(old) | htmldiff from- | (new) |
The ICC_BPR1 characteristics are:
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field. The group priority field determines Group 1 interrupt preemption.
AArch32 System register ICC_BPR1 bits [31:0] (S) are architecturally mapped to AArch64 System register ICC_BPR1_EL1[31:0] (S) .
AArch32 System register ICC_BPR1 bits [31:0] (NS) are architecturally mapped to AArch64 System register ICC_BPR1_EL1[31:0] (NS) .
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICC_BPR1 are UNKNOWN.
In GIC implementations supporting two Security states, this register is Banked.
Some or all RW fields of this register have defined reset values.
These apply
only if the PE resets into an Exception level that is using AArch32.
If the PE resets into EL3 using AArch32 they apply only to the Secure instance of the register.
Otherwise,
RW fields in this register reset to architecturally UNKNOWN values.
ICC_BPR1 is a 32-bit register.
The ICC_BPR1 bit assignments are:
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
RES0 | BinaryPoint |
Reserved, RES0.
If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption, and a subpriority field. For more information about priorities, see Priority grouping.
Writing 0 to this field will set this field to its reset value.
If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:
If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR.IMO and SCR.IRQ:
HCR.IMO | SCR_IRQ | Behavior |
---|---|---|
0b0 | 0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b0 | 0b1 | Non-secure EL1 and EL2 accesses trap to EL3. |
0b1 | 0b0 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes ignored. |
0b1 | 0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 accesses trap to EL3. |
If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as follows, depending on the values of HCR.IMO:
HCR.IMO | Behavior |
---|---|
0b0 | Non-secure EL1 and EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL1 and EL2 writes are ignored. |
0b1 | Non-secure EL1 accesses affect virtual interrupts. Non-secure EL2 reads return ICC_BPR0 + 1 saturated to 0b111. Non-secure EL2 writes are ignored. |
This field resets to an IMPLEMENTATION DEFINED non-zero value.
When the PE resets into an Exception level that is using AArch32, the reset value is equal to:
Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.
If EL3 is not implemented:
An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.
Accesses to this register use the following encodings:
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1100 | 0b011 |
if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then
return ICV_BPR1;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then
return ICV_BPR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then
if SCR.NS == '0' then
return ICC_BPR1_S;
else
return ICC_BPR1_NS;
else
return ICC_BPR1;
elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then
UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then
return ICC_BPR1_NS;
else
return ICC_BPR1;
elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then
UNDEFINED;
else
if SCR.NS == '0' then
return ICC_BPR1_S;
else
return ICC_BPR1_NS;
coproc | opc1 | CRn | CRm | opc2 |
---|---|---|---|---|
0b1111 | 0b000 | 0b1100 | 0b1100 | 0b011 |
if PSTATE.EL == EL0 then
UNDEFINED;
elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then
UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then
AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then
ICV_BPR1 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR.IMO == '1' then
ICV_BPR1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then
if SCR.NS == '0' then
ICC_BPR1_S = R[t];
else
ICC_BPR1_NS = R[t];
else
ICC_BPR1 = R[t];
elsif PSTATE.EL == EL2 then
if ICC_HSRE.SRE == '0' then
UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then
ICC_BPR1_NS = R[t];
else
ICC_BPR1 = R[t];
elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then
UNDEFINED;
else
if SCR.NS == '0' then
ICC_BPR1_S = R[t];
else
ICC_BPR1_NS = R[t];
1327/1209/2019 1518:1348; 391b5248b29fb2f001ef74792eaacbd6fc72f2116134483bd14dc8c12a99c984cbfe3431cc1c9707
Copyright © 2010-2019 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.
(old) | htmldiff from- | (new) |