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Agenda 

▪ VR Best practises on GearVR / UE4  
▪ New VR features and rendering techniques in UE4 

▪ Monoscopic Far Field Rendering  
▪ Mobile Multiview  

▪ New technologies in the horizon using Multiview  
▪ Foveated Rendering  

▪ Debugging and Profiling on Mali  
▪ Mali Offline Shader Compiler 
▪ Mali Graphics Debugger  
▪ Streamline  
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Best practices 

▪ Compared to PC and Console, Mobile has additional constraints 
▪ Most accessible development environment  

▪ Most challenging platform to ship on 

▪ Battery life and heat dissipation are primary concerns 

▪ Fast peak performance, but you can’t run it pegged indefinitely 

▪ Optimization is more involved than PC and Console 

▪ Consistently making frame rate isn’t enough 

▪ Android N sustained performance mode 

▪ Guaranteed to run indefinitely at a lower performance level 
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Best practices 

▪ Asset budgets and suggestions 
▪ 50  -  60 k average number of triangles for the entire scene 

▪ Max 10 0 k 

▪ 50  draw calls per eye 

▪ Merge materials and meshes 

▪ Use instancing 

▪ Multiview improves this! 

▪ Aggressive LODs 

▪ Consider the memory impact 
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Best practices 

▪ Use the stat system to profile scene complexity 
 

Output of stat rhi and initviews 
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Best practices 

▪ Example output of our new automatic LOD generation (4.14) 
▪ Vertex data is maintained so materials and light maps can be shared 
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Best practices 

▪ Asset budgets and suggestions 
▪ Materials should be no more than 125 instructions 

▪ No dynamic lights or shadows 

▪ Bake and fake 

▪ LDR 

▪ No post processing 

▪ Create test levels with representative content  

▪ Profile on devices you intend to ship on to verify your budgets 

▪ Test for the duration of expected session time 
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Best practices 

▪ Content suggestions 
▪ Remove triangles the user can’t see 

▪ Remove back sides 

▪ Segment large models 

▪ Bake distant environment to a skybox 

▪ Use Oculus cube map layer for optimal sampling 

▪ Monoscopic can be used for middle ground 

▪ Fully rough materials 

▪ Fake environment reflection 
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Best practices 

▪ Content suggestions 
▪ Don’t render occluded objects 

▪ Wasted draw calls and primitive culling time 

▪ Design scenes to minimize draw distance 

▪ Use precomputed visibility volumes 

▪ Aggressive manual hiding of objects not in view 

▪ Take advantage of scene knowledge 

▪ Minimize transparent overdraw 

▪ Objects that are 10 0 % transparent are still drawn. Set visibility flag! 
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Best practices 

▪ Content suggestions 
▪ Use MSAA 

▪ At least 2x, and 4x when possible 

▪ Avoid post process anti-aliasing 

▪ Use ASTC for texture compression 

▪ Largest block size possible 

▪ Generate MIP maps 

▪ Avoid complex filtering options 
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Best practices 

▪ Content suggestions 
▪ Track ticking object count 

▪ Don’t tick if you don’t need to 

▪ Spawning is extremely expensive 

▪ Spawn on load 

▪ Amortize over multiple frames  

▪ Consider building a manager to pool objects 

▪ Try blueprint nativization to reduce script VM overhead 
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Best practices 

▪ Stereo Layers 
▪ Not rendered in-engine 

▪ Raytraced in the compositor 

▪ Single sampling! 

▪ Supports quads, cylinders, and cubemaps 

▪ Head-locked, tracker-locked, or world-locked 

▪ Stereo Layer Component 

▪ Works with UMG! 
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New VR features and rendering techniques in 
UE4 
 
 
▪ Monoscopic Far Field Rendering  
▪ Mobile Multiview 
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Monoscopic Rendering 
 
▪ Rendering both eyes 

▪ Position difference creates binocular parallax 

▪ Projection difference creates binocular disparity 

▪ Depth! 

▪ Performance issues 
▪ Double the CPU usage 

▪ Double the Vertex/Fragment usage 

▪ Similarities? 
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Monoscopic Rendering 
 
▪ Position difference less significant as distances grow 

▪ Adding a 3rd camera! 
▪ Two stereo cameras have a 30 ft far plane 

▪ Mono camera has a 30 ft near plane 

▪ Strict ordering of pixels 

▪ New rendering pipeline 
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Monoscopic Rendering 
 
▪ Position difference less significant as distances grow 

▪ Adding a 3rd camera! 
▪ Two stereo cameras have a 30 ft far plane 

▪ Mono camera has a 30 ft near plane 

▪ Strict ordering of pixels 

▪ New rendering pipeline 
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Monoscopic Rendering 
 

Original rendering 
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Monoscopic Rendering 
 

Stereo cameras with 30ft far plane 
 
 



© ARM 20 17  19 

    

    

   
 

Monoscopic Rendering 
 

Mono camera with 30ft near plane 
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Monoscopic Rendering 
 
▪ Issues with new pipeline 

▪ Monoscopic camera rendering unused pixels 
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Monoscopic Rendering 
 

Standard SunTemple scene 
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Monoscopic Rendering 
 

Close stereo cameras 
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Monoscopic Rendering 
 

Mono camera with 30ft near plane 
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Monoscopic Rendering 
 

Mono camera with 30ft near plane and mask 
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Monoscopic Rendering 
 
▪ Issues with new pipeline 

▪ Monoscopic camera rendering unused pixels 

▪ Stereo cameras drawing far object (frustum culling) 
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Monoscopic Rendering 
 

Standard SunTemple scene 
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Monoscopic Rendering 
 

Close stereo cameras 
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Monoscopic Rendering 
 

Stereo cameras without close depth clear    
but with close frustum culling 
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Monoscopic Rendering 
 

Stereo cameras without close depth clear    
but with close frustum culling 
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Monoscopic Rendering 
 
▪ Issues with new pipeline 

▪ Monoscopic camera rendering unused pixels 

▪ Stereo cameras drawing far object (frustum culling) 

▪ Compositing artifacts (transparency mainly) 

▪ Performance hits of running a third camera 
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Monoscopic Rendering 
 
▪ Results 

▪ Performance is very environment-dependent 

▪ 20 +% increases in certain conditions 

▪ Both CPU and GPU implications 

▪ Can get performance decrease as well 

▪ Dynamic system, both on/off and view distance 

▪ vr.FarFieldRenderingMode 0 /1/2/3/4 
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Mobile Multiview 

▪ What problem are we solving? 
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Mobile Multiview 

▪ Minimal differences between views at primitive granularity 
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Mobile Multiview 
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Mobile Multiview 

▪ Regular vs. multiview CPU-GPU timeline 
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Mobile Multiview 

▪ Overloaded term 
▪ Instanced stereo for PC 

▪ Multiview extension of instanced stereo for PS4 

▪ Single pass stereo from Nvidia 

▪ DirectX 11 Multiview extension from AMD 

▪ Multiview OpenGL ES extension 
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Mobile Multiview 

▪ UE4 implementation 
▪ PC/PS4 Instanced stereo and PS4 multiview 

▪ Standard graphics pipeline based 

▪ Instanced draw call, transform, culling, clipping vertex shader 

▪ Small extension for PS4 to reduce vertex shader work 

▪ Mobile multiview 

▪ Draw call instancing and vertex work done entirely by the driver 

▪ Leverages view uniform system from instanced stereo 
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Mobile Multiview 

▪ Multiview: CPU performance 
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Mobile Multiview 

▪ GL_OVR_multiview 
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Mobile Multiview 

▪ Vertex shader with multiview 
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Mobile Multiview 

▪ Using multiview in an application  
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Mobile Multiview 
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Mobile Multiview 

▪ Driver support landscape 
▪ Multiple GPU vendors 

▪ Many driver bugs in initial implementations across all vendors 

▪ Long delay between driver updates and availability on end user devices 

▪ We strip out multiview code from the shader during application initialization if the 

device is known to have issues to ensure driver bugs don’t break your application 

▪ Samsung Galaxy S6, Samsung Galaxy S7 Mali (Android M and N), S7 Adreno (Android 

N) 
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Mobile Multiview 

▪ Current work in development 
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▪ Foveated Rendering 

New technologies in the horizon using 
Multiview 
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Foveated Rendering 
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Foveated Rendering: 4-view multiview 

Left eye periphery Left eye fovea 

FOV 

RT 

FOV 

RT 

360x360 360x360 
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Blit 
 

Foveated Rendering: 4-view multiview 
Pipeline 

 ▪ Current 2-view Multiview in UE4.14 
Scene Rendering into 
Texture array of 2x1024x1024 = 2.09 MPx  Side-by-Size texture 2048x1024 
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Composing 

Foveated Rendering: 4-view multiview 
Pipeline 

 ▪ Foveated Rendering with 4-view Multiview (65% reduction) 
Scene Rendering into 
Texture array of 4x360x360 = 0.52 MPx Side-by-Size texture 2048x1024 
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Total: 397 Mcycles (-20%) 
Vertex: 197 Mcycles (+52%) 
Fragment: 235 Mcycles (-40%) 

Foveated Rendering: Results 
 
Multiview 
 
 
Foveated (35% original framebuffer size) 
 
 
 
Foveated 8xMSAA (35% original framebuffer size) 

Total: 488 Mcycles 
Vertex: 129 Mcycles 
Fragment: 394 Mcycles 

Total: 406 Mcycles (-17%) 
Vertex: 199 Mcycles (+53%) 
Fragment: 256 Mcycles (-35%) 
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Debugging and Profiling on Mali 
 
 
 
▪ Mali Offline Shader Compiler 
▪ Mali Graphics Debugger (MGD) 
▪ Streamline 

▪ Result for Foveated Rendering and CircuitVR 
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Mali Offline Shader Compiler 

▪ Mali Offline Compiler 
▪ Analyze shader performance 
▪ Command line tool. Easy to integrate. 
▪ Number of cycles 
▪ Registers utilization 
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Mali Offline Shader Compiler use-case 

 
 

 
▪ Shows how many cycles the 

shortest and longest path 
takes: 
▪ Arithmetic pipeline 
▪ Load/Store pipeline: 
▪ Texture Pipeline 
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Mali Offline Shader Compiler: Getting the UE4 
shaders 
▪ Enable shader dumps and shader development in ConsoleVariables.ini 
▪ Invalidate the shader cache with r.InvalidataCachedShaders 1 
▪ Restart the editor 

▪ This will dump the shaders in 
<ProjectFolder>/Saved/ShaderDebugInfo/PCD3D_SM[4|5] 

▪ To generate the shaders for mobile: 
▪ Package the game for a mobile platform or 
▪ Activate the mobile preview 

▪ Shaders will be in 
▪  <ProjectFolder>/Saved/ShaderDebugInfo/GLSL_ES[2|3] 
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Mali Graphics Debugger (MGD) 

▪ Runtime API Trace and resources analysis 
▪ OpenGL ES, OpenCL 
▪ Debug  and improve performance at frame level 

 
 
▪ Available in UE4.15!!  

 
▪ But currently not fully 
     working with VR  
▪ Still useful to debug a  
     No-VR version 
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Mali Graphics Debugger (MGD) 

 
 

Drawcalls 

Timeline 

-Statistics 
-Buffers 
-Vertices 
-Uniforms 
-TargetState 

-Shaders 
-FBs 
-Textures 
-RBs 
-Assets 
-Etc... 
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Streamline 

▪ Profile CPUs and Mali GPUs 
▪ Timeline 
▪ HW Counters 
▪ OpenCL visualizer 

 
▪ New version in April which shows Mali  

counters without rooting the device. 
▪ Rooting needed for precise CPU load 

analysis 

 
 



© ARM 20 17  59 

    

    

   
 

Streamline use-case: Multiview On/Off CPU 

▪ No-Multiview 
UE4 Render thread: 
28ms 
 
 
 
▪ Multiview 
UE4 Render thread: 
22ms (~23% reduction in 
CPU load) 
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Streamline use-case: Foveated rendering 
 ▪ Useful metrics measurable with 

streamline: 
▪ GPU active cycles 

▪ Separated for vertex/fragme 
▪ Overdraw/Early-Z 
▪ Bandwidth  
▪ Cache hit/miss for textures and 

load/store 
▪ GPU Utilization 

▪ Separated for Arith, L/S and 
Texture 

▪ Average CPI, Cycles per 
vertex/fragment 

▪ Much more! 
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Streamline: GPU references 

Description and optimization tips for tiled based gpus: 
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-
abstract-machine-part-1---frame-pipelining 
 
Description of GPU counter available: 
Midgard 
https://community.arm.com/graphics/b/documents/posts/mali-midgard-
family-performance-counters 
Bifrost 
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-
family-performance-counters 
 
 

https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-1---frame-pipelining
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-1---frame-pipelining
https://community.arm.com/graphics/b/documents/posts/mali-midgard-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-midgard-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
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