
Title 44pt Title Case

Affiliations 24pt sentence case

20pt sentence case

Get Your Engine Ready for
Vulkan on Mobile

Hans-Kristian Arntzen

GDC 2016

Engineer

03 / 16 / 2016

© ARM2016 2

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Contents

 Background

 Command buffers and queues

 Pipelines

 Synchronization

 Strategies for asynchronous GPU

 Moving to SPIR-V shaders

© ARM2016 3

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Background

 Vulkan is a brand new, industry standard graphics and compute API

 Aims to give developers more control over modern graphics chips

 Better control of when and where work happens

 Explicit control of memory resources

 Little to no magic happening in driver

 First class multithreading support

 Gives far more responsibility to API user to get things right

 Production drivers disable validation meaning crashes or corruption with API misuse

 Public, open-source validation and debug layers important

© ARM2016 4

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Command Buffers and Queues

 Binding state and

dispatching work happens

in command buffers

 All state is contained in

command buffers

 Command buffers are

submitted to the device

Commands

Device Queue

Command
Buffer

Command
Buffer

Command
Pool

Command
Pool Binding

State

Draw Calls

Compute
Dispatch

© ARM2016 5

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipelines

 Vulkan bundles state into big monolithic pipeline state objects

 Driver has full knowledge during shader compilation

vkCreateGraphicsPipelines(...)
;

vkBeginRenderPass(...);
vkCmdBindPipeline(pipeline);
vkCmdDraw(...);
vkEndRenderPass(...);

Pipeline State

Shaders
Raster
State

Depth
Stencil

Framebuffer
Formats

Vertex
Input

Blending
State

Dynamic
State

Input
Assembly

Pipeline
Layout

© ARM2016 6

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Synchronization

 Work submitted to the GPU is completed out of order

 The real challenge of learning Vulkan is understanding this part

 Hazards are resolved by API user

 Reading from texture after rendering to it

 Reading a texture before uploading it completes

 Using results from compute shader before it completes

 Reading back data on CPU before GPU completes

 Deleting objects while in use by GPU

 Vulkan gives you the tools you need to deal with this

 Pipeline barriers and events

 Semaphores

 Fences

© ARM2016 7

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Fences

 Fences let you keep track of GPU progress

 Similar to OpenGL fences

 When submitting work to the GPU, register a fence to be signalled

vkCreateFence(...);

vkBeginCommandBuffer(...);
vkCmdBeginRenderPass(...);
vkCmdDraw(...);
vkCmdEndRenderPass(...);
vkEndCommandBuffer(...);

vkQueueSubmit(... fence);
vkWaitForFences(... fence);

© ARM2016 8

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Semaphores

 Device-side fences

 Transfer ownership and control between queues

 Used in swapchain

vkQueueSubmit(queue, { .signalSemaphores = semaphore });

// Wait until GPU is done before displaying or compositing.
vkQueuePresentKHR(queue, { .waitSemaphores = semaphore });

© ARM2016 9

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipeline Barriers

 Within a GPU queue, commands complete out of order

 Fragments still blend in correct order and state commands are fully in order

 Pipeline Barriers are used to enforce ordering of certain commands

 Pipeline Barriers generally have four parameters

 Before barrier, which pipeline stages do we wait for?

 After those stages complete, which pipeline stages do we unblock?

 When barrier is triggered, which caches do we flush?

 When barrier is triggered, which caches do we invalidate?

© ARM2016 10

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Synchronizing Render Targets

...
vkCmdEndRenderPass(cmd, renderToTexture);

// Resolve the hazard
VkMemoryBarrier barrier = {
 .srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, // Flush this
 .dstAccessMask = VK_ACCESS_SHADER_READ_BIT, // Invalidate this
};
vkCmdPipelineBarrier(cmd,
 VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, // Wait for all stages
 VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT, // Before starting fragment
 ...,
 &memoryBarrier); // Then insert memory barrier

vkCmdBeginRenderPass(cmd, renderWithTexture);
...

© ARM2016 11

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Compute Shader Writes Uniform Buffer

vkCmdDispatch(cmd, Nx, Ny, Nz);

// Resolve the hazard
VkMemoryBarrier barrier = {
 .srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT, // Flush this
 .dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT, // Invalidate this
};
vkCmdPipelineBarrier(cmd,
 VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, // Wait for compute
 VK_PIPELINE_STAGE_VERTEX_SHADER_BIT, // Before starting vertex
 ...,
 &memoryBarrier); // Then insert memory barrier

vkCmdBeginRenderPass(cmd, renderWithUpdatedUBO);
...

© ARM2016 12

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Special Pipeline Stages

 VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT

 The very first stage where commands are parsed by the GPU

 If used as srcStage, the pipeline barrier waits for nothing

 VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT

 Where commands retire

 If used as dstStage, the pipeline barrier does not block any subsequent commands from executing

 Useful for executing memory barriers without stalling subsequent commands

 Also very useful when synchronizing with semaphores

 VK_PIPELINE_STAGE_HOST_BIT

 For CPU readbacks

 VK_PIPELINE_STAGE_ALL_GRAPHICS/COMMANDS_BIT

 Waits for everything

© ARM2016 13

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Strategies for Asynchronous GPU

 In Vulkan, the swapchain exposes a fixed number of images

 No magic backbuffer

 Images belonging to the swapchain can be in one of three states

 Application owned

 GPU is rendering to it

 Presentation engine is displaying it

 Overall goal for us is to avoid touching resources while in use by GPU

 We want a high-level system for dealing with this in a clean way

 We certainly do not want to track resources individually

 Need to deal with pipeline barriers

 Semi-automatic solution seems to be a good fit

© ARM2016 14

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Dealing With Pipeline Barriers

 Two principle ways of dealing with hazards

 Track invalidations for readers

 Writers inject pipeline barriers ahead of time

 Tracking reads is painful and error prone

 Objects are generally read many more times than they are written to

 Writers typically know future usage of objects

 If rendering to a framebuffer, 99% of the time it will be read as a texture

 If dispatching compute, you know where it’s used later

 If writers inject barriers right away, can forget about tracking

 Your API abstraction can reflect this, with sensible defaults that cover the common case

BeginRenderPass(attachments, UsedInMemoryDomains =
MEMORY_DOMAIN_TEXTURE,
 UsedInPipelineStages = PIPELINE_STAGE_FRAGMENT);

© ARM2016 15

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Managing Pools and Memory

 Command buffers are transient in nature

 We allocate, build and submit them in same frame

 Reusing command buffers is not as useful as it sounds!

 Having a central allocator for command buffers makes it very manageable

 Descriptor sets tend to be transient or completely static

 If transient, we can allocate, write and forget the descriptor set

 Otherwise, the descriptor set is completely static and will live for the entire program

 Freeing and reclaiming memory

 Actually freeing memory and objects must be deferred

 Write your own memory manager that deals with this

© ARM2016 16

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The Vulkan Mainloop Sketch: Start of Frame
VkSemaphore acquire, release; // Create these
uint32_t index;

// First, figure out which image we should render to.
vkAcquireNextImageKHR(swapchain, acquire, &index);

pContext->currentIndex = index;
pContext->setBackbuffer(pContext->pBackbuffers[index]);

// First, make sure that GPU resources are safe to reclaim.
pContext->pFenceList[index].waitAndResetAllFences();

// Command buffers, descriptor pools and memory in this frame can be recycled.
pContext->pPools[index].resetPools();
pContext->pMemoryManager->notifyGPUCompletedFrame();
pContext->replaceSemaphores(index, acquire, release);

© ARM2016 17

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

The Vulkan Mainloop Sketch: End of Frame

// After building command buffers, submit them.
// We don’t necessarily own the backbuffer quite yet, so we cannot
// write to it until the acquire semaphore signals.
vkQueueSubmit({
 .waitSemaphores = pContext->pAcquireSemaphores[currentIndex],

 // We only need to block writeout to the backbuffer.
 // We can still perform vertex shading safely!
 // This is extremely important for tiled GPUs!
 .waitStages = VK_PIPELINE_STAGES_COLOR_ATTACHMENT_OUTPUT_BIT,
 // When we complete our frame, signal the release semaphore.
 .signalSemaphores = pContext->pReleaseSemaphores[currentIndex],
 .signalFence = pContext->pFences[index].requestClearedFence(),
});
vkQueuePresentKHR({ .index = currentIndex,
 .waitSemaphores = pContext->pReleaseSemaphores[currentIndex] });

© ARM2016 18

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Moving to SPIR-V Shaders

 Vulkan supports shaders in SPIR-V format

 Intermediate representation

 Similar to LLVM IR

 Feature set closely tied to GLSL

 Not designed to be written by hand, but instead easy to consume for tools

 Can just ship SPIR-V instead of GLSL in app

 Official GLSL to SPIR-V compiler available on Github

 Suitable both as an offline tool as well as run-time library

 https://github.com/KhronosGroup/glslang

 Also the reference frontend for GLSL

 Opens up for new shading languages

https://github.com/KhronosGroup/glslang
https://github.com/KhronosGroup/glslang

© ARM2016 19

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Compiling GLSL Source to SPIR-V

$ cat myshader.vert

#version 310 es
layout(set = 0, binding = 0) uniform UBO {
 mat4 MVP;
};

layout(location = 0) in vec4 Position;

void main() {
 gl_Position = MVP * Position;
}

$ glslangValidator –V –o myshader.spv myshader.vert

© ARM2016 20

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan GLSL

 Vulkan introduces GL_KHR_vulkan_glsl

 Designed for offline tools, not actual OpenGL drivers

 Designed to target Vulkan and SPIR-V features

 Adds some features to GLSL

 Removes and/or changes some GLSL features

 Extends #version 140 and higher on desktop and #version 310 es for mobile

content

 Can still write ES shaders with mediump support and run SPIR-V on desktop

© ARM2016 21

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Push Constants

 Push constants replace non-opaque uniforms

 Think of them as small, fast-access uniform buffer memory

 Update in Vulkan with vkCmdPushConstants

// New
layout(push_constant, std430) uniform PushConstants {
 mat4 MVP;
 vec4 MaterialData;
} RegisterMapped;

// Old, no longer supported in Vulkan GLSL
uniform mat4 MVP;
uniform vec4 MaterialData;

// Opaque uniform, still supported
uniform sampler2D sTexture;1

© ARM2016 22

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Subpass Inputs

 Vulkan supports subpasses within render passes

 Standardized GL_EXT_shader_pixel_local_storage!

// GLSL
#extension GL_EXT_shader_pixel_local_storage : require
__pixel_local_inEXT GBuffer {
 layout(rgba8) vec4 albedo;
 layout(rgba8) vec4 normal;
 ...
} pls;

// Vulkan
layout(input_attachment_index = 0) uniform subpassInput albedo;
layout(input_attachment_index = 1) uniform subpassInput normal;
...

© ARM2016 23

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shader Reflection in SPIR-V

 You will need to create a pipeline layout

 The layout describes which resource types

are used in a pipeline

 Doing this by hand is not feasible

 Vulkan provides no built-in query interface

 Fortunately, there are free tools for this

© ARM2016 24

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Using Vulkan GLSL in OpenGL

 It is very likely that an engine targeting Vulkan will use Vulkan GLSL as a starting

point

 A Vulkan enabled engine will likely also support OpenGL

 Vulkan GLSL is very close, but not quite compatible with GL

 Descriptor sets not supported in GL

 Vulkan has flat binding space compared to per-type binding spaces in GL

 No push constants

 Subtle differences like gl_InstanceIndex vs. gl_InstanceID

 #ifdef VULKAN possible, but tedious and ugly

© ARM2016 25

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Introducing SPIR2CROSS Tool

 Developed while porting internal engine to Vulkan

 Desire to target SPIR-V in all backends, including OpenGL ES

 Open sourced on github.com/ARM-software/spir2cross

 Permissive open source license

 Supports full resource reflection of SPIR-V in runtime

 Very handy for creating Vulkan pipeline layouts and set up descriptor pools automatically

 Can disassemble to readable and efficient GLSL

 Designed to emit usable GLSL

 Vulkan features can be remapped to GL compatible features

 Emit both desktop and ES shaders, can also emit to ES 2.0

 Full support for vertex, fragment, tessellation, geometry and compute shaders

© ARM2016 26

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

SPIR2CROSS Example

// myshader.frag
#version 310 es
precision mediump float;
layout(binding = 0) uniform sampler2D sTexture;
layout(location = 0) in vec2 vTexCoord;
layout(location = 0) out vec4 FragColor;
void main() {
 FragColor = texture(sTexture, vTexCoord);
}

// Compile to SPIR-V
$ glslangValidator –H –V –o myshader.spv myshader.frag

© ARM2016 27

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Disassemble Back to GLSL
$ spir2cross myshader.spv --version 310 --es --dump-resources
ID 017 : vTexCoord (Location : 0) // Inputs
ID 009 : FragColor (Location : 0) // Outputs
ID 013 : sTexture (Set : 0) (Binding : 0) // Textures

#version 310 es
precision mediump float;
precision highp int;

layout(binding = 0) uniform mediump sampler2D sTexture;
layout(location = 0) out vec4 FragColor;
layout(location = 0) in vec2 vTexCoord;

void main()
{
 FragColor = texture(sTexture, vTexCoord);
}

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their

respective owners.

Copyright © 2016 ARM Limited

Thank you!

© ARM 2016 29

Text 54pt Sentence Case

ARM Booth #1624 on Expo Floor:
 Live demos of the techniques shown in this session

 In-depth Q&A with ARM engineers

 More tech talks at the ARM Lecture Theatre

http://malideveloper.arm.com/gdc2016:
 Revisit this talk in PDF and video format post GDC

 Download the tools and resources

To Find Out More….

© ARM2016 30

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan on Mobile with Unreal Engine 4 Case Study
Weds. 9:30am, West Hall 3022

Making Light Work of Dynamic Large Worlds
Weds. 2pm, West Hall 2000

Achieving High Quality Mobile VR Games
Thurs. 10am, West Hall 3022

Optimize Your Mobile Games With Practical Case Studies
Thurs. 11:30am, West Hall 2404

An End-to-End Approach to Physically Based Rendering
Fri. 10am, West Hall 2020

More Talks From ARM at GDC 2016
Available post-show at the Mali Developer Center: malideveloper.arm.com/

