(old) htmldiff from-(new)

PMINTENCLR, Performance Monitors Interrupt Enable Clear register

The PMINTENCLR characteristics are:

Purpose

Disables the generation of interrupt requests on overflows from the Cycle Count Register, PMCCNTR, and the event counters PMEVCNTR<n>. Reading the register shows which overflow interrupt requests are enabled.

PMINTENCLR is used in conjunction with the PMINTENSET register.

Configuration

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to AArch64 System register PMINTENCLR_EL1[31:0] .

AArch32 System register PMINTENCLR bits [31:0] are architecturally mapped to External register PMINTENCLR_EL1[31:0] .

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMINTENCLR are UNDEFINED.

Attributes

PMINTENCLR is a 32-bit register.

Field descriptions

The PMINTENCLR bit assignments are:

313029282726252423222120191817161514131211109876543210
CP30P<n>, bit [n] P29P28P27P26P25P24P23P22P21P20P19P18P17P16P15P14P13P12P11P10P9P8P7P6P5P4P3P2P1P0

C, bit [31]

PMCCNTR overflow interrupt request disable bit.

CMeaning
0b0

When read, means the cycle counter overflow interrupt request is disabled. When written, has no effect.

0b1

When read, means the cycle counter overflow interrupt request is enabled. When written, disables the cycle count overflow interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

P<n>, bit [n], for n = 300 to 030

Event counter overflow interrupt request disable bit for PMEVCNTR<n>.

If N is less than 31, then bits [30:N] are RAZ/WI. When EL2 is implemented and enabled in the current Security state, in EL1, N is the value in MDCR_EL2.HPMN if EL2 is using AArch64, or in HDCR.HPMN if EL2 is using AArch32. Otherwise, N is the value in PMCR.N.

P<n>Meaning
0b0

When read, means that the PMEVCNTR<n> event counter interrupt request is disabled. When written, has no effect.

0b1

When read, means that the PMEVCNTR<n> event counter interrupt request is enabled. When written, disables the PMEVCNTR<n> interrupt request.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMINTENCLR

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b10010b11100b010

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMINTENCLR; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else return PMINTENCLR; elsif PSTATE.EL == EL3 then return PMINTENCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coprocopc1CRnCRmopc2
0b11110b0000b10010b11100b010

if PSTATE.EL == EL0 then UNDEFINED; elsif PSTATE.EL == EL1 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then AArch32.TakeHypTrapException(0x03); elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then AArch64.AArch32SystemAccessTrap(EL2, 0x03); elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then AArch32.TakeHypTrapException(0x03); elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMINTENCLR = R[t]; elsif PSTATE.EL == EL2 then if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then UNDEFINED; elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then if Halted() && EDSCR.SDD == '1' then UNDEFINED; else AArch64.AArch32SystemAccessTrap(EL3, 0x03); else PMINTENCLR = R[t]; elsif PSTATE.EL == EL3 then PMINTENCLR = R[t];




3001/0907/2020 15:0757; ccead0cb9f089f9ceec50268e82aec9e7104721180324f0b9997bede489cc15ad1565345720bcd2a

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from-(new)