
© ARM 20 17 1

© ARM 20 17

High quality mobile VR with
Unreal Engine and Oculus

Daniele Di Donato

GDC’17

Senior Software Engineer, ARM

3/1/20 17

Rémi Palandri
 Graphics Engineer, Oculus
 Ryan Vance
Senior Rendering Programmer, Epic Games

© ARM 20 17 2

Agenda

▪ VR Best practises on GearVR / UE4
▪ New VR features and rendering techniques in UE4

▪ Monoscopic Far Field Rendering
▪ Mobile Multiview

▪ New technologies in the horizon using Multiview
▪ Foveated Rendering

▪ Debugging and Profiling on Mali
▪ Mali Offline Shader Compiler
▪ Mali Graphics Debugger
▪ Streamline

© ARM 20 17 3

Best practices

▪ Compared to PC and Console, Mobile has additional constraints
▪ Most accessible development environment

▪ Most challenging platform to ship on

▪ Battery life and heat dissipation are primary concerns

▪ Fast peak performance, but you can’t run it pegged indefinitely

▪ Optimization is more involved than PC and Console

▪ Consistently making frame rate isn’t enough

▪ Android N sustained performance mode

▪ Guaranteed to run indefinitely at a lower performance level

© ARM 20 17 4

Best practices

▪ Asset budgets and suggestions
▪ 50 - 60 k average number of triangles for the entire scene

▪ Max 10 0 k

▪ 50 draw calls per eye

▪ Merge materials and meshes

▪ Use instancing

▪ Multiview improves this!

▪ Aggressive LODs

▪ Consider the memory impact

© ARM 20 17 5

Best practices

▪ Use the stat system to profile scene complexity

Output of stat rhi and initviews

© ARM 20 17 6

Best practices

▪ Example output of our new automatic LOD generation (4.14)
▪ Vertex data is maintained so materials and light maps can be shared

© ARM 20 17 7

Best practices

▪ Asset budgets and suggestions
▪ Materials should be no more than 125 instructions

▪ No dynamic lights or shadows

▪ Bake and fake

▪ LDR

▪ No post processing

▪ Create test levels with representative content

▪ Profile on devices you intend to ship on to verify your budgets

▪ Test for the duration of expected session time

© ARM 20 17 8

Best practices

▪ Content suggestions
▪ Remove triangles the user can’t see

▪ Remove back sides

▪ Segment large models

▪ Bake distant environment to a skybox

▪ Use Oculus cube map layer for optimal sampling

▪ Monoscopic can be used for middle ground

▪ Fully rough materials

▪ Fake environment reflection

© ARM 20 17 9

Best practices

▪ Content suggestions
▪ Don’t render occluded objects

▪ Wasted draw calls and primitive culling time

▪ Design scenes to minimize draw distance

▪ Use precomputed visibility volumes

▪ Aggressive manual hiding of objects not in view

▪ Take advantage of scene knowledge

▪ Minimize transparent overdraw

▪ Objects that are 10 0 % transparent are still drawn. Set visibility flag!

© ARM 20 17 10

Best practices

▪ Content suggestions
▪ Use MSAA

▪ At least 2x, and 4x when possible

▪ Avoid post process anti-aliasing

▪ Use ASTC for texture compression

▪ Largest block size possible

▪ Generate MIP maps

▪ Avoid complex filtering options

© ARM 20 17 11

Best practices

▪ Content suggestions
▪ Track ticking object count

▪ Don’t tick if you don’t need to

▪ Spawning is extremely expensive

▪ Spawn on load

▪ Amortize over multiple frames

▪ Consider building a manager to pool objects

▪ Try blueprint nativization to reduce script VM overhead

© ARM 20 17 12

Best practices

▪ Stereo Layers
▪ Not rendered in-engine

▪ Raytraced in the compositor

▪ Single sampling!

▪ Supports quads, cylinders, and cubemaps

▪ Head-locked, tracker-locked, or world-locked

▪ Stereo Layer Component

▪ Works with UMG!

© ARM 20 17 13

New VR features and rendering techniques in
UE4

▪ Monoscopic Far Field Rendering
▪ Mobile Multiview

© ARM 20 17 14

Monoscopic Rendering

▪ Rendering both eyes

▪ Position difference creates binocular parallax

▪ Projection difference creates binocular disparity

▪ Depth!

▪ Performance issues
▪ Double the CPU usage

▪ Double the Vertex/Fragment usage

▪ Similarities?

© ARM 20 17 15

Monoscopic Rendering

▪ Position difference less significant as distances grow

▪ Adding a 3rd camera!
▪ Two stereo cameras have a 30 ft far plane

▪ Mono camera has a 30 ft near plane

▪ Strict ordering of pixels

▪ New rendering pipeline

© ARM 20 17 16

Monoscopic Rendering

▪ Position difference less significant as distances grow

▪ Adding a 3rd camera!
▪ Two stereo cameras have a 30 ft far plane

▪ Mono camera has a 30 ft near plane

▪ Strict ordering of pixels

▪ New rendering pipeline

© ARM 20 17 17

Monoscopic Rendering

Original rendering

© ARM 20 17 18

Monoscopic Rendering

Stereo cameras with 30ft far plane

© ARM 20 17 19

Monoscopic Rendering

Mono camera with 30ft near plane

© ARM 20 17 20

Monoscopic Rendering

▪ Issues with new pipeline

▪ Monoscopic camera rendering unused pixels

© ARM 20 17 21

Monoscopic Rendering

Standard SunTemple scene

© ARM 20 17 22

Monoscopic Rendering

Close stereo cameras

© ARM 20 17 23

Monoscopic Rendering

Mono camera with 30ft near plane

© ARM 20 17 24

Monoscopic Rendering

Mono camera with 30ft near plane and mask

© ARM 20 17 25

Monoscopic Rendering

▪ Issues with new pipeline

▪ Monoscopic camera rendering unused pixels

▪ Stereo cameras drawing far object (frustum culling)

© ARM 20 17 26

Monoscopic Rendering

Standard SunTemple scene

© ARM 20 17 27

Monoscopic Rendering

Close stereo cameras

© ARM 20 17 28

Monoscopic Rendering

Stereo cameras without close depth clear
but with close frustum culling

© ARM 20 17 29

Monoscopic Rendering

Stereo cameras without close depth clear
but with close frustum culling

© ARM 20 17 30

Monoscopic Rendering

▪ Issues with new pipeline

▪ Monoscopic camera rendering unused pixels

▪ Stereo cameras drawing far object (frustum culling)

▪ Compositing artifacts (transparency mainly)

▪ Performance hits of running a third camera

© ARM 20 17 31

Monoscopic Rendering

▪ Results

▪ Performance is very environment-dependent

▪ 20 +% increases in certain conditions

▪ Both CPU and GPU implications

▪ Can get performance decrease as well

▪ Dynamic system, both on/off and view distance

▪ vr.FarFieldRenderingMode 0 /1/2/3/4

© ARM 20 17 32

Mobile Multiview

▪ What problem are we solving?

© ARM 20 17 33

Mobile Multiview

▪ Minimal differences between views at primitive granularity

© ARM 20 17 34

Mobile Multiview

© ARM 20 17 35

Mobile Multiview

▪ Regular vs. multiview CPU-GPU timeline

© ARM 20 17 36

Mobile Multiview

▪ Overloaded term
▪ Instanced stereo for PC

▪ Multiview extension of instanced stereo for PS4

▪ Single pass stereo from Nvidia

▪ DirectX 11 Multiview extension from AMD

▪ Multiview OpenGL ES extension

© ARM 20 17 37

Mobile Multiview

▪ UE4 implementation
▪ PC/PS4 Instanced stereo and PS4 multiview

▪ Standard graphics pipeline based

▪ Instanced draw call, transform, culling, clipping vertex shader

▪ Small extension for PS4 to reduce vertex shader work

▪ Mobile multiview

▪ Draw call instancing and vertex work done entirely by the driver

▪ Leverages view uniform system from instanced stereo

© ARM 20 17 38

Mobile Multiview

▪ Multiview: CPU performance

© ARM 20 17 39

Mobile Multiview

▪ GL_OVR_multiview

© ARM 20 17 40

Mobile Multiview

▪ Vertex shader with multiview

© ARM 20 17 41

Mobile Multiview

▪ Using multiview in an application

© ARM 20 17 42

Mobile Multiview

© ARM 20 17 43

Mobile Multiview

▪ Driver support landscape
▪ Multiple GPU vendors

▪ Many driver bugs in initial implementations across all vendors

▪ Long delay between driver updates and availability on end user devices

▪ We strip out multiview code from the shader during application initialization if the

device is known to have issues to ensure driver bugs don’t break your application

▪ Samsung Galaxy S6, Samsung Galaxy S7 Mali (Android M and N), S7 Adreno (Android

N)

© ARM 20 17 44

Mobile Multiview

▪ Current work in development

© ARM 20 17 45

▪ Foveated Rendering

New technologies in the horizon using
Multiview

© ARM 20 17 46

Foveated Rendering

© ARM 20 17 47

Foveated Rendering: 4-view multiview

Left eye periphery Left eye fovea

FOV

RT

FOV

RT

360x360 360x360

© ARM 20 17 49

Blit

Foveated Rendering: 4-view multiview
Pipeline

 ▪ Current 2-view Multiview in UE4.14
Scene Rendering into
Texture array of 2x1024x1024 = 2.09 MPx Side-by-Size texture 2048x1024

© ARM 20 17 50

Composing

Foveated Rendering: 4-view multiview
Pipeline

 ▪ Foveated Rendering with 4-view Multiview (65% reduction)
Scene Rendering into
Texture array of 4x360x360 = 0.52 MPx Side-by-Size texture 2048x1024

© ARM 20 17 51

Total: 397 Mcycles (-20%)
Vertex: 197 Mcycles (+52%)
Fragment: 235 Mcycles (-40%)

Foveated Rendering: Results

Multiview

Foveated (35% original framebuffer size)

Foveated 8xMSAA (35% original framebuffer size)

Total: 488 Mcycles
Vertex: 129 Mcycles
Fragment: 394 Mcycles

Total: 406 Mcycles (-17%)
Vertex: 199 Mcycles (+53%)
Fragment: 256 Mcycles (-35%)

© ARM 20 17 52

Debugging and Profiling on Mali

▪ Mali Offline Shader Compiler
▪ Mali Graphics Debugger (MGD)
▪ Streamline

▪ Result for Foveated Rendering and CircuitVR

© ARM 20 17 53

Mali Offline Shader Compiler

▪ Mali Offline Compiler
▪ Analyze shader performance
▪ Command line tool. Easy to integrate.
▪ Number of cycles
▪ Registers utilization

© ARM 20 17 54

Mali Offline Shader Compiler use-case

▪ Shows how many cycles the

shortest and longest path
takes:
▪ Arithmetic pipeline
▪ Load/Store pipeline:
▪ Texture Pipeline

© ARM 20 17 55

Mali Offline Shader Compiler: Getting the UE4
shaders
▪ Enable shader dumps and shader development in ConsoleVariables.ini
▪ Invalidate the shader cache with r.InvalidataCachedShaders 1
▪ Restart the editor

▪ This will dump the shaders in
<ProjectFolder>/Saved/ShaderDebugInfo/PCD3D_SM[4|5]

▪ To generate the shaders for mobile:
▪ Package the game for a mobile platform or
▪ Activate the mobile preview

▪ Shaders will be in
▪ <ProjectFolder>/Saved/ShaderDebugInfo/GLSL_ES[2|3]

© ARM 20 17 56

Mali Graphics Debugger (MGD)

▪ Runtime API Trace and resources analysis
▪ OpenGL ES, OpenCL
▪ Debug and improve performance at frame level

▪ Available in UE4.15!! 

▪ But currently not fully
 working with VR 
▪ Still useful to debug a
 No-VR version

© ARM 20 17 57

Mali Graphics Debugger (MGD)

Drawcalls

Timeline

-Statistics
-Buffers
-Vertices
-Uniforms
-TargetState

-Shaders
-FBs
-Textures
-RBs
-Assets
-Etc...

© ARM 20 17 58

Streamline

▪ Profile CPUs and Mali GPUs
▪ Timeline
▪ HW Counters
▪ OpenCL visualizer

▪ New version in April which shows Mali

counters without rooting the device.
▪ Rooting needed for precise CPU load

analysis

© ARM 20 17 59

Streamline use-case: Multiview On/Off CPU

▪ No-Multiview
UE4 Render thread:
28ms

▪ Multiview
UE4 Render thread:
22ms (~23% reduction in
CPU load)

© ARM 20 17 60

Streamline use-case: Foveated rendering
 ▪ Useful metrics measurable with

streamline:
▪ GPU active cycles

▪ Separated for vertex/fragme
▪ Overdraw/Early-Z
▪ Bandwidth
▪ Cache hit/miss for textures and

load/store
▪ GPU Utilization

▪ Separated for Arith, L/S and
Texture

▪ Average CPI, Cycles per
vertex/fragment

▪ Much more!

© ARM 20 17 61

Streamline: GPU references

Description and optimization tips for tiled based gpus:
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-
abstract-machine-part-1---frame-pipelining

Description of GPU counter available:
Midgard
https://community.arm.com/graphics/b/documents/posts/mali-midgard-
family-performance-counters
Bifrost
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-
family-performance-counters

https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-1---frame-pipelining
https://community.arm.com/graphics/b/blog/posts/the-mali-gpu-an-abstract-machine-part-1---frame-pipelining
https://community.arm.com/graphics/b/documents/posts/mali-midgard-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-midgard-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters
https://community.arm.com/graphics/b/documents/posts/mali-bifrost-family-performance-counters

© ARM 20 17 62

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may
be trademarks of their respective owners.
Copyright © 20 17 ARM Limited

© ARM 20 17

Q&A

	High quality mobile VR with Unreal Engine and Oculus�
	Agenda
	Best practices
	Best practices
	Best practices
	Best practices
	Best practices
	Best practices
	Best practices
	Best practices
	Best practices
	Best practices
	New VR features and rendering techniques in UE4

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Monoscopic Rendering

	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	Mobile Multiview
	New technologies in the horizon using Multiview

	Foveated Rendering
	Foveated Rendering: 4-view multiview
	Foveated Rendering: 4-view multiview�Pipeline

	Foveated Rendering: 4-view multiview�Pipeline

	Foveated Rendering: Results�
	Debugging and Profiling on Mali

	Mali Offline Shader Compiler
	Mali Offline Shader Compiler use-case
	Mali Offline Shader Compiler: Getting the UE4 shaders
	Mali Graphics Debugger (MGD)
	Mali Graphics Debugger (MGD)
	Streamline
	Streamline use-case: Multiview On/Off CPU
	Streamline use-case: Foveated rendering

	Streamline: GPU references
	Slide Number 62

