
1

Performance Analysis and Optimization
ARM® Mali™ GPU Performance Counters

in ARM DS-5 Streamline Performance Analyzer

Lorenzo Dal Col

Senior Software Engineer, ARM

2

 Introduction to ARM® DS-5™ and Streamline™

 ARM Mali™ GPU Hardware Counters

 Sample Cases

 CPU bound

 Vertex bound

 Fragment arithmetic bound

 Fragment load & store bound

 Bandwidth

 Q & A

Agenda

3

ARM® DS-5 Streamline Performance Analyzer

 System wide performance analysis

 Simultaneous visibility across ARM Cortex® processors &

ARM Mali™ GPUs

 Support for graphics and GPU Compute performance

analysis on High-End GPUs

 Timeline profiling of hardware counters for detailed analysis

 Custom counters

 Per-core/thread/process granularity

 Frame buffer capture and display

 DS-5 toolchain with support for ARM Mali GPUs

 Optimize performance and power efficiency of gaming

applications across the system

4

ARM® DS-5 Streamline Performance Analyzer

Filmstrip

CPU Activity

S/W Counters

H/W Counters

GPU Activity

API Events

Heatmap

5

ARM® DS-5 Streamline Setup

 Gator interfaces with kernel & ARM Mali™ Drivers

 Extract H/W & S/W counters

 Extract frame buffer

 Pass through events & annotations

 Transmit data over TCP/IP to DS-5 tools

 Transparent to user application

 Option to add annotations to user application for

more advanced debugging

 Negligible performance impact

 Zero impact when profiling disabled

 Minimal impact in performance when enabled

ARM Cortex® & ARM Mali™ Hardware

Mali Driver

OpenGL® ES

Gator

Application TCP/IP

ARM DS-5 Toolchain

with Streamline

OS

6

Tile-Based Rendering

Memory

Vertex

Shader
Rasterizer

Fragment

Shader
Z-Test

Blend &

Resolve

Polygon List

Builder

JS1 cycles

JS1 jobs and tasks

Arithmetic pipe

ARM® Mali™ load/store pipe

JS0 cycles

JS0 jobs and tasks

Mali arithmetic pipe

Mali load/store pipe

Mali texture pipe

Mali Core Threads

Frag threads doing late ZS

…

Mali L2 Cache

External write/read

beats

External bus stalls

L2 GPU Cache

Primitives loaded

Primitives dropped

 Mali Fragment Quads

Quads rasterized

Quads doing early ZS

Quads killed early Z

Mali Fragment Tasks

Tiles rendered

Tile writes killed by TE

Vertices
Polygon

Lists Textures Framebuffer

7

 Arithmetic instructions

 Math in the shaders

 Load & Store instructions

 Uniforms, attributes and varyings

 Texture instructions

 Texture sampling and filtering

 Instructions can run in parallel

 Each one can be a bottleneck

 There are two arithmetic pipelines

so we should aim to increase the

arithmetic workload

ARM® Mali™-T628 GPU Tripipe
Tripipe Cycles

8

ARM® Mali™-T600 GPU Series Counters
Mali Job Manager Cycles

GPU cycles Number of cycles the GPU was active

IRQ cycles Number of cycles the GPU had a pending interrupt

JS0 cycles Number of cycles JS0 (fragment) was active

JS1 cycles Number of cycles JS1 (vertex/tiler/compute) was active

JS2 cycles Number of cycles JS2 (compute) was active
Mali Job Manager Work

JS0 jobs Number of Jobs (fragment) completed in JS0

JS0 tasks Number of Tasks completed in JS0

JS1 jobs Number of Jobs (vertex/tiler/compute) completed in JS1

JS1 tasks Number of Tasks completed in JS1

JS2 jobs Number of Jobs (compute) completed in JS2

JS2 tasks Number of Tasks completed in JS2
Mali Core Cycles

Tripipe cycles Number of cycles the Tripipe was active

Fragment cycles Number of cycles fragment processing was active

Compute cycles Number of cycles vertex\compute processing was active

Fragment cycles waiting for tile Number of cycles spent waiting for a physical tile buffer
Mali Arithmetic Pipe

A instructions Number of instructions completed by the A-pipe (normalized per pipeline)
Mali Load/Store Pipe

LS instructions Number of instructions completed by the LS-pipe

LS instruction issues Number of instructions issued to the LS-pipe, including restarts
Mali Texture Pipe

T instructions Number of instructions completed by the T-pipe

T instruction issues Number of instructions issued to the T-pipe, including restarts

Cache misses Number of instructions in the T-pipe, recirculated because of cache miss

Mali Core Threads
Fragment threads Number of fragment threads started

Dummy fragment threads Number of dummy fragment threads started

Compute threads Number of vertex\compute threads started
Frag threads doing late ZS Number of threads doing late ZS test
Frag threads killed late ZS Number of threads killed by late ZS test
Mali Fragment Primitives
Primitives loaded Number of primitives loaded from tiler

Primitives dropped Number of primitives dropped because out of tile
Mali Fragment Quads
Quads rasterized Number of quads rasterized
Quads doing early ZS Number of quads doing early ZS test
Quads killed early Z Number of quads killed by early ZS test
Mali Fragment Tasks
Tiles rendered Number of tiles rendered

Tile writes killed by TE Number of tile writes skipped by transaction elimination
Mali Load/Store Cache
Read hits Number of read hits in the Load/Store cache
Read misses Number of read misses in the Load/Store cache
Write hits Number of write hits in the Load/Store cache
Write misses Number of write misses in the Load/Store cache
Atomic hits Number of atomic hits in the Load/Store cache

Atomic misses Number of atomic misses in the Load/Store cache
Line fetches Number of line fetches in the Load/Store cache

Dirty line evictions Number of dirty line evictions in the Load/Store cache

Snoops in to LSC Number of coherent memory snoops in to the Load/Store cache
Mali L2 Cache
External write beats Number of external bus write beats
External read beats Number of external bus read beats
Cache read hits Number of reads hitting in the L2 cache
Write hits Number of writes hitting in the L2 cache
Write snoops Number of write transaction snoops
Read snoops Number of read transaction snoops

External bus stalls (AR) Number of cycles a valid read address (AR) is stalled by the external interconnect

External bus stalls (W)
Number of cycles a valid write data (W channel) is stalled by the external
interconnect

9

 SimpleCube sample from the ARM®

Mali™ OpenGL® ES SDK for Android™

 Draw triangles randomly distributed in a

cube space

 Space: -3.0 to +3.0 in x, y, z

 Size of the triangles from 0.0 to 0.25

 By tuning the app we can observe different

behaviors

Sample Case
Study the Counters with the ComplexCube

10

 20,000 triangles (60,000 vertices)

 One triangle for each draw call

 20,000 draw calls per frame

 Overhead for calling glDrawArrays once

every three vertices

CPU Bound Case
Running ComplexCube with one draw call per triangle

11

CPU Profiling
Find the Culprit in the Application Code

12

Batch Draw Calls
Draw 20,000 Triangles with a Single Draw Call

13

 Job Slot 1 cycles == GPU cycles

 GPU is running Vertex Shader for 99.25%

of the time

GPU Vertex Bound Case
100,000 Very Small Triangles

14

 Job Slot 0 cycles == GPU cycles

 GPU is running Fragment Shader for

98.56% of the time

GPU Fragment Bound Case
20,000 Big Triangles

15

 This is when you draw to each pixel on

the screen more than once

 Drawing your objects front to back

instead of back to front reduces

overdraw

 Limiting the amount of transparency in

the scene can help

Overdraw
The Order You Draw Triangles Matters!!!

Overdraw

16

Overdraw
Detect High Overdraw and Sort Triangles

 Sort the objects in the scene

 Front to back

 Finally, semi-transparent objects

 If you know what face an object is going to

show in the scene, even sort triangles

 Don’t just sort the indices in glDrawElements,

but also sort the vertices in the buffer, for

better caching

 ComplexCube with 20,000 sorted

triangles, from red to blue

 We expect less overdraw when the cube

is drawn with the red face in the front

17

Early Z-test and Overdraw
ComplexCube with 20,000 Sorted Triangles

18

Arithmetic Bound

 Arithmetic

 Load & Store

 Texture

91%

9%

ARM® Mali™ GPU Tripipe

Cycles

Arithmetic

Load & Store

Texture

void main()
{
 vec3 a = fragColour;
 a = sqrt(a) * a / log(a)/sin(a)/cos(a)/tan(a)*sqrt(a);
 a = a * vec3(0.00001);
 gl_FragColor = vec4(fragColour + a, 1.0);
}

19

Load and Store Bound

 Vertex Attributes

 Uniforms

 Varyings

32%

68%

ARM® Mali™ GPU Tripipe Cycles

Arithmetic

Load & Store

Texture

varying vec3 over1;
varying vec3 over2;
varying vec3 over3;
varying vec3 over4;
varying vec3 over5;
void main()
{
 vec3 a = fragColour;
 a = fragColour + over1 + over2 + over3 + over4 + over5;
 gl_FragColor = vec4(fragColour + a, 1.0);
}

20

 When creating embedded graphics

applications bandwidth is a scarce

resource

 A typical embedded device can handle

around 5GB/s of bandwidth

 A typical desktop GPU can do in excess of

100GB/s

 Involves just two ARM® Streamline™

counters

 External Bus Read Beats

 External Bus Write Beats

 In our case:

 (51.1M + 28.6M) * 16 bytes = 1.18 GB/s

Bandwidth Counters
ComplexCube with 20,000 Triangles and High Number of Varyings

Bandwidth in Bytes = (External Bus Read Beats + External Bus Write Beats) * Bus Width

21

Thank You

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its subsidiaries) in the EU

and/or elsewhere. All rights reserved. Any other marks featured may be trademarks of their respective owners

