
1

Silicon evolution for the
automotive revolution
By Andrew Hopkins,
Director of System Technology

White Paper

2

1. Automotive revolution
The convention of vehicle ownership and operation is ending. It started with ownership

through finance and leasing, now ride and car sharing schemes increasingly remove

the need for occasional use cars within cities. The next step is fully capable Mobility

as a Service (MaaS) deployments. MaaS is revolutionary in several ways:

 Primary mobility shifts from car ownership to a service model

 Vehicles are operated by service providers rather than consumers

 Service providers are fully accountable for vehicle functionality, safety and security

 Consumers become disconnected from vehicle manufacturers unless their brand

 forms part of the MaaS

 Deployment of robotized taxis becomes practical

Taxi companies who have invested in smartphone apps and operate their own fleets will

argue that MaaS is here already. They interface to the consumer to provide the service,

they operate the vehicles and take responsibility for their safety. Consumers don’t need

to drive, and there is value add through a nice person to help with luggage and provide

anecdotal information and support. For sure, it’s a form of MaaS and provides a consistent

platform for a quality taxi business, however it’s not a trigger for revolution.

The mass deployment of robot taxis will be revolutionary and goes beyond the engineering

masterpiece and breakthroughs in artificial intelligence. In economies where labor costs are

high, robots lower the cost of MaaS to a level where owner operation of vehicles ceases to

make financial sense. That’s a seismic shift, where contract mobility expands greatly at the

expense of declining car purchases by consumers.

As with any change, MaaS unleashes opportunities and threats. Demand for the humble

taxi driver seems likely to decline progressively over the coming decades, allowing them

time to retrain. Original Equipment Manufacturers (OEMs) are those with the most to

lose and an established business to adapt.

Autonomous vehicles are forecast to create a Trillion USD market for ride services and

media content delivery by 2030, in addition to traditional car platforms already valued

around two Trillion USD [1]. With market growth focused on autonomy, the executives

of large OEMs, who are charged with upholding brand legacy and generating shareholder

value, must invest in automation and content delivery. Staying connected to consumers

throughout the transition to MaaS is also pivotal to capturing value, and key to fending

off the advances of the even larger tech giants.

3

2. Opportunity for semiconductors
Regardless of who succeeds in deploying robot taxis, there is a huge opportunity for the

semiconductor industry [2]. The sensory and mental abilities of humans are sophisticated

and set the benchmark for reliable driving. Provided the driver is in good health and paying

attention, the likelihood of an accident for the car occupants is very low in most developed

countries. For example, in the UK, 787 fatalities resulted from 254 billion miles driven

in 2017 [3].

Driver occupancy monitoring can ensure drivers are alert, as well as keep an eye on

their health, such as detecting a heart attack or intoxication. Arm’s open source Arm NN

software and advanced processing capabilities in Arm Cortex-A76AE, Arm Cortex-65AE

and new Neural Processing Units (NPUs) are an ideal compute solution for such machine

learning applications.

Taking humans out of the loop requires many sensors including cameras, LiDAR and

RADAR. Each sensor requires front-end processing, and subsequently more processing

to perceive the environment. Robot taxis will deploy multiple sensor technologies, their

inputs will be fused with other data to form a model of the environment that enables

planning of the path ahead. Cortex-A76AE and Cortex-65AE are good solutions, for

perception and path planning respectively, because together they deliver the absolute

performance and throughput efficiency needed.

With a course plotted, vehicles must then decide on the commands given to their actuation

systems to proceed safely. In summary, autonomous systems have four main steps:

 Sense

 Perceive

 Decide

 Actuate

In parallel to the revolutionary jump of robotic taxis, the automotive industry is also trying

to improve the reliability of human driven cars. Progressive evolution of Advanced Driver

Assistance Systems (ADAS) means that classes of minor accident, like nudging the car in

front or colliding with a car when changing lanes, will become a thing of the past. ADAS

is another opportunity where semiconductors are pivotal, and with a market value CAGR

of over 18% forecast for the foreseeable future, it is an attractive market [2].

“Driver occupancy
monitoring can ensure
drivers are alert, as well as
keep an eye on their health,
such as detecting a heart
attack or intoxication.”

4

3. Functional safety
The high growth of the automotive market is attractive to semiconductor vendors. An

accompanying challenge is how to develop systems suitably, where safety is a paramount

concern. The practice of ensuring that products operate safely and continue to do so even

when they go wrong is called functional safety engineering.

There are standards to guide functional safety engineering, such as ISO 26262 for

automotive electronics and IEC 61508 for industrial electronics. ISO 26262 defines

functional safety as “The absence of unreasonable risk due to hazards caused by

malfunctioning behavior of electrical / electronic systems”. This means that systems

must function correctly, with potentially unsafe faults detected and controlled to

prevent a hazard. Predictability of failure modes is expected to enable thorough analysis.

The main concepts for functional safety are [4]:

 Identify level of risk

 Determine level of robustness in design

 Develop and test following guidelines

 Verify and validate

 Perform independent assessment

 Manage change and modifications

Products must be specified and developed suitably for their criticality and have

a welldefined safety concept [5]. ISO 26262 defines four categories to guide the

engineering activity, each an Automotive Safety Integrity Level (ASIL) [6].

Each level from ASIL A to ASIL D requires an increased level of engineering rigor. ISO

26262 makes various recommendations of the methods to apply, although alternatives

can be used with justification.

As a generic rule of thumb, the following categorization can be made:

 Safety nominal

 - Helpful rather than essential

 - User can act to avoid hazards if aware of fault

 - Usually ASIL B, could be ASIL A

 Safety critical

 - Relied upon to always function or fail safely

 - Significant risk of hazard and loss of life if the fault is undetected

 - Usually ASIL D, could be ASIL C

5

Figure 1
Example faults

Systematic fault

Permanent fault

Transient Fault

Each development must describe its activity through the gathering of evidences in a safety

case. The case must be scrutinized by an independent party or assessor, considering the

argumentation made, good practice, and where applicable, guidance of relevant standards.

The Arm partnership has a strong track record of automotive design, predating the

introduction of ISO 26262 in 2011 and subsequent revision in 2018. Quality engineering

and dissemination of good practice are essential to functional safety, so multiple experts

within Arm contribute to working groups and influence relevant standards using its

knowhow, relationships and ecosystem.

4. What could go wrong?
Failures can occur throughout a system, in the design or implementation of a hardware

component or software module, the way the pieces are integrated, or the conception

of the overall system architecture. Faults are classified as systematic or random.

Systematic faults are those inherent in the design and relate to the previously listed safety

concepts. They occur in hardware, software and at the system level in consequence to

deficiency of the development, such as:

 The design and verification methodology

 Incorrect or ambiguous specification

 Training of people to understand the concepts and methodology

 Tools used during the development

Random faults occur during use and are caused by manufacturing, aging and circumstance.

They occur in hardware and cause disruption to software. They can be permanent or

transient and require management at the system level. Examples include:

 Permanent faults due to physical defects

 Transient faults due to environmental factors like radiation

 Intermittent physical defects are also classified as transient faults

 The statistical failure of asynchronous crossings are also transient faults

Figure 1 illustrates examples of systematic, random permanent and random

transient faults.

6

5. Systematic faults
Developing the system and its components in a rigorous way is the primary means

to the avoidance of systematic faults, including a strong verification methodology

tailored to the intended safety integrity level [4]. Verification of functional safety

designs must always be thorough, however for the higher integrity levels traditional

stimulus-based testing techniques are expected to be surpassed through use of formal

or semi-formal methods.

Formal techniques typically represent the design specification using mathematical

constructs, such as algebras or finite state machines, which can be reasoned about logically

using tools. Ideally the specification will be machine-readable, for example a modelling

language, which enables tools to automatically check the correctness and verify that the

implementation matches the model. Semi-formal specifications have more structure than

natural language, they include pseudo code and structured diagrams or models. Semi

formal definition reduces ambiguity and enables humans to reason about the design.

Arm has long been a leader in verification of silicon IP and uses formal techniques

extensively. Thus, Arm’s journey into functional safety has focused on other aspects, such

as increased detail and rigor in requirements management and traceability for the design

and verification data. The value of this work to functional safety goes beyond the obvious

aspects of confirmation and evidence, as it significantly improves maintainability of the

design and reproducibility of the design flow. Managing complexity in such a systematic

and controlled way also facilitates the realization of more complex systems, regardless

of whether safety is a requirement.

Development methodology is the only mitigation fully under the control of software

developers. However, hardware can help guard against common software related

defects. For example, Memory Protection Units (MPU) and Memory Management Units

(MMU) can detect erroneous data accesses. When software is developed out of context,

developers can also place requirements on the hardware capability through their

assumptions of use. If the software is developed in parallel with the underlying hardware

platform, a Hardware Software Interface (HSI) specification can be defined.

“Arm has long been a leader
in verification of silicon
IP and uses formal
techniques extensively”

7

6. Decomposition
Developing and verifying software for higher levels of integrity (ASIL D) is very

challenging. System level architecture is one way to mitigate limitations, including the

practicality of developing a large complex software system, in its entirety, to the quality

expected for ASIL D applications. ASIL decomposition provides a set way to subdivide

a system into several more tractable independent requirements, each with a lower safety

integrity than the original.

Practical decompositions include the development of two different software programs

to perform the same or similar system function. Each program must be developed

and executed independently, thus reducing the likelihood of a common cause failure

to an acceptable level. ISO 26262 provides guidance on ASIL decomposition and most

practical applications are to address the systematic capability.

7. Random fault detection
Random faults are detectable using hardware mechanisms that are typically supported

at the system level by software. In some cases, the mechanism is mostly software based,

utilizing minimal enabling hardware. Random faults in practice can be:

 Single point faults – one failure, such as an open or short circuit

 Multiple point faults – one or more failures, several simultaneous single point faults

 Latent faults – multiple point faults scenarios that only occur under fault conditions

Once the symptoms of a fault are detected, more thorough diagnostics or corrective action

can be taken by the system. Detection mechanisms, also known as diagnostic capability,

may include continuous detection or periodic tests. Examples include:

 Continuous detection

 - Temporal and/or spatial replication with comparison of results, e.g., Dual-Core

 Lockstep (DCLS)

 - Information redundancy, such as Error Detection/Correction Codes (EDC/ECC)

 - Algorithmic fault tolerance

 - Redundancy at the system level, including so called software lockstep

 Run-time diagnostics

 - Functional testing using software (Software Test Library)

 - Scan based Built-In Self-Test (BIST) of logic or memories

 - Periodic test pattern checking

8

Standards like ISO 26262 guide designers through the definition of metrics to quantify

whether the diagnostic coverage is suitable.

 Single Point Fault Metric (SPFM)

 Latent Fault Metric (LFM)

The level of coverage is a safety design choice based on the system’s functional

requirements and safety integrity level. Although safety standards typically propose or

mandate target diagnostic metrics, the failure rate is a vital characteristic. Failure rate is

defined by safety standards as Probabilistic Metric of Hardware Failure (PMHF). It can be

expressed as Failure In Time (FIT) where one FIT is the number of failures within a billion

(109) hours. Table 1 shows the metrics recommended by ISO 26262. Automotive safety

architects can use the PMHF and other argumentation to deviate, above or below, the

recommended metrics for each part of the design and thus the overall system.

TARGET METRIC ASIL A ASIL B ASIL C ASIL D

SPFM Nominal ≥90% ≥97% ≥99%

LFM Nominal ≥60% ≥80% ≥90%

PMHF ≤1000 FIT ≤100 FIT ≤100 FIT ≤10 FIT

Table 1: Proposed
system-level metrics
for automotive
systems

8. Hardware metrics for decomposed
systems
Regardless of safety architecture, the system still needs to achieve its target metrics

for detecting random faults. Decomposition can be applied to lower the detection

capability needed for a specific piece. The principle being that if two independent

capabilities are executed in parallel, each with modest detection capability, the combined

system has enhanced detection.

In complex cases like autonomous vehicles, the metrics achieved by decomposition can

be very hard to prove, so hardware is increasingly expected to address the detection

requirements of the highest safety integrity even if the software is decomposed.

Hardware suitable for the system’s highest safety integrity significantly simplifies the

safety architecture and safety case.

9

To address the needs of autonomous vehicles, Arm has expanded its range of lockstep

capable processor cores to include the high-performance Cortex-A family. Lockstep

is explained in detail later in this paper.

Starting with Arm Cortex-A76AE, it is now possible to execute complex algorithms,

computer vision and machine learning with the diagnostic capability expected for ASIL

D systems provided directly by the hardware. It delivers the simplification of diagnostic

coverage needed to realize the most complex of decomposed systems. Where part

of a system requires only an ASIL B capability, the Split-Lock processor is configurable

without lockstep under software control.

ISO 26262 defines a nomenclature to represent decomposed requirements [6]. It

comprises the ASIL of the original requirement and the lower decomposed requirement.

So, for example, if an ASIL D requirement is decomposed to two ASIL B requirements

it will be expressed as ASIL B of D in the form ASIL B(D).

There is also an associated portfolio of automotive system IP to enable the compute

needed, comprising:

 Arm CMN-600AE Cache Coherent Interconnect

 Arm GIC-600AE Generic Interrupt Controller

 Arm MMU-600AE System Memory Management Unit

9. Fault detection mechanisms
The most suitable mechanism to detect and potentially correct a fault depends

on the circuit to be protected.

Information redundancy

One of the best-known techniques is Error Detection/Correction Codes (EDC/ECC),

which includes parity, extended hamming codes [7], Cyclic Redundancy Codes (CRC)

[8] and Reed-Solomon codes [9]. They introduce information redundancy at the expense

of slightly increased data. EDCs are highly effective at detecting faults with bit cells within

memories and ECC enables correction of the localized transient faults inevitably induced

by radiation. Permanent faults can also be tolerated using ECC.

Parity and Hamming codes are relatively low cost, typically requiring about 13% overhead

for a 64b data chunk, comprising bit cells to store the code and logic to generate and check

it. EDC is less effective at detecting the multi-bit errors caused by single point faults

in the address decoder, which makes 99% SPFM hard to achieve using EDC or ECC within

a single memory.

10

Similar capabilities and limitations exist for interconnects, where single point faults

in elements, such as cross-bar switches and routers, can cause multi-bit errors beyond

the Hamming distance of the error detection codes typically used. EDC, usually parity,

is also effective at protecting registers.

Software Test Library and test patterns
Fault detection mechanisms don’t have to be hardware based. Consistency checking can be

performed using software within the application framework. Alternatively, software routines

can functionally test the hardware by exercising its features in a consistent, deterministic

way that achieves a quantifiable level of diagnostic coverage.

Test routines, known as a Software Test Library (STL) or sometimes Software BIST (SBIST),

are widely used for automotive microcontrollers to periodically test the processor and other

components during windows of quiescence. Achieving the target coverage of permanent

faults in complex blocks, such as performance processors with deeply nested logic, for

ASIL B use cases is challenging and can be impractical. STLs can operate with or without

disturbing the system’s state, although have the advantage that they can be aborted quickly

if the system must urgently respond to an interrupt event.

Test patterns directed at specific low-level circuits are a typical part of an STL, they can

be efficient and provide fine-grained control over testing and enables targeted testing

following a fault. Tests can also be high-level, such as a test pattern for an image processing

pipeline or graphical display unit. Test patterns can also be applied directly by the hardware,

with or without software control.

STLs require low-level access to the hardware and on a CPU can require the highest

privilege to broaden the logic within its reach. Where there is an operating system, the STL

will be tightly coupled to ensure it is run at a time that minimizes disruption and availability

to service interrupts. Coverage can often be enhanced by inserting bespoke hardware

blocks that make hard-to-reach logic accessible.

Testing can be event driven, such as between tasks or during idle time. In time triggered

systems a dedicated time slice will be allocated to testing, as shown by Figure 2. Following

a quantum of computation, a context switch (C/S) will occur to start the next quantum. If

testing is due the context will be saved, tests run on the processor, then a context restore.

When the next quantum starts, an application will be context switched to the processor.

CONTEXT 1 CONTEXT 1SBIST (P) SBIST (P)S SR RPr
io

ri
ty

Timer Timer Timer Timer

C/S C/SC/S C/S

IDLE IDLE

CONTEXT 1 SBIST
(Fixed time allocation)

major cycle repeats...

Figure 2: Use of a
Software Test Library
in a time triggered
system

“STLs require low-level
access to the hardware
and on a CPU can require
the highest privilege to
broaden the logic within
its reach. ”

11

Run-time scan diagnostics
When diagnostic coverage is needed for an ASIL B system, many system designers look to

STLs. They can be applied after development of a chip, are within the control of the system

designer, and are well known due to their extensive use in cost limited MCU systems.

What many system designers don’t realize is that for complex hardware, scan-based

techniques are often more suitable, which is why they are applied extensively for

advanced System-on-Chip (SoC) systems. Scan techniques readily achieve 90% diagnostic

coverage for all sizes of design, whereas an STL could be as low as 50% coverage. The high

coverage makes scan techniques a good fit for testing periodically at run-time, as well as

diagnostic checks at key-on, key-off and following fault detection by another mechanism,

making scan techniques suitable for SPFM and LFM coverage of logic. Periodic test of

logic will be complemented by dedicated memory testing using Memory BIST (MBIST),

and in practice a combination of MBIST and STL with coverage “topped up” by LBIST

is often applied.

There are two approaches, Logic BIST (LBIST) and directed scan test, that both exploit

the scan-chains designed into the SoC for post-manufacture functional test. They require

integration of a hardware controller for testing the SoC and software control for run-time

use. The affected parts of the system must be quiescent, so software is needed to suspend

the relevant activity, which might be to stop or hot-detach a processor.

Availability of compute is important, so run-time diagnostics are scheduled to ensure

that at least one CPU is always available. Testing of shared cluster logic, such as cache

controllers, requires all cores in the cluster to be suspended, which motivates at least two

clusters within the system. Figure 3 illustrates an operational sequence to test two CPU

clusters, each with two cores, whilst maintaining CPU availability. It shows testing of the

shared logic in the DynamIQ Shared Unit (DSU) of cluster 2 with both its CPUs suspended.

In the meantime, compute occurs in cluster 1, ensuring availability of at least one processor.

Core 1

Save

Save

Save

Save Restore

Save

Save Restore

Save

LBIST

LBIST

LBIST

LBIST

LBIST

MBIST

MBIST

MBIST

MBIST

MBIST

Restore

Restore

Restore

Restore

Restore

Core 3

Core 2

Core 4

DSU Cluster 1

DSU Cluster 2

Compute

Compute

Save LBIST MBIST Restore
Compute

Compute

Compute

Compute

Compute

Compute

Figure 3: Save and
restore sequence
for periodic testing

12

LBIST relies on scanning sequences generated from a seeded pseudorandom number

generator or similar. Generating the sequence in the device eliminates the need to store

large test patterns. A limitation is that some circuits, such as comparators, are impractical

to test exhaustively using random sequences.

Directed scan testing can be tailored to test all types of circuit and can be very efficient

because the sequences are purposely generated. The obvious downside is the memory

needed to store the sequences, although many complex systems already have very

significant off-chip storage and memory making this approach attractive. The directed

approach also has a fine granularity similarly to most STLs used to test CPUs.

All types of scan-testing have two significant limitations. The power required to scan

the sequences at speed is higher and more concentrated than normal operation, and

this needs to be managed carefully by running the scan-chains with a lower frequency

than the system clock, often tens of MHz.

Periodic testing including STLs and scan-based techniques provide no direct coverage

of transient faults, however incorrect flip-flop states lying dormant within the component

are flushed by the local test and reset sequence. Transient fault coverage can be improved

by ancillary mechanisms such as watchdog timers, software consistency checks and

selective flop-flop hardening. Design tools can help designers identify the most critical

SoC flip-flops to swap for hardened cells or triple redundant flip-flop macros.

Memory BIST
Before the system starts it’s important to identify whether memories are free from

permanent faults. Complementary to the continuous protection of memories using

EDC/ECC is MBIST. It enables more precise testing to pin-point the location of bit-cell

faults and distinguishes cell faults from other classes.

MBIST is traditionally an offline technique, however Arm has developed an online capability

that can execute test sequences alongside the system with minimal impact [10]. Available

in Arm Cortex-R52, the major advantage of this technique is increased system availability

compared to offline tests, which is especially valuable for diagnosis following EDC faults

if they are frequent.

Bespoke detection mechanisms
One of the more labor-intensive ways of realizing detection mechanisms is to design

a specific circuit to detect the expected failure modes. In most cases it’s desirable

to have a small targeted mechanism that works at a high-level to detect faults.

An example of where that fits is on-chip interconnects where modest transaction

consistency checks and information redundancy can provide moderately high coverage

of faults relating to sequence, loss, insertion and corruption.

Some faults are hard to detect abstractly, so the hope of low-cost fault detection is often

13

unachievable, with many discrete mechanisms needed to build up the coverage, especially

for the highest coverage targets. Bespoke mechanisms take more time to design and verify,

although special cases such as flip-flop and register protection using EDC have a regular

structure and so easier to realize. Register protection using EDC can even be inserted by

the SoC integrator within the netlist using commercially available design tools.

Bespoke mechanisms are often believed to be a golden solution until investigated and

the facts laid out. Many mechanisms increase area and power costs to the point where

duplication is often cheaper to both the silicon integrator and the IP provider.

Lockstep
Lockstep is the duplication of a circuit or component, such as a processor, more than once

with comparators to check that all relevant outputs are consistent between the copies.

The aim is to detect a broad range of faults and achieve 99% SPFM in the primary copy

of the logic within a few cycles.

Comparison of additional internal signals can improve the fault detection time. Faults

in the secondary lockstep copy are detected by the primary copy which provides a degree

of latent fault coverage, which can be enhanced by a Software Test Library that exercises

a significant and quantifiable part of the design.

Transient faults can affect clock and power networks such that identical circuits suffer

a common fault. Offsetting the lockstep copy in time by a few cycles provides temporal

redundancy to reduce such faults. Spatial diversity is also necessary, so the chip floorplan

must be structured to keep the two copies separate.

Lockstep is a straightforward way to achieve very high diagnostic coverage. The downside

of duplicating large components is considerably increased area and power cost. Area can

be saved by sharing the larger memories between the instances and protecting them with

an ECC, as shown by Figure 4. This can lower the area of a lockstep processor or controller

to less than double the design without lockstep.

Although lockstep is often seen as an expensive “brute force” approach, smaller scale

duplication can be the most cost-effective option. The alternative of bespoke checkers

has a high design cost and passing signals between small circuits is expensive because

it necessitates additional consistency checking. Such checking can cost more area than

duplicating the whole circuit and consume significantly more dynamic power within

the intermediary checkers.

14

Split-Lock
An enhancement to the lockstep approach is so called Split-Lock, where it is possible

to disengage the secondary copy of the circuit when quiescent, such as during boot

or a reset state, freeing it for use as an additional system resource. The technique

is especially applicable to processors because it allows the system designer to select

whether they have high-diagnostic coverage, or increased compute performance

at a lower coverage.

Split-Lock is available for all of Arm’s recent lockstep processor cores including

Cortex-A76AE and Cortex-R52. Besides increased flexibility for system designers,

its valuable to SoC vendors because they can target a broader range of applications

with a single device.

A further advantage, especially relevant to autonomous vehicles, is the ability to improve

availability by falling back from lockstep to ‘Split’ configuration as part of a reboot sequence,

all under the control of software. In many core systems significant flexibility is possible,

and software can often be relocated to the most appropriate core at runtime. Moreover,

with careful isolation of memory to contain faults, as enabled by CMN-600AE, part

of the system can remain operational, with the failed part taken offline for diagnostics

and rebooted. Such flexibility can be employed to create effective system recovery

strategies. However, there will always be significant challenges at the system-level if full

functionality is to be maintained, because lockstep alone provides detection of faults,

rather than preventing corruption of memory within permitted address regions.

core inputs

logic’ logic

core outputs

Lockstep core

Compare
logic

RAMs EC
C

Figure 4: Dual Core
LockStep processor
with shared
memories

15

10. Why safety documentation packages?
Licensable silicon IP is typically developed to be generic, without knowledge of how

it will be used, besides limitations laid down through assumptions of use. Such generic

developments are classified by ISO 26262 as Safety Element out of Context (SEooC)

[11] and to enable safe use there must be documentation to describe it and the product’s

enabling capabilities.

For each functional safety development, Arm creates a functional safety documentation

package to enable silicon partners to complete a safe development of their SoC and prove

they’ve met their functional safety targets. ISO 26262 sets strict limitations on use

of so-called black box IP, which has unknown provenance. That means the IP must ideally

have been developed for functional safety, following ISO 26262:2018 part 11, and include

appropriate supporting collateral; or be a quality managed development with sufficient

supporting evidence to support qualification under ISO 26262 part 8 clause 13.

Safety documentation packages are specific to each product following a common format

for ease of use. They comprise a safety manual, a Failure Modes and Effects Analysis

(FMEA) report, a Development Interface Report (DIR), an example Failure Modes and

Effects Diagnostics Analysis (FMEDA) and Dependent Failure Analysis (DFA) reports which

can be adapted by the SoC designer to reflect their specific instantiation. Collectively the

documents describe:

 The process followed including description of confirmation measures

 The fault detection and control features

 Assumptions of use

 How configuration parameters impact the design

 The interface between Arm and the SoC designer

Safety cases are hierarchical in use, requiring input from each IP supplier. Figure 5. shows

how the documentation, such as the FMEA, provided by Arm and other IP suppliers

supports silicon partners to enable the tier-1s and OEMs.

ECU FMEA

ECU FMEA

Vehicle
 FMEA

SoC FMEA

SoC FMEA

IP FMEA

IP FMEA

IP FMEA

Figure 5: Arm’s FMEA
deliverables enable
the wider automotive
market

16

11. Conclusion on the future of SoC
for the automotive revolution
The automotive market is undergoing several significant phases of change. Vehicle

differentiation is now primarily delivered by software and compute integration, rather

than electro-mechanical aspects. The uptake in ride hailing applications and the prospect

of robotic vehicles is an even more disruptive change, that will rewrite the competitive

landscape for road vehicles.

Enabling this new wave of computing requires unprecedented levels of computational

performance, and Arm has developed new CPUs and a highly capable line of NPUs

to enable it. The real “game changer” is to deliver the performance needed at a variety

of safety integrities, so SoCs can be deployed in ADAS applications with immediate

volume, and robotic taxi and autonomous vehicle platforms as they emerge.

Arm Cortex-A76AE and associated system IP were designed specifically for these

applications, enabling ASIL B to ASIL D capable functions through the flexible Split-Lock

processing capability. When in Dual Core LockStep mode, ASIL D software is enabled,

and the diagnostics for ASIL B(D) decomposed systems are also made more practical

to prove. Moreover, in many cases the high-performance with lockstep removes the burden

of ripping algorithms to pieces to form the decompositions, as needed for other processor

architectures. When in Split mode, ASIL B applications are supported, making Cortex-

A76AE a highly versatile choice.

With these new processing capabilities now being designed into SoCs by lead partners,

the automotive revolution is on-track to safely deploy the world’s greatest achievement

in artificial intelligence.

17

12. References
[1] UBS Global Research, “Who will win the race to autonomous cars?”, Q-Series

 market report, 8th May 2018.

[2] IHS Markit, “Automotive semiconductor market tracker”, 18th July 2018.

[3] UK Department for Transport, “Reported road casualties in Great Britain: 2017

 annual report”, 27th September 2018.

[4] International Organization for Standardization, “Road vehicles - Functional safety,

 Part 2: Vocabulary”, ISO 26262 Part 2, December 2018.

[5] D. Sexton, A. Priore, J. Botham, “Effective Functional Safety Concept Generation

 in the Context of ISO 26262”, SAE Int. J. Passeng. Cars – Electron. Electr. Syst.

 7(1), 2014

[6] International Organization for Standardization, “Road vehicles - Functional safety,

 Part 1: Vocabulary”, ISO 26262 Part 1, December 2018.

[7] R.W. Hamming, “Error detecting and error correcting codes”, Bell System Technical

 Journal, 29(2): 147–160, 1950.

[8] W.W. Peterson, D.T. Brown, “Cyclic Codes for Error Detection”. Proc. of the IRE.

 49(1): 228–235, January 1961.

[9] I.S. Reed, G. Solomon, “Polynomial Codes over Certain Finite Fields”, Journal of

 the Society for Industrial and Applied Mathematics (SIAM), 8(2): 300–304, 1960.

[10] A. Becker, Short burst software transparent on-line MBIST, IEEE 34th VLSI Test

 Symposium (VTS), 25-27 April 2016.

[11] International Organization for Standardization, “Road vehicles - Functional safety,

 Part 10: Vocabulary”, ISO 26262 Part 10, December 2018.

 All brand names or product names are the property of their respective holders. Neither the whole nor any part of the
information contained in, or the product described in, this document may be adapted or reproduced in any material form except with
the prior written permission of the copyright holder. The product described in this document is subject to continuous developments
and improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. 2019

