
1

Solutions Brief

Arm Storage Solution 
for SSD Controllers



2

Data is being generated at a rapid pace and it is more 
critical than ever that storage devices combine high 
performance with energy efficiency. The Arm storage 
solution is a comprehensive blueprint for solid-state 
drive (SSD) applications that is proven and trusted by 
the industry’s top companies. Arm combines security 
and energy efficiency across a range of performance 
points to help SSD designers innovate confidently and 
accelerate time to market with the best-fit solution.

Why Arm: A Trusted Partner for Secure, 
Energy-efficient Storage Devices 

Faster Time to Market  
The combination of ready-to-run, open-source code from RTOS and Arm’s integrated 

toolchain reduces fragmentation and provides a common foundation for fast development 

Energy-efficient Design  
Arm Cortex processors and system IP offer high-performance and energy-efficient 

solutions that are designed for complex computing tasks for storage-based devices

Trusted Partner for Success  
Reduce risk and achieve success by choosing proven Arm technology that has been 

integrated into billions of storage devices to date



3

Overview
Arm offers a broad portfolio that enables performance and efficiency optimization for SSD 

controllers. Cortex-R processors are most frequently used in enterprise, datacentre, and client 

SSDs, though some high-end enterprise and datacentre devices use Cortex-A processors. 

Very low-power client controllers opt for Cortex-M processors, and processors such as 

Cortex-M55, Cortex-M33, and Cortex-M0+ can also be used for helper functions in SSDs.

Arm Cortex-A Processors Arm Cortex-R Processors Arm Cortex-M Processors

Designed for devices undertaking 

complex compute tasks

Optimized for high-performance, 

real-time applications

Built for discrete processing 

and microcontrollers

Typical processors for SSD controllers include:

Cortex-A55 

Cortex-A53
Cortex-R82 

Cortex-R8 

Cortex-R5 

  Cortex-M55 and Cortex-M33 with 

optional Arm Custom Instructions  

and coprocessor interface

Cortex-M7 
Cortex-M0+

Low latency, real-time performance with 
Cortex-R and Cortex-M processors 

Required to move data in the fastest time possible

Balanced performance, power, and area  
with Cortex-A processors 

Required for a front-end processor that needs 

increased performance over Cortex-R processors

Key Features

CoreSight and ecosystem of debug tools Faster 

development with a unified and complete 

system and core debug available across  

all Arm processors

Machine learning (ML) features 

Improved ML performance for computational 

storage with Neon (Cortex-A series and Cortex-

R82) and Helium technologies (Cortex-M55) 

and Ethos NPUs

Arm Custom Instructions 

Enables power reduction and increased 

performance by implementing a function  

in hardware that would otherwise take multiple 

cycles or instructions to complete

Low power 
Required for the SSD controller to fit 

power constraints

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a55
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r82
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r8
https://developer.arm.com/ip-products/processors/cortex-r/cortex-r5
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m55
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m33
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m7
https://developer.arm.com/ip-products/processors/cortex-m/cortex-m0-plus


4

Solution Block Diagram

Figure 1 Typical SSD SoC

SSD Solution Featuring:
- Arm Cortex Processors
-  Arm Generic Interrupt 

Controller (GIC)
- Arm Interconnect
- Arm CoreSight debug
- Arm Memory Controller
- Arm DMA

Flash Translation Layer (FTL)

The front-end processors are responsible for maintaining the FTL tables that map logical 

addresses to physical addresses. As part of the FTL, the front-end processors also handle 

wear-levelling algorithms to determine where the data should be written, which data should 

move, and which locations require garbage collection. 

Read Requests and Write Requests

Read and write requests arrive from the host over the PCIe/NVMe interface. The requests 

arrive in the form of descriptors that describe the parameters of a transfer. Write requests 

also carry the data to be written. These descriptors are written to either the DDR memory 

or a system RAM using a DMA operation from the host. For write requests, the user data is 

transferred to the controller DDR using a separate DMA operation.

Front-end processors are usually Cortex-R 
processors but can sometimes be Cortex-A 
processors to support more intensive wear-
levelling algorithms. 

Wear-levelling is the process of systematically 
erasing and writing all NAND flash locations 
to ensure all locations wear out at about the 
same time.  It may require moving unchanging 
data (cold data) already stored so a block can be 
erased and rewritten with rapidly changing data 
(hot data).



5

A NAND can be very slow, it might not be  
ideal for the processor to work directly with the 
NAND. Arm processors provide the flexibility to 
work with NAND from different manufacturers 
with different commands. 

A front-end processor is notified about the arrival of this descriptor. It then parses the 

descriptor to modify some of the parameters. In particular, the Logical Block Address (LBA) 

provided by the host must be modified to the physical address in the NAND where the 

read data is stored. With the correct physical address, the descriptor can be dispatched  

to the appropriate flash channel using a DMA. 

For read requests, the flash channel issues a read operation to the appropriate NAND  

die. When the data is available, it is moved from the NAND die buffer to the flash channel 

and then to the LDPC engines, as space is available. The LDPC engines perform ECC 

correction and data recovery from the media. If necessary, erasure coding operations  

are performed to recover data lost due to a block or page failure. Encrypted data is 

decrypted and stored in controller DDR. Finally, the user data is moved to host memory 

using a DMA operation to write into the DDR of the host, and then the host is notified  

that the data transfer completed.

For write requests, the user data in DDR is sent to the SSD data path of encryption,  

erasure coding, and LDPC encoding. When the encoded user data reaches the flash channel, 

the flash channel issues an operation to write the data to the NAND buffers. When all 

the data is in the NAND buffer, a program operation is issued to program the NAND. A 

completion response is generated by the flash channel that is sent back to the host.

The back-end processors are responsible for the manipulation of the NAND control 

sequences and the last modifications to the descriptor parameters needed to read  

or write the data. The back-end processors do not interface directly to the NAND.  

Instead, they build sequences of operations for a hardware state machine to execute.

Garbage Collection

Garbage collection is the process of collecting good data and preparing empty blocks  

to be erased. 

When a file is saved multiple times, the data must be saved to a new physical address  

in the NAND each time. Obsolete file revisions are mixed with valid files in a block. 

To erase the entire block for new data, the valid files must be read and then written  

to another location in NAND. Then, the entire block can be erased to recover the space 

consumed by the obsolete file revisions.

Note: The process is a combination of read and write, except that no data is returned  

to the host. In fact, it is completely transparent to the host.

Back-end processors are usually Cortex-R, but 
can sometimes be Cortex-M. 

Cortex-R processors are ideal because of 
their high frequency options and real-time, 
deterministic, low-latency response. In lower 
power requirements and lower performance 
point SSD controllers, Cortex-M processors 
reduce controller power further.

With Cortex-R, there can be 1 per flash channel 
or up to 1 per 4 flash channels (including 1 per 
2 flash channels). With Cortex-M, it is usually 1 
per flash channel.



6

Figure 2 Garbage collection process *Multiple blocks are recovered at the same time to ensure that enough valid files are aggregated 

to write one page into the NAND.

Erase

The front-end processors generate a descriptor to erase the block. The descriptor is 

dispatched to the appropriate flash channel and the flash channel to the NAND. When 

complete, the back-end processors notify the front-end processors to update the Flash 

Translation Layer (FTL) tables to indicate that this block is now available.

Introducing Computational Storage for SSDs
The volume of data companies generate is expected to grow by an astonishing 27 percent 

a year1 and to be successful in this increasingly digital world, organizations need  

the infrastructure and technology to be capable of delivering and storing data and  

analytics in a fast, secure, and efficient way.

Computational storage adds computing capabilities to traditional storage devices, by 

putting processing power where it is needed and gives companies quick and easy access 

to vital information. The compute could include a Cortex-A series or Cortex-R82 Linux-

capable processor, or a Neural Processing Unit (NPU) for ML workloads. Find out how 

computational storage could benefit your SSD by reading this guide to computational 
storage on Arm.  

https://pages.arm.com/guide-computational-storage.html
https://pages.arm.com/guide-computational-storage.html


7

Design Considerations
Designing an SoC for an SSD device requires a significant amount of investment and 

resource – from design verification to physical design and to the software development 

debug and validation – they all need to support the device.

 

Consider the following tips to help simplify the process of designing an SSD:

  Narrow the Arm processor options based on the desired SSD performance, number of 

address bits, and real-time response requirements.

  Model your processor selection(s) and SSD controller with Fast and Cycle Accurate 

Models as the architecture is developed to increase confidence in the processor choice 

and SSD architecture.

  Configure and integrate the Arm IP RTL into the SSD controller. Simulate the 

configuration with the provided integration testbench.

  Synthesize the processor early to identify timing paths to the cache and TCMs to 

achieve the best balance between power, performance, and area.

  Rapidly develop and debug software, in parallel to the hardware development, using 

Fast Models to reduce time to market.

Get Started with your SSD
Arm can help you design SSD controllers by providing the IP, tools and support to get 

started on your design with Arm Flexible Access. Arm Flexible Access offers a simple way 

to evaluate and fully design SoC storage solutions with a wide-ranging mix of Arm IP before 

committing to production. 

Learn more about our storage solutions at storage.arm.com and contact us to discuss 

developing your next Arm-based SSD storage solution with one of our technical experts.

https://www.arm.com/resources/contact-us/computational-storage-consultation


8

Terms and Abbreviations
DDR Double Data Rate

DMA Direct Memory Access

ECC Error Correcting Code

FTL Flash Translation Layer

FTL table FTL tables are large tables that change dynamically as data  

is written and erased on the SSD. They map logical addresses  

to physical addresses

GIC Generic Interrupt Controller

LBA Logical Block Address

LDPC engine Low-Density Parity Check engine. LDPC code provides powerful 

error-correction capability and is adapted for real-time performance 

and constrained-area devices

ML Machine Learning

NPU Neural Processing Unit

NVMe Non-Volatile Memory express

PCIe Peripheral Component Interconnect express

SMBus System Management Bus

SoC System-on-Chip

SPI Serial Peripheral Interface

SSD Solid-State Drive

TCM Tightly Coupled Memory

UART Universal Asynchronous Receiver-Transmitter 

UPP Universal Parallel Port

Wear levelling Technique used to increase the lifetime of the memory by distributing 

the write operations in such a way that all NAND memory cells  

in the SSD are written to equally

1  https://www.seagate.com/files/www-content/our-story/trends/files/idcseagate-dataage-

whitepaper.pdf

  All brand names or product names are the property of their respective holders. Neither the whole nor any part of the 
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with  
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments  
and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied  
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document  
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable  
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. Sept. 2020

https://www.seagate.com/files/www-content/our-story/trends/files/idcseagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idcseagate-dataage-whitepaper.pdf



