(old) | htmldiff from- | (new) |
The CNTHP_CTL characteristics are:
Control register for the Hyp mode physical timer.
AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System register CNTHP_CTL_EL2[31:0] .
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CNTHP_CTL are UNKNOWN.
If EL2 is not implemented, this register is RES0 from EL3.
Some or all RW fields of this register have defined reset values.
These apply
only if the PE resets into EL2
with EL2 using AArch32,
or into
EL3 with EL3 using AArch32.
Otherwise,
RW fields in this register reset to architecturally UNKNOWN values.
CNTHP_CTL is a 32-bit register.
The CNTHP_CTL bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | ISTATUS | IMASK | ENABLE |
Reserved, RES0.
The status of the timer. This bit indicates whether the timer condition is met:
ISTATUS | Meaning |
---|---|
0b0 | Timer condition is not met. |
0b1 | Timer condition is met. |
When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer interrupt is asserted.
When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.
For more information see 'Operation of the CompareValue views of the timers' and 'Operation of the TimerValue views of the timers' in the Arm® Architecture Reference Manual, Armv8, for Armv8-A architecture profile, chapter D6.
This bit is read-only.
Timer interrupt mask bit. Permitted values are:
IMASK | Meaning |
---|---|
0b0 | Timer interrupt is not masked by the IMASK bit. |
0b1 | Timer interrupt is masked by the IMASK bit. |
For more information, see the description of the ISTATUS bit.
In a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN value.
Enables the timer. Permitted values are:
ENABLE | Meaning |
---|---|
0b0 | Timer disabled. |
0b1 | Timer enabled. |
Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues to count down.
Disabling the output signal might be a power-saving option.
In a system where the PE resets into EL2 or EL3, this field resets to 0.
Accesses to this register use the following encodings:
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b100 | 0b1110 | 0b0010 | 0b001 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then return CNTHP_CTL; elsif PSTATE.EL == EL3 then return CNTHP_CTL;
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b100 | 0b1110 | 0b0010 | 0b001 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then UNDEFINED; elsif PSTATE.EL == EL2 then CNTHP_CTL = R[t]; elsif PSTATE.EL == EL3 then CNTHP_CTL = R[t];
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b0010 | 0b001 |
if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);
else
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
return CNTHPS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
return CNTHP_CTL_EL2;
else
return CNTP_CTL;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if SCR.NS == '0' then
return CNTP_CTL_S;
else
return CNTP_CTL_NS;
else
return CNTP_CTL;
elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;
else
return CNTP_CTL;
elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then
return CNTP_CTL_S;
else
return CNTP_CTL_NS;
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1110 | 0b0010 | 0b001 |
if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else
AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);
else
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' && IsFeatureImplemented("ARMv8.4-SecEL2") then
CNTHPS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then
CNTHP_CTL_EL2 = R[t];
else
CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
if SCR.NS == '0' then
CNTP_CTL_S = R[t];
else
CNTP_CTL_NS = R[t];
else
CNTP_CTL = R[t];
elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];
else
CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then
CNTP_CTL_S = R[t];
else
CNTP_CTL_NS = R[t];
1327/1209/2019 1518:1348; 391b5248b29fb2f001ef74792eaacbd6fc72f2116134483bd14dc8c12a99c984cbfe3431cc1c9707
Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.
(old) | htmldiff from- | (new) |