The DBGPRCR_EL1 characteristics are:
Controls behavior of the PE on powerdown request.
AArch64 System register DBGPRCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DBGPRCR[31:0] .
Bit [0] of this register is mapped to EDPRCR.CORENPDRQ, bit [0] of the external view of this register.
The other bits in these registers are not mapped to each other.
DBGPRCR_EL1 is a 64-bit register.
The DBGPRCR_EL1 bit assignments are:
63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | 54 | 53 | 52 | 51 | 50 | 49 | 48 | 47 | 46 | 45 | 44 | 43 | 42 | 41 | 40 | 39 | 38 | 37 | 36 | 35 | 34 | 33 | 32 |
RES0 | |||||||||||||||||||||||||||||||
RES0 | CORENPDRQ | ||||||||||||||||||||||||||||||
31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Reserved, RES0.
Core no powerdown request. Requests emulation of powerdown.
This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.
CORENPDRQ | Meaning |
---|---|
0b0 |
If the system responds to a powerdown request, it powers down Core power domain. |
0b1 |
If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain. |
In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.
It is IMPLEMENTATION DEFINED whether this bit is reset to its Cold reset value on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see 'Core power domain power states'.
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.
On a Cold reset, if the powerup request is implemented and the powerup request has been asserted, this field is set to an IMPLEMENTATION DEFINED choice of 0 or 1. If the powerup request is not asserted, this field is set to 0.
On a Warm reset, the value of this field is unchanged.
Core no powerdown request. Requests emulation of powerdown.
This request is typically passed to an external power controller. This means that whether a request causes power up is dependent on the IMPLEMENTATION DEFINED nature of the system. The power controller must not allow the Core power domain to switch off while this bit is 1.
CORENPDRQ | Meaning |
---|---|
0b0 |
If the system responds to a powerdown request, it powers down Core power domain. |
0b1 |
If the system responds to a powerdown request, it does not powerdown the Core power domain, but instead emulates a powerdown of that domain. |
In an implementation that includes the recommended external debug interface, this bit drives the DBGNOPWRDWN signal.
It is IMPLEMENTATION DEFINED whether this bit is reset to the value of EDPRCR.COREPURQ on exit from an IMPLEMENTATION DEFINED software-visible retention state. For more information about retention states see 'Core power domain power states'.
Writes to this bit are not prohibited by the IMPLEMENTATION DEFINED authentication interface. This means that a debugger can request emulation of powerdown regardless of whether invasive debug is permitted.
On a Cold reset, this field resets to the value in EDPRCR.COREPURQ.
On a Warm reset, the value of this field is unchanged.
Accesses to this register use the following encodings:
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b10 | 0b000 | 0b0001 | 0b0100 | 0b100 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then UNDEFINED; elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGPRCR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else return DBGPRCR_EL1; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then UNDEFINED; elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else return DBGPRCR_EL1; elsif PSTATE.EL == EL3 then return DBGPRCR_EL1;
op0 | op1 | CRn | CRm | op2 |
---|---|---|---|---|
0b10 | 0b000 | 0b0001 | 0b0100 | 0b100 |
if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then UNDEFINED; elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGPRCR_EL1 == '1' then AArch64.SystemAccessTrap(EL2, 0x18); elsif EL2Enabled() && MDCR_EL2.<TDE,TDOSA> != '00' then AArch64.SystemAccessTrap(EL2, 0x18); elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else DBGPRCR_EL1 = X[t]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && MDCR_EL3.TDOSA == '1' then UNDEFINED; elsif HaveEL(EL3) && MDCR_EL3.TDOSA == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.SystemAccessTrap(EL3, 0x18); else DBGPRCR_EL1 = X[t]; elsif PSTATE.EL == EL3 then DBGPRCR_EL1 = X[t];
01/07/2020 15:57; 80324f0b9997bede489cc15ad1565345720bcd2a
Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.