
Achieving High-performance
Graphics on Mobile With the
Vulkan API

Marius Bjørge
Graphics Research Engineer

GDC 2016

© ARM2016 2

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Agenda

 Overview

 Command Buffers

 Synchronization

 Memory

 Shaders and Pipelines

 Descriptor sets

 Render passes

 Misc

© ARM2016 3

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overview – OpenGL

 OpenGL is mainly single-threaded

 Drawcalls are normally only submitted on main thread

 Multiple threads with shared GL contexts mainly used for texture streaming

 OpenGL has a lot of implicit behaviour

 Dependency tracking of resources

 Compiling shader combinations based on render state

 Splitting up workloads

 All this adds API overhead!

 OpenGL has quite a small footprint in terms of lines of code

© ARM2016 4

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overview – Vulkan

 Vulkan is designed from the ground up to allow efficient multi-threading

behaviour

 Vulkan is explicit in nature

 Applications must track resource dependencies to avoid deleting anything that might still be

used by the GPU or CPU

 Little API overhead

 Vulkan is very verbose in terms of lines of code

 Getting a simple “Hello Triangle” running requires ~1000 lines of code

© ARM2016 5

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overview

 To get the most out of Vulkan you probably have to think about re-designing

your graphics engine

 Migrating from OpenGL to Vulkan is not trivial

 Some things to keep in mind:

 What performance level are you targeting?

 Do you really need Vulkan?

 How important is OpenGL support?

 Portability?

© ARM2016 6

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Command Buffers

 Used to record commands which are later submitted to a device for execution

 This includes draw/dispatch, texture uploads, etc.

 Primary and secondary command buffers

 Command buffers work independently from each other

 Contains all state

 No inheritance of state between command buffers

© ARM2016 7

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Command Buffers

vkCmdBeginRenderPass

Secondary commands

Secondary commands

Secondary commands

Secondary commands

vkCmdExecuteCommands

vkCmdEndRenderPass

vkEndCommandBuffer

vkQueueSubmit

vkBeginCommandBuffer

© ARM2016 8

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Command Buffers

 In order to have a common higher-level command buffer abstraction we also

had to support the same interface in OpenGL

 Record commands to linear allocator and playback later

 Uniform data pushed to a separate linear allocator per command buffer

© ARM2016 9

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Synchronization

 Submitted work is completed out of order by the GPU

 Dependencies must be tracked by the application

 Using output from a previous render pass

 Using output from a compute shader

 Etc

 Synchronization primitives in Vulkan

 Pipeline barriers and events

 Fences

 Semaphores

© ARM2016 10

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Allocating Memory

 Memory is first allocated and then bound to Vulkan objects

 Different Vulkan objects may have different memory requirements

 Allows for aliasing memory across different vulkan objects

 Driver does no ref counting of any objects in Vulkan

 Cannot free memory until you are sure it is never going to be used again

 Most of the memory allocated during run-time is transient

 Allocate, write and use in the same frame

 Block based memory allocator

© ARM2016 11

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

 Relaxes memory

reference counting

 Only entire blocks are

freed/recycled

Block Based Memory Allocator

© ARM2016 12

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Image Layout Transitions

 Must match how the image is used at any time

 Pedantic or relaxed

 Some implementations might require careful tracking of previous and new layout to achieve

optimal performance

 For Mali we can be quite relaxed with this – most of the time we can keep the image layout

as VK_IMAGE_LAYOUT_GENERAL

© ARM2016 13

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipelines

 Vulkan bundles state into big monolithic pipeline state objects

 Driver has full knowledge during shader compilation

vkCreateGraphicsPipelines(...)
;

vkBeginRenderPass(...);
vkCmdBindPipeline(pipeline);
vkCmdDraw(...);
vkEndRenderPass(...);

Pipeline State

Shaders
Raster
State

Depth
Stencil

Framebuffer
Formats

Vertex
Input

Blending
State

Dynamic
State

Input
Assembly

Pipeline
Layout

© ARM2016 14

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipelines

 In an ideal world…

 All pipeline combinations should be created upfront

 …but this requires detailed knowledge of every potential shader/state

combination that you might have in your scene

 As an example, one of our fragment shaders has ~9 000 combinations

 Every one of these shaders can use different render state

 We also have to make sure the pipelines are bound to compatible render passes

 An explosion of combinations!

© ARM2016 15

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipeline Cache

 Result of the pipeline construction can be re-used between pipelines

 Can be stored out to disk and re-used next time you run the application

Pipeline
state

Pipeline Cache

Pipeline
state

Pipeline
state

Pipeline
state

Disk

© ARM2016 16

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shaders

 Vulkan standardized on SPIR-V

 No more pain with GLSL compilers behaving differently between vendors?

 Khronos reference compiler

 GL_KHR_vulkan_glsl

 Library that can be integrated into your graphics engine

 Can output SPIR-V from GLSL

 We decided early to internally standardize the engine on SPIR-V

 Use SPIR-V cross compiler to output GLSL

© ARM2016 17

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

SPIR-V

 Why SPIR-V?

 The SPIR-V ecosystem is currently very small – but we anticipate that this will change over

the coming years as we are already seeing optimization tools in progress on github.

 SPIR-V cross compiler

 We wrote this library in order to parse and cross compile SPIR-V binary source

 Is available as open source on <INSERT LOCATION>

 (…or hoping to open-source this at some point)

© ARM2016 18

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shaders

Runtime

Offline

SPIR-V cross
compiler

GLSL

SPIR-V library

OpenGL ES 2.0

OpenGL ES 3.2

OpenGL 4.5

glslangValidator

Vulkan

© ARM2016 19

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

SPIR-V

 Using SPIR-V directly we can retrieve information about bindings as well as

inputs and outputs

 This is useful information when creating or re-using existing pipeline layouts and descriptor

set layouts

 Also allows us to easily re-use compatible pipeline layouts across a bunch of different shader

combinations

 Which also means fewer descriptor set layouts to maintain

© ARM2016 20

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Descriptor Sets

 Textures, uniform buffers, etc. are bound to shaders in descriptor sets

 Hierarchical invalidation

 Order descriptor sets by update frequency

 Ideally all descriptors are pre-baked during level load

 Keep track of low level descriptor sets per material…

 …but, this is not trivial

 Our solution:

 Keep track of bindings and update descriptor sets when necessary

© ARM2016 21

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Descriptor Sets

layout (set=0, binding=0) uniform ubo0

{

 // data

};

layout (set=0, binding=1) uniform sampler2D TexA;

layout (set=1, binding=0) uniform sampler2D TexB;

layout (set=1, binding=2) uniform sampler2D TexC;

© ARM2016 22

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Descriptor Set Emulation

 We also need to support this in OpenGL

 Our solution:

 Added support for emulating descriptor sets in our OpenGL backend

 Use SPIR-V cross compiler library to collapse and serialize bindings

© ARM2016 23

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Descriptor Set Emulation

Shader

Set 0

0 GlobalVSData
1 GlobalFSData

Set 1

0 MeshData

Set 2

0 MaterialData
1 TexAlbedo
2 TexNormal
3 TexEnvmap

SPIR-V library to GLSL

0 GlobalVSData
1 GlobalFSData
2 MeshData

Uniform block bindings

0 TexAlbedo
1 TexNormal
2 TexEnvmap

Texture bindings

© ARM2016 24

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Push Constants

 Push constants replace non-opaque uniforms

 Think of them as small, fast-access uniform buffer memory

 Update in Vulkan with vkCmdPushConstants

 Directly mapped to registers on Mali GPUs

// New
layout(push_constant, std430) uniform PushConstants {
 mat4 MVP;
 vec4 MaterialData;
} RegisterMapped;

// Old, no longer supported in Vulkan GLSL
uniform mat4 MVP;
uniform vec4 MaterialData;

© ARM2016 25

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Push Constant Emulation

 Again, we need to support OpenGL as well

 Our solution:

 Use SPIR-V cross compiler to turn push constants into regular non-opaque uniforms

 Logic in our OpenGL/Vulkan backends redirect the push constant data appropriately

© ARM2016 26

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Render Passes

 Knowing when to keep and when to discard

 Render passes in Vulkan are very explicit

 Declare when a render pass begins

 Load, discard or clear the framebuffer?

 Declare when a render pass ends

 Which parts do you need to be committed to memory?

© ARM2016 27

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Subpass Inputs

 Vulkan supports subpasses within render passes

 Standardized GL_EXT_shader_pixel_local_storage!

// GLSL
#extension GL_EXT_shader_pixel_local_storage : require
__pixel_local_inEXT GBuffer {
 layout(rgba8) vec4 albedo;
 layout(rgba8) vec4 normal;
 ...
} pls;

// Vulkan
layout(input_attachment_index = 0) uniform subpassInput albedo;
layout(input_attachment_index = 1) uniform subpassInput normal;
...

© ARM2016 28

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Subpass Input Emulation

 Supporting subpasses in GL is not trivial, and probably not feasible on a lot of

implementations

 Our solution:

 Use the SPIR-V cross compiler library to rewrite subpass inputs to Pixel Local Storage

variables

 This will only support a subset of the Vulkan subpass features, but good enough for our

current use

© ARM2016 29

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Misc

 Yet another coordinate system

 Similar to D3D except Y direction in clip-space is inverted

 Simple solution: Invert gl_Position.y in your vertex shaders

 …or use swapchain transform if the driver supports it

 Mipmap generation

 No equivalent glGenerateMipmaps() in Vulkan

 Roll your own using vkCmdBlitImage()

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their

respective owners.

Copyright © 2016 ARM Limited

Thank you!

© ARM 2016 31

Text 54pt Sentence Case

ARM Booth #1624 on Expo Floor:
 Live demos of the techniques shown in this session

 In-depth Q&A with ARM engineers

 More tech talks at the ARM Lecture Theatre

http://malideveloper.arm.com/gdc2016:
 Revisit this talk in PDF and video format post GDC

 Download the tools and resources

To Find Out More….

© ARM2016 32

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan on Mobile with Unreal Engine 4 Case Study
Weds. 9:30am, West Hall 3022

Making Light Work of Dynamic Large Worlds
Weds. 2pm, West Hall 2000

Achieving High Quality Mobile VR Games
Thurs. 10am, West Hall 3022

Optimize Your Mobile Games With Practical Case Studies
Thurs. 11:30am, West Hall 2404

An End-to-End Approach to Physically Based Rendering
Fri. 10am, West Hall 2020

More Talks From ARM at GDC 2016
Available post-show at the Mali Developer Center: malideveloper.arm.com/

