages non-secure physical interrupts. These are first directed to the

hypervisor, which then delegates their counterpart virtual interrupts to a guest OS VM. To enable this approach in the proposed Secure EL2

architecture, a system integrator needs to specify, for a given trusted OS in a secure partition, which secure interrupts it will handle. This information

needs to be consumed by the Secure Partition Manager so that it can route the corresponding virtual interrupts to the appropriate secure partition.

Trusted OS interrupt handling code should not be significantly affected by this. The trusted OS will run against a virtual GIC (vGIC), which is software

transparent, and receive interrupts at the interrupt vector.

Much as in the interrupt case, a system integrator will have to specify which regions or memory can be seen by a secure partition. This information

needs to be consumed by the SPM so that it can put in place the appropriate stage 2 page tables in the processor, and if needed, in System MMUs.

Placing a trusted OS in a secure partition, will require some changes to enable usage of the new standard APIs.

6.2. Impacts on Normal world software

Hypervisors can be used in mobile devices to provide additional security. When this is the case, a hypervisor can require trusted OS specific

modifications, to allow a client operating system to send messages to a trusted OS.

For the architecture proposed in Figure 3, Arm is proposing a generalized message passing interface, the Secure Partition Client Interface (SPCI). This

will allow removal of trusted OS specific drivers from EL3 and Secure EL2 firmware. It will lead to a generic implementation of the SPM, provided by

the Trusted Firmware open source project. Migrating to the SPCI will require changing trusted OS drivers in client kernels to move to the SPCI, as well

as providing a generic driver in Normal world hypervisors.

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0
Conclusion

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

14

7 Conclusion
This whitepaper describes the rationale behind the introduction of the virtualization extension in the Secure world in Armv8.4 architecture. In

addition, it proposes an approach to extend the existing Secure world software architecture to exploit the benefits of secure virtualization. These

benefits include improved security isolation, and generalization of Normal and Secure world code. A more detailed description of this architecture

can be found in the SPCI and SPRT specifications. These specifications, alongside the introduction of Secure EL2 in the architecture, provide the basis

for a Platform Security Architecture (PSA) Firmware Framework for A-Profile processors.

Isolation using virtualization in the Secure world Secure world software
architecture on Armv8.4

Version 1.0

Lorem ipsum dolor
Version 1.0

Glossary

Copyright © 2018 Arm Limited or its affiliates. All rights reserved.

15

8 Glossary
Term Meaning

ABI Application Binary Interface

GIC Generic Interrupt Controller

IOMMU Input/Output Memory Management Unit

IPA Intermediate Physical Address

OS Operating System

PA Physical Address

PSCI Power State Coordination Interface

SMMU System Memory Management Unit

SPCI Secure Partition Client Interface

SPM Secure Partition Manager

SPRT Secure Partition Run Time

TEE Trusted Execution Environment

TOS Trusted Operating System

VA Virtual Address

VM Virtual Machine

	Non-Confidential Proprietary Notice
	1 Introduction
	2 Background
	3 Today’s challenges in the Secure world
	3.1. Trusted application ecosystem challenges
	3.2. Integration of code from multiple vendors in the Secure world
	3.3. The principle of least privilege
	3.4. Required solution

	4 Virtualization in Secure world
	5 Secure partitions
	6 Migration of the secure ecosystem to Secure EL2
	6.1. Impacts on trusted operating systems
	6.2. Impacts on Normal world software

	7 Conclusion
	8 Glossary

