
Title 44pt Title Case

Affiliations 24pt sentence case

20pt sentence case

Vulkan’s Key Features on ARM
Architecture

Daniele Di Donato, ARM

GDC 2016

© ARM2016 4

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Outline

 Vulkan main features

 Mapping Vulkan Key features to ARM CPUs

 Mapping Vulkan Key features to ARM Mali GPUs

© ARM2016 5

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan

 Good match for mobile and tiling architectures

 Explicit multi-pass render passes

 No hidden costs (copies, allocs, shader recompiles, etc)

 Multi-threaded

 Low overhead

 The driver is lightweight and doesn’t execute any error checking or validation

 No more safety net as in OpenGL….

 ….but freedom to squeeze performance

© ARM2016 6

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan Main Features for Mobile

 Multi-threading (even mid-range

phones now have 4 cores)

 Most of the function doesn’t need to be

externally synchronized

 See chapter 2.4 “Threading Behaviour” of

the spec

 Multi-pass Render Passes

 Able to exploit faster Tile cache memory

on mobile

 See chapter 7 “Render Pass” of the spec

 Other features

 Independent samplers and textures

 Ability to use the same Sampler

configuration to access multiple textures

 Low level memory bindings

 Resource creation doesn’t allocate backing

memory

 Sparse memory bindings

 Backing memory can be assigned

completely or partially at runtime (use case:

virtual textures)

© ARM2016 7

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Multi-Threading in Vulkan

 The Vulkan spec guarantees that

some of its core functions don’t

need to be explicitly synchronized

by the programmer (see chapter 2.4

of the Vulkan spec)

 This allows multiple threads to call

the same functions or set of

functions at the same time

 The typical use-cases are:
 Command buffer construction: Multiple threads

build various command buffers at the same time

based on the grouping made by the engine

 Shaders compilation: Multiple threads compile

the shaders used

 Memory bindings: Multiple threads compute the

memory requirements for the textures and

allocate/assign it at runtime (multiple virtual-

textures update)

© ARM2016 8

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Multiprocessing Support in ARM CPUs

 Inside the single core

 ARM SIMD Neon

 Allows vectorization of operations

 Typically used to speed-up the vector math used for physics, animations, etc.

 Really useful if the task to solve is sequential and cannot be parallelized or multithread overhead is

not worth.

 Across all cores

 ARM big.LITTLE

 Able to chose between:

 big cores: High performance core used for hi-load tasks

 LITTLE cores: High efficiency cores for low-medium load tasks

 Schedules and migrates tasks according to the load

 Provides best trade-off within performance and power consumption

© ARM2016 10

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Multi-Pass in Vulkan

 Similar to Pixel Local Storage introduced by ARM

 Especially on Tiled GPUs: allows the driver to perform various optimizations

when each pixel rendered in a subpass accesses the results of the previous

subpass at the same pixel location

 All the data can be contained and remain on the fast on-chip memory

 Some use-cases:

 Deferred Rendering

 Tone-mapping

 Soft-particles (1st subpass renders the solid geometry and the 2nd renders the particles

accessing the depth information)

© ARM2016 11

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Deferred Tile-Based Rendering 101
Typical tile-based rendering

GPU

Tiler Heap/
Vertex Shaders

ouput

Framebuffer (Main memory)
Fragment shader

Read-back from
memory (slow)

(Texture)FB

Shader

Tile cache

© ARM2016 12

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Deferred Tile-Based Rendering 101
Multi-pass tile-based Rendering

GPU

Tile cache

Tiler Heap/
Vertex Shaders

ouput

Fragment shader

Subpass 1 writes to its color

attachment

Subpass 2 uses color

attachment from subpass 1 as

input attachment

Shader

Framebuffer (Main memory)

The Tile cache is transferred

to main memoy at the end of

all subpasses

© ARM2016 13

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Other Mali Features Available

Enabled by you:

 ASTC texture compression

 Included in the Vulkan core spec

 Early-Z

 Avoids fragment shading for occluded

pixels, sorting front-to-back of opaque

geometry gives best results

 4x MSAA

 Multisampling algorithm happening on

Tile memory for free

Automatically enabled:

 AFBC (Arm Frame Buffer Compression)

 Transparently reduces the memory

bandwidth required to save energy

 Transaction Elimination

 Avoids the computations related to a

tile if it’s unchanged from the previous

frame (UI and 2D games with static

props will benefit from this feature)

 Forward Pixel Kill

The trademarks featured in this presentation are registered and/or unregistered trademarks of ARM Limited (or its

subsidiaries) in the EU and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their

respective owners.

Copyright © 2016 ARM Limited

Thank you!

© ARM2016 15

Text 54pt Sentence Case

ARM Booth #1624 on Expo Floor:
 Live demos of the techniques shown in this session

 In-depth Q&A with ARM engineers

 More tech talks at the ARM Lecture Theatre

http://malideveloper.arm.com/gdc2016:
 Revisit this talk in PDF and video format post GDC

 Download the tools and resources

To Find Out More….

© ARM2016 16

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Vulkan on Mobile with Unreal Engine 4 Case Study
Weds. 9:30am, West Hall 3022

Making Light Work of Dynamic Large Worlds
Weds. 2pm, West Hall 2000

Achieving High Quality Mobile VR Games
Thurs. 10am, West Hall 3022

Optimize Your Mobile Games With Practical Case Studies
Thurs. 11:30am, West Hall 2404

An End-to-End Approach to Physically Based Rendering
Fri. 10am, West Hall 2020

More Talks From ARM at GDC 2016
Available post-show at the Mali Developer Center: malideveloper.arm.com/

Marius Bjørge
Graphics Research Engineer

GDC 2016

© ARM2016 18

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Agenda

 Overview

 Command Buffers

 Synchronization

 Memory

 Shaders and Pipelines

 Descriptor sets

 Render passes

© ARM2016 19

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overview – OpenGL

 OpenGL is mainly single-threaded

 Drawcalls are normally only submitted on main thread

 Multiple threads with shared GL contexts mainly used for texture streaming

 OpenGL has a lot of implicit behaviour

 Dependency tracking of resources

 Compiling shader combinations based on render state

 Splitting up workloads

 All this adds API overhead!

© ARM2016 20

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overview – Vulkan

 Vulkan is designed from the ground up to allow efficient multi-threading

behaviour

 Vulkan is explicit in nature

 Applications must track resource dependencies to avoid deleting anything that might still be

used by the GPU or CPU

 Little API overhead

 Vulkan is very verbose in terms of lines of code

 Getting a simple “Hello Triangle” running requires ~1000 lines of code

© ARM2016 21

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Overview – Vulkan

 To get the most out of Vulkan you probably have to think about re-designing

your graphics engine

 Migrating from OpenGL to Vulkan is not trivial

 Some things to keep in mind:

 Do you really need Vulkan for your project?

 Portability?

© ARM2016 22

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Command Buffers

 Used to record commands which are later submitted to a device for execution

 This includes draw/dispatch, texture uploads, etc.

 Primary and secondary command buffers

 Command buffers work independently from each other

 Contains all state

 No inheritance of state between command buffers

© ARM2016 23

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Command Buffers

vkCmdExecuteCommands

Secondary commands

vkBeginCommandBuffer

vkCmdBeginRenderPass

Secondary commands

Secondary commands

Secondary commands

vkCmdEndRenderPass

vkEndCommandBuffer

vkQueueSubmit

© ARM2016 24

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Synchronization

 Submitted work is completed out of order by the GPU

 Dependencies must be tracked by the application

 Using output from a previous render pass

 Using output from a compute shader

 Etc

 Synchronization primitives in Vulkan

 Pipeline barriers and events

 Fences

 Semaphores

© ARM2016 25

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Allocating Memory

 Memory is first allocated and then bound to Vulkan objects

 Different Vulkan objects may have different memory requirements

 Allows for aliasing memory across different Vulkan objects

 Driver does no ref counting of any objects in Vulkan

 Cannot free memory until you are sure it is never going to be used again

 Most of the memory allocated during run-time is transient

 Allocate, write and use in the same frame

 Block based memory allocator

© ARM2016 26

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

 Relaxes memory

reference counting

 Only entire blocks are

freed/recycled

Block Based Memory Allocator

© ARM2016 27

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Image Layout Transitions

 Must match how the image is used at any time

 Pedantic or relaxed

 Some implementations might require careful tracking of previous and new layout to achieve

optimal performance

 For Mali we can be quite relaxed with this – most of the time we can keep the image layout

as VK_IMAGE_LAYOUT_GENERAL

© ARM2016 28

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipelines

 Vulkan bundles state into big monolithic pipeline state objects

 Driver has full knowledge during shader compilation

vkCreateGraphicsPipelines(...)
;

vkBeginRenderPass(...);
vkCmdBindPipeline(pipeline);
vkCmdDraw(...);
vkEndRenderPass(...);

Pipeline State

Framebuffer
Formats

Pipeline
Layout

Raster
State

Input
Assembly

Blending
State

Dynamic
State

Vertex
Input

Depth
Stencil

Shaders

© ARM2016 29

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipelines

 In an ideal world…

 All pipeline combinations should be created upfront

 …but this requires detailed knowledge of every potential shader/state

combination that you might have in your scene

 As an example, a typical fragment shader in a graphics engine such as Unreal may have ~9 000

combinations

 Every one of these shaders can use different render state

 We also have to make sure the pipelines are bound to compatible render passes

 An explosion of combinations!

© ARM2016 30

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Pipeline Cache

 Result of the pipeline construction can be re-used between pipelines

 Can be stored out to disk and re-used next time you run the application

© ARM2016 31

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Shaders

 Vulkan standardized on SPIR-V

 Khronos reference compiler

 Outputs SPIR-V from your GLSL shader sources

 GL_KHR_vulkan_glsl

 Can be easily integrated into your graphics engine

© ARM2016 32

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Descriptor Sets

 Textures, uniform buffers, etc. are bound to shaders in descriptor sets

 Hierarchical invalidation

 Order descriptor sets by update frequency

 Ideally all descriptors are pre-baked during level load

 Keep track of low level descriptor sets per material

 But, this is not trivial

 Simple solution:

 Keep track of bindings and update descriptor sets when necessary

 Keep around cache for non-dynamic descriptor sets

© ARM2016 33

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

SPIR-V reflection

 Introducing SPIR2CROSS

 Convert SPIR-V to readable GLSL

 https://github.com/ARM-software/spir2cross

 Using SPIR2CROSS we can retrieve information about bindings as well as inputs

and outputs directly form the SPIR-V binary

 This is useful information when creating or re-using existing pipeline layouts and descriptor

set layouts

 Also allows us to easily re-use compatible pipeline layouts across a bunch of different shader

combinations

https://github.com/ARM-software/spir2cross
https://github.com/ARM-software/spir2cross
https://github.com/ARM-software/spir2cross
https://github.com/ARM-software/spir2cross
https://github.com/ARM-software/spir2cross

© ARM2016 34

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Push Constants

 Push constants replace non-opaque uniforms

 Think of them as small, fast-access uniform buffer memory

 Update in Vulkan with vkCmdPushConstants

 Directly mapped to registers on Mali GPUs

// New
layout(push_constant, std430) uniform PushConstants {
 mat4 MVP;
 vec4 MaterialData;
} RegisterMapped;

// Old, no longer supported in Vulkan GLSL
uniform mat4 MVP;
uniform vec4 MaterialData;

© ARM2016 35

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Render Passes

 Describes the beginning and end of rendering to a framebuffer

 Render passes in Vulkan are very explicit

 Declare when a render pass begins

 Load, discard or clear the framebuffer?

 Declare when a render pass ends

 Which parts do you need to be committed to memory?

© ARM2016 36

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

Subpass Inputs

 Vulkan supports subpasses within render passes

 Standardized GL_EXT_shader_pixel_local_storage!

// GLSL
#extension GL_EXT_shader_pixel_local_storage : require
__pixel_local_inEXT GBuffer {
 layout(rgba8) vec4 albedo;
 layout(rgba8) vec4 normal;
 ...
} pls;

// Vulkan
layout(input_attachment_index = 0) uniform subpassInput albedo;
layout(input_attachment_index = 1) uniform subpassInput normal;
...

Niklas “Smedis” Smedberg

Technical Director, Platform Partnerships

GDC 2016

© ARM2016 38

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

UE4 ProtoStar Demo

 Goals:

 Impressive real-time graphics to showcase UE4 Vulkan on Samsung Galaxy S7

 Must be the best in the world

 Problems to overcome:

 Mobile graphics features did not exist in UE4 yet

 Vulkan API did not exist yet

 Driver did not exist yet

 Device did not exist yet

 Not enough time or people

© ARM2016 39

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

UE4 Vulkan: A First Attempt

© ARM2016 40

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

UE4 Vulkan: Final Results

© ARM2016 41

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

UE4 Vulkan Thoughts

 One queue

 One big command buffer per frame (array round-robin reused)

 Multi-threaded rendering a great future opportunity in Vulkan

 “External synchronization”

 Semaphores for synchronization on GPU (GPU wait / ordering)

 Fences for synchronization on CPU (CPU wait / check for completion)

 Recording command buffer

 Simplest usage-case: Instancing

 Nice usage-case: VR (stereoscopic rendering)

© ARM2016 42

Title 40pt Title Case

Bullets 24pt sentence case

Sub-bullets 20pt sentence case

UE4 Vulkan Source Code

 UE4 Vulkan source code on github soon!

 unrealengine.com

 Read and learn

 Experiment with Vulkan

 Make something fun!

Galaxy Jungwoo Kim

Principle Engineer, Samsung Mobile Graphics Team

GDC 2016

Galaxy

 3 year long-term project started in 2012 by Samsung
 1.5 year contribution for Vulkan within Khronos group
 1 year collaboration with our partners for the demo
 But this is just the beginning…

 Samsung Mobile is planning a game developer support program
 Official announcement at Samsung Developer Conference in April
 Samsung wants to engage with the game developer community
 Samsung also wishes to support Vulkan game developers

#GalaxyGameDev

Galaxy
GameDev

