

PSA Attestation API 1.0
Architecture & Technology Group

Document number: ARM IHI 0085

Release Quality: Release

Issue Number: 0

Confidentiality: Non-Confidential

Date of Issue: 17/06/2019

© Copyright Arm Limited 2019. All rights reserved.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page ii
1.0 Release (issue 0) Non-Confidential

Contents

About this document iv

Release Information iv

Proprietary Notice v

References vii

Potential for change vii

Conventions vii
Typographical conventions vii
Numbers viii

Pseudocode descriptions viii

Assembler syntax descriptions viii

Current status and anticipated changes viii

Feedback viii
Feedback on this book viii

1 Introduction 9

2 Use cases and rationale 10

2.1 Device enrolment 10

2.2 Identifying certification 11

2.3 Integrity reporting 11

3 PSA Initial Attestation report 12

3.1 Information model 12
3.1.1 Software components 13

3.2 Report format and signing 14
3.2.1 Token Encoding 14
3.2.2 Signing 15
3.2.3 EAT Standard Claims 15
3.2.4 EAT Custom Claims 15

4 API Reference 17

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page iii
1.0 Release (issue 0) Non-Confidential

4.1 Error handling 17

4.2 General definitions 17
4.2.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro) 17
4.2.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro) 17
4.2.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro) 17

4.3 Challenge sizes 17
4.3.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro) 18
4.3.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro) 18
4.3.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro) 18

4.4 Attestation 18
4.4.1 psa_initial_attest_get_token (function) 18
4.4.2 psa_initial_attest_get_token_size (function) 19

5 Appendix: Example report 20

6 Document history 22

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page iv
1.0 Release (issue 0) Non-Confidential

About this document

Release Information

The change history table lists the changes that have been made to this document.

Date Version Confidentiality Change

Feb 2019 1.0 beta 0 Non-Confidential Initial publication.

June 2019 1.0.0

Non-Confidential Uses the PSA common error status codes.

Modified the API parameters to align with PSA APIs.

Updated the claims and lifecycle to match the latest PSA
Security Model.

Updated CBOR example in the appendix.

See the Document History for a full list of changes.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page v
1.0 Release (issue 0) Non-Confidential

PSA Attestation API

Copyright ©2019 Arm Limited or its affiliates. All rights reserved. The copyright statement reflects the fact that
some draft issues of this document have been released, to a limited circulation.

Proprietary Notice

Arm Non-Confidential Document Licence (“Licence”)

This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of the document accompanying
this Licence (“Document”). Arm is only willing to license the Document to you on condition that you agree to the
terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the terms of
this Licence. If you do not agree to the terms of this Licence, Arm is unwilling to license this Document to you and
you may not use or copy the Document.

This Document is NON-CONFIDENTIAL and any use by you is subject to the terms of this Licence between you and
Arm.

Subject to the terms and conditions of this Licence, Arm hereby grants to you under the intellectual property in
the Document owned or controlled by Arm, a non-exclusive, non-transferable, non-sub-licensable, royalty-free,
worldwide licence to:

(i) use and copy the Document for the purpose of designing and having designed products that comply with the

Document;

(ii) manufacture and have manufactured products which have been created under the licence granted in (i)

above; and

(iii) sell, supply and distribute products which have been created under the licence granted in (i) above.

You hereby agree that the licences granted above shall not extend to any portion or function of a product that
is not itself compliant with part of the Document.

Except as expressly licensed above, you acquire no right, title or interest in any Arm technology or any intellectual
property embodied therein.

THE DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE
DOCUMENT. Arm may make changes to the Document at any time and without notice. For the avoidance of doubt,
Arm makes no representation with respect to, and has undertaken no analysis to identify or understand the scope
and content of, third party patents, copyrights, trade secrets, or other rights.

NOTWITHSTANING ANYTHING TO THE CONTRARY CONTAINED IN THIS LICENCE, TO THE FULLEST EXTENT
PETMITTED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, IN CONTRACT, TORT OR OTHERWISE,
IN CONNECTION WITH THE SUBJECT MATTER OF THIS LICENCE (INCLUDING WITHOUT LIMITATION) (I) LICENSEE’S
USE OF THE DOCUMENT; AND (II) THE IMPLEMENTATION OF THE DOCUMENT IN ANY PRODUCT CREATED BY
LICENSEE UNDER THIS LICENCE). THE EXISTENCE OF MORE THAN ONE CLAIM OR SUIT WILL NOT ENLARGE OR

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page vi
1.0 Release (issue 0) Non-Confidential

EXTEND THE LIMIT. LICENSEE RELEASES ARM FROM ALL OBLIGATIONS, LIABILITY, CLAIMS OR DEMANDS IN EXCESS
OF THIS LIMITATION.

This Licence shall remain in force until terminated by you or by Arm. Without prejudice to any of its other rights,
if you are in breach of any of the terms and conditions of this Licence then Arm may terminate this Licence
immediately upon giving written notice to you. You may terminate this Licence at any time. Upon termination of
this Licence by you or by Arm, you shall stop using the Document and destroy all copies of the Document in your
possession. Upon termination of this Licence, all terms shall survive except for the licence grants.

The Document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication
or disclosure of the Document complies fully with any relevant export laws and regulations to assure that the
Document or any portion thereof is not exported, directly or indirectly, in violation of such export laws.

If any of the provisions contained in this Licence conflict with any of the provisions of any click-through or signed
written agreement with Arm relating to the Document, then the click-through or signed written agreement
prevails over and supersedes the conflicting provisions of this Licence. This Licence may be translated into other
languages for convenience, and you agree that if there is any conflict between the English version of this Licence
and any translation, the terms of the English version of this Licence shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm (or its
subsidiaries) in the EU, US and/or elsewhere. All rights reserved. No licence, express, implied or otherwise, is
granted to you under this Licence, to use the Arm trade marks in connection with the Document or any products
based thereon.

The validity, construction and performance of this Licence shall be governed by English Law.

Copyright © 2019 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

Arm document reference: LES-PRE-21585

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page vii
1.0 Release (issue 0) Non-Confidential

References

This document refers to the following documents.

Ref Document
Number

Title Location

PSA-SM ARM DEN 0079 PSA Security Model https://pages.arm.com/psa-resources-sm.html

PSA-FF ARM DEN 0063 PSA Firmware Framework https://pages.arm.com/psa-resources-ff.html

EAT N/A IETF Entity Attestation Token
draft

https://tools.ietf.org/html/draft-mandyam-
eat-01

CBOR RFC7049 IETF Concise Binary Object
Representation

https://tools.ietf.org/html/rfc704

COSE RFC8152 CBOR Object Signing and
Encryption specification

https://tools.ietf.org/html/rfc8152

EAN-13 EAN-13 International Article Number https://www.gs1.org/standards/barcodes/ean-
upc

Potential for change

The contents of this specification are subject to change.

In particular, the following may change:

• Feature addition, modification, or removal

• Parameter addition, modification, or removal

• Numerical values, encodings, bit maps

Conventions

Typographical conventions

The typographical conventions are:

italic

Introduces special terminology and denotes citations.

bold

Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace

Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items
appearing in assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used for some common terms such as IMPLEMENTATION DEFINED.

https://pages.arm.com/psa-resources-sm.html
https://pages.arm.com/psa-resources-ff.html
https://tools.ietf.org/html/draft-mandyam-eat-01
https://tools.ietf.org/html/draft-mandyam-eat-01
https://tools.ietf.org/html/rfc704
https://tools.ietf.org/html/rfc8152
https://www.gs1.org/standards/barcodes/ean-upc
https://www.gs1.org/standards/barcodes/ean-upc

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page viii
1.0 Release (issue 0) Non-Confidential

Used for a few terms that have specific technical meanings and are included in the Glossary.

Red text

Indicates an open issue.

Blue text

Indicates a link. This can be

• A cross-reference to another location within the document

• A URL, for example http://infocenter.arm.com

Numbers

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.

In both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFF0000. To
improve readability, long numbers can be written with an underscore separator between every four characters,
for example 0xFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This book uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font. The pseudocode language is described in the Arm Architecture
Reference Manual.

Assembler syntax descriptions

This book is not expected to contain assembler code or pseudo code examples.

Any code examples are shown in a monospace font.

Current status and anticipated changes

First draft, major changes and re-writes to be expected.

Feedback

Arm welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this book, send an e-mail to arm.psa-feedback@arm.com. Give:

• The title (PSA Attestation API).

• The number and release (ARM IHI 0085 1.0 Release 0).

• The page numbers to which your comments apply.

• The rule identifiers to which your comments apply, if applicable.

• A concise explanation of your comments.

Arm also welcomes general suggestions for additions and improvements.

mailto:arm.psa-feedback@arm.com

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 9
1.0 Release (issue 0) Non-Confidential

1 Introduction
Arm’s Platform Security Architecture (PSA) is a holistic set of threat models, security analyses, hardware and
firmware architecture specifications, an open source firmware reference implementation, and an independent
evaluation and certification scheme. PSA provides a recipe, based on industry best practice, that allows security
to be consistently designed in, at both a hardware and firmware level.

The PSA Attestation API is a standard interface provided by the PSA Root of Trust. The definition of the PSA Root
of Trust and the expected trust relationships are described in the PSA Security Model (PSA-SM).

This document includes:

• a set of common use cases
• information about the attestation report and the format
• the associated Application Programming Interface (API)

The API can be used either to directly sign data or as a way to bootstrap trust in other attestation schemes. PSA
provides a framework and the minimal generic security features allowing OEM and service providers to integrate
various attestation schemes on top of the PSA Root of Trust without requiring direct integration with different
Root of Trust implementations. Further information can be found in the PSA-SM.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 10
1.0 Release (issue 0) Non-Confidential

2 Use cases and rationale
The following subsections describe the primary use cases that PSA aims to support in this version of the API.
Other use cases are also possible.

The PSA Root of Trust reports information, known as claims, that can be used to determine the exact
implementation of the PSA Root of Trust and its security state. If the PSA Root of Trust loads other components,
then it also includes information about what it has loaded. Other components outside of the PSA Root of Trust
can add additional information to the report by calling the provided API, which will include and sign the
additional information.

Attestation reports are signed by the PSA Root of Trust using its Initial Attestation Key (IAK). More information
about the IAK is described in the PSA-SM.

2.1 Device enrolment

Enrolment is the ability for an online service to enlist a device. For example, a generic connected sensor that
becomes part of a company’s deployment. As part of the enrolment process, credentials need to be created for
each device. However, the devices themselves need to be trustworthy to ensure that credentials are not leaked.

A common solution to this problem is to certify security hardware using third-party labs, who are trusted to
deliver worthwhile certifications. By placing trust in evaluation reports (such as Common Criteria or PSA
Certified), one can ascertain whether a Root of Trust exhibits important security properties. For example, one
important property is the ability to generate a key pair of good quality (using a non-predictable random number
generator) and store it in a tamper-proof area, which guarantees that a device private key is only ever known by
that device. Each device instance contains a protected attestation key that can be used to prove that they are a
particular certified implementation.

During such an enrolment process, a device might generate a new key pair and create a Certificate Signing
Request (CSR) or equivalent, containing:

• The public key of the generated key-pair.
• A proof of possession of the corresponding private key (in general this is the public key signed by the

private key). This protects against man-in-the-middle attacks where an attacker can hijack the enrolment
to insert their own public key into the device request.

• An initial attestation, in order for the recipient to assess how that particular combination of hardware
and firmware can be trusted.

The CSR is then passed to a Certification Authority who can assign it an identity with the new service and then
return an identity certificate signed using the private key of the Certification Authority. The Certification
Authority may be operated by the company who owns the devices or operated by a trusted third party. Creating
extra identities on devices is expected to be a routine operation.

If a device is built with PSA isolation Level 3, where all applications inside a device execute inside their own
Secure Partition, then it allows several mutually-distrustful providers to install their applications side-by-side
without having to worry about leaking assets from one Secure Partition to another.

The attestation identity can be verified in an attestation process and checked against certification information.
At the end of the process the verifier can establish a secure connection to the attested endpoint and deliver
credentials. For example, they may be service access credentials.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 11
1.0 Release (issue 0) Non-Confidential

2.2 Identifying certification

The combination of a hardware entity and the software installed on that entity can be certified to conform to
some published security level.

Manufacturers of devices can advertise a security certification as an incentive to purchase their devices. To gain
the certification a manufacturer can engage a test lab to verify the hardware and software combination of a
device conforms to specific standards. Certification should not be declared by the device, instead it is a dynamic
situation where the hardware and software state can be checked against the current known certification status
for that combination.

The initial attestation report declares the state of the device to a verification service. The verification service can
then:

• Verify the production status of the device identity. For example, to identify whether the device is in an
inventory and whether it is a secured production device or a development device).

• Verify the certification status of a device. This involves checking that all components up to date, correctly
signed, and certified to work together.

• Complete an attestation protocol to establish a secure connection that is bound to the device identity.

2.3 Integrity reporting

A party may want to check the received list of claims against a database of known measurements for each
component in order to decide which level of trust should be applied. Additional information can be included,
such as the version numbers for all software running on the device. As a minimum, the device provides a hash
for each loaded component. Boot measurements are included in order to assess if there are obvious signs of
tampering with the device firmware.

Initial attestation requires three services:

• Enrolment verification service enforcing policy as part of service enrolment of the device.
• Production verification service (OEM), providing the production state of an attestation identity
• Certification verification service (third party), verifying that all attested components are up to date,

signed correctly, and certified to work together.

It is possible to further separate these roles. For example, there may be a separate software verification service.

These services can be hosted by different parties in online or offline settings:

• The first service requires generating a challenge, reading back the device’s answer, and validating an
asymmetric signature.

• The second service may periodically log the current security state for all addressable devices and make
that information available upon request. It does not require the knowledge of any pre-shared secret or a
prior trust exchange with a device vendor. The various databases required for the full verification
process may be local, replicated, or centralized, depending on the particular market.

Further information about using existing attestation protocols can be found in the PSA-SM.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 12
1.0 Release (issue 0) Non-Confidential

3 PSA Initial Attestation report
This section begins with a description of the information model for the report and then describes the expected
format.

3.1 Information model

The following table describes the mandatory and optional claims in the report:

Claim Mandatory Description

Auth Challenge Yes Input object from the caller. For example, this can be a cryptographic
nonce or a hash of locally attested data. The length must be 32, 48, or
64 bytes.

Instance ID Yes Represents the unique identifier of the instance. It is a hash of the
public key corresponding to the Initial Attestation Key. The full
definition is in the PSA-SM.

Verification
service indicator

No A hint used by a relying party to locate a validation service for the
token. The value is a text string that can be used to locate the service
or a URL specifying the address of the service.

A verifier may choose to ignore this claim in favor of other information.

Profile definition No Contains the name of a document that describes the ‘profile’ of the
report. The document name may include versioning. The value for this
specification is PSA_IOT_PROFILE_1.

Implementation
ID

Yes Uniquely identifies the underlying immutable PSA RoT. A verification
service can use this claim to locate the details of the verification
process. Such details include the implementation’s origin and
associated certification state. The full definition is in the PSA-SM.

Client ID Yes Represents the Partition ID of the caller. It is a signed integer whereby
negative values represent callers from the NSPE and where positive IDs
represent callers from the SPE. The full definition of the partition ID is
defined in the PSA Firmware Framework (PSA-FF).

It is essential that this claim is checked in the verification process to
ensure that a security domain cannot spoof a report from another
security domain.

Security
Lifecycle

Yes Represents the current lifecycle state of the PSA RoT. The state is
represented by an integer that is divided to convey a major state and a
minor state. A major state is mandatory and defined by PSA-SM. A
minor state is optional and IMPLEMENTATION DEFINED. The PSA security
lifecycle state and implementation state are encoded as follows:

• version[15:8] – PSA security lifecycle state
• version[7:0] – IMPLEMENTATION DEFINED state.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 13
1.0 Release (issue 0) Non-Confidential

The PSA security lifecycle states consist of the following values:

• PSA_LIFECYCLE_UNKNOWN (0x0000u)
• PSA_LIFECYCLE_ASSEMBLY_AND_TEST (0x1000u)
• PSA_LIFECYCLE_PSA_ROT_PROVISIONING (0x2000u)
• PSA_LIFECYCLE_SECURED (0x3000u)
• PSA_LIFECYCLE_NON_PSA_ROT_DEBUG (0x4000u)
• PSA_LIFECYCLE_RECOVERABLE_PSA_ROT_DEBUG (0x5000u)
• PSA_LIFECYCLE_DECOMMISSIONED (0x6000u)

For PSA, a remote verifier can only trust reports from the PSA RoT
when it is in SECURED or NON_PSA_ROT_DEBUG major states.

Hardware
version

No Provides metadata linking the token to the GDSII that went to
fabrication for this instance. It can be used to link the class of chip and
PSA RoT to the data on a certification website. It must be represented
as a thirteen-digit EAN-13

Boot seed Yes Represents a random value created at system boot time that can allow
differentiation of reports from different boot sessions.

Software
components

Yes (unless the
No Software
Measurements
claim is
specified)

A list of software components that represent all the software loaded by
the PSA Root of Trust. This claim is needed for the rules outlined in the
PSA-SM. Each entry has the following fields:

1. Measurement type
2. Measurement value
3. Version
4. Signer ID
5. Measurement description

The full definition of the software component is described in Software
Components

This claim is required to be compliant with the PSA-SM.

No Software
Measurements

Yes (if no
software
components
specified)

In the event that the implementation does not contain any software
measurements then the Software Components claim above can be
omitted but instead it is mandatory to include this claim to indicate this
is a deliberate state.

This claim is intended for devices that are not compliant with the PSA-
SM.

3.1.1 Software components

Each software component in the Software Components claim must include the required properties of the
following table:

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 14
1.0 Release (issue 0) Non-Confidential

Key
ID

Type Required Description

1 Measurement
type

No A short string representing the role of this software component (e.g. ‘BL’
for boot loader).

Expected types may include:

• BL (a bootloader)
• PRoT (a component of the PSA Root of Trust)
• ARoT (a component of the Application Root of Trust)
• App (a component of the NSPE application)
• TS (a component of a trusted subsystem)

2 Measurement
value

Yes Represents a hash of the invariant software component in memory at
startup time. The value must be a cryptographic hash of 256 bits or
stronger.

3 Reserved No Reserved

4 Version No The issued software version in the form of a text string. The value of this
claim corresponds to the entry in the original signed manifest of the
component.

5 Signer ID No The hash of a signing authority public key for the software component.
The value of this claim corresponds to the entry in the original manifest
for the component.

This can be used by a verifier to ensure the components were signed by
an expected trusted source.

This field must be present to be compliant with the PSA-SM.

6 Measurement
description

No Description of the software component, which represents the way in
which the measurement value of the software component is computed.
The value is a text string containing an abbreviated description (or name)
of the measurement method which can be used to lookup the details of
the method in a profile document. This claim may normally be excluded,
unless there is an exception to the default measurement described in the
profile for a specific component.

3.2 Report format and signing

This section describes the specific representation, encoding and signing of the information described in the
Information Model.

3.2.1 Token Encoding

The report is represented as a token, which must be formatted in accordance to the IETF Entity Attestation
Token (EAT) draft specification. The token consists of a series of claims declaring evidence as to the nature of the
instance of hardware and software. The claims are encoded with the CBOR format.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 15
1.0 Release (issue 0) Non-Confidential

3.2.2 Signing

The token is signed following the structure of the CBOR Object Signing and Encryption (COSE) specification. The
COSE type must be COSE-Sign1.

Verification of the public key used in the signature requires consulting an authoritative verification service.

3.2.3 EAT Standard Claims

The token is modelled to include custom values that correspond to the following EAT standard claims (as
expressed in the draft EAT proposal):

• nonce (mandatory); arm_psa_nonce is used instead
• UEID (mandatory); arm_psa_UEID is used instead
• origination (recommended); arm_psa_origination is used instead

A future version of the profile, corresponding to an issued standard, might declare support for both custom and
standard claims as a transitionary state towards exclusive use of standard claims.

3.2.4 EAT Custom Claims

The token can include the following EAT Custom Claims. Arm PSA Custom claims have a root identity of -75000.

Some fields must be at least 32 bytes to provide sufficient cryptographic strength.

Key ID Type Name CBOR type

-75000 Profile Definition arm_psa_profile_id Text string

-75001 Client ID arm_psa_partition_id Unsigned integer or Negative integer

-75002 Security Lifecycle arm_psa_security_lifecycle Unsigned integer

-75003 Implementation ID arm_psa_implementation_id Byte string (>=32 bytes)

-75004 Boot seed arm_psa_boot_seed Byte string (>=32 bytes)

-75005 Hardware version arm_psa_hw_version Text string

-75006 Software
components
(compound map
claim)

arm_psa_sw_components Array of map entries. Each map entry must
have the following types for each Key-Value:

1. Text string (type)
2. Byte string (measurement, >=32 bytes)
3. Reserved
4. Text string (version)
5. Byte string (signer ID, >=32 bytes)
6. Text string (measurement description)

-75007 No software
measurements

arm_psa_no_sw_measurements Unsigned integer

-75008 Auth Challenge arm_psa_nonce Byte string

-75009 UEID arm_psa_UEID Byte string

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 16
1.0 Release (issue 0) Non-Confidential

-75010 Origination
(Verification
service indicator)

arm_psa_origination Byte string

An example report can be found in Example Report

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 17
1.0 Release (issue 0) Non-Confidential

4 API Reference
The API has a respective header file that must be provided by the implementation. The header file must be of
the following name: <psa/initial_attestation.h>

All the following definitions must be present in the header file.

All the functions are defined in the C language. The APIs make use of standard ‘C’ data types as defined in the
ISO C99 specification.

4.1 Error handling

All functions must return a status indication of type psa_status_t, which is defined by <psa/error.h>. The
definition of <psa/error.h> is provided by (PSA-FF). This is an enumeration of integer values, with 0
(PSA_SUCCESS) indicating successful operation and negative values indicating errors.

Each API documents the specific error codes that might be returned, and the meaning of each error.

All parameters of pointer type must be valid, non-null pointers unless the pointer is to a buffer of length 0 or the
function’s documentation explicitly describes the behavior when the pointer is null. For implementations where
a null pointer dereference usually aborts the application, passing NULL as a function parameter where a null
pointer is not allowed should abort the caller in the habitual manner.

Pointers to input parameters may be in read-only memory. Output parameters must be in writable memory.
Output parameters that are not buffers must also be readable, and the implementation must be able to write to
a non-buffer output parameter and read back the same value.

4.2 General definitions

4.2.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)

#define PSA_INITIAL_ATTEST_API_VERSION_MAJOR (1)

The major version of this implementation of the PSA Attestation API.

4.2.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)

#define PSA_INITIAL_ATTEST_API_VERSION_MINOR (0)

The minor version of this implementation of the PSA Attestation API.

4.2.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)

#define PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE

The maximum possible size of a token, in bytes. The value of this constant is IMPLEMENTATION DEFINED.

4.3 Challenge sizes

The following constants define the valid challenge sizes that must be supported by the function
psa_initial_attest_get_token() and psa_initial_attest_get_token_size().

An implementation must not support other challenge sizes.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 18
1.0 Release (issue 0) Non-Confidential

4.3.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)

#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (32u)

A challenge size of 32 bytes (256 bits).

4.3.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)

#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (48u)

A challenge size of 48 bytes (384 bits).

4.3.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)

#define PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (64u)

A challenge size of 64 bytes (512 bits).

4.4 Attestation

4.4.1 psa_initial_attest_get_token (function)

Retrieve the Initial Attestation Token.

psa_status_t psa_initial_attest_get_token(const uint8_t *auth_challenge,
 size_t challenge_size,
 uint8_t *token_buf,
 size_t token_buf_size,
 size_t *token_size);

Parameters:

auth_challenge Buffer with a challenge object. The challenge object is data provided by the
caller. For example, it may be a cryptographic nonce or a hash of data (such
as an external object record).

 If a hash of data is provided then it is the caller’s responsibility to ensure
that the data is protected against replay attacks (for example, by including a
cryptographic nonce within the data).

challenge_size Size of the buffer auth_challenge in bytes. The size must always be a
supported challenge size. Supported challenge sizes are defined in the
Challenge Sizes section.

token_buf Output buffer where the attestation token is to be written.

token_buf_size Size of token_buf. The expected size can be determined by using the
psa_initial_attest_get_token_size function.

token_size Output variable for the actual token size.

Outputs:

*token_buf On success, the attestation token.

*token_size On success, the number of bytes written into token_buf.

Returns: psa_status_t

PSA_SUCCESS Action was performed successfully.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 19
1.0 Release (issue 0) Non-Confidential

PSA_ERROR_SERVICE_FAILURE The implementation failed to fully initialize.

PSA_ERROR_BUFFER_TOO_SMALL token_buf is too small for the attestation token.

PSA_ERROR_INVALID_ARGUMENT The challenge size is not supported.

PSA_ERROR_GENERIC_ERROR An unspecified internal error has occurred.

Description:

Retrieves the Initial Attestation Token. A challenge can be passed as an input to mitigate replay attacks.

4.4.2 psa_initial_attest_get_token_size (function)

Calculate the size of an Initial Attestation Token.

psa_status_t psa_initial_attest_get_token_size(size_t challenge_size,
 size_t *token_size);

Parameters:

challenge_size Size of a challenge object in bytes. This must be a supported challenge size
as specified in the Challenge Sizes section.

token_size Output variable for the token size.

Outputs:

*token_size On success, the maximum size of an attestation token in bytes when using
the specified challenge_size

Returns: psa_status_t

PSA_SUCCESS Action was performed successfully.

PSA_ERROR_SERVICE_FAILUR The implementation failed to fully initialize.

PSA_ERROR_INVALID_ARGUMENT The challenge size is not supported.

PSA_ERROR_GENERIC_ERROR An unspecified internal error has occurred.

Description:

Retrieve the exact size of the Initial Attestation Token in bytes, given a specific challenge size.

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 20
1.0 Release (issue 0) Non-Confidential

5 Appendix: Example report
An example report is included here in extended CBOR diagnostic form for illustrative purposes:

18(
[
/ protected / h'a10126' / {
 \ alg \ 1: -7 \ ECDSA 256 \
 } / ,
/ unprotected / {},
/ payload / h'a93a000124fb5820000102030405060708090a0b0c0d0e0f1011121
31415161718191a1b1c1d1e1f3a000124fa5820000102030405060708090a0b0c0d0e
0f101112131415161718191a1b1c1d1e1f3a000124fd84a4025820000102030405060
708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0465332e312e34055820
000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f01624
24ca4025820000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c
1d1e1f0463312e31055820000102030405060708090a0b0c0d0e0f101112131415161
718191a1b1c1d1e1f016450526f54a4025820000102030405060708090a0b0c0d0e0f
101112131415161718191a1b1c1d1e1f0463312e30055820000102030405060708090
a0b0c0d0e0f101112131415161718191a1b1c1d1e1f016441526f54a4025820000102
030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f0463322e320
55820000102030405060708090a0b0c0d0e0f101112131415161718191a1b1c1d1e1f
01634170703a000124f91930003a000124ff5820000102030405060708090a0b0c0d0
e0f101112131415161718191a1b1c1d1e1f3a000125016c7073615f76657269666965
723a000124f8203a00012500582101000102030405060708090a0b0c0d0e0f1011121
31415161718191a1b1c1d1e1f3a000124f7715053415f496f545f50524f46494c455f
31' / {
 / arm_psa_boot_seed / -75004: h'000102030405060708090a0b0c0d0e0f10
 1112131415161718191a1b1c1d1e1f',
 / arm_psa_implementation_id / -75003: h'000102030405060708090a0b0c
 0d0e0f101112131415161718191a1b1c1d1e1f',
 / arm_psa_sw_components / -75006: [
 {
 / measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
 131415161718191a1b1c1d1e1f',
 / version / 4: "3.1.4",
 / signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
 415161718191a1b1c1d1e1f',
 / type / 1: "BL"
 },
 {
 / measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
 131415161718191a1b1c1d1e1f',
 / version / 4: "1.1",
 / signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
 415161718191a1b1c1d1e1f',
 / type / 1: "PRoT"
 },
 {
 / measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
 131415161718191a1b1c1d1e1f',
 / version / 4: "1.0",
 / signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131
 415161718191a1b1c1d1e1f',
 / type / 1: "ARoT"
 },
 {
 / measurement / 2: h'000102030405060708090a0b0c0d0e0f101112
 131415161718191a1b1c1d1e1f',
 / version / 4: "2.2",
 / signerID / 5: h'000102030405060708090a0b0c0d0e0f101112131

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 21
1.0 Release (issue 0) Non-Confidential

 415161718191a1b1c1d1e1f',
 / type / 1: "App"
 }
],
 / arm_psa_security_lifecycle / -75002: 12288 / SECURED /,
 / arm_psa_nonce / -75008: h'000102030405060708090a0b0c0d0e0f10111
 2131415161718191a1b1c1d1e1f',
 / arm_psa_origination / -75010: "psa_verifier",
 / arm_psa_partition_id / -75001: -1,
 / arm_psa_UEID / -75009: h'01000102030405060708090a0b0c0d0e0f1011
 12131415161718191a1b1c1d1e1f',
 / arm_psa_profile_id / -75000: "PSA_IoT_PROFILE_1"
 }),
 } / ,
/ signature / h'58860508ee7e8cc48eba872dbb5d694a542b1322ad0d51023c197
0df429f06501c683a95108a0cced0a6e80e0966f22bd63d1c0056974a11ba332d7877
87fb4f'
]
)

ARM IHI 0085 Copyright © 2019 Arm Limited or its affiliates. All rights reserved. Page 22
1.0 Release (issue 0) Non-Confidential

6 Document history

Date Changes

2019-02-25 Release 1.0 beta 0

2019-06-12 Release 1.0.0

• The API functions now use PSA's common psa_status_t return type.

• Error values now use standard PSA error codes, which are now defined in
<psa/error.h>.

• Input parameters are now separate from output parameters. There are no longer any
in/out parameters.

• Size types have been replaced with size_t instead of uint32_t.

• Some parameter names have been changed to improve legibility.

• The description of the Implementation ID claim has been rewritten to better match the
definition in PSA-SM.

• Signer ID is no longer a mandatory part of the Software Components claim. However, it
is needed for PSA-SM compliance.

• Explicitly describe which optional claims are required for PSA-SM compliance.

• Added lifecycle state (PSA_LIFECYCLE_ASSEMBLY_AND_TEST).

• Clarifications and improvements to the description of some API elements and to the
structure of the document.

• Updated CBOR example in the appendix

• Added PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE macro

	About this document
	Release Information
	Proprietary Notice
	References
	Potential for change
	Conventions
	Typographical conventions
	Numbers

	Pseudocode descriptions
	Assembler syntax descriptions
	Current status and anticipated changes
	Feedback
	Feedback on this book

	1 Introduction
	2 Use cases and rationale
	2.1 Device enrolment
	2.2 Identifying certification
	2.3 Integrity reporting

	3 PSA Initial Attestation report
	3.1 Information model
	3.1.1 Software components

	3.2 Report format and signing
	3.2.1 Token Encoding
	3.2.2 Signing
	3.2.3 EAT Standard Claims
	3.2.4 EAT Custom Claims

	4 API Reference
	4.1 Error handling
	4.2 General definitions
	4.2.1 PSA_INITIAL_ATTEST_API_VERSION_MAJOR (macro)
	4.2.2 PSA_INITIAL_ATTEST_API_VERSION_MINOR (macro)
	4.2.3 PSA_INITIAL_ATTEST_MAX_TOKEN_SIZE (macro)

	4.3 Challenge sizes
	4.3.1 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_32 (macro)
	4.3.2 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_48 (macro)
	4.3.3 PSA_INITIAL_ATTEST_CHALLENGE_SIZE_64 (macro)

	4.4 Attestation
	4.4.1 psa_initial_attest_get_token (function)
	4.4.2 psa_initial_attest_get_token_size (function)

	5 Appendix: Example report
	6 Document history

