The PMEVTYPER<n>_EL0 characteristics are:
Configures event counter n, where n is 0 to 30.
AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMEVTYPER<n>[31:0] .
AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to External register PMEVTYPER<n>_EL0[31:0] .
This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n>_EL0 are UNDEFINED.
PMEVTYPER<n>_EL0 is a 64-bit register.
The PMEVTYPER<n>_EL0 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
RES0 | |||||||||||||||||||||||||||||||
P | U | NSK | NSU | NSH | M | MT | SH | RES0 | evtCount[15:10] | evtCount[9:0] | |||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Reserved, RES0.
Privileged filtering bit. Controls counting in EL1.
If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK bit.
P | Meaning |
---|---|
0b0 |
Count events in EL1. |
0b1 |
Do not count events in EL1. |
On a Warm reset, this field resets to an architecturally UNKNOWN value.
User filtering bit. Controls counting in EL0.
If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU bit.
U | Meaning |
---|---|
0b0 |
Count events in EL0. |
0b1 |
Do not count events in EL0. |
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.
If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.
Otherwise, events in Non-secure EL1 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.
If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.
Otherwise, events in Non-secure EL0 are not counted.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
EL2 (Hypervisor) filtering bit. Controls counting in EL2.
If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the PMEVTYPER<n>_EL0.SH bit.
NSH | Meaning |
---|---|
0b0 |
Do not count events in EL2. |
0b1 |
Count events in EL2. |
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
Secure EL3 filtering bit.
If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.
Otherwise, events in Secure EL3 are not counted.
Most applications can ignore this field and set its value to 0b0.
This field is not visible in the AArch32 PMEVTYPER<n> System register.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
Multithreading.
MT | Meaning |
---|---|
0b0 |
Count events only on controlling PE. |
0b1 |
Count events from any PE with the same affinity at level 1 and above as this PE. |
From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted, meaning if FEAT_MTPMU is not implemented, this bit is RES0. See ID_AA64DFR0_EL1.MTPMU.
This bit is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and Disabled.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
Secure EL2 filtering.
If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are counted.
Otherwise, events in Secure EL2 are not counted.
This field is not visible in the AArch32 PMEVTYPER<n> System register.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
Reserved, RES0.
Extension to evtCount[9:0]. See evtCount[9:0] for more details.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
Reserved, RES0.
Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.
Software must program this field with an event that is supported by the PE being programmed.
The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space'.
If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value written:
UNPREDICTABLE means the event must not expose privileged information.
Arm recommends that the behavior across a family of implementations is defined such that if a given implementation does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the value read back on evtCount is the value written.
On a Warm reset, this field resets to an architecturally UNKNOWN value.
PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.
If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible counters, then the behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:
If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible counters, then reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:
In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.
If EL2 is implemented and enabled in the current Security state, in EL1 and EL0, MDCR_EL2.HPMN identifies the number of accessible event counters. Otherwise, the number of accessible event counters is the number of implemented event counters. See MDCR_EL2.HPMN for more details.
Accesses to this register use the following encodings:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b011 | 0b1110 | 0b11:n[4:3] | n[2:0] |
if PSTATE.EL == EL0 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then UNDEFINED; elsif PMUSERENR_EL0.EN == '0' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)]; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)]; elsif PSTATE.EL == EL3 then return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b11 | 0b011 | 0b1110 | 0b11:n[4:3] | n[2:0] |
if PSTATE.EL == EL0 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then UNDEFINED; elsif PMUSERENR_EL0.EN == '0' then if EL2Enabled() && HCR_EL2.TGE == '1' then AArch64.SystemAccessTrap(EL2, 0x18); else AArch64.SystemAccessTrap(EL1, 0x18); elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t]; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.TPM == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t]; elsif PSTATE.EL == EL3 then PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
30/09/2020 15:07; ccead0cb9f089f9ceec50268e82aec9e71047211
Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.