
�

!

Improving Visual
Rendering Quality in

Mobile Virtual Reality
on Unreal Engine

Developer Guide

Ryan O’Shea
2019-06-01 

Visual Rendering Quality in Mobile Virtual Reality !1

�

Table of Contents
Introduction 3

Article structure 3

Factors Impacting Mobile VR Rendering Quality 4

Aliasing 4

Description 4

Mitigations 6

Mipmapping 6

Level of Detail 8

Multisample Anti-Aliasing 11

Color Space 12

Texture Filtering 13

Alpha Compositing 16

Level Design 18

Banding 22

Description 22

Mitigations 22

Dithering 22

Tone Mapping 23

Bump Mapping 24

Description 24

Mitigations 25

Normal Mapping 25

Parallax Occlusion Mapping 26

Shadows 28

Description 28

Mitigations 28

Blob Shadows 28

Summary 30

Acknowledgements 30

References 31

Visual Rendering Quality in Mobile Virtual Reality !2

�

Introduction
Virtual reality (VR) is an immersive experience that involves placing a user into a simulated
environment using a head mounted display that is placed directly in front of the user’s eyes.

VR allows for an entirely new level of immersion when compared to existing gaming experiences
as the user is completely immersed into the virtual experience, allowing for more thrilling and
engaging content to be delivered.

VR as a technology is growing rapidly, and a recent Newzoo survey of over 2500 people in the
US[20] proves this. 28% of people surveyed have used VR in the last six months and of those
people, 73% have used VR to play games. Additionally, VR is very popular on mobile, from the
people who own a VR headset, 24% of them own a Samsung GearVR headset. Also, with the
release of standalone devices such as the Oculus Quest which are also based on mobile
technology, this area is set to continue expanding.

Despite this, VR on mobile currently contains a number of limitations, especially when compared
with VR on desktop. These limitations are often visible in computer graphics but are amplified in
VR by the fact that the rendered image is extremely close to the user's eyes and that the lenses
used in VR have a magnifying effect, causing increased annoyance and distraction to the user.

These problems can make mobile VR an unrealistic, unconvincing and at times, possibly even an
uncomfortable experience. Therefore, to achieve the true potential of VR these limitations must be
either solved or mitigated.

It is fairly simple to diagnose the current limitations of VR on mobile and John Carmack, among
others, already has an extensive selection of social media posts on this topic[19]. These posts are
aimed at informing developers how best to design and optimize these experiences for mobile
hardware as well as suggestions for mitigating the limitations of mobile VR.

Despite this existing material, it seems apparent there is a lack of clear, explicit guidelines to aid
developers in knowing which features are best to implement when trying to mitigate these flaws
and exactly how best to implement these features.

Article structure
This document is designed to be a guide on how to improve rendering quality in mobile VR,
overcoming the most common pitfalls and bad practices with clear explanations and graphical
examples before and after the suggested improvement has been implemented.

The article is structured so that each identified problem is described, mitigations are then
suggested and detailed with the use of graphics to aid this description where possible. Guidance is
also provided for correctly implementing the suggested mitigations in Unreal Engine.

This document does not include the best practices for achieving the high performance for VR on
mobile, although the techniques suggested have been tested to be suitably performant on mobile.
There is a direct correlation between performance and quality which is ever present in graphics
and is even more pronounced in VR therefore enabling features such as multiview and maintaining
a constant awareness of performance is compulsory when developing for VR. 

Visual Rendering Quality in Mobile Virtual Reality !3

�

Factors Impacting Mobile VR Rendering Quality
Aliasing
Description
Aliasing is a consequence of attempting to capture information without using sufficient samples to
faithfully recreate it and is an inescapable aspect of signal processing for most practical uses. In
audio and video aliasing results in the shape of the produced digital signal not matching the
original signal, and is most apparent at high audio frequencies and the finer details of a video.
Aliasing begins to occur when the sample rate falls below Nyquist’s Frequency[13], which is equal to
half of the highest frequency in the content.

The graphics rasterization process also causes aliasing to occur as a direct result of displaying
objects seen from a camera in motion against the discrete grid of pixels which form the display. In
a VR environment, there are two specific aliasing variants which are especially apparent, these are
geometric and specular aliasing.

Geometric aliasing is most visible when a scene contains high frequency input signals in color
space that are displayed on the relatively low frequency of pixel samples, for example, a rapid
transition between two contrasting colors. This aliasing is especially visible in straight lines that
appear to crawl when moving the camera. An example of this geometric aliasing can be seen on
the red edges of the shapes in the image below.

Geometric aliasing can also occur when polygonally dense meshes are rendered onto a low
resolution display, resulting in an extremely high density due to the quantity of polygons within a
width of a few pixels. This huge polygonal density results in a large amount of aliasing as it
introduces considerably more edges, which in turn results in more aliasing. Additionally, the high
density is also extremely inefficient for the rasterization process within the GPU as it has to spend
many cycles rasterizing the geometry rather than on executing the fragment shaders.

Visual Rendering Quality in Mobile Virtual Reality !4

Fig. 1 - Example of geometric aliasing

�
Specular aliasing results from objects with sharp highlights which ‘pop’ in and out of existence as
either the camera or the objects move. This manifests itself as pixels which appear to shimmer
across frames as a result of the specular effect being present in one frame but not in the next. This
shimmering effect is particularly annoying for the user as it distracts their attention, therefore
impacting the sense of immersion and reducing the quality of the user experience. The ridges in
the wall on the image below demonstrate specular aliasing.

Common anti-aliasing techniques such as supersampling are not feasible on mobile due to the
computational complexity, and while multisampling anti-aliasing (MSAA) is both effective and
performant, it only acts on geometric aliasing and is therefore ineffective against under-sampling
artifacts that occur within shaders such as specular aliasing.

Due to the many types of aliasing that occur within computer graphics, and more specifically VR, a
number of techniques are required to mitigate each variation of aliasing. 

Visual Rendering Quality in Mobile Virtual Reality !5

Fig. 2 - Example of specular aliasing

�
Mitigations
Mipmapping
Mipmapping is a technique where a high resolution texture is downscaled and filtered so that each
subsequent mip level is a quarter of the area of the previous level, therefore guaranteeing that the
texture and all its generated mips will require no more than 1.5 times the original texture size.

These mipmaps can either be hand generated by an artist or computer generated and are
uploaded to the GPU which then selects the optimal mip for the sampling being performed.
Sampling from the smaller mip level helps to minimize texture aliasing, maintain the definition of
textures on surfaces and prevent the formation of moiré patterns[14] on distant surfaces.

Caution should be taken when storing multiple successive mipmap levels within a single texture
atlas as visual problems can arise when foveated rendering[15] is utilized. These problems arise as
a result of one tile being rendered at native resolution but the neighboring tile is rendered at one
quarter resolution therefore the texture is sampled from the mipmap two levels lower.

One resulting problem occurs during sampling, when a texel is blurred with its neighboring texels
during texture filtering and can wrongly bleed in color from the neighboring levels in the texture
atlas. As a result two neighboring pixels which are in separate tiles that lie in two differing foveated
regions will exhibit a color differential. This can be solved by extruding the edge of the texture to
create an isolation gap between entries into the atlas.

Unreal Implementation
To enable mipmap generation in Unreal Engine, open a texture in the Texture Editor by double
clicking it in the Content Browser, then under the Level Of Detail settings confirm that Mip Gen
Settings is not set to NoMipmaps[1].

Visual Rendering Quality in Mobile Virtual Reality !6

Fig. 3 - 512x512 texture with nine mip levels to 1x1

Fig. 4 - Mipmap generation settings in Unreal Engine

�
Once this has been set Unreal Engine will then create a mipchain for each texture from the original
texture size through to a 1x1 size texture[2].

Generating mipmaps is currently unsupported in Unreal Motion Graphics UI Designer (UMG),
therefore care should be taken when implementing textures within user interfaces as mapping
large textures to smaller frame sizes without mipmapping will produce aliasing, especially when the
textures are significantly larger than the eye’s field of view or it includes text as this is especially
prone to aliasing. 

Visual Rendering Quality in Mobile Virtual Reality !7

�
Level of Detail
Level of Detail (LODs) is the technique of decreasing the detail and complexity of an object as the
distance between said object and the viewer increases. By using LODs when the viewer is close to
an object it posses a high level of geometric detail so the object appears detailed and accurate yet
as the distance between the object and viewer increases the object becomes less geometrically
complex.

The benefits of changing to a model with a lower level of detail as the distance between the viewer
and model increase are two fold, not only does this technique reduce aliasing by decreasing the
possibility for geometric aliasing to occur but it also increases performance by decreasing the
number of vertices that must be shaded by the vertex shader.

LODs should be created with notable differences in the vertex count between each LOD level to
avoid subpixel geometry occurring within the mesh, as this will result in unnecessary oversampling
which will reduce performance. 

Visual Rendering Quality in Mobile Virtual Reality !8

Fig. 5 - Three LODs for a single mesh

�
Below is an example of a mesh passing through three separate LODs as the camera moves closer
to the object, the finer details that become apparent closer when the camera is closer to the object
are not visible from a distance but up close they aid in improving realism.  

Visual Rendering Quality in Mobile Virtual Reality !9

Fig. 6 - Video demonstrating LODs
If this video does not load, please click here: https://www.youtube.com/watch?v=jsLWK6-M1F0

https://www.youtube.com/watch?v=jsLWK6-M1F0
https://www.youtube.com/watch?v=jsLWK6-M1F0

�
Unreal Implementation
To enable LODs for a model in Unreal Engine, first select a mesh inside the Content Browser and
double click it to open the mesh in the Static Mesh Editor, once this is open in the Details panel
there are a number of sections related to LODs.

Within the LOD Settings dropdown there is an option named Import LOD Level X, this option
allows you to import the desired mesh for the next LOD.

The LOD option within the LOD Picker setting should be set to LOD Auto to allow Unreal Engine to
automatically choose the correct LOD based on the distance between the viewer and the mesh.
There are many more options related to LODs available within Unreal Engine that allow you to
custom their use[3]. 

Visual Rendering Quality in Mobile Virtual Reality !10

Fig. 7 - LOD import options in Unreal Engine

Fig. 8 - LOD options in Unreal Engine

�
Multisample Anti-Aliasing
Multisample anti-aliasing (MSAA) is an anti-aliasing technique which is a more efficient variation of
supersampling. Supersampling renders the image at a higher resolution before downscaling to the
display resolution, therefore performing fragment shading for every pixel at that higher resolution.

MSAA performs the vertex shading normally but then each pixel is divided into subsamples which
are tested using a subsample bitwise coverage mask. If any subsamples pass this coverage test,
fragment shading is then performed and the result of the fragment shader is stored in each
subsample which passed the coverage test.

By only executing the fragment shader once per pixel, MSAA is substantially more efficient than
supersampling although it only mitigates geometric aliasing at the intersection of two triangles.

For VR applications the quality benefits from 4x MSAA, reducing the "jaggies" along the edges of
triangles, far outweigh the cost and it should be used whenever possible.

Mali GPUs are designed for full fragment throughput when using 4x MSAA so it can be used with
only a minor hit to performance, which is caused by additional fragments that are generated along
the edges of triangles.

Unreal Implementation
To enable MSAA in Unreal Engine, open the Project Settings then locate the Mobile MSAA option
within the Engine - Rendering section and set it appropriately. 

Visual Rendering Quality in Mobile Virtual Reality !11

Fig. 9 - MSAA settings in Unreal Engine

�
Color Space
Color space is a model which represents the numerical values which each color is assigned, it also
describes the amount of area that each color will be allocated in the space therefore defining how
much variation is available within that color.

Originally, rendering was performed in the gamma color space[16] otherwise gamma correction
would be required on the final image before it can be displayed on the monitor because monitors
are designed to display gamma color space images.

With the advent of Physically Based Rendering (PBR)[17] there has been a shift towards rendering
in the linear color space[16] as this allows for the values of multiple light sources to easily and
accurately be accumulated within shaders whereas in the gamma color space this addition would
not be physically accurate due to the curve inherent to rendering in the gamma color space.

Rendering in the linear color space brings further benefits to aliasing as it can help to reduce
specular aliasing. This benefit occurs as increasing the brightness within a scene when rendering
in the gamma color space causes objects to become increasingly white which can cause specular
aliasing effects due to their white appearance. In a linear color space the object will brighten
linearly with the increase in brightness which stops the object becoming white so rapidly and
therefore reduces the risk of specular aliasing.

Unreal Implementation
Unreal Engine only renders in linear color space, therefore no changes are required. 

Visual Rendering Quality in Mobile Virtual Reality !12

�
Texture Filtering
Texture filtering is a technique to reduce the aliasing that occurs when sampling from textures, this
aliasing results from textures being mapped onto objects where the pixel on the surface does not
lie exactly on the grid of pixels but rather is offset to some degree due to the object the texture is
being mapped to an arbitrary distance and orientation to the viewer.

There are two problematic situations that can occur when mapping a texture pixel (texel) to a
screen pixel, either the texel is larger than the screen pixel, in this case it must be minified to fit the
screen pixel. Alternatively, a situation can occur where the texel is smaller than the screen pixel,
therefore multiple texels must be combined to fit the screen pixel.

Texture filtering relies heavily on mipmapping, this is because during magnification the number of
texels to be fetched never exceeds four but during minification as the textured object moves further
away the entire texture may fit within one pixel. In this case all the texels would have to be fetched
and merged for an accurate result, which would be too expensive to implement for a GPU. Instead
4 samples are selected, resulting in unpredictable under-sampling of the data. Mipmapping
overcomes this by pre-filtering the texture at different sizes so that as the object moves away a
smaller texture size is applied instead.

Widely implemented methods of filtering include bilinear, trilinear and anisotropic filtering, with the
difference between them being how many texels are sampled, how these texels are combined
together and whether mip mapping is utilized in the filtering process. The performance cost of each
filtering method varies so selecting the type of filtering to be used should be a case by case
process where the performance cost of the filtering method is be weighed against the visual
benefits it provides.

For example, trilinear filtering is twice the cost of bilinear filtering yet the visual advantages are not
always apparent especially on textures being applied to distant objects. Instead, the use of 2x
anisotropic filtering is recommended as it often gives better image quality as well as increased
performance. When using anisotropic filtering the maximum number of samples must be set but it
is recommended to exercise caution when using higher numbers of samples, such as 8 samples or
higher, as the performance impact makes it inappropriate for mobile. This techniques is best suited
for textures on slanted surfaces, such as ground in the distance. 

Visual Rendering Quality in Mobile Virtual Reality !13

�
Below is a set of images displaying the difference between the different types of texture filtering. Of
particular note, is the indiscernible difference between bilinear and trilinear filtering when 2 sample
anisotropic filtering is enabled, despite the additional performance cost incurred.

Unreal Implementation
To set the maximum anisotropy within Unreal Engine, open the DefaultEngine.ini configuration file,
which can be found within the [Project_Name]/Config folder under the [/Script/
Engine.RendererSettings] section, add the following line: r.MaxAnisotropy=2[4].

Setting texture filtering options for a texture in Unreal Engine involves two separate parts, setting
the filter settings for a Texture Group and assigning a texture to inherit its filter settings from its
Texture Group.

No Filtering

Bilinear Filtering Trilinear Filtering

Bilinear and 2x Aniso Filtering Trilinear and 2x Anisotropic Filtering

Visual Rendering Quality in Mobile Virtual Reality !14

Fig. 11 - Setting the Texture Group in Unreal Engine

Fig. 10 - Comparison of different texture filtering methods

�
To choose the texture filtering settings, re-open the DefaultEngine.ini configuration file, then locate
the TextureGroup section and set the MinMagFilter, MipFilter and MipGenSettings appropriately[5].

To set a texture to inherit the texture filtering settings from its Texture Group, open a texture in the
Texture Editor by double clicking it in the Content Browser, under the Level Of Detail settings, set
the Texture Group to the group with the desired configuration that was set in the .ini file[6].

Then, still in the Texture Editor, under the Texture settings, set the Filter setting to Default (from
Texture Group). 

Visual Rendering Quality in Mobile Virtual Reality !15

Fig. 12 - Setting the Filter settings to inherit from the
Texture Group in Unreal Engine

�
Alpha Compositing
Alpha compositing is the technique of combining an image with a background image to produce a
composite image that has the appearance of transparency.

Alpha testing is a widely implemented form of alpha compositing but can produce severe aliasing
effects at the edges of objects as the alpha channel is bitwise so there is no blending between
edges. Multisampling has no impact in this case as the shader is run only once for each pixel so
each subsample returns the same alpha value leaving the edges aliased.

Alpha blending is an alternative solution but without polygonal sorting the blending fails and objects
are rendered incorrectly yet enabling sorting is an expensive process and substantially diminishes
performance.

Alpha to coverage (ATOC) is a different method of alpha compositing which can help reduce
aliasing, by transforming the alpha component output of the fragment shader into a coverage mask
and combining this with the multisampling mask before using an AND operator then only rendering
pixels that pass the operation.

The video below demonstrates the difference between a basic alpha test implementation, on the
left, and an alpha to coverage implementation, on the right. In the alpha to coverage
implementation there is considerably less aliasing and reduced flickering.  

Visual Rendering Quality in Mobile Virtual Reality !16

Fig. 13 - Video demonstrating alpha testing (left) and alpha to coverage (right)
If this video does not load, please click here: https://www.youtube.com/watch?v=9nBprtPhXEQ

https://www.youtube.com/watch?v=9nBprtPhXEQ
https://www.youtube.com/watch?v=9nBprtPhXEQ

�
Unreal Implementation
Unreal Engine automatically uses alpha to coverage in its mobile forward renderer, therefore no
changes are required. 

Visual Rendering Quality in Mobile Virtual Reality !17

�
Level Design
Despite all of the technical options to help minimize aliasing, level design, careful consideration is
still vital in helping reduce aliasing artifacts as poor choices in level design can make all the
technical solutions redundant so wise decisions in level design still play a critical role in minimizing
aliasing.

When creating geometry for a scene care should be taken when modeling the edges of meshes to
avoid sharp or sudden edges, for example, a staircase has flat edges on each individual step each
which can create aliasing if the viewer rotates their head but the individual steps themselves can
also be the cause of aliasing when a staircase is viewed from a large distance each step will
become a thin object in the distance which can flicker as the viewer moves.

An example of replacing a set of stairs where the edge of each stair produces aliasing with a ramp
that produces significantly less aliasing is shown below.

Visual Rendering Quality in Mobile Virtual Reality !18

Fig. 14 - Video comparing aliasing on stairs and ramps
If this video does not load, please click here: https://www.youtube.com/watch?v=zqhSDKHuXYk

https://www.youtube.com/watch?v=zqhSDKHuXYk
https://www.youtube.com/watch?v=zqhSDKHuXYk

�

Visual Rendering Quality in Mobile Virtual Reality !19

�
Whenever possible smooth, round shapes should be used in place of those with hard edges,
bevels and thin objects such as wires or cables, have a propensity to cause substantial aliasing
when they are viewed from a distance as they will be rendered effectively as lines, therefore
causing aliasing.

Careful consideration should made on the use of metallic materials which should be minimized
where possible as metallic objects produce specular effects when lit, these specular effects will
flicker as the viewer moves resulting in aliasing, therefore matte materials should be utilized at
length.

A comparison between the aliasing caused by metallic and matte materials is below, the top image
shows a metallic material while the lower image shows a matte equivalent.

Lighting for a scene should be implemented with caution as bright, shiny lights will result in
specular effects appearing on the lit objects which can produce aliasing but more importantly,
aliasing produced from specular effects is particularly noticeable as the human eye will be drawn to
the ‘flashing’ of the pixel as the specular effect appears and disappears between frames.

All lighting should be prebaked when the scene is built to avoid expensive real time lighting
calculations and reduces the presence of lighting artifacts such as banding. To do this scenes
should be designed so that they are appropriate for prebaking which requires few moving objects
and no live day/night cycle. Utilizing light probes can help to minimize the quantity of prebaking
required and they are especially advantageous in 6 degrees of freedom VR.

Reflections require more caution in VR than in typical uses as the complexity required for a
technique such as screen space reflections is too extreme for VR therefore other techniques
should be employed for reflections. Possible techniques include, reflection probes, cube maps[18] or
for objects that require high quality reflections as they can be rendered inverted within the reflective
surface. 
Visual Rendering Quality in Mobile Virtual Reality !20

Fig. 15 - Comparison of metallic (top) and matte (bottom) materials

�
To help conceal aliasing particle effects should be deployed such as, fog or smoke, techniques
which have long been used to conceal short render distances, can also be used to conceal aliasing
caused by objects in the distance.

An example of a scene before, on the left, and after, on the right, fog has been introduced is shown
below to demonstrate the reduction of aliasing following the addition of a particle effect. 

Visual Rendering Quality in Mobile Virtual Reality !21

Fig. 16 - Comparison of before (left) and after particle effects (right)

�
Banding
Description
Banding occurs as a result of the inability to accurately represent the desired colors within the
given number of bits per pixel, within VR this manifests itself as distinct bands of colors that are
marked by abrupt changes between each band.

These bands are most apparent within VR as the user is immersed within the scene therefore their
eyes adjust to the light levels within it, once this has occurred they the bands will be even more
apparent. If there are many bands the user’s eyes will be constantly adjusting to the changing light
levels which can also be physically tiring.

Mitigations
Dithering
Dithering is the process of introducing noise either to the banding material or to the viewer, through
this process the distinct bands of color will be broken up and disrupted therefore they will no longer
be so distinct.

There are many variations of dithering which can be introduced, each of which either apply a
different form of noise or take a different approach to gathering the noise which is applied, for
example, generating noise in real time while others sample noise from a texture crafted to contain
random noise.

Unreal Implementation
To include dithering in Unreal Engine, select the object where the banding is appearing and open
its material in the Material Editor[8].

Configure its Opacity Mask node to perform temporal dithering using the above shader snippet. 

Visual Rendering Quality in Mobile Virtual Reality !22

Fig. 17 - Adding dithering in Unreal Engine

�
Tone Mapping
Tone mapping is a subset of color grading that transforms high dynamic range (HDR) colors so that
they fit within the low dynamic range (LDR) that is suitable for displaying on screen. This function
uses a lookup table (LUT) through which each color is mapped to the appropriate corresponding
color for the new tone.

By applying Tone Mapping to the scene banding caused by low lighting levels or sharp gradients in
textures, which should be avoided where possible, can be reduced.

Unreal Implementation
To enable tone mapping in Unreal Engine, open the Project Settings then enable Mobile HDR
option within the Engine - Rendering section.

After this, open the DefaultEngine.ini configuration file, which can be found within the
[Project_Name]/Config folder under the [/Script/Engine.RendererSettings] section, add the
following line: r.mobile.tonemapperfilm=1[9].

Once this is enabled, then add a Post Process Volume to your scene from the Modes window then
select this object and edit the options within the Film and Mobile Tonemapper sections to help
reduce banding. 

Visual Rendering Quality in Mobile Virtual Reality !23

Fig. 18 - Enabling HDR on mobile in Unreal Engine

Fig. 19 - Mobile tone mapping options in Unreal Engine

�
Bump Mapping
Description
Bump mapping is a widely adopted technique for reducing the vertex count of a mesh, this
technique involves simulating the finer details such as bumps on the surface of an object. This
simulation is performed by manipulating the normals of the object before using them for the lighting
calculations.

While normal mapping is a highly robust technique for typical uses, it is not as effective in virtual
reality as the user can easily change their viewing angle of a normal mapped texture. As this
change of perspective is not accounted for within the normal mapping technique the illusion of
depth is broken.

Additionally, normal mapping cannot account for the use of stereoscopic lenses used in virtual
reality headsets as the normal is only generated from one viewpoint therefore each eye receives
the same normal which looks incorrect to the human eye.

Below is a video demonstrating the appearance of a standard material, a normal mapped material
and a material with parallax occlusion mapping.

Visual Rendering Quality in Mobile Virtual Reality !24

Fig. 20 - Video comparing different bump mapping methods
If this video does not load, please click here: https://www.youtube.com/watch?v=IQvNLr2Eqoc

https://www.youtube.com/watch?v=IQvNLr2Eqoc
https://www.youtube.com/watch?v=IQvNLr2Eqoc

�
Mitigations
Normal Mapping
Normal mapping is the most common implementation of bump mapping and involves creating both
a high and low polygon version of a mesh during the modeling process, a normal map is then
created by exporting the high polygon count version with the normals of the finer details being
stored in the normal map texture.

During rendering the fragment shader samples from the normal map, generating normals from the
sampled values. These generated normals are combined with the surface normals of the low
polygon version before being used in lighting calculations. The lighting then shows the finer surface
details without needing to render the individual vertices of theses details.

While this technique is typically not as effective as in VR, they are still more effective than a flat
material especially if careful consideration is given to the positioning of the normal maps when
lighting a scene.

Unreal Implementation
To add Normal Mapping to a material in Unreal Engine, open the material in the Material Editor,
then configure the material to include a texture sampler linked to the Normal Map pin of the
material node, as below[10]. 

Visual Rendering Quality in Mobile Virtual Reality !25

Fig. 21 - Adding a normal map texture in Unreal Engine

�
Parallax Occlusion Mapping
Parallax occlusion mapping is a technique similar to normal mapping but differs as it accounts for
the angle of the viewer relative to the surface normal when displacing the texture coordinates.
Therefore at steeper viewing angles the texture coordinates are displaced by a higher degree,
therefore maintaining the illusion of depth.

Parallax occlusion mapping is a computationally expensive process therefore only use this
technique on smaller materials which the viewer can get close to. Textures which are further away
gain very little from parallax occlusion mapping because the viewing angle cannot change
considerably.

Unreal Implementation
For parallax occlusion mapping to work in Unreal Engine, OpenGL ES 3.1 must be enabled, this
can be done in the Project Settings window, under the Platforms settings, choose the Android
section, then within the Build options enable Support OpenGL ES3.1 and disable Support OpenGL
ES 2.

Once this is done, open the material in the Material Editor, then add a ParallaxOcclusionMapping
node and configure it as below[11].

Once this is done, open the ParallaxOcclusionMapping node by double clicking it then break the
connection between to the pin labeled ES3_1 on Feature Level Switch node prior to the Output
Parallax UVs node, this modification is shown below. 

Visual Rendering Quality in Mobile Virtual Reality !26

Fig. 22 - Parallax occlusion mapping material in Unreal Engine

�

 

Visual Rendering Quality in Mobile Virtual Reality !27

Fig. 23 - Parallax occlusion mapping node modification in Unreal Engine

�
Shadows
Description
Traditional methods of shadow mapping are computationally intensive on mobile as they require
additional framebuffers and render passes which causes a serious decrease in performance.

Therefore shadow buffers on mobile are often low resolution and do not have any filtering
implemented, as a result of this the shadows often introduce large amounts of aliasing and
damage the realism of the simulation due to artifacts such as shadow acne and hard shadows.

Below is a screenshot demonstrating the comparison between typical shadows and a blob
shadows.

Mitigations
Blob Shadows
The recommended practice in VR is to avoid rendering shadows where possible but if a shadow is
required, such as underneath a player, blob shadows should be rendered below objects. These
blob shadows produce considerably less aliasing than using typical shadow mapping techniques
and also give a performance improvement. 

Visual Rendering Quality in Mobile Virtual Reality !28

Fig. 24 - Comparison of shadow mapping (left) and blob shadows (right)

�
Unreal Implementation
To implement blobs shadows, create a cylinder object in your scene from the Modes window and
then set it as a child of the object that requires a blob shadow.

Create a new material in the Content Browser window, set the Blend Mode to Translucent and then
configure the Material as shown below[12].

Then set the material on the cylinder object to the newly created material. 

Visual Rendering Quality in Mobile Virtual Reality !29

Fig. 25 - Blob shadow material in Unreal Engine

�
Summary
This document has been produced in the hope that the techniques and methods described will aid
developers in the process of improving and refining the visual fidelity of mobile virtual reality
games.

Some techniques, for example multisample anti-aliasing and texture filtering are easy to implement
and have little to no impact on performance making them vital in mobile virtual reality. While other
techniques, such as bump shadows may not be as useful for all developers due to their impact on
the art style they should still be considered given the benefits they provide.

To provide any feedback or suggestions on this document, please email: developer@arm.com

Acknowledgements
This document was produced from a collaboration between Arm, Oculus, Epic Games and Bangor
University.

Firstly, thank you to Roberto Lopez Mendez for the invaluable guidance and feedback he provided
during the creation of this document and for his effort in creating and proposing this topic.

Thank you to Remi Palandri from Oculus and Nick Whiting from Epic Games for reviewing the
document and the suggestions they gave.

Thank you also to Sam Martin, Pete Harris, Andreas Loeve Selvik and Christian Forfang from Arm
for taking the time to review and provide feedback on the document.

Finally, thank you to my supervisor Llyr ap Cenydd from Bangor University for his advice during the
creation of this document. 

Visual Rendering Quality in Mobile Virtual Reality !30

mailto:developer@arm.com

�
References
[1] - https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/Properties
[2] - https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings
[3] - https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
[4] - https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance/TipsAndTricks
[5] - https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings#filtering
[6] - https://docs.unrealengine.com/en-us/Platforms/DeviceProfiles
[7] - https://medium.com/@bgolus/anti-aliased-alpha-test-the-esoteric-alpha-to-coverage-8b177335ae4f
[8] - https://developer.oculus.com/blog/tech-note-shader-snippets-for-efficient-2d-dithering/
[9] - https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
[10] - https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_9
[11] - https://wiki.unrealengine.com/Parallax_Occlusion_Mapping
[12] - https://cdn2.unrealengine.com/Resources/files/UE4-Integration-and-Demos_OC-100270768.pptx
[13] - http://www2.egr.uh.edu/~glover/applets/Sampling/Sampling.html
[14] - http://mathworld.wolfram.com/MoirePattern.html
[15] - https://community.arm.com/developer/tools-software/graphics/b/blog/posts/white-paper-foveated-
rendering
[16] - https://learnopengl.com/Advanced-Lighting/Gamma-Correction
[17] - https://learnopengl.com/PBR/Theory
[18] - https://community.arm.com/developer/tools-software/graphics/b/blog/posts/achieving-high-quality-
mobile-vr-games
[19] - https://www.facebook.com/permalink.php?story_fbid=1818885715012604&id=100006735798590
[20] - https://pages.arm.com/arvr-report.html

Visual Rendering Quality in Mobile Virtual Reality !31

https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/Properties
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings
https://docs.unrealengine.com/en-us/Engine/Content/Types/StaticMeshes/HowTo/LODs
https://docs.unrealengine.com/en-us/Platforms/Mobile/Performance/TipsAndTricks
https://docs.unrealengine.com/en-us/Engine/Content/Types/Textures/SupportAndSettings#filtering
https://docs.unrealengine.com/en-us/Platforms/DeviceProfiles
https://medium.com/@bgolus/anti-aliased-alpha-test-the-esoteric-alpha-to-coverage-8b177335ae4f
https://developer.oculus.com/blog/tech-note-shader-snippets-for-efficient-2d-dithering/
https://docs.unrealengine.com/en-us/Engine/Rendering/PostProcessEffects/ColorGrading
https://docs.unrealengine.com/en-us/Resources/ContentExamples/MaterialNodes/1_9
https://wiki.unrealengine.com/Parallax_Occlusion_Mapping
https://cdn2.unrealengine.com/Resources/files/UE4-Integration-and-Demos_OC-100270768.pptx
http://www2.egr.uh.edu/~glover/applets/Sampling/Sampling.html
http://mathworld.wolfram.com/MoirePattern.html
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/white-paper-foveated-rendering
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/white-paper-foveated-rendering
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/white-paper-foveated-rendering
https://learnopengl.com/Advanced-Lighting/Gamma-Correction
https://learnopengl.com/PBR/Theory
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/achieving-high-quality-mobile-vr-games
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/achieving-high-quality-mobile-vr-games
https://community.arm.com/developer/tools-software/graphics/b/blog/posts/achieving-high-quality-mobile-vr-games
https://www.facebook.com/permalink.php?story_fbid=1818885715012604&id=100006735798590
https://pages.arm.com/arvr-report.html

	Introduction
	Article structure
	Factors Impacting Mobile VR Rendering Quality
	Aliasing
	Description
	Mitigations
	Mipmapping
	Level of Detail
	Multisample Anti-Aliasing
	Color Space
	Texture Filtering
	Alpha Compositing
	Level Design

	Banding
	Description
	Mitigations
	Dithering
	Tone Mapping

	Bump Mapping
	Description
	Mitigations
	Normal Mapping
	Parallax Occlusion Mapping

	Shadows
	Description
	Mitigations
	Blob Shadows

	Summary
	Acknowledgements
	References

