

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 1 of 19

Porting to 64-bit Arm – White Paper

Chris Shore, Arm July 2014

Introduction

Why 64-bit? It seems that is a question with many answers! For some, it will be the need to address more
than 4GB of memory, for others the need for wider registers and greater accuracy of 64-bit data
processing, for still others the attraction of a larger register set.

Whatever your reason for looking to move to 64-bit, it is likely that you will have a body of legacy software
which will need porting as well as new code which needs writing. This paper is designed to help with both
processes.

We’ll start with a quick look at the evolution of the Arm architecture which has brought 64-bit to reality.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 2 of 19

Evolution of the Arm architecture

The diagram shows how all the features present in ARMv7-A have been carried forward into ARMv8-A.
But ARMv8 supports two execution states: AArch32, in which the A32 and T32 instruction sets (Arm and
Thumb in ARMv7-A) are supported and AArch64, in which the new A64 instruction set is introduced.

Although backwards compatible with ARMv7-A, the exception, privilege and security model has been
significantly extended and is now classified as a set of exception levels, EL0 to EL3, in a four-level
hierarchy.

In AArch32, the ARMv7-A Large Physical Address Extensions are supported, providing 32-bit virtual
addressing and 40-bit physical addressing. In AArch64, this is extended, again in a backward compatible
way, to provide 64-bit virtual addresses and a 48-bit physical address space.

Other additions include cryptographic support at instruction level.

ARMv8-A

A32+T32 ISAs

AdvSIMD
(SP float)

CRYPTO

A64 ISA

ARMv7-A

LargePhysAddrExtn

VirtualizationExtn

TrustZone

ARM+Thumb ISAs

NEON

Hard_Float

CRYPTO

32-bit VA; ≤40-bit PA
4KB pages

>32-bit VA; ≤48-bit PA
{4, 16, 64}KB pages

EL3, EL2, EL1 and EL0 exception hierarchy

AdvSIMD
(SP+DP float)

LD acquire/ST release: C1x/C++11 compliance

IEEE 754-2008 compliant floating point

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 3 of 19

Overview of AArch64 in ARMv8-A

The A64 instruction set, defined in AArch64, has been designed from the ground up as a clean, modern
instruction set which operates on 64-bit or 32-bit native datatypes or registers. A64 is a fixed-length
instruction set in which all instructions are 32 bits in length. It does, as you might expect, have many
similarities with the A32 instruction set which you’ll be familiar with from earlier Arm architectures. There
are some things you’ll find which are new and some things which you’ll go looking for and aren’t there!

What you’ll find...

You’ll find more and larger registers. General-purpose registers are all 64-bit and can be accessed by
most instructions either as 64-bit doublewords or as 32-bit words. If written as a 32-bit word, then the top
half of the register is cleared.

Floating point support, single and double precision, is officially an optional part of the instruction set.
However, it is expected to be included in all but a very few parts targeted at specific applications (e.g.
networking) which have no need of floating point capability. Specifically, the Arm ABI for ARMv8-A does
not provide for any soft floating-point linkage variant. All systems which support standard operating
systems with rich application environments are expected to provide hardware support for floating point
and Advanced SIMD.

System software can read the ID_AA64PFR0_EL1 to check whether these features are present on a
particular system.

The Floating Point and Advanced SIMD (NEON) functionality has been carried over and the A64 support
for these is familiar but a little different in places. In particular, check out the register mapping changes
described below. Note that VFP and NEON are not separately optional in ARMv8-A (as they were in
ARMv7-A) – a part will either include all or none of it. NEON now supports double-precision floating point
and IEEE-754 arithmetic.

On the integer side, hardware divide support is included as standard.

You’ll still find a load/store architecture.

...and what you won’t

If you are familiar with ARMv7-A, you’ll know that many instructions can be conditionally executed. In
A32, this is supported via a condition field in the instruction itself; in T32, we have the IT (if-then)
instruction for building conditional sequences. This isn’t supported in A64 and we have a different set of
specific conditional instructions. You can find examples below.

The ability to “embed” shift and rotate operations into data processing instructions is not supported in the
same way in A64, although it is still possible to shift, rotate and sign-extend or zero-extend the second
operand.

The Program Counter (PC) is no longer generally accessible. In particular, it can’t be read or modified like
other general purpose registers. There are pseudo-instructions which can be used to use it indirectly (for
instance, to generate PC-relative addresses at run-time).

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 4 of 19

Historically, the Arm instruction set has included a space for «coprocessors». Originally, these were
external blocks of logic which were connected to the core via a dedicated coprocessor interface. More
recently, this support for external coprocessors has been dropped and the instruction set space is used
for extension instructions. One specific use of it has been to provide for system configuration and control
operations via the notional «coprocessor 15». You won’t find anything like this in A64.

The load and store multiple instructions have been replaced with instructions which load and store pairs
of 64-bit registers. These are used for stack operations as well, in place of the earlier PUSH and POP.

Register set
The register set offers 31 64-bit general purpose registers. All can be used either as 64-bit “Xn” registers
or 32-bit “Wn” registers operating on just the lower 32 bits. There is also a dedicated zero register which
adds flexibility to many operations.

For memory access, all base pointers are now 64-bit registers allowing 64-bit virtual addressing.

The increased number and width of the registers offers some immediate and obvious advantages in
greater ease of 64-bit data processing and less need to spill to the stack. The Procedure Call Standard
also makes use of the greater freedom allowing up to 8 doubleword parameters to be passed in registers.

There is a separate register bank for SIMD and Floating Point. This offers 32 registers, all 128 bits wide.
These can be addressed as vectors of elements ranging from bytes up to 128-bit quadword. One key
difference for those used to earlier Arm architecture is the change in the way these registers map.
Previously, in the NEON architecture, the mapping of word (S), doubleword (D) and quadword (Q)
registers looked like this:

S0 S1 S2 S3

D0 D1

Q0

S4 S5 S6 S7

D2 D3

Q1

...

You can see that S0 and S1 combine to form D0, D0 and D1 combine to form Q0 and so on. For some
use cases, this isn’t ideal. So, in AArch64, the mapping has changed to this:

S0

D0

V0

S1

D1

V1

...

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 5 of 19

Here, S0 is the bottom half of D0, which is the bottom half of V0; S1 is the bottom half of D1, which is the
bottom half of V1 and so on. This eliminates many of the problems compilers have in auto-vectorizing
high level code.

Instruction set
The new A64 instruction set has a fixed 32-bit instruction length. If you are familiar with ARMv7-A A32
and T32 instruction sets you will find much which is familiar. Changes include:

• Addition of Load-Acquire (LDAR) and Store-Release (STLR) instructions which combine a load or
store with a memory barrier. These simplify the implementation of critical sections.

• Optional cryptographic acceleration support at instruction level. Operating on the vector bank,
these instructions provide common building block operations for efficient implementation of e.g.
AES and SHA encryption algorithms.

Those two items have also been retro-fitted to the A32 instruction set in ARMv8-A.

Unlike earlier versions of the instruction set, A64 does not support conditional execution of individual
instructions (like the Arm instruction set) or groups of instructions (like the Thumb instruction set). Instead,
it supports a range of instructions (like CSINC – Conditional Select and Increment) whose behavior is
modified by the current state of the condition code flags. Coupled with the full set of conditional branches,
these make for very compact and efficient control flow.

Memory model
Looking at the memory architecture, again much is carried over from ARMv7-A.

• Unaligned access is supported in Normal memory for the loads and stores (with very few
exceptions, such as the Load and Store Exclusive instructions for instance).

• The data and instruction interfaces are natively little-endian, although the data interface can be
built for big-endian support. While individual applications cannot change their own endianness, an
Operating System can host both big-endian and little-endian applications.

• There is a greater range of preload hint instructions. These allow preload for load and for store as
well as providing hints about whether preloaded data should be cached or not.

• A pair of “one-way” barrier instructions, Load-Acquire (LDAR) and Store-Release (STLR), offer
greater flexibility than the DMB/DSB. There is an example shown in the Assembly Code section
below.

• Strongly-Ordered memory is not supported in AArch64 (it was deprecated in ARMv7-A) and
Device memory has acquired some extra features to make it more flexible (the ability to define
separate restrictions for Gathering, Re-ordering and Early Write Acknowledgement).

Changing Execution state and Instruction set
A fully-populated ARMv8-A processor supports both AArch32 and Aarch64 execution states. Transition
between the two is always across an exception boundary. This differs from ARMv7-A in which a change
of instruction set is triggered by an interworking branch (e.g. BLX).

The diagram shows the relationship between the T32, A32 and A64 instruction sets and the events which
can cause a switch between them.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 6 of 19

When taking an exception, the execution state can stay the same or go from 32-bit to 64-bit; when
returning from an exception, the execution state can stay the same or go from 64-bit to 32-bit. This
introduces a natural hierarchy of 64-bit and 32-bit support at each level.

The AArch64 register bank is mapped in a fixed way to the AArch32 registers allowing 64-bit code access
to all the user and privileged registers available to 32-bit code. This allows, for instance, a 64-bit operating
system or hypervisor to perform a complete context save for a 32-bit process or guest OS.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 7 of 19

64-bit data models
There are various standard data models in use today. They differ mainly in the size defined for integers,
longs and pointers.

ILP32 LP64 LLP64 ILP64
char 8 8 8 8
short 16 16 16 16
int 32 32 32 64
long 32 64 32 64
long long 64 64 64 64
size_t 32 64 64 64
pointer 32 64 64 64

64-bit Linux implementations use LP64 and this is supported by the defined A64-LP64 Procedure Call
Standard A64-LP64. Other PCS variants may be defined which support LLP64 (used by 64-bit Windows)
and ILP32 (a variant which can ease porting 32-bit software which doesn’t need 64-bit addressing and
can also improve performance of applications which use a lot of pointers but do not require 64-bit
addressing).

When compiling for ARMv7-A, you will most likely have used a data model equivalent to what is shown as
ILP32 in the table.

Note that the Arm compiler for ARMv8 accepts __int64 as a synonym for “long long”.

Re-compile or re-write
Any port will inevitably require an element of both! The objective in most cases will be to maximize the
former and minimize the latter.

The good news is that much code will simply recompile. However, you need to exercise due caution as
the size of many fundamental types will have changed. Although well-written C code should not have
many dependencies on the size of individual types, it is inevitable that you will come across some.

So, best practice must be to enable all warnings and errors when re-compiling and make sure you take
notice of any and all warnings issues by the compiler, even if the code appears to compiler error-free.

In particular, pay very close attention to any explicit type casts in your code as these are often the source
of errors when the sizes of the underlying types change.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 8 of 19

Compiler options for ARMv8-A

In order to enable code generation or an ARMv8-A target, it is important to supply the correct options to
the compiler. The following are available:

--cpu 8A.32
--cpu 8A.32.crypto
--cpu 8A.32.no_neon
--cpu 8A.64
--cpu 8A.64.crypto
--cpu 8A.64.no_neon

Some observations on these options:

• Compiling for A32 in ARMv8-A (code which will execute in AArch32 state) is very similar to
compiling for ARMv7-A. Code compiled for A32 will be able to make use of a few new instructions
(like Load Acquire and Store Release) and will avoid instructions which were deprecated in
ARMv7-A and have now been removed in A32 (e.g. SWP).

• Compiling with the no_neon option will avoid any use of NEON/VFP instructions or registers. This
might be useful for systems in which the SIMD unit will never be powered up or for particular code
segments (reset code and exception handlers, for example) in which it is important to ensure that
NEON/VFP is not used.

Pre-defined macros relating to ARMv8 compilation

The compiler defines a number of pre-processor macros which may be used when determining the
current compilation options.

Current compilation mode

__a32__ Compiler is in A32 (Arm) mode e.g. with the command line option

“--cpu=8-A.32 –arm”
__a64__ Compiler is in A64 mode e.g. with the command line option --cpu=8-A.64”
__arm__ Always defined for the Arm compiler, even when using A64 or Thumb

instruction sets
__thumb__ Compiler is in Thumb state
__t32__ Compiler is in T32 (Thumb) mode e.g. with the command line option

“--cpu=8-A.32 – thumb”

Available features

__ARM_NEON__ Defined when the --cpu and --fpu options indicate that NEON is available. You

could use this, for instance, to conditionally include and use the NEON
intrinsics.

__TARGET_ARCH_8_A Defined when the target architecture is ARMv8-A e.g. with the command line
option “--cpu=8-A.64”

__TARGET_PROFILE_A Defined when any of the “--cpu=8-A” options are specified

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 9 of 19

Data sizes

__sizeof_int 4 as sizeof(int)
__sizeof_long 4 or 8 as sizeof(long)
__sizeof_ptr 4 or 8 as sizeof(void *)

Assembly code

Clearly assembly code will need rewriting. There is no easy solution here. However, much can be fairly
simply translated. The following table shows the close match in many areas between the A32/T32 and
A64 instruction sets.

A32 A64

ADD Rd,Rn,#7 ADD Wd,Wn,#7

ADDS Rd,Rn,Rm,LSL #2 ADDS Wd,Wn,Wm,LSL #2

B label B label

BFI Rd,Rn,#lsb,#wid BFI Wd,Wn,#lsb,#wid

BL label BL label

CBZ Rn,label CBZ Wn,label

CLZ Rd,Rm CLZ Wd,Wm

LDR Rt,[Rn,#imm] LDR Wt,[Xn,#imm]

LDR Rt,[Rn,#imm]! LDR Wt,[Xn,#imm]!

MOV Rd,#imm MOV Wd,#imm

MUL Rd,Rn,Rm MUL Wd,Wn,Wm

RBIT Rd,Rm RBIT Wd,Wm

Note that this table is not intended as an indication of direct translations! It does illustrate the similarity in
syntax and semantics in many cases, though.

However, there are differences in many areas which will need rewrites. The following tables show some
of these.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 10 of 19

A32 A64

LDM/STM and PUSLH/POP instructions are replaced with LPD/STP (Load and Store Pair)

PUSH {r0-r1} STP x0, x1, [sp, #-16]!

POP {r0-r1} LDP x0, x1, [sp], #16

LDMIA r0!, {r1, r2} LDP x1, x2, [x0], #16

STMIA r0!, {r1, r2} STP x1, x2, [x0], #16

Note that the 64-bit APCS requires 128-bit stack alignment. This explains why X registers are used in the
A64 examples in the table (as pushing/popping a pair of W registers would not preserve alignment).

CPSR is replaced by named fields within PSTATE e.g.

A32 A64

CPSR is replaced with a set of separate registers and fields

Disable IRQ MRS R0, CPSR

ORR R0, R0, #IRQ_Bit

MSR CPSR_c, R0

MSR DAIFSET, #IRQ_bit

CPSID i

ALU Flags MRS R0, CPSR

MSR CPSR_f, R0

MRS X0, NZCV

MSR NZCV, X0

Set
Endianness

MRS R0, CPSR

ORR R0, R0, #E_bit

MSR CPSR_c, R0

SCTLR_ELn.EE controls ELn data endianness

SCTLR_EL1.E0E controls EL0 data endianness

MRS X0, SCTLR_EL1

ORR X0, X0, #EE_bit

MSR SCTLR_EL1, X0

The A32 condition execution scheme allowed the following sequence to be compiled as shown in the left
column of the table. In A64, it would make use of the new conditional select instructions as shown in the
right column.

if (x == 0)

{

 y = y + 1;

}

else

{

 y = y - 1;}

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 11 of 19

A32 Conditional execution A64 Conditional operations

 CMP r0, #0

 ADDEQ r1, r1, #1

 SUBNE r1, r1, #1

 CMP w0, #0

 SUB w2, w1, #1

 CSINC w1, w2, w1, NE

Simpler function/exception return:

A32 A64

Dedicated function and exception return instructions

Subroutine return MOV PC, LR RET

POP {PC}

BX LR

Exception return SUBS PC, LR, #4

MOVS PC, LR

ERET

Note that it is still possible to branch in some circumstances by copying an address directly to the
Program Counter. However, the RET instruction provides an explicit hint to the processor that the branch
is a function return - this can improve branch prediction (using a return stack) considerably.

Floating Point and NEON

The Floating Point and NEON instructions are included in the main instruction set (rather than targeting a
coprocessor as in earlier architectures). This means that these instructions set the core condition flags
(NZCV) directly rather than having a separate set of status flags. This makes mixing control and data flow
much easier when using the NEON/FP register bank.

The Stack Pointer

The Stack Pointer and the Zero Register are both encoded via Arm core register 31. Only a few
instructions recognize this coding as the Stack Pointer (the remainder see it as the Zero Register). The
following instructions can access the Stack Pointer:

• All loads and stores can use SP as the base register

• AND, ORR and EOR (with immediate and without flag setting) can use SP as the destination

• ADD/SUB with immediate can use SP as destination or first operand

• ADD/SUB extend can use SP as destination or first operand

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 12 of 19

It is worth noting that some instructions (e.g. CMP) alias to these instructions and that the alias versions
can also access SP in the same way.

The table above shows PUSH and POP operations using LDP/STP instructions. The examples showed
transfers involving pairs of 64-bit X registers as transferring pairs of 32-bit W registers would not preserve
128-bit alignment of the Stack Pointer. It is of course possible to PUSH/POP W registers but they need to
be transferred in groups of four to preserve alignment. However, the cannot simply be transferred as two
pairs with the Stack Pointer updated by 8 bytes each time as the second instruction would not then be
using an aligned Stack Pointer value and this would be trapped by hardware.

An example PUSH operation for four W registers might look like this:

 // PUSH (w0, w1, w2, w3)

 STP w3, w2, [sp, #-16]! // push first pair, create space for second

 STP w1, w0, [sp, #8] // push second pair

Addressing Modes

A significant feature of the A64 load and store instructions is that the addressing mode is orthogonal to
the register type. For instance, a load to one of the NEON/FP registers has the same addressing modes,
range and capabilities as an integer load to a core register.

In addition, the NEON/FP register bank supports de-interleaving or “structured” load and store
instructions similar to A32.

The Zero Register

While not necessarily of immediate use to the assembler programmer, the Zero Register simplifies the
encoding of many instructions. Specifically, it always reads as zero and writes to it are ignored. This
means that the CMP instruction can be encoded as a SUB with the Zero Register as the destination.

Load-Acquire (LDAR) and Store-Release (STLR)

These new instructions function as “one-way” barriers and can simplify some cases where barriers are
required.

For example, in the following sequence, all accesses after the LDAR are observed after the LDAR
whereas access before the LDAR are not affected.

 LDR ; these two accesses may be observed after the LDAR

 STR

 LDAR ; “barrier” which affects subsequent accesses only

 LDR ; these accesses must be observed after LDAR

 STR

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 13 of 19

Similarly:

 LDR ; these two accesses must be observed before STLR

 STR

 STLR ; “barrier” which affects prior accesses only

 LDR ; these accesses may be observed before STLR

 STR

General language issues

The 64-bit AAPCS makes extensive use of the extra registers to make for more efficient procedure calls.

X0-X7 X8-X15 X16-X23 X24-X30

Parameter / result
registers
(X0-7)

(Otherwise corruptible)

XR (X8) IP0 (X16)
Callee-saved
(X24-28)

Corruptible Registers
(X9-15)

IP1 (X17)

PR (X18)

Callee-saved
(X19-23) FP (X29) (callee-saved)

LR (X30)

There are 8 64-bit registers are available for passing parameters and returning results. In general, a
single 64-bit result is returned in X0 or a single 128-bit result is returned in X1:X0. X8 is designated as XR
(the Indirect Result Location Parameter) and can be passed in by a caller to point to an area of memory
for returning a structure.

Seven registers, X9 to X15, are corruptible by called functions and are therefore available as scratch
space.

IP0 and IP1, the Intra-Procedure Call temporary registers, are available for use by e.g. veneers or branch
islands during a procedure call. They are otherwise corruptible.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 14 of 19

The Platform Register (PR) is reserved for specific use by particular ABIs and allocators should not use it
for any other purpose. If a PR is not required on a particular platform, it may be used as a scratch register
but such code will not necessarily be portable to other platforms.

X19-X28 are designated as callee-saved and must therefore be preserved by a function call.

The Frame Pointer (X29) is used for linking stack frames.

Although not available as a general purpose register, the Stack Pointer must be 16-byte aligned at any
public interface. It must also be 16-byte aligned at any point where it is used to access memory. This is
enforced in hardware. Note that the alignment check is on the stack pointer and not on the address which
is actually accessed.

The table shows the built-in types when compiling C code for A32 and LP64.

Programming Type Size in A32 Size in A64-LP64

char 8-bit 8-bit

short 16-bit 16-bit

int 32-bit 32-bit

long 32-bit 64-bit

long long 64-bit 64-bit

float 32-bit 32-bit

double 64-bit 64-bit

size_t 32-bit 64-bit

void * (pointer) 32-bit 64-bit

intptr_t 32-bit 64-bit

ptrdiff_t 32-bit 64-bit

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 15 of 19

As long as your code has used pointers in a portable way (e.g. you have never stored a pointer in an int
variable and have never cast a pointer to a int or vice versa, for instance), the main thing to note is that
sizeof(int) != sizeof(long).

Among other effects, this will change the size, and possibly the alignment, of structures an parameter
lists. You should take care to use the int32_t and int64_t types from stdint.h in cases where storage
length matters.

Note also that size_t and ssize_t are both long (64-bit) in A64-LP64.

Although it may seem that pointers may be stored in “long” variables, you should use types like intptr_t for
maximum portability and safety.

Hints, tips and gotchas

Explicit and implicit type conversions

The internal promotion and type conversion in C/C++ can caused some unexpected problems when data
types of different length and/or sign are missed in expressions. In particular, it is sometimes important to
understand at what point conversions are made in the evaluation of an expression.

For instance:

int + long -> long

unsigned + signed -> unsigned

If the second conversion (loss of sign) is carried out before the second (promotion to long) then the result
may be incorrect when assigned to a signed long.

In cases where unsigned and signed 32-bit integers are mixed in an expression and the result assigned
to a signed long, one solution is to cast one of the operands to its 64-bit type. This will cause the other
operands to be promoted to 64-bits and no further conversion is needed when the expression is
assigned. Another solution is to cast the entire expression such that sign extension occurs on
assignment.

Consider this example, in which you would expect the result -1 in a:

long long a;

int b;

unsigned int c;

b = -2;

c = 1;

a = b + c;

This will leave a as 0x00000000FFFFFFFF (4294967295 in decimal|) and is clearly an unexpected and
incorrect result. This is because the result of the addition is converted to unsigned before it is converted
to long long.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 16 of 19

long long a;

int b;

unsigned int c;

b = -2;

c = 1;

n = (long) b + c;

This gives a result in a of 0xFFFFFFFFFFFFFFFF (-1 in 2’s complement signed notation) and is the
expected result. The calculation is now all carried out in 64 bit arithmetic and the conversion to signed
now gives the correct result.

Bit manipulation operations
Be careful that bitmasks are the correct width. There is the possibility that implicit type conversions in C
expressions can have some unexpected effects. Consider the following function or setting a specified bit
in a 64-bit variable:

long SetBitN(long value, unsigned bitNum)

{

 long mask;

 mask = 1 << bitNum;

 return value | mask;

}

This function will work fine in a 32-bit environment and allows bits to be set in positions 0 thru 31. In order
to port it to a 64-bit system, you might think it sufficient simply to change the type of the mask to allow bits
to be set in positions 0 thru 63.

long long SetBitN(long long value, unsigned bitNum)

{

 long long mask;

 mask = 1 << bitNum;

 return value | mask;

}

This doesn’t work correctly as the numeric literal ’1’ has int type. The exact behavior depends on the
configuration and assumptions of the individual compiler.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 17 of 19

To make the code function correctly, you need to give the constant the same type as the mask:

long long SetBitN(long long value, unsigned bitNum)

{

 long long mask

 mask = (long long) 1 << bitNum;

 return value | mask;

}

You should also take care to specify the type for literal values, e.g.:

 1L // (long)

 1LL // (long long)

 1U // (unsigned)

 1UL // (unsigned long)

 1ULL // (unsigned long long)

This will also go some way to avoiding this type of problem.

Magic numbers

All code includes constants of some description. However, beware of constants which make assumptions
about the size of basic types e.g.

#define BYTES_IN_WORD 4

Indexes

When using large arrays or objects in a 64-bit environment, be aware that an int may no longer be large
enough to index all entries. In particular be careful when using iterating over an array using an int index.

size_t Count = BIG_NUMBER;

for (unsigned int index = 0; index != Count; index++) ...

Since size_t is a 64-bit type and unsigned int is a 32-bit type, it is possible to define the size of the object
such that the loop will never terminate.

Pointers and ints

Given the following:

int i, *p, *q;

p = &i;

q = (int *) (int) &i;

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 18 of 19

In A32, p == q. In A64-LP64, p != q.

To guard against this, you should use intptr_t (from stdint.h) for pointer types.

In pointer arithmetic, variables which are added or subtracted from pointers should be declared as
ptrdiff_t as an int (as well as being signed) may not be large enough to hold the difference between two
pointers.

Structure padding

Changes in the sizes of individual elements and in their respective alignment requirements will change
the size of many structures.

struct foo

{

 int a;

 long l;

 int x;

}

In ILP32, this structure has size 12 (bytes) and there is no padding between the elements.

In LP64, it has size 24. The ”long” has increased from 4 bytes and 8 bytes and must now be double-word
aligned. This introduces four bytes of padding between the end of the first ”int” and the ”long”. Also, four
bytes of padding will be added to the end of the structure so that it will align properly if declared as part of
an array.

Copyright © 2014 Arm Limited. All rights reserved.
The Arm logo is a registered trademark of Arm Ltd.
All other trademarks are the property of their respective owners and are acknowledged
Page 19 of 19

References

1. Arm Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile
Arm DDI 0487

2. ARMv8 Instruction Set Architecture
Arm GENC 010197

3. Procedure Call Standard for the Arm 64-bit Architecture (AArch64)
Arm IHI 0055

4. Arm Compiler for ARMv8 – Introducing the ARM Compiler Toolchain
Arm DUI 0633

5. Arm Compiler for ARMv8 – Using the Compiler
Arm DUI 0621

6. Arm Compiler for ARMv8 - Compiler Reference
Arm DUI 0628

