Achieving High-performance
Graphics on Mobile With the
Vulkan API

ARM Marius Bjorge

Graphics Research Engineer

GDC 2016

Agenda

= Overview

« Command Buffers

= Synchronization

= Memory

= Shaders and Pipelines
= Descriptor sets

= Render passes

= Misc

©ARM2016

(Vu ikan.

ARM

Overview — OpenGL G/uiikan.

= OpenGL is mainly single-threaded
= Drawcalls are normally only submitted on main thread
= Multiple threads with shared GL contexts mainly used for texture streaming

= OpenGL has a lot of implicit behaviour
= Dependency tracking of resources
= Compiling shader combinations based on render state

= Splitting up workloads
= All this adds APl overhead!

= OpenGL has quite a small footprint in terms of lines of code

©ARM2016 ARM

Overview —Vulkan Wuikan.

= Vulkan is designed from the ground up to allow efficient multi-threading
behaviour

= Vulkan is explicit in nature

= Applications must track resource dependencies to avoid deleting anything that might still be
used by the GPU or CPU

= Little APl overhead

= Vulkan is very verbose in terms of lines of code

= Getting a simple “Hello Triangle” running requires ~1000 lines of code

©ARM2016 ARM

Overview QWukan.

= To get the most out of Vulkan you probably have to think about re-designing
your graphics engine

= Migrating from OpenGL to Vulkan is not trivial

= Some things to keep in mind:
= What performance level are you targeting?
= Do you really need Vulkan?
« How important is OpenGL support?
= Portability?

5 ©ARM2016 ARM

Command Buffers Qalkan.

= Used to record commands which are later submitted to a device for execution

= This includes draw/dispatch, texture uploads, etc.

= Primary and secondary command buffers

= Command buffers work independently from each other
= Contains all state
= No inheritance of state between command buffers

6 ©ARM2016 ARM

7

Command Buffers

©ARM2016

Secondary commands

Secondary commands

Secondary commands

Secondary commands

ARM

Command Buffers Qalkan.

« In order to have a common higher-level command buffer abstraction we also
had to support the same interface in OpenGL

= Record commands to linear allocator and playback later
= Uniform data pushed to a separate linear allocator per command buffer

8 ©ARM2016 ARM

Synchronization Qulican.

= Submitted work is completed out of order by the GPU
= Dependencies must be tracked by the application

= Using output from a previous render pass
= Using output from a compute shader
= Etc

= Synchronization primitives in Vulkan
= Pipeline barriers and events
= Fences
= Semaphores

9 ©ARM2016 ARM

Allocating Memory

= Memory is first allocated and then bound to Vulkan objects
= DifferentVulkan objects may have different memory requirements
= Allows for aliasing memory across different vulkan objects

= Driver does no ref counting of any objects in Vulkan

= Cannot free memory until you are sure it is never going to be used again

= Most of the memory allocated during run-time is transient
= Allocate, write and use in the same frame
= Block based memory allocator

©ARM2016

<Vu ikan.

ARM

Block Based Memory Allocator

= Relaxes memory
reference counting

= Only entire blocks are Time >

freed/recycled
Block 0 - C)

. vikAcquireNextimageKHR
. vkQueuePresentKHR
() Reclaim block

I ©ARM2016 ARM

Image Layout Transitions Tuiican.

= Must match how the image is used at any time
=« Pedantic or relaxed

= Some implementations might require careful tracking of previous and new layout to achieve
optimal performance

= For Mali we can be quite relaxed with this — most of the time we can keep the image layout
as VK_IMAGE_LAYOUT _GENERAL

12 ©ARM20I16 ARM

Pipelines Quikan.

= Vulkan bundles state into big monolithic pipeline state objects
= Driver has full knowledge during shader compilation

vkCreateGraphicsPipelines(...) Pipeline State

, Pynamic Raster Shaders)
: State / State /
vkBeginRenderPass(...); — 4 _ , :

vkCmdBindPipeline(pipeline);
vkCmdDraw(...);
vkEndRenderPass(...);

Pipeline Depth
Layout / Stencil /

Input Framebuffer Vertex
Assembly/ﬁ“ Formats Input /

I3 ©ARM20I16 ARM

Pipelines Gulican.

= |In an ideal world...

= All pipeline combinations should be created upfront

= ...but this requires detailed knowledge of every potential shader/state
combination that you might have in your scene
= As an example, one of our fragment shaders has ~9 000 combinations
= Every one of these shaders can use different render state
= We also have to make sure the pipelines are bound to compatible render passes

= An explosion of combinations!

14 ©ARM20I6 ARM

I5

Pipeline Cache

= Result of the pipeline construction can be re-used between pipelines

(Vu ikan.

= Can be stored out to disk and re-used next time you run the application

Pipeline Pipeline Pipeline Pipeline
state state state state

Disk

Pipeline Cache

©ARM2016

ARM

Shaders WWuaikan.

Vulkan standardized on SPIR-V
No more pain with GLSL compilers behaving differently between vendors?

Khronos reference compiler
= GL_KHR_ vulkan_glsl

= Library that can be integrated into your graphics engine
= Can output SPIR-V from GLSL

We decided early to internally standardize the engine on SPIR-V
= Use SPIR-V cross compiler to output GLSL

©ARM2016 ARM

SPIR-V Tuiian.

- Why SPIR-V?
= The SPIR-V ecosystem is currently very small — but we anticipate that this will change over
the coming years as we are already seeing optimization tools in progress on github.

= SPIR-V cross compiler

= We wrote this library in order to parse and cross compile SPIR-V binary source
= |s available as open source on <INSERT LOCATION>

= (...or hoping to open-source this at some point)

17 ©ARM20I16 ARM

Shaders Walian.

Offline

GLSL

v

glslangValidator

Runtime

Vulkan

SPIR-V library

OpenGLES 2.0

OpenGLES 3.2

SPIR-V cross
compiler OpenGL 4.5

I8 ©ARM20I16 ARM

19

SPIR-V Tuiian.

= Using SPIR-V directly we can retrieve information about bindings as well as
inputs and outputs

= This is useful information when creating or re-using existing pipeline layouts and descriptor
set layouts

= Also allows us to easily re-use compatible pipeline layouts across a bunch of different shader
combinations

= Which also means fewer descriptor set layouts to maintain

©ARM2016 ARM

20

Descriptor Sets

= Textures, uniform buffers, etc. are bound to shaders in descriptor sets
= Hierarchical invalidation
= Order descriptor sets by update frequency

= Ideally all descriptors are pre-baked during level load
= Keep track of low level descriptor sets per material...
= ...but, this is not trivial

= Qur solution:

= Keep track of bindings and update descriptor sets when necessary

©ARM2016

<Vu ikan.

ARM

21

Descriptor Sets

layout (set=0,
{

// data
i
layout (set=0,
layout (set=1,
layout (set=1,

©ARM2016

binding=0)

binding=1)
binding=0)
binding=2)

uniform

uniform
uniform

uniform

uboO

sampler2D TexA;
sampler2D TexB;
sampler2D TexC;

WWaikan.

ARM

Descriptor Set Emulation Tuikan.

= We also need to support this in OpenGL

= Our solution:
= Added support for emulating descriptor sets in our OpenGL backend
= Use SPIR-V cross compiler library to collapse and serialize bindings

22 ©ARM20I6 ARM

23

Descriptor Set Emulation

©ARM2016

Shader
Set 0 Set 1 Set 2
0 GlobalVSData 0 MeshData 0 MaterialData
1 GlobalFSData 1 TexAlbedo
2 TexNormal

3 TexEnvmap

SPIR-V library to GLSL

v

Uniform block bindings

0 GlobalVvSData
1 GlobalFSData
2 MeshData

v

Texture bindings

0 TexAlbedo
1 TexNormal
2 TexEnvmap

(Vu ikan.

ARM

Push Constants Qukan.

= Push constants replace non-opaque uniforms

= Think of them as small, fast-access uniform buffer memory
= Update in Vulkan with vkCmdPushConstants
« Directly mapped to registers on Mali GPUs

// New

layout(push_constant, std430) uniform PushConstants {
mat4 MVP;
vec4 MaterialData;

} RegisterMapped;

// 0l1ld, no longer supported in Vulkan GLSL

uniform mat4 MVP;
uniform vec4 MaterialData;

24 ©ARM20I6 ARM

Push Constant Emulation Gukan.

= Again, we need to support OpenGL as well

= Qur solution:

= Use SPIR-V cross compiler to turn push constants into regular non-opaque uniforms
= Logic in our OpenGL/Vulkan backends redirect the push constant data appropriately

25 ©ARM20I6 ARM

Render Passes Qukan.

= Knowing when to keep and when to discard

= Render passes in Vulkan are very explicit
= Declare when a render pass begins
= Load, discard or clear the framebuffer?
= Declare when a render pass ends
= Which parts do you need to be committed to memory!?

26 ©ARM20I6 ARM

27

Subpass Inputs

Vulkan supports subpasses within render passes
Standardized GL_EXT shader_pixel local_storage!

// GLSL
#extension GL_EXT_shader pixel local storage : require
__pixel local inEXT GBuffer {

layout(rgba8) vec4 albedo;

layout(rgba8) vec4 normal;

} pls;

// Vulkan
layout(input_attachment_index = @) uniform subpassInput albedo;
layout(input_attachment index = 1) uniform subpassInput normal;

©ARM2016

WWaikan.

ARM

28

Subpass Input Emulation Tuikan.

= Supporting subpasses in GL is not trivial,and probably not feasible on a lot of
implementations

= Qur solution:

= Use the SPIR-V cross compiler library to rewrite subpass inputs to Pixel Local Storage
variables

= This will only support a subset of the Vulkan subpass features, but good enough for our
current use

©ARM2016 ARM

Misc Qukan.

= Yet another coordinate system
= Similar to D3D exceptY direction in clip-space is inverted
= Simple solution: Invert gl_Position.y in your vertex shaders
= ...or use swapchain transform if the driver supports it

= Mipmap generation
= No equivalent glGenerateMipmaps() in Vulkan
= Roll your own using vkCmdBlitimage()

29 ©ARM20I6 ARM

Thank you!

ARM

The trademarks featured in this presentation are registered and/or unregistered trademarks
subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured m
respective owners.

Copyright © 2016 ARM Limited

To Find Out More....

ARM

31 ©ARM 2016

32

More Talks From ARM at GDC 2016

GOC*

Available post-show at the Mali Developer Center: malideveloper.arm.com/

ARM Vulkan on Mobile with Unreal Engine 4 Case Study

3 \Weds. 9:30am, West Hall 3022
SHMSUNG

ARM Making Light Work of Dynamic Large Worlds
% — Weds. 2pm,West Hall 2000

enucmen

ARM Achieving High Quality Mobile VR Games
Qunity Thyrs. |0am, West Hall 3022

ARM Optimize Your Mobile Games With Practical Case Studies

Thurs. | 1:30am,West Hall 2404

AR:” An End-to-End Approach to Physically Based Rendering

,,;,",'_,’;fﬁ',",,,m,c Fri. 0am,West Hall 2020

©ARM2016

ARM

