
(old) htmldiff from- (new)

Proprietary Notice
This document is protected by copyright and other related rights and the practice or implementation of the
information contained in this document may be protected by one or more patents or pending patent applications. No
part of this document may be reproduced in any form by any means without the express prior written permission of
Arm. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this
document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit
others to use the information for the purposes of determining whether implementations infringe any third party
patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE
WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, Arm makes no representation with respect to, and
has undertaken no analysis to identify or understand the scope and content of, patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF
THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or
disclosure of this document complies fully with any relevant export laws and regulations to assure that this document
or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner”
in reference to Arm’s customers is not intended to create or refer to any partnership relationship with any other
company. Arm may make changes to this document at any time and without notice.

This document may be translated into other languages for convenience, and you agree that if there is any conflict
between the English version of this document and any translation, the terms of the English version of the Agreement
shall prevail.

The Arm corporate logo and words marked with ® or ™ are registered trademarks or trademarks of Arm Limited (or
its subsidiaries) in the US and/or elsewhere. All rights reserved. Other brands and names mentioned in this document
may be the trademarks of their respective owners. Please follow Arm’s trademark usage guidelines at
http://www.arm.com/company/policies/trademarks.

Copyright © 2020 Arm Limited (or its affiliates). All rights reserved.

Arm Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

(LES-PRE-20349 version 21.0)

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

Proprietary Notice

Page 1

(old) htmldiff from- (new)

AArch64 System Registers
ACCDATA_EL1: Accelerator Data

ACTLR_EL1: Auxiliary Control Register (EL1)

ACTLR_EL2: Auxiliary Control Register (EL2)

ACTLR_EL3: Auxiliary Control Register (EL3)

AFSR0_EL1: Auxiliary Fault Status Register 0 (EL1)

AFSR0_EL2: Auxiliary Fault Status Register 0 (EL2)

AFSR0_EL3: Auxiliary Fault Status Register 0 (EL3)

AFSR1_EL1: Auxiliary Fault Status Register 1 (EL1)

AFSR1_EL2: Auxiliary Fault Status Register 1 (EL2)

AFSR1_EL3: Auxiliary Fault Status Register 1 (EL3)

AIDR_EL1: Auxiliary ID Register

AMAIR_EL1: Auxiliary Memory Attribute Indirection Register (EL1)

AMAIR_EL2: Auxiliary Memory Attribute Indirection Register (EL2)

AMAIR_EL3: Auxiliary Memory Attribute Indirection Register (EL3)

AMCFGR_EL0: Activity Monitors Configuration Register

AMCG1IDR_EL0: Activity Monitors Counter Group 1 Identification Register

AMCGCR_EL0: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0_EL0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1_EL0: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0_EL0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1_EL0: Activity Monitors Count Enable Set Register 1

AMCR_EL0: Activity Monitors Control Register

AMEVCNTR0<n>_EL0: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>_EL0: Activity Monitors Event Counter Registers 1

AMEVCNTVOFF0<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 0

AMEVCNTVOFF1<n>_EL2: Activity Monitors Event Counter Virtual Offset Registers 1

AMEVTYPER0<n>_EL0: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>_EL0: Activity Monitors Event Type Registers 1

AMUSERENR_EL0: Activity Monitors User Enable Register

APDAKeyHi_EL1: Pointer Authentication Key A for Data (bits[127:64])

APDAKeyLo_EL1: Pointer Authentication Key A for Data (bits[63:0])

APDBKeyHi_EL1: Pointer Authentication Key B for Data (bits[127:64])

APDBKeyLo_EL1: Pointer Authentication Key B for Data (bits[63:0])

AArch64 System Registers

Page 2

APGAKeyHi_EL1: Pointer Authentication Key A for Code (bits[127:64])

APGAKeyLo_EL1: Pointer Authentication Key A for Code (bits[63:0])

APIAKeyHi_EL1: Pointer Authentication Key A for Instruction (bits[127:64])

APIAKeyLo_EL1: Pointer Authentication Key A for Instruction (bits[63:0])

APIBKeyHi_EL1: Pointer Authentication Key B for Instruction (bits[127:64])

APIBKeyLo_EL1: Pointer Authentication Key B for Instruction (bits[63:0])

CCSIDR2_EL1: Current Cache Size ID Register 2

CCSIDR_EL1: Current Cache Size ID Register

CLIDR_EL1: Cache Level ID Register

CNTFRQ_EL0: Counter-timer Frequency register

CNTHCTL_EL2: Counter-timer Hypervisor Control register

CNTHPS_CTL_EL2: Counter-timer Secure Physical Timer Control register (EL2)

CNTHPS_CVAL_EL2: Counter-timer Secure Physical Timer CompareValue register (EL2)

CNTHPS_TVAL_EL2: Counter-timer Secure Physical Timer TimerValue register (EL2)

CNTHP_CTL_EL2: Counter-timer Hypervisor Physical Timer Control register

CNTHP_CVAL_EL2: Counter-timer Physical Timer CompareValue register (EL2)

CNTHP_TVAL_EL2: Counter-timer Physical Timer TimerValue register (EL2)

CNTHVS_CTL_EL2: Counter-timer Secure Virtual Timer Control register (EL2)

CNTHVS_CVAL_EL2: Counter-timer Secure Virtual Timer CompareValue register (EL2)

CNTHVS_TVAL_EL2: Counter-timer Secure Virtual Timer TimerValue register (EL2)

CNTHV_CTL_EL2: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL_EL2: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL_EL2: Counter-timer Virtual Timer TimerValue Register (EL2)

CNTKCTL_EL1: Counter-timer Kernel Control register

CNTPCTSS_EL0: Counter-timer Self-Synchronized Physical Count register

CNTPCT_EL0: Counter-timer Physical Count register

CNTPOFF_EL2: Counter-timer Physical Offset register

CNTPS_CTL_EL1: Counter-timer Physical Secure Timer Control register

CNTPS_CVAL_EL1: Counter-timer Physical Secure Timer CompareValue register

CNTPS_TVAL_EL1: Counter-timer Physical Secure Timer TimerValue register

CNTP_CTL_EL0: Counter-timer Physical Timer Control register

CNTP_CVAL_EL0: Counter-timer Physical Timer CompareValue register

CNTP_TVAL_EL0: Counter-timer Physical Timer TimerValue register

CNTVCTSS_EL0: Counter-timer Self-Synchronized Virtual Count register

CNTVCT_EL0: Counter-timer Virtual Count register

CNTVOFF_EL2: Counter-timer Virtual Offset register

AArch64 System Registers

Page 3

CNTV_CTL_EL0: Counter-timer Virtual Timer Control register

CNTV_CVAL_EL0: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL_EL0: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR_EL1: Context ID Register (EL1)

CONTEXTIDR_EL2: Context ID Register (EL2)

CPACR_EL1: Architectural Feature Access Control Register

CPTR_EL2: Architectural Feature Trap Register (EL2)

CPTR_EL3: Architectural Feature Trap Register (EL3)

CSSELR_EL1: Cache Size Selection Register

CTR_EL0: Cache Type Register

CurrentEL: Current Exception Level

DACR32_EL2: Domain Access Control Register

DAIF: Interrupt Mask Bits

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGDTR_EL0: Debug Data Transfer Register, half-duplex

DBGPRCR_EL1: Debug Power Control Register

DBGVCR32_EL2: Debug Vector Catch Register

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

DCZID_EL0: Data Cache Zero ID register

DISR_EL1: Deferred Interrupt Status Register

DIT: Data Independent Timing

DLR_EL0: Debug Link Register

DSPSR_EL0: Debug Saved Program Status Register

ELR_EL1: Exception Link Register (EL1)

ELR_EL2: Exception Link Register (EL2)

ELR_EL3: Exception Link Register (EL3)

ERRIDR_EL1: Error Record ID Register

ERRSELR_EL1: Error Record Select Register

ERXADDR_EL1: Selected Error Record Address Register

AArch64 System Registers

Page 4

ERXCTLR_EL1: Selected Error Record Control Register

ERXFR_EL1: Selected Error Record Feature Register

ERXMISC0_EL1: Selected Error Record Miscellaneous Register 0

ERXMISC1_EL1: Selected Error Record Miscellaneous Register 1

ERXMISC2_EL1: Selected Error Record Miscellaneous Register 2

ERXMISC3_EL1: Selected Error Record Miscellaneous Register 3

ERXPFGCDN_EL1: Selected Pseudo-fault Generation Countdown register

ERXPFGCTL_EL1: Selected Pseudo-fault Generation Control register

ERXPFGF_EL1: Selected Pseudo-fault Generation Feature register

ERXSTATUS_EL1: Selected Error Record Primary Status Register

ESR_EL1: Exception Syndrome Register (EL1)

ESR_EL2: Exception Syndrome Register (EL2)

ESR_EL3: Exception Syndrome Register (EL3)

FAR_EL1: Fault Address Register (EL1)

FAR_EL2: Fault Address Register (EL2)

FAR_EL3: Fault Address Register (EL3)

FPCR: Floating-point Control Register

FPEXC32_EL2: Floating-Point Exception Control register

FPSR: Floating-point Status Register

GCR_EL1: Tag Control Register.

GMID_EL1: Multiple tag transfer ID register

HACR_EL2: Hypervisor Auxiliary Control Register

HAFGRTR_EL2: Hypervisor Activity Monitors Fine-Grained Read Trap Register

HCRX_EL2: Extended Hypervisor Configuration Register

HCR_EL2: Hypervisor Configuration Register

HDFGRTR_EL2: Hypervisor Debug Fine-Grained Read Trap Register

HDFGWTR_EL2: Hypervisor Debug Fine-Grained Write Trap Register

HFGITR_EL2: Hypervisor Fine-Grained Instruction Trap Register

HFGRTR_EL2: Hypervisor Fine-Grained Read Trap Register

HFGWTR_EL2: Hypervisor Fine-Grained Write Trap Register

HPFAR_EL2: Hypervisor IPA Fault Address Register

HSTR_EL2: Hypervisor System Trap Register

ICC_AP0R<n>_EL1: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>_EL1: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R_EL1: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0_EL1: Interrupt Controller Binary Point Register 0

AArch64 System Registers

Page 5

ICC_BPR1_EL1: Interrupt Controller Binary Point Register 1

ICC_CTLR_EL1: Interrupt Controller Control Register (EL1)

ICC_CTLR_EL3: Interrupt Controller Control Register (EL3)

ICC_DIR_EL1: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0_EL1: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1_EL1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1_EL1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_IAR0_EL1: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1_EL1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0_EL1: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1_EL1: Interrupt Controller Interrupt Group 1 Enable register

ICC_IGRPEN1_EL3: Interrupt Controller Interrupt Group 1 Enable register (EL3)

ICC_PMR_EL1: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR_EL1: Interrupt Controller Running Priority Register

ICC_SGI0R_EL1: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R_EL1: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE_EL1: Interrupt Controller System Register Enable register (EL1)

ICC_SRE_EL2: Interrupt Controller System Register Enable register (EL2)

ICC_SRE_EL3: Interrupt Controller System Register Enable register (EL3)

ICH_AP0R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>_EL2: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR_EL2: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR_EL2: Interrupt Controller Empty List Register Status Register

ICH_HCR_EL2: Interrupt Controller Hyp Control Register

ICH_LR<n>_EL2: Interrupt Controller List Registers

ICH_MISR_EL2: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR_EL2: Interrupt Controller Virtual Machine Control Register

ICH_VTR_EL2: Interrupt Controller VGIC Type Register

ICV_AP0R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>_EL1: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0_EL1: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1_EL1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR_EL1: Interrupt Controller Virtual Control Register

ICV_DIR_EL1: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0_EL1: Interrupt Controller Virtual End Of Interrupt Register 0

AArch64 System Registers

Page 6

ICV_EOIR1_EL1: Interrupt Controller Virtual End Of Interrupt Register 1

ICV_HPPIR0_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1_EL1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1_EL1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0_EL1: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1_EL1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR_EL1: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR_EL1: Interrupt Controller Virtual Running Priority Register

ID_AA64AFR0_EL1: AArch64 Auxiliary Feature Register 0

ID_AA64AFR1_EL1: AArch64 Auxiliary Feature Register 1

ID_AA64DFR0_EL1: AArch64 Debug Feature Register 0

ID_AA64DFR1_EL1: AArch64 Debug Feature Register 1

ID_AA64ISAR0_EL1: AArch64 Instruction Set Attribute Register 0

ID_AA64ISAR1_EL1: AArch64 Instruction Set Attribute Register 1

ID_AA64ISAR2_EL1: AArch64 Instruction Set Attribute Register 2

ID_AA64MMFR0_EL1: AArch64 Memory Model Feature Register 0

ID_AA64MMFR1_EL1: AArch64 Memory Model Feature Register 1

ID_AA64MMFR2_EL1: AArch64 Memory Model Feature Register 2

ID_AA64PFR0_EL1: AArch64 Processor Feature Register 0

ID_AA64PFR1_EL1: AArch64 Processor Feature Register 1

ID_AA64ZFR0_EL1: SVE Feature ID register 0

ID_AFR0_EL1: AArch32 Auxiliary Feature Register 0

ID_DFR0_EL1: AArch32 Debug Feature Register 0

ID_DFR1_EL1: Debug Feature Register 1

ID_ISAR0_EL1: AArch32 Instruction Set Attribute Register 0

ID_ISAR1_EL1: AArch32 Instruction Set Attribute Register 1

ID_ISAR2_EL1: AArch32 Instruction Set Attribute Register 2

ID_ISAR3_EL1: AArch32 Instruction Set Attribute Register 3

ID_ISAR4_EL1: AArch32 Instruction Set Attribute Register 4

ID_ISAR5_EL1: AArch32 Instruction Set Attribute Register 5

ID_ISAR6_EL1: AArch32 Instruction Set Attribute Register 6

ID_MMFR0_EL1: AArch32 Memory Model Feature Register 0

ID_MMFR1_EL1: AArch32 Memory Model Feature Register 1

ID_MMFR2_EL1: AArch32 Memory Model Feature Register 2

ID_MMFR3_EL1: AArch32 Memory Model Feature Register 3

AArch64 System Registers

Page 7

ID_MMFR4_EL1: AArch32 Memory Model Feature Register 4

ID_MMFR5_EL1: AArch32 Memory Model Feature Register 5

ID_PFR0_EL1: AArch32 Processor Feature Register 0

ID_PFR1_EL1: AArch32 Processor Feature Register 1

ID_PFR2_EL1: AArch32 Processor Feature Register 2

IFSR32_EL2: Instruction Fault Status Register (EL2)

ISR_EL1: Interrupt Status Register

LORC_EL1: LORegion Control (EL1)

LOREA_EL1: LORegion End Address (EL1)

LORID_EL1: LORegionID (EL1)

LORN_EL1: LORegion Number (EL1)

LORSA_EL1: LORegion Start Address (EL1)

MAIR_EL1: Memory Attribute Indirection Register (EL1)

MAIR_EL2: Memory Attribute Indirection Register (EL2)

MAIR_EL3: Memory Attribute Indirection Register (EL3)

MDCCINT_EL1: Monitor DCC Interrupt Enable Register

MDCCSR_EL0: Monitor DCC Status Register

MDCR_EL2: Monitor Debug Configuration Register (EL2)

MDCR_EL3: Monitor Debug Configuration Register (EL3)

MDRAR_EL1: Monitor Debug ROM Address Register

MDSCR_EL1: Monitor Debug System Control Register

MIDR_EL1: Main ID Register

MPAM0_EL1: MPAM0 Register (EL1)

MPAM1_EL1: MPAM1 Register (EL1)

MPAM2_EL2: MPAM2 Register (EL2)

MPAM3_EL3: MPAM3 Register (EL3)

MPAMHCR_EL2: MPAM Hypervisor Control Register (EL2)

MPAMIDR_EL1: MPAM ID Register (EL1)

MPAMVPM0_EL2: MPAM Virtual PARTID Mapping Register 0

MPAMVPM1_EL2: MPAM Virtual PARTID Mapping Register 1

MPAMVPM2_EL2: MPAM Virtual PARTID Mapping Register 2

MPAMVPM3_EL2: MPAM Virtual PARTID Mapping Register 3

MPAMVPM4_EL2: MPAM Virtual PARTID Mapping Register 4

MPAMVPM5_EL2: MPAM Virtual PARTID Mapping Register 5

MPAMVPM6_EL2: MPAM Virtual PARTID Mapping Register 6

MPAMVPM7_EL2: MPAM Virtual PARTID Mapping Register 7

AArch64 System Registers

Page 8

MPAMVPMV_EL2: MPAM Virtual Partition Mapping Valid Register

MPIDR_EL1: Multiprocessor Affinity Register

MVFR0_EL1: AArch32 Media and VFP Feature Register 0

MVFR1_EL1: AArch32 Media and VFP Feature Register 1

MVFR2_EL1: AArch32 Media and VFP Feature Register 2

NZCV: Condition Flags

OSDLR_EL1: OS Double Lock Register

OSDTRRX_EL1: OS Lock Data Transfer Register, Receive

OSDTRTX_EL1: OS Lock Data Transfer Register, Transmit

OSECCR_EL1: OS Lock Exception Catch Control Register

OSLAR_EL1: OS Lock Access Register

OSLSR_EL1: OS Lock Status Register

PAN: Privileged Access Never

PAR_EL1: Physical Address Register

PMBIDR_EL1: Profiling Buffer ID Register

PMBLIMITR_EL1: Profiling Buffer Limit Address Register

PMBPTR_EL1: Profiling Buffer Write Pointer Register

PMBSR_EL1: Profiling Buffer Status/syndrome Register

PMCCFILTR_EL0: Performance Monitors Cycle Count Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Count Register

PMCEID0_EL0: Performance Monitors Common Event Identification register 0

PMCEID1_EL0: Performance Monitors Common Event Identification register 1

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMMIR_EL1: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear Register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMSCR_EL1: Statistical Profiling Control Register (EL1)

PMSCR_EL2: Statistical Profiling Control Register (EL2)

PMSELR_EL0: Performance Monitors Event Counter Selection Register

PMSEVFR_EL1: Sampling Event Filter Register

AArch64 System Registers

Page 9

PMSFCR_EL1: Sampling Filter Control Register

PMSICR_EL1: Sampling Interval Counter Register

PMSIDR_EL1: Sampling Profiling ID Register

PMSIRR_EL1: Sampling Interval Reload Register

PMSLATFR_EL1: Sampling Latency Filter Register

PMSNEVFR_EL1: Sampling Inverted Event Filter Register

PMSWINC_EL0: Performance Monitors Software Increment register

PMUSERENR_EL0: Performance Monitors User Enable Register

PMXEVCNTR_EL0: Performance Monitors Selected Event Count Register

PMXEVTYPER_EL0: Performance Monitors Selected Event Type Register

REVIDR_EL1: Revision ID Register

RGSR_EL1: Random Allocation Tag Seed Register.

RMR_EL1: Reset Management Register (EL1)

RMR_EL2: Reset Management Register (EL2)

RMR_EL3: Reset Management Register (EL3)

RNDR: Random Number

RNDRRS: Reseeded Random Number

RVBAR_EL1: Reset Vector Base Address Register (if EL2 and EL3 not implemented)

RVBAR_EL2: Reset Vector Base Address Register (if EL3 not implemented)

RVBAR_EL3: Reset Vector Base Address Register (if EL3 implemented)

S3_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED registers

SCR_EL3: Secure Configuration Register

SCTLR_EL1: System Control Register (EL1)

SCTLR_EL2: System Control Register (EL2)

SCTLR_EL3: System Control Register (EL3)

SCXTNUM_EL0: EL0 Read/Write Software Context Number

SCXTNUM_EL1: EL1 Read/Write Software Context Number

SCXTNUM_EL2: EL2 Read/Write Software Context Number

SCXTNUM_EL3: EL3 Read/Write Software Context Number

SDER32_EL2: AArch32 Secure Debug Enable Register

SDER32_EL3: AArch32 Secure Debug Enable Register

SPSel: Stack Pointer Select

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_EL1: Saved Program Status Register (EL1)

SPSR_EL2: Saved Program Status Register (EL2)

SPSR_EL3: Saved Program Status Register (EL3)

AArch64 System Registers

Page 10

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_und: Saved Program Status Register (Undefined mode)

SP_EL0: Stack Pointer (EL0)

SP_EL1: Stack Pointer (EL1)

SP_EL2: Stack Pointer (EL2)

SP_EL3: Stack Pointer (EL3)

SSBS: Speculative Store Bypass Safe

TCO: Tag Check Override

TCR_EL1: Translation Control Register (EL1)

TCR_EL2: Translation Control Register (EL2)

TCR_EL3: Translation Control Register (EL3)

TFSRE0_EL1: Tag Fault Status Register (EL0).

TFSR_EL1: Tag Fault Status Register (EL1)

TFSR_EL2: Tag Fault Status Register (EL2)

TFSR_EL3: Tag Fault Status Register (EL3)

TPIDRRO_EL0: EL0 Read-Only Software Thread ID Register

TPIDR_EL0: EL0 Read/Write Software Thread ID Register

TPIDR_EL1: EL1 Software Thread ID Register

TPIDR_EL2: EL2 Software Thread ID Register

TPIDR_EL3: EL3 Software Thread ID Register

TRFCR_EL1: Trace Filter Control Register (EL1)

TRFCR_EL2: Trace Filter Control Register (EL2)

TTBR0_EL1: Translation Table Base Register 0 (EL1)

TTBR0_EL2: Translation Table Base Register 0 (EL2)

TTBR0_EL3: Translation Table Base Register 0 (EL3)

TTBR1_EL1: Translation Table Base Register 1 (EL1)

TTBR1_EL2: Translation Table Base Register 1 (EL2)

UAO: User Access Override

VBAR_EL1: Vector Base Address Register (EL1)

VBAR_EL2: Vector Base Address Register (EL2)

VBAR_EL3: Vector Base Address Register (EL3)

VDISR_EL2: Virtual Deferred Interrupt Status Register

VMPIDR_EL2: Virtualization Multiprocessor ID Register

VNCR_EL2: Virtual Nested Control Register

VPIDR_EL2: Virtualization Processor ID Register

AArch64 System Registers

Page 11

VSESR_EL2: Virtual SError Exception Syndrome Register

VSTCR_EL2: Virtualization Secure Translation Control Register

VSTTBR_EL2: Virtualization Secure Translation Table Base Register

VTCR_EL2: Virtualization Translation Control Register

VTTBR_EL2: Virtualization Translation Table Base Register

ZCR_EL1: SVE Control Register (for EL1)

ZCR_EL2: SVE Control Register (for EL2)

ZCR_EL3: SVE Control Register (for EL3)

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch64 System Registers

Page 12

(old) htmldiff from- (new)

AArch64 System Instructions
AT S12E0R: Address Translate Stages 1 and 2 EL0 Read

AT S12E0W: Address Translate Stages 1 and 2 EL0 Write

AT S12E1R: Address Translate Stages 1 and 2 EL1 Read

AT S12E1W: Address Translate Stages 1 and 2 EL1 Write

AT S1E0R: Address Translate Stage 1 EL0 Read

AT S1E0W: Address Translate Stage 1 EL0 Write

AT S1E1R: Address Translate Stage 1 EL1 Read

AT S1E1RP: Address Translate Stage 1 EL1 Read PAN

AT S1E1W: Address Translate Stage 1 EL1 Write

AT S1E1WP: Address Translate Stage 1 EL1 Write PAN

AT S1E2R: Address Translate Stage 1 EL2 Read

AT S1E2W: Address Translate Stage 1 EL2 Write

AT S1E3R: Address Translate Stage 1 EL3 Read

AT S1E3W: Address Translate Stage 1 EL3 Write

CFP RCTX: Control Flow Prediction Restriction by Context

CPP RCTX: Cache Prefetch Prediction Restriction by Context

DC CGDSW: Clean of Data and Allocation Tags by Set/Way

DC CGDVAC: Clean of Data and Allocation Tags by VA to PoC

DC CGDVADP: Clean of Data and Allocation Tags by VA to PoDP

DC CGDVAP: Clean of Data and Allocation Tags by VA to PoP

DC CGSW: Clean of Allocation Tags by Set/Way

DC CGVAC: Clean of Allocation Tags by VA to PoC

DC CGVADP: Clean of Allocation Tags by VA to PoDP

DC CGVAP: Clean of Allocation Tags by VA to PoP

DC CIGDSW: Clean and Invalidate of Data and Allocation Tags by Set/Way

DC CIGDVAC: Clean and Invalidate of Data and Allocation Tags by VA to PoC

DC CIGSW: Clean and Invalidate of Allocation Tags by Set/Way

DC CIGVAC: Clean and Invalidate of Allocation Tags by VA to PoC

DC CISW: Data or unified Cache line Clean and Invalidate by Set/Way

DC CIVAC: Data or unified Cache line Clean and Invalidate by VA to PoC

DC CSW: Data or unified Cache line Clean by Set/Way

DC CVAC: Data or unified Cache line Clean by VA to PoC

DC CVADP: Data or unified Cache line Clean by VA to PoDP

AArch64 System Instructions

Page 13

DC CVAP: Data or unified Cache line Clean by VA to PoP

DC CVAU: Data or unified Cache line Clean by VA to PoU

DC GVA: Data Cache set Allocation Tag by VA

DC GZVA: Data Cache set Allocation Tags and Zero by VA

DC IGDSW: Invalidate of Data and Allocation Tags by Set/Way

DC IGDVAC: Invalidate of Data and Allocation Tags by VA to PoC

DC IGSW: Invalidate of Allocation Tags by Set/Way

DC IGVAC: Invalidate of Allocation Tags by VA to PoC

DC ISW: Data or unified Cache line Invalidate by Set/Way

DC IVAC: Data or unified Cache line Invalidate by VA to PoC

DC ZVA: Data Cache Zero by VA

DVP RCTX: Data Value Prediction Restriction by Context

IC IALLU: Instruction Cache Invalidate All to PoU

IC IALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

IC IVAU: Instruction Cache line Invalidate by VA to PoU

SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL S1_<op1>_<Cn>_<Cm>_<op2>: IMPLEMENTATION DEFINED
maintenance instructions

TLBI ALLE1, TLBI ALLE1NXS: TLB Invalidate All, EL1

TLBI ALLE1IS, TLBI ALLE1ISNXS: TLB Invalidate All, EL1, Inner Shareable

TLBI ALLE1OS, TLBI ALLE1OSNXS: TLB Invalidate All, EL1, Outer Shareable

TLBI ALLE2, TLBI ALLE2NXS: TLB Invalidate All, EL2

TLBI ALLE2IS, TLBI ALLE2ISNXS: TLB Invalidate All, EL2, Inner Shareable

TLBI ALLE2OS, TLBI ALLE2OSNXS: TLB Invalidate All, EL2, Outer Shareable

TLBI ALLE3, TLBI ALLE3NXS: TLB Invalidate All, EL3

TLBI ALLE3IS, TLBI ALLE3ISNXS: TLB Invalidate All, EL3, Inner Shareable

TLBI ALLE3OS, TLBI ALLE3OSNXS: TLB Invalidate All, EL3, Outer Shareable

TLBI ASIDE1, TLBI ASIDE1NXS: TLB Invalidate by ASID, EL1

TLBI ASIDE1IS, TLBI ASIDE1ISNXS: TLB Invalidate by ASID, EL1, Inner Shareable

TLBI ASIDE1OS, TLBI ASIDE1OSNXS: TLB Invalidate by ASID, EL1, Outer Shareable

TLBI IPAS2E1, TLBI IPAS2E1NXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

TLBI IPAS2LE1, TLBI IPAS2LE1NXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

AArch64 System Instructions

Page 14

TLBI RIPAS2E1, TLBI RIPAS2E1NXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Inner Shareable

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS: TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

TLBI RVAAE1, TLBI RVAAE1NXS: TLB Range Invalidate by VA, All ASID, EL1

TLBI RVAAE1IS, TLBI RVAAE1ISNXS: TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI RVAAE1OS, TLBI RVAAE1OSNXS: TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI RVAALE1, TLBI RVAALE1NXS: TLB Range Invalidate by VA, All ASID, Last level, EL1

TLBI RVAALE1IS, TLBI RVAALE1ISNXS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI RVAALE1OS, TLBI RVAALE1OSNXS: TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI RVAE1, TLBI RVAE1NXS: TLB Range Invalidate by VA, EL1

TLBI RVAE1IS, TLBI RVAE1ISNXS: TLB Range Invalidate by VA, EL1, Inner Shareable

TLBI RVAE1OS, TLBI RVAE1OSNXS: TLB Range Invalidate by VA, EL1, Outer Shareable

TLBI RVAE2, TLBI RVAE2NXS: TLB Range Invalidate by VA, EL2

TLBI RVAE2IS, TLBI RVAE2ISNXS: TLB Range Invalidate by VA, EL2, Inner Shareable

TLBI RVAE2OS, TLBI RVAE2OSNXS: TLB Range Invalidate by VA, EL2, Outer Shareable

TLBI RVAE3, TLBI RVAE3NXS: TLB Range Invalidate by VA, EL3

TLBI RVAE3IS, TLBI RVAE3ISNXS: TLB Range Invalidate by VA, EL3, Inner Shareable

TLBI RVAE3OS, TLBI RVAE3OSNXS: TLB Range Invalidate by VA, EL3, Outer Shareable

TLBI RVALE1, TLBI RVALE1NXS: TLB Range Invalidate by VA, Last level, EL1

TLBI RVALE1IS, TLBI RVALE1ISNXS: TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

TLBI RVALE1OS, TLBI RVALE1OSNXS: TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

TLBI RVALE2, TLBI RVALE2NXS: TLB Range Invalidate by VA, Last level, EL2

TLBI RVALE2IS, TLBI RVALE2ISNXS: TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

TLBI RVALE2OS, TLBI RVALE2OSNXS: TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

TLBI RVALE3, TLBI RVALE3NXS: TLB Range Invalidate by VA, Last level, EL3

TLBI RVALE3IS, TLBI RVALE3ISNXS: TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

TLBI RVALE3OS, TLBI RVALE3OSNXS: TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VAAE1, TLBI VAAE1NXS: TLB Invalidate by VA, All ASID, EL1

TLBI VAAE1IS, TLBI VAAE1ISNXS: TLB Invalidate by VA, All ASID, EL1, Inner Shareable

TLBI VAAE1OS, TLBI VAAE1OSNXS: TLB Invalidate by VA, All ASID, EL1, Outer Shareable

TLBI VAALE1, TLBI VAALE1NXS: TLB Invalidate by VA, All ASID, Last level, EL1

AArch64 System Instructions

Page 15

TLBI VAALE1IS, TLBI VAALE1ISNXS: TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

TLBI VAALE1OS, TLBI VAALE1OSNXS: TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

TLBI VAE1, TLBI VAE1NXS: TLB Invalidate by VA, EL1

TLBI VAE1IS, TLBI VAE1ISNXS: TLB Invalidate by VA, EL1, Inner Shareable

TLBI VAE1OS, TLBI VAE1OSNXS: TLB Invalidate by VA, EL1, Outer Shareable

TLBI VAE2, TLBI VAE2NXS: TLB Invalidate by VA, EL2

TLBI VAE2IS, TLBI VAE2ISNXS: TLB Invalidate by VA, EL2, Inner Shareable

TLBI VAE2OS, TLBI VAE2OSNXS: TLB Invalidate by VA, EL2, Outer Shareable

TLBI VAE3, TLBI VAE3NXS: TLB Invalidate by VA, EL3

TLBI VAE3IS, TLBI VAE3ISNXS: TLB Invalidate by VA, EL3, Inner Shareable

TLBI VAE3OS, TLBI VAE3OSNXS: TLB Invalidate by VA, EL3, Outer Shareable

TLBI VALE1, TLBI VALE1NXS: TLB Invalidate by VA, Last level, EL1

TLBI VALE1IS, TLBI VALE1ISNXS: TLB Invalidate by VA, Last level, EL1, Inner Shareable

TLBI VALE1OS, TLBI VALE1OSNXS: TLB Invalidate by VA, Last level, EL1, Outer Shareable

TLBI VALE2, TLBI VALE2NXS: TLB Invalidate by VA, Last level, EL2

TLBI VALE2IS, TLBI VALE2ISNXS: TLB Invalidate by VA, Last level, EL2, Inner Shareable

TLBI VALE2OS, TLBI VALE2OSNXS: TLB Invalidate by VA, Last level, EL2, Outer Shareable

TLBI VALE3, TLBI VALE3NXS: TLB Invalidate by VA, Last level, EL3

TLBI VALE3IS, TLBI VALE3ISNXS: TLB Invalidate by VA, Last level, EL3, Inner Shareable

TLBI VALE3OS, TLBI VALE3OSNXS: TLB Invalidate by VA, Last level, EL3, Outer Shareable

TLBI VMALLE1, TLBI VMALLE1NXS: TLB Invalidate by VMID, All at stage 1, EL1

TLBI VMALLE1IS, TLBI VMALLE1ISNXS: TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

TLBI VMALLE1OS, TLBI VMALLE1OSNXS: TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

TLBI VMALLS12E1, TLBI VMALLS12E1NXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS: TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer
Shareable

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch64 System Instructions

Page 16

(old) htmldiff from- (new)

ACCDATA_EL1, Accelerator Data
The ACCDATA_EL1 characteristics are:

Purpose
Holds the lower 32 bits of the data that is stored by an ST64BV0, Single-copy atomic 64-byte EL0 store instruction.

Configuration
This register is present only when FEAT_LS64_ACCDATA is implemented. Otherwise, direct accesses to ACCDATA_EL1
are UNDEFINED.

Attributes
ACCDATA_EL1 is a 64-bit register.

Field descriptions
The ACCDATA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ACCDATA
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ACCDATA, bits [31:0]

Accelerator Data field. Holds bits[31:0] of the data that is stored by an ST64BV0 instruction.

Accessing the ACCDATA_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ACCDATA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b101

ACCDATA_EL1, Accelerator Data

Page 17

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ADEn == '0' then
UNDEFINED;

elsif EL2Enabled() && (!((HaveEL(EL3) ||&& SCR_EL3.FGTEn == '10') &&|| HFGRTR_EL2.nACCDATA_EL1
== '0'') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return ACCDATA_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ADEn == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ACCDATA_EL1;
elsif PSTATE.EL == EL3 then

return ACCDATA_EL1;

MSR ACCDATA_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ADEn == '0' then
UNDEFINED;

elsif EL2Enabled() && (!((HaveEL(EL3) ||&& SCR_EL3.FGTEn == '10') &&|| HFGWTR_EL2.nACCDATA_EL1
== '0'') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
ACCDATA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ADEn == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ADEn == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

ACCDATA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

ACCDATA_EL1 = X[t];

ACCDATA_EL1, Accelerator Data

Page 18

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ACCDATA_EL1, Accelerator Data

Page 19

(old) htmldiff from- (new)

CCSIDR_EL1, Current Cache Size ID Register
The CCSIDR_EL1 characteristics are:

Purpose
Provides information about the architecture of the currently selected cache.

Configuration
AArch64 System register CCSIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CCSIDR[31:0].

AArch64 System register CCSIDR_EL1 bits [63:32] are architecturally mapped to AArch32 System register
CCSIDR2[31:0].

The implementation includes one CCSIDR_EL1 for each cache that it can access. CSSELR_EL1 selects which Cache
Size ID Register is accessible.

Attributes
CCSIDR_EL1 is a 64-bit register.

Field descriptions
The CCSIDR_EL1 bit assignments are:

When FEAT_CCIDX is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 NumSets
RES0 Associativity LineSize

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [63:56]

Reserved, RES0.

NumSets, bits [55:32]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Bits [31:24]

Reserved, RES0.

CCSIDR_EL1, Current Cache Size ID Register

Page 20

AArch32-ccsidr.html
AArch32-ccsidr2.html

Associativity, bits [23:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a
power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

When FEAT_MTE2FEAT_MTE is implemented and enabled, where a cache only holds Allocation tags, this field is RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

UNKNOWN NumSets Associativity LineSize
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note

The parameters NumSets, Associativity, and LineSize in these registers define
the architecturally visible parameters that are required for the cache
maintenance by Set/Way instructions. They are not guaranteed to represent
the actual microarchitectural features of a design. You cannot make any
inference about the actual sizes of caches based on these parameters.

Bits [63:32]

Reserved, RES0.

Bits [31:28]

Reserved, UNKNOWN.

NumSets, bits [27:13]

(Number of sets in cache) - 1, therefore a value of 0 indicates 1 set in the cache. The number of sets does not have to
be a power of 2.

Associativity, bits [12:3]

(Associativity of cache) - 1, therefore a value of 0 indicates an associativity of 1. The associativity does not have to be a
power of 2.

LineSize, bits [2:0]

(Log2(Number of bytes in cache line)) - 4. For example:

• For a line length of 16 bytes: Log2(16) = 4, LineSize entry = 0. This is the minimum line length.
• For a line length of 32 bytes: Log2(32) = 5, LineSize entry = 1.

Accessing the CCSIDR_EL1
If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then on a read of the CCSIDR_EL1 the
behavior is CONSTRAINED UNPREDICTABLE, and can be one of the following:

• The CCSIDR_EL1 read is treated as NOP.

CCSIDR_EL1, Current Cache Size ID Register

Page 21

• The CCSIDR_EL1 read is UNDEFINED.
• The CCSIDR_EL1 read returns an UNKNOWN value.

Accesses to this register use the following encodings:

MRS <Xt>, CCSIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CCSIDR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CCSIDR_EL1;

elsif PSTATE.EL == EL2 then
return CCSIDR_EL1;

elsif PSTATE.EL == EL3 then
return CCSIDR_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CCSIDR_EL1, Current Cache Size ID Register

Page 22

(old) htmldiff from- (new)

CLIDR_EL1, Cache Level ID Register
The CLIDR_EL1 characteristics are:

Purpose
Identifies the type of cache, or caches, that are implemented at each level and can be managed using the architected
cache maintenance instructions that operate by set/way, up to a maximum of seven levels. Also identifies the Level of
Coherence (LoC) and Level of Unification (LoU) for the cache hierarchy.

Configuration
AArch64 System register CLIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CLIDR[31:0].

Attributes
CLIDR_EL1 is a 64-bit register.

Field descriptions
The CLIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Ttype7Ttype6Ttype5Ttype4Ttype3Ttype2Ttype1ICB

ICB LoUU LoC LoUIS Ctype7 Ctype6 Ctype5 Ctype4 Ctype3 Ctype2 Ctype1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:47]

Reserved, RES0.

Ttype<n>, bits [2(n-1)+34:2(n-1)+33], for n = 7 to 1

When FEAT_MTE2FEAT_MTE is implemented:

Tag cache type. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache
hierarchy.

Ttype<n> Meaning
0b00 No Tag Cache.
0b01 Separate Allocation Tag Cache.
0b10 Unified Allocation Tag and Data cache, Allocation Tags and

Data in unified lines.
0b11 Unified Allocation Tag and Data cache, Allocation Tags and

Data in separate lines.

Otherwise:

Reserved, RES0.

ICB, bits [32:30]

Inner cache boundary. This field indicates the boundary for caching Inner Cacheable memory regions.

CLIDR_EL1, Cache Level ID Register

Page 23

AArch32-clidr.html

The possible values are:

ICB Meaning
0b000 Not disclosed by this mechanism.
0b001 L1 cache is the highest Inner Cacheable level.
0b010 L2 cache is the highest Inner Cacheable level.
0b011 L3 cache is the highest Inner Cacheable level.
0b100 L4 cache is the highest Inner Cacheable level.
0b101 L5 cache is the highest Inner Cacheable level.
0b110 L6 cache is the highest Inner Cacheable level.
0b111 L7 cache is the highest Inner Cacheable level.

LoUU, bits [29:27]

Level of Unification Uniprocessor for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is
zero so that no levels of data cache need to be cleaned in order to manage
coherency with instruction fetches.

LoC, bits [26:24]

Level of Coherence for the cache hierarchy.

LoUIS, bits [23:21]

Level of Unification Inner Shareable for the cache hierarchy.

Note

When FEAT_S2FWB is implemented, the architecture requires that this field is
zero so that no levels of data cache need to be cleaned in order to manage
coherency with instruction fetches.

Ctype<n>, bits [3(n-1)+2:3(n-1)], for n = 7 to 1

Cache Type fields. Indicate the type of cache that is implemented and can be managed using the architected cache
maintenance instructions that operate by set/way at each level, from Level 1 up to a maximum of seven levels of cache
hierarchy. Possible values of each field are:

Ctype<n> Meaning
0b000 No cache.
0b001 Instruction cache only.
0b010 Data cache only.
0b011 Separate instruction and data caches.
0b100 Unified cache.

All other values are reserved.

If software reads the Cache Type fields from Ctype1 upwards, once it has seen a value of 000, no caches that can be
managed using the architected cache maintenance instructions that operate by set/way exist at further-out levels of
the hierarchy. So, for example, if Ctype3 is the first Cache Type field with a value of 000, the values of Ctype4 to
Ctype7 must be ignored.

Accessing the CLIDR_EL1
Accesses to this register use the following encodings:

CLIDR_EL1, Cache Level ID Register

Page 24

MRS <Xt>, CLIDR_EL1

op0 op1 CRn CRm op2
0b11 0b001 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CLIDR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CLIDR_EL1;

elsif PSTATE.EL == EL2 then
return CLIDR_EL1;

elsif PSTATE.EL == EL3 then
return CLIDR_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CLIDR_EL1, Cache Level ID Register

Page 25

(old) htmldiff from- (new)

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical
Timer Control register

The CNTHP_CTL_EL2 characteristics are:

Purpose
Control register for the EL2 physical timer.

Configuration
AArch64 System register CNTHP_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHP_CTL[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHP_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 26

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL_EL2 continues
to count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTHP_CTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHP_CTL_EL2 or
CNTP_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHP_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHP_CTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHP_CTL_EL2;

MSR CNTHP_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0010 0b001

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 27

AArch64-cnthp_tval_el2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHP_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHP_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x180];

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 28

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x180] = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTP_CTL_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register

Page 29

(old) htmldiff from- (new)

CNTHPS_CTL_EL2, Counter-timer Secure Physical
Timer Control register (EL2)

The CNTHPS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 physical timer.

Configuration
AArch64 System register CNTHPS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHPS_CTL[31:0].

This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to CNTHPS_CTL_EL2 are
UNDEFINED.

Attributes
CNTHPS_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHPS_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then
the timer interrupt is asserted.

When the value of the CNTHPS_CTL_EL2.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 30

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CTL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHPS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHPS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHPS_CTL_EL2;

MSR CNTHPS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0101 0b001

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 31

AArch64-cnthps_tval_el2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHPS_CTL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHPS_CTL_EL2 = X[t];

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x180];

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTP_CTL_EL0;

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 32

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x180] = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTP_CTL_EL0 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)

Page 33

(old) htmldiff from- (new)

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control
register (EL2)

The CNTHV_CTL_EL2 characteristics are:

Purpose
Control register for the EL2 virtual timer.

Configuration
AArch64 System register CNTHV_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHV_CTL[31:0].

This register is present only when FEAT_VHE is implemented. Otherwise, direct accesses to CNTHV_CTL_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHV_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHV_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 34

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL_EL2 continues
to count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTHV_CTL_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic CNTHV_CTL_EL2 or
CNTV_CTL_EL0 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTHV_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return CNTHV_CTL_EL2;
elsif PSTATE.EL == EL3 then

return CNTHV_CTL_EL2;

MSR CNTHV_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0011 0b001

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 35

AArch64-cnthv_tval_el2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

CNTHV_CTL_EL2 = X[t];
elsif PSTATE.EL == EL3 then

CNTHV_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x170];

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 36

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x170] = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)

Page 37

(old) htmldiff from- (new)

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer
Control register (EL2)

The CNTHVS_CTL_EL2 characteristics are:

Purpose
Control register for the Secure EL2 virtual timer.

Configuration
AArch64 System register CNTHVS_CTL_EL2 bits [31:0] are architecturally mapped to AArch32 System register
CNTHVS_CTL[31:0].

This register is present only when EL2 is implemented and FEAT_SEL2 is implemented. Otherwise, direct accesses to
CNTHVS_CTL_EL2 are UNDEFINED.

Attributes
CNTHVS_CTL_EL2 is a 64-bit register.

Field descriptions
The CNTHVS_CTL_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHVS_CTL_EL2.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met.
ISTATUS takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then
the timer interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 38

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the CNTHVS_CTL_EL2.ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTHVS_CTL_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CNTHVS_CTL_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return CNTHVS_CTL_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return CNTHVS_CTL_EL2;

MSR CNTHVS_CTL_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1110 0b0100 0b001

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 39

AArch64-cnthvs_tval_el2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
CNTHVS_CTL_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

CNTHVS_CTL_EL2 = X[t];

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x170];

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 40

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x170] = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)

Page 41

(old) htmldiff from- (new)

CNTP_CTL_EL0, Counter-timer Physical Timer Control
register

The CNTP_CTL_EL0 characteristics are:

Purpose
Control register for the EL1 physical timer.

Configuration
AArch64 System register CNTP_CTL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTP_CTL[31:0].

Attributes
CNTP_CTL_EL0 is a 64-bit register.

Field descriptions
The CNTP_CTL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 42

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL_EL0 continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTP_CTL_EL0 or
CNTP_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTP_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 43

AArch64-cntp_tval_el0.html

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x180];

else
return CNTP_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHPS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHP_CTL_EL2;
else

return CNTP_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTP_CTL_EL0;

MSR CNTP_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0010 0b001

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 44

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x180] = X[t];

else
CNTP_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHPS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHP_CTL_EL2 = X[t];
else

CNTP_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTP_CTL_EL0 = X[t];

MRS <Xt>, CNTP_CTL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return NVMem[0x180];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTP_CTL_EL0;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CNTP_CTL_EL0;

else
UNDEFINED;

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 45

MSR CNTP_CTL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVPCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
NVMem[0x180] = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTP_CTL_EL0 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTP_CTL_EL0 = X[t];

else
UNDEFINED;

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTP_CTL_EL0, Counter-timer Physical Timer Control register

Page 46

(old) htmldiff from- (new)

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer
Control register

The CNTPS_CTL_EL1 characteristics are:

Purpose
Control register for the secure physical timer, usually accessible at EL3 but configurably accessible at EL1 in Secure
state.

Configuration
There are no configuration notes.

Attributes
CNTPS_CTL_EL1 is a 64-bit register.

Field descriptions
The CNTPS_CTL_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 47

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTPS_TVAL_EL1 continues
to count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTPS_CTL_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CNTPS_CTL_EL1

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CNTPS_CTL_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return CNTPS_CTL_EL1;

MSR CNTPS_CTL_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b111 0b1110 0b0010 0b001

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 48

AArch64-cntps_tval_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '0' then

if SCR_EL3.EEL2 == '1' then
UNDEFINED;

elsif SCR_EL3.ST == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
CNTPS_CTL_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
CNTPS_CTL_EL1 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register

Page 49

(old) htmldiff from- (new)

CNTV_CTL_EL0, Counter-timer Virtual Timer Control
register

The CNTV_CTL_EL0 characteristics are:

Purpose
Control register for the virtual timer.

Configuration
AArch64 System register CNTV_CTL_EL0 bits [31:0] are architecturally mapped to AArch32 System register
CNTV_CTL[31:0].

Attributes
CNTV_CTL_EL0 is a 64-bit register.

Field descriptions
The CNTV_CTL_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 ISTATUSIMASKENABLE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 50

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL_EL0 continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CTL_EL0
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CNTV_CTL_EL0 or
CNTV_CTL_EL02 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CNTV_CTL_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 51

AArch64-cntv_tval_el0.html

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x170];

else
return CNTV_CTL_EL0;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

return CNTHV_CTL_EL2;
else

return CNTV_CTL_EL0;
elsif PSTATE.EL == EL3 then

return CNTV_CTL_EL0;

MSR CNTV_CTL_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b0011 0b001

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 52

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0' &&
IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && CNTHCTL_EL2.EL1TVT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x170] = X[t];

else
CNTV_CTL_EL0 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' && SCR_EL3.NS == '0' && IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = X[t];
elsif HCR_EL2.E2H == '1' && SCR_EL3.NS == '1' then

CNTHV_CTL_EL2 = X[t];
else

CNTV_CTL_EL0 = X[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL_EL0 = X[t];

MRS <Xt>, CNTV_CTL_EL02

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return NVMem[0x170];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return CNTV_CTL_EL0;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CNTV_CTL_EL0;

else
UNDEFINED;

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 53

MSR CNTV_CTL_EL02, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1110 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

if EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1NVVCT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
NVMem[0x170] = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

CNTV_CTL_EL0 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CNTV_CTL_EL0 = X[t];

else
UNDEFINED;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTV_CTL_EL0, Counter-timer Virtual Timer Control register

Page 54

(old) htmldiff from- (new)

CPACR_EL1, Architectural Feature Access Control
Register

The CPACR_EL1 characteristics are:

Purpose
Controls access to trace, SVE, and Advanced SIMD and floating-point functionality.

Configuration
AArch64 System register CPACR_EL1 bits [31:0] are architecturally mapped to AArch32 System register CPACR[31:0].

When EL2 is implemented and enabled in the current Security state and HCR_EL2.{E2H, TGE} == {1, 1}, the fields
in this register have no effect on execution at EL0 and EL1. In this case, the controls provided by CPTR_EL2 are used.

Attributes
CPACR_EL1 is a 64-bit register.

Field descriptions
The CPACR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TTA RES0 FPEN RES0 ZEN RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:29]

Reserved, RES0.

TTA, bit [28]

Traps EL0 and EL1 System register accesses to all implemented trace registers from both Execution states to EL1, or
to EL2 when it is implemented and enabled infor the current Security state and HCR_EL2..{E2H, TGE} is {0,1,}, from
both Execution states as follows:

• In AArch64 state, accesses to trace registers are trapped, reported using ESR_ELx.EC value 0x18.

• In AArch32 state, MRC and MCR accesses to trace registers are trapped, reported using ESR_ELx.EC value
0x05.

• In AArch32 state, MRRC and MCRR accesses to trace registers are trapped, reported using ESR_ELx.EC
value 0x0C.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 This control causes EL0 and EL1 System register accesses to all

implemented trace registers to be trapped.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to
the trace registers are UNDEFINED, and any resulting exception is higher

CPACR_EL1, Architectural Feature Access Control Register

Page 55

AArch32-cpacr.html

priority than an exception that would be generated because the value of
CPACR_EL1.TTA is 1.

• The Armv8-A architecture does not provide traps on trace register
accesses through the optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not implemented, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps executionEL0 atand EL1 andaccesses EL0to ofSVE, instructions that access the Advanced SIMD and floating-
point registers from both Execution states to EL1, reported using ESR_ELx.EC value 0x07, or to EL2 reported using
ESR_ELx.EC value 0x00 , when EL2 is implemented and enabled infor the current Security state and HCR_EL2..{E2H,
TGE} is {0,1,}, from both Execution states as follows:

• In AArch64 state, accesses to FPCR, FPSR, any of the SIMD and floating-point registers V0-V31, including
their views as D0-D31 registers or S0-31 registers.

• In AArch32 state, FPSCR, and any of the SIMD and floating-point registers Q0-15, including their views as
D0-D31 registers or S0-31 registers.

TrapsTrapping executionbehavior atis EL1affected andby EL0precedence ofas follows: SVEA instructions totrap
EL1,taken oras toa EL2result whenof EL2CPACR_EL1.ZEN ishas implementedprecedence andover enabled for the
currentvalue Securityof state andCPACR_EL1.FPEN. HCR_EL2.TGE is 1. The exception is reported using ESR_ELx.EC
value 0x07.

A trap taken as a result of CPACR_EL1.ZEN has precedence over a trap taken as a result of CPACR_EL1.FPEN.

FPEN Meaning
0b00 This control causes executionany of these instructions at EL0 or

EL1 that use the registers associated with SVE, Advanced SIMD
and EL0floating-point execution to be trapped.

0b01 This control causes executionany of these instructions at EL0
that use the registers associated with SVE, Advanced SIMD and
floating-point execution to be trapped, but does not cause
execution of any instructionsinstruction at EL1 to be trapped.

0b10 This control causes executionany of these instructions at EL0 or
EL1 that use the registers associated with SVE, Advanced SIMD
and EL0floating-point execution to be trapped.

0b11 This control does not cause execution of any instructions to be
trapped.

Writes to MVFR0, MVFR1 and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these
accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses

from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are

UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of
CPACR_EL1.FPEN is not 0b11.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:18]

Reserved, RES0.

CPACR_EL1, Architectural Feature Access Control Register

Page 56

AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps executionEL0 atand EL1 andexecution EL0 of SVE instructions and instructions that directly access the
ZCR_EL1 System register to EL1, or to EL2 when EL2 is implemented and enabled infor the current Security state and
HCR_EL2..{E2H, TGE} is 1.{0,1}.

The exception is reported using ESR_ELx.EC value 0x19.

Trapping behavior is affected by precedence as follows: A trap taken as a result of CPACR_EL1.ZEN has precedence
over athe trap taken as a resultvalue of CPACR_EL1.FPEN.

ZEN Meaning
0b00 This control causes execution of these instructions executed at

EL1EL0 andor EL0EL1 to be trapped.
0b01 This control causes execution of these instructions executed at

EL0 to be trapped, but does not cause execution of any
instructionsinstruction at EL1 to be trapped.

0b10 This control causes execution of these instructions executed at
EL1EL0 andor EL0EL1 to be trapped.

0b11 This control does not cause execution of any
instructionsinstruction to be trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Accessing the CPACR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic CPACR_EL1 or
CPACR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

CPACR_EL1, Architectural Feature Access Control Register

Page 57

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CPACR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x100];

else
return CPACR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return CPTR_EL2;
else

return CPACR_EL1;
elsif PSTATE.EL == EL3 then

return CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

CPACR_EL1, Architectural Feature Access Control Register

Page 58

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CPACR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x100] = X[t];

else
CPACR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

CPTR_EL2 = X[t];
else

CPACR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CPACR_EL1 = X[t];

MRS <Xt>, CPACR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b010

CPACR_EL1, Architectural Feature Access Control Register

Page 59

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x100];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return CPACR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return CPACR_EL1;

else
UNDEFINED;

MSR CPACR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x100] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

CPACR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
CPACR_EL1 = X[t];

else
UNDEFINED;

CPACR_EL1, Architectural Feature Access Control Register

Page 60

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPACR_EL1, Architectural Feature Access Control Register

Page 61

(old) htmldiff from- (new)

CPTR_EL2, Architectural Feature Trap Register (EL2)
The CPTR_EL2 characteristics are:

Purpose
Controls trapping to EL2 of accesses to CPACR, CPACR_EL1, trace, Activity Monitor, SVE, and Advanced SIMD and
floating-point functionality.

Configuration
AArch64 System register CPTR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCPTR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
CPTR_EL2 is a 64-bit register.

Field descriptions
The CPTR_EL2 bit assignments are:

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TCPACTAMRES0TTA RES0 FPEN RES0 ZEN RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x18.

When HCR_EL2.TGE is 0, traps EL1 accesses to CPACR_EL1 reported using ESR_ELx.EC value 0x18, and accesses to
CPACR reported using ESR_ELx.EC value 0x03, to EL2 when EL2 is enabled in the current Security state.

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current Security state. The
exception is reported using ESR_ELx.EC value 0x03.

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2,

when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 62

AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html
AArch32-cpacr.html
AArch32-cpacr.html

CPACR_EL1 and CPACR are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x18:

◦ AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0,
AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using
ESR_ELx.EC value 0x03:

◦ AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MRRC or MCRR accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to EL2,
reported using ESR_ELx.EC value 0x04.

TAM Meaning
0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not

trapped.
0b1 Accesses from EL1 and EL0 to Activity Monitor registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [29]

Reserved, RES0.

TTA, bit [28]

Traps System register accesses to all implemented trace registers from both Execution states to EL2, when EL2 is
enabled in the current Security state, from both Execution states as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and CRn<0b1000 are
trapped to EL2, reported using EC syndrome value 0x05.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt at EL0, EL1 or EL2, to execute a System register

access to an implemented trace register is trapped to EL2, when
EL2 is enabled in the current Security state, unless HCR_EL2.TGE
is 0 and it is trapped by CPACR.NSTRCDIS or CPACR_EL1.TTA.
When HCR_EL2.TGE is 1, any attempt at EL0 or EL2 to execute a
System register access to an implemented trace register is
trapped to EL2, when EL2 is enabled in the current Security state.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 63

AArch32-cpacr.html
AArch64-amuserenr_el0.html
AArch64-amcfgr_el0.html
AArch64-amcgcr_el0.html
AArch64-amcntenclr0_el0.html
AArch64-amcntenclr1_el0.html
AArch64-amcntenset0_el0.html
AArch64-amcntenset1_el0.html
AArch64-amcr_el0.html
AArch64-amevcntr0n_el0.html
AArch64-amevcntr1n_el0.html
AArch64-amevtyper0n_el0.html
AArch64-amevtyper1n_el0.html
AArch32-amuserenr.html
AArch32-amcfgr.html
AArch32-amcgcr.html
AArch32-amcntenclr0.html
AArch32-amcntenclr1.html
AArch32-amcntenset0.html
AArch32-amcntenset1.html
AArch32-amcr.html
AArch32-amevtyper0n.html
AArch32-amevtyper1n.html
AArch32-amevcntr0n.html
AArch32-amevcntr1n.html
AArch32-cpacr.html

Note

The ETMv4 architecture does not permit EL0 to access the trace registers. If
the PE trace unit implements FEAT_ETMv4, EL0 access to the trace registers
are UNDEFINED, and any resulting exception is higher priority than this trap
exception that would be generated because the value of CPTR_EL2.TTA is 1.

EL2 does not provide traps on trace register accesses through the optional
Memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:22]

Reserved, RES0.

FPEN, bits [21:20]

Traps execution at EL2, EL1, and EL0 of instructions that directly access the SVE, Advanced SIMD and floating-point
registers from both Execution states to EL2, when EL2 is enabled in the current Security state.state, Thefrom
exceptionboth isExecution reported using ESR_ELx.EC valuestates. 0x07.

Traps execution at EL2, EL1, and EL0 of SVE instructions to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x07.

Trapping behavior is affected by precedence as follows: A trap taken as a result of CPTR_EL2.ZEN has precedence
over athe trap taken as a resultvalue of CPTR_EL2.FPEN.

FPEN Meaning
0b00 This control causes executionany of these instructions at

EL2EL0, EL1, or EL2 that use the registers associated with SVE,
Advanced SIMD and EL0floating-point execution to be
trapped.trapped, subject to the exception prioritization rules.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution
of any instructions to be trapped.
When HCR_EL2.TGE is 1, this control causes execution of these
instructions at EL0 that use the registers associated with SVE,
Advanced SIMD and floating-point execution to be trapped, but
does not cause execution of any instructionsinstruction at EL2
to be trapped.

0b10 This control causes executionany of these instructions at
EL2EL0, EL1, or EL2 that use the registers associated with SVE,
Advanced SIMD and EL0floating-point execution to be
trapped.trapped, subject to the exception prioritization rules.

0b11 This control does not cause execution of any instructions to be
trapped.

Writes to MVFR0, MVFR1, and MVFR2 from EL1 or higher are CONSTRAINED UNPREDICTABLE and whether these
accesses can be trapped by this control depends on implemented CONSTRAINED UNPREDICTABLE behavior.

Note
• Attempts to write to the FPSID count as use of the registers for accesses

from EL1 or higher.
• Accesses from EL0 to FPSID, MVFR0, MVFR1, MVFR2, and FPEXC are

UNDEFINED, and any resulting exception is higher priority than an
exception that would be generated because the value of
CPTR_EL2.FPEN is not 0b11.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 64

AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

Bits [19:18]

Reserved, RES0.

ZEN, bits [17:16]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, and EL0 of SVE instructions, and instructions that directly access the ZCR_EL1 orand
ZCR_EL2 System registers to EL2, when EL2 is enabled in the current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

Trapping behavior is affected by precedence as follows: A trap taken as a result of CPTR_EL2.ZEN has precedence
over athe trap taken as a resultvalue of CPTR_EL2.FPEN.

ZEN Meaning
0b00 This control causes execution of these instructions at EL2, EL1,

and EL0 of these instructions to be trapped.trapped, subject to
the exception prioritization rules.

0b01 When HCR_EL2.TGE is 0, this control does not cause execution of
any instructionsinstruction to be trapped.
When HCR_EL2.TGE is 1, this control causes execution of these
instructions executed at EL0 to be trapped, but does not cause
execution of any instructionsinstruction at EL2 to be trapped.

0b10 This control causes execution of these instructions at EL2, EL1,
and EL0 of these instructions to be trapped.trapped, subject to
the exception prioritization rules.

0b11 This control does not cause execution of any
instructionsinstruction to be trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [15:0]

Reserved, RES0.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TCPACTAM RES0 TTA RES0 RES1 RES0TFPRES1TZ RES1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in all Armv8.0 implementations.

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

In AArch64 state, traps accesses to CPACR_EL1 from EL1 to EL2, when EL2 is enabled in the current Security state.
The exception is reported using ESR_ELx.EC value 0x18.

Traps EL1 accesses to CPACR_EL1, reported using ESR_ELx.EC value 0x18 and accesses to CPACR, reported using
ESR_ELx.EC value 0x03, to EL2 when EL2 is enabled in the current Security state.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 65

AArch32-cpacr.html

In AArch32 state, traps accesses to CPACR from EL1 to EL2, when EL2 is enabled in the current Security state. The
exception is reported using ESR_ELx.EC value 0x03.

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to CPACR_EL1 and CPACR are trapped to EL2,

when EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, this control does not cause any instructions to be trapped.

Note

CPACR_EL1 and CPACR are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL1 and EL0 accesses to all Activity Monitor registers to EL2, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x18:

◦ AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0,
AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, MCR or MRC accesses to the following registers are trapped to EL2 and reported using
ESR_ELx.EC value 0x03:

◦ AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, MCRR or MRRC accesses to AMEVCNTR0<n> and AMEVCNTR1<n>, are trapped to EL2,
reported using ESR_ELx.EC value 0x04.

TAM Meaning
0b0 Accesses from EL1 and EL0 to Activity Monitor registers are not

trapped.
0b1 Accesses from EL1 and EL0 to Activity Monitor registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses to all implemented trace registers from both Execution states to EL2, when EL2 is
enabled in the current Security state, from both Execution states as follows:

• In AArch64 state, accesses to trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL2,
reported using EC syndrome value 0x18.

• In AArch32 state, MRC or MCR accesses to trace registers with cpnum=14, opc1=1, and CRn<0b1000 are
trapped to EL2, reported using EC syndrome value 0x05.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 66

AArch32-cpacr.html
AArch32-cpacr.html
AArch32-cpacr.html
AArch64-amuserenr_el0.html
AArch64-amcfgr_el0.html
AArch64-amcgcr_el0.html
AArch64-amcntenclr0_el0.html
AArch64-amcntenclr1_el0.html
AArch64-amcntenset0_el0.html
AArch64-amcntenset1_el0.html
AArch64-amcr_el0.html
AArch64-amevcntr0n_el0.html
AArch64-amevcntr1n_el0.html
AArch64-amevtyper0n_el0.html
AArch64-amevtyper1n_el0.html
AArch32-amuserenr.html
AArch32-amcfgr.html
AArch32-amcgcr.html
AArch32-amcntenclr0.html
AArch32-amcntenclr1.html
AArch32-amcntenset0.html
AArch32-amcntenset1.html
AArch32-amcr.html
AArch32-amevtyper0n.html
AArch32-amevtyper1n.html
AArch32-amevcntr0n.html
AArch32-amevcntr1n.html

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt at EL0, EL1, or EL2, to execute a System register

access to an implemented trace register is trapped to EL2, when
EL2 is enabled in the current Security state, unless it is trapped
by CPACR.TRCDIS or CPACR_EL1.TTA.

Note
• The ETMv4 architecture does not permit EL0 to access the trace

registers. If the PE trace unit implements FEAT_ETMv4, EL0 accesses to
the trace registers are UNDEFINED, and any resulting exception is higher
priority than an exception that would be generated because the value of
CPTR_EL2.TTA is 1.

• EL2 does not provide traps on trace register accesses through the
optional memory-mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, any
side-effects that are normally associated with the access do not occur before the exception is taken.

If System register access to the trace functionality is not supported, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:14]

Reserved, RES0.

Bits [13:12]

Reserved, RES1.

Bit [11]

Reserved, RES0.

TFP, bit [10]

Traps executionaccesses ofto instructionsSVE, which access the Advanced SIMD and floating-point functionality, from
both Execution states to EL2, when EL2 is enabled in the current Security state, from both Execution states, as
follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x07:

◦ FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their
views as D0-D31 registers or S0-31 registers.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using ESR_ELx.EC value
0x07:

◦ MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15,
including their views as D0-D31 registers or S0-31 registers. For the purposes of this trap, the
architecture defines a VMSR access to FPSID from EL1 or higher as an access to a SIMD and floating
point register. Otherwise, permitted VMSR accesses to FPSID are ignored.

TrapsTrapping executionbehavior atis theaffected sameby Exceptionprecedence levelsas offollows: SVEA instructions
totrap EL2,taken whenas EL2a isresult enabledof inCPTR_EL2.TZ thehas currentprecedence Securityover state.
Thethe exceptionvalue isof reported using ESR_ELx.EC valueCPTR_EL2.TFP. 0x07.

A trap taken as a result of CPTR_EL2.TZ has precedence over a trap taken as a result of CPTR_EL2.TFP.

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 67

AArch32-cpacr.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-fpsid.html
AArch32-fpsid.html

TFP Meaning
0b0 This control does not cause execution of any instructions to be

trapped.
0b1 ThisAny controlattempt causesat executionEL0, ofEL1 theseor

instructions at EL2, EL1to execute an instruction that uses the
registers associated with SVE, Advanced SIMD and EL0floating-
point execution is trapped to beEL2 trapped.when EL2 is enabled
in the current Security state, subject to the exception
prioritization rules.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using
AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES1.

TZ, bit [8]

When FEAT_SVE is implemented:

Traps execution at EL2, EL1, andor EL0 of SVE instructions and instructions that directly access the ZCR_EL2 orand
ZCR_EL1 System registers to EL2, when EL2 is enabled in the current Security state.

The exception is reported using ESR_ELx.EC value 0x19.

Trapping behavior is affected by precedence as follows: A trap taken as a result of CPTR_EL2.TZ has precedence over
athe trap taken as a resultvalue of CPTR_EL2.TFP.

TZ Meaning
0b0 This control does not cause execution of any

instructionsinstruction to be trapped.
0b1 This control causes execution of these instructions atto EL2,be

EL1trapped, andsubject EL0 to bethe trapped.exception
prioritization rules.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [7:0]

Reserved, RES1.

Accessing the CPTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, CPTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b010

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 68

AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then

UNDEFINED;
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return CPTR_EL2;

elsif PSTATE.EL == EL3 then
return CPTR_EL2;

MSR CPTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then

UNDEFINED;
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
CPTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
CPTR_EL2 = X[t];

MRS <Xt>, CPACR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 69

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CPACR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x100];

else
return CPACR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return CPTR_EL2;
else

return CPACR_EL1;
elsif PSTATE.EL == EL3 then

return CPACR_EL1;

MSR CPACR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b010

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 70

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif EL2Enabled() && CPTR_EL2.TCPAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CPACR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x100] = X[t];

else
CPACR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TCPAC == '1' then
UNDEFINED;

elsif HaveEL(EL3) && CPTR_EL3.TCPAC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

CPTR_EL2 = X[t];
else

CPACR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

CPACR_EL1 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPTR_EL2, Architectural Feature Trap Register (EL2)

Page 71

(old) htmldiff from- (new)

CPTR_EL3, Architectural Feature Trap Register (EL3)
The CPTR_EL3 characteristics are:

Purpose
Controls trapping to EL3 of accesses to CPACR, CPACR_EL1, HCPTR, CPTR_EL2, trace, Activity Monitor, SVE, and
Advanced SIMD and floating-point functionality.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to CPTR_EL3 are UNDEFINED.

Attributes
CPTR_EL3 is a 64-bit register.

Field descriptions
The CPTR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

TCPACTAM RES0 TTA RES0 TFPRES0EZ RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TCPAC, bit [31]

Traps all of the following to EL3, from both Security states and both Execution states.

• EL2 accesses to CPTR_EL2, reported using ESR_ELx.EC value 0x18, or HCPTR, reported using ESR_ELx.EC
value 0x03.

• EL2 and EL1 accesses to CPACR_EL1 reported using ESR_ELx.EC value 0x18, or CPACR reported using
ESR_ELx.EC value 0x03.

When CPTR_EL3.TCPAC is:

TCPAC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 accesses to the CPTR_EL2 or HCPTR, and EL2 and EL1

accesses to the CPACR_EL1 or CPACR, are trapped to EL3,
unless they are trapped by CPTR_EL2.TCPAC.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TAM, bit [30]

When FEAT_AMUv1 is implemented:

Trap Activity Monitor access. Traps EL2, EL1 and EL0 accesses to all Activity Monitor registers to EL3.

Accesses to the Activity Monitors registers are trapped as follows:

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 72

AArch32-cpacr.html
AArch32-hcptr.html
AArch32-hcptr.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-cpacr.html

• In AArch64 state, the following registers are trapped to EL3 and reported with ESR_ELx.EC value 0x18:

◦ AMUSERENR_EL0, AMCFGR_EL0, AMCGCR_EL0, AMCNTENCLR0_EL0, AMCNTENCLR1_EL0,
AMCNTENSET0_EL0, AMCNTENSET1_EL0, AMCR_EL0, AMEVCNTR0<n>_EL0,
AMEVCNTR1<n>_EL0, AMEVTYPER0<n>_EL0, and AMEVTYPER1<n>_EL0.

• In AArch32 state, accesses with MRC or MCR to the following registers reported with ESR_ELx.EC value
0x03:

◦ AMUSERENR, AMCFGR, AMCGCR, AMCNTENCLR0, AMCNTENCLR1, AMCNTENSET0,
AMCNTENSET1, AMCR, AMEVTYPER0<n>, and AMEVTYPER1<n>.

• In AArch32 state, accesses with MRRC or MCRR to the following registers, reported with ESR_ELx.EC value
0x04:

◦ AMEVCNTR0<n>, AMEVCNTR1<n>.
TAM Meaning
0b0 Accesses from EL2, EL1, and EL0 to Activity Monitor registers

are not trapped.
0b1 Accesses from EL2, EL1, and EL0 to Activity Monitor registers

are trapped to EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:21]

Reserved, RES0.

TTA, bit [20]

Traps System register accesses. Accesses to the trace registers, from all Exception levels, both Security states, and
both Execution states are trapped to EL3 as follows:

• In AArch64 state, Trace registers with op0=2, op1=1, and CRn<0b1000 are trapped to EL3 and reported
using EC syndrome value 0x18.

• In AArch32 state, accesses using MCR or MRC to the Trace registers with cpnum=14, opc1=1, and
CRn<0b1000 are reported using EC syndrome value 0x05.

TTA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any System register access to the trace registers is trapped to

EL3, subject to the exception prioritization rules, unless it is
trapped by CPACR.TRCDIS, CPACR_EL1.TTA or CPTR_EL2.TTA.

If System register access to trace functionality is not supported, this bit is RES0.

Note

The ETMv4 architecture does not permit EL0 to access the trace registers. If
the PE trace unit implements FEAT_ETMv4, EL0 accesses to the trace
registers are UNDEFINED, and any resulting exception is higher priority than
this trap exception.

EL3 does not provide traps on trace register accesses through the Memory-
mapped interface.

System register accesses to the trace registers can have side-effects. When a System register access is trapped, no
side-effects occur before the exception is taken, see 'Traps on instructions'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 73

AArch64-amuserenr_el0.html
AArch64-amcfgr_el0.html
AArch64-amcgcr_el0.html
AArch64-amcntenclr0_el0.html
AArch64-amcntenclr1_el0.html
AArch64-amcntenset0_el0.html
AArch64-amcntenset1_el0.html
AArch64-amcr_el0.html
AArch64-amevcntr0n_el0.html
AArch64-amevcntr1n_el0.html
AArch64-amevtyper0n_el0.html
AArch64-amevtyper1n_el0.html
AArch32-amuserenr.html
AArch32-amcfgr.html
AArch32-amcgcr.html
AArch32-amcntenclr0.html
AArch32-amcntenclr1.html
AArch32-amcntenset0.html
AArch32-amcntenset1.html
AArch32-amcr.html
AArch32-amevtyper0n.html
AArch32-amevtyper1n.html
AArch32-amevcntr0n.html
AArch32-amevcntr1n.html
AArch32-cpacr.html

Bits [19:11]

Reserved, RES0.

TFP, bit [10]

Traps executionall ofaccesses instructionsto which access theSVE, Advanced SIMD and floating-point functionality,
from all Exception levels, both Security states, and both Execution states, to EL3.

This includes the following registers, all reported using ESR_ELx.EC value 0x07:

• FPCR, FPSR, FPEXC32_EL2, any of the SIMD and floating-point registers V0-V31, including their views as
D0-D31 registers or S0-31 registers.

• MVFR0, MVFR1, MVFR2, FPSCR, FPEXC, and any of the SIMD and floating-point registers Q0-15, including
their views as D0-D31 registers or S0-31 registers.

Permitted VMSR accesses to FPSID are ignored, but for the purposes of this trap the architecture define a VMSR
access to the FPSID from EL1 or higher as an access to a SIMD and floating-point register.

TrapsTrapping executionbehavior atis allaffected Exceptionby levelsprecedence ofas follows: SVEA instructions totrap
EL3taken fromas botha Securityresult states. Theof exceptionCPTR_EL3.EZ ishas reportedprecedence usingover
ESR_ELx.ECthe value of CPTR_EL3.TFP. 0x07.

A trap taken as a result of CPTR_EL3.EZ has precedence over a trap taken as a result of CPTR_EL3.TFP.

Defined values are:

TFP Meaning
0b0 This control does not cause execution of any instructions to be

trapped.
0b1 ThisAny controlattempt causesat executionany ofException

theselevel instructionsto at allexecute Exceptionan
levelsinstruction that uses the registers associated with SVE,
Advanced SIMD and floating-point is trapped to beEL3,
trapped.subject to the exception prioritization rules.

Note

FPEXC32_EL2 is not accessible from EL0 using AArch64.

FPSID, MVFR0, MVFR1, and FPEXC are not accessible from EL0 using
AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [9]

Reserved, RES0.

EZ, bit [8]

When FEAT_SVE is implemented:

Traps execution of SVE instructions and instructions that directly access the ZCR_EL3, ZCR_EL2, orand ZCR_EL1
System registers, from all Exception levels and both Security states, to EL3.

The exception is reported using ESR_ELx.EC value 0x19.

Trapping behavior is affected by precedence as follows: A trap taken as a result of CPTR_EL3.EZ has precedence over
athe trap taken as a resultvalue of CPTR_EL3.TFP.

EZ Meaning
0b0 This control causes execution of these instructions executed at all

any Exception levelslevel to be trapped.trapped, subject to the
exception prioritization rules.

0b1 This control does not cause execution of any
instructionsinstruction to be trapped.

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 74

AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-fpsid.html
AArch32-fpsid.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [7:0]

Reserved, RES0.

Accessing the CPTR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, CPTR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return CPTR_EL3;

MSR CPTR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
CPTR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPTR_EL3, Architectural Feature Trap Register (EL3)

Page 75

(old) htmldiff from- (new)

CSSELR_EL1, Cache Size Selection Register
The CSSELR_EL1 characteristics are:

Purpose
Selects the current Cache Size ID Register, CCSIDR_EL1, by specifying the required cache level and the cache type
(either instruction or data cache).

Configuration
AArch64 System register CSSELR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
CSSELR[31:0].

Attributes
CSSELR_EL1 is a 64-bit register.

Field descriptions
The CSSELR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TnD Level InD
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

TnD, bit [4]

When FEAT_MTE2FEAT_MTE is implemented:

Allocation Tag not Data bit.

TnD Meaning
0b0 Data, Instruction or Unified cache.
0b1 Separate Allocation Tag cache.

When CSSELR_EL1.InD == 1, this bit is RES0.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of
CSSELR_EL1 is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Level, bits [3:1]

Cache level of required cache.

CSSELR_EL1, Cache Size Selection Register

Page 76

AArch32-csselr.html

Level Meaning
0b000 Level 1 cache.
0b001 Level 2 cache.
0b010 Level 3 cache.
0b011 Level 4 cache.
0b100 Level 5 cache.
0b101 Level 6 cache.
0b110 Level 7 cache.

All other values are reserved.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then the value for this field on a read of
CSSELR_EL1 is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

InD, bit [0]

Instruction not Data bit.

InD Meaning
0b0 Data or unified cache.
0b1 Instruction cache.

If CSSELR_EL1.Level is programmed to a cache level that is not implemented, then a read of CSSELR_EL1 is
CONSTRAINED UNPREDICTABLE, and returns UNKNOWN values for CSSELR_EL1.{Level, InD}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CSSELR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, CSSELR_EL1

op0 op1 CRn CRm op2
0b11 0b010 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CSSELR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CSSELR_EL1;

elsif PSTATE.EL == EL2 then
return CSSELR_EL1;

elsif PSTATE.EL == EL3 then
return CSSELR_EL1;

MSR CSSELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b010 0b0000 0b0000 0b000

CSSELR_EL1, Cache Size Selection Register

Page 77

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID2 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TID4 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.CSSELR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
CSSELR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
CSSELR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
CSSELR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CSSELR_EL1, Cache Size Selection Register

Page 78

(old) htmldiff from- (new)

CTR_EL0, Cache Type Register
The CTR_EL0 characteristics are:

Purpose
Provides information about the architecture of the caches.

Configuration
AArch64 System register CTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register CTR[31:0].

Attributes
CTR_EL0 is a 64-bit register.

Field descriptions
The CTR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TminLine

RES1RES0DICIDC CWG ERG DminLine L1Ip RES0 IminLine
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:38]

Reserved, RES0.

TminLine, bits [37:32]

When FEAT_MTE2FEAT_MTE is implemented:

Tag minimum Line. Log2 of the number of words covered by Allocation Tags in the smallest cache line of all caches
which can contain Allocation tags that are controlled by the PE.

Note
• For an implementation with cache lines containing 64 bytes of data and

4 Allocation Tags, this will be log2(64/4) = 4.
• For an implementation with Allocations Tags in separate cache lines of

128 Allocation Tags per line, this will be log2(128*16/4) = 9.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

Bit [30]

Reserved, RES0.

CTR_EL0, Cache Type Register

Page 79

AArch32-ctr.html

DIC, bit [29]

Instruction cache invalidation requirements for data to instruction coherence.

DIC Meaning
0b0 Instruction cache invalidation to the Point of Unification is

required for data to instruction coherence.
0b1 Instruction cache invalidation to the Point of Unification is not

required for data to instruction coherence.

IDC, bit [28]

Data cache clean requirements for instruction to data coherence. The meaning of this bit is:

IDC Meaning
0b0 Data cache clean to the Point of Unification is required for

instruction to data coherence, unless CLIDR_EL1.LoC == 0b000
or (CLIDR_EL1.LoUIS == 0b000 && CLIDR_EL1.LoUU ==
0b000).

0b1 Data cache clean to the Point of Unification is not required for
instruction to data coherence.

CWG, bits [27:24]

Cache writeback granule. Log2 of the number of words of the maximum size of memory that can be overwritten as a
result of the eviction of a cache entry that has had a memory location in it modified.

A value of 0b0000 indicates that this register does not provide Cache writeback granule information and either:

• The architectural maximum of 512 words (2KB) must be assumed.
• The Cache writeback granule can be determined from maximum cache line size encoded in the Cache Size ID

Registers.

Values greater than 0b1001 are reserved.

Arm recommends that an implementation that does not support cache write-back implements this field as 0b0001. This
applies, for example, to an implementation that supports only write-through caches.

ERG, bits [23:20]

Exclusives reservation granule. Log2 of the number of words of the maximum size of the reservation granule that has
been implemented for the Load-Exclusive and Store-Exclusive instructions.

The use of the value 0b0000 is deprecated.

The value 0b0001 and values greater than 0b1001 are reserved.

DminLine, bits [19:16]

Log2 of the number of words in the smallest cache line of all the data caches and unified caches that are controlled by
the PE.

L1Ip, bits [15:14]

Level 1 instruction cache policy. Indicates the indexing and tagging policy for the L1 instruction cache. Possible values
of this field are:

L1Ip Meaning
0b00 VMID aware Physical Index, Physical tag (VPIPT)
0b01 ASID-tagged Virtual Index, Virtual Tag (AIVIVT)
0b10 Virtual Index, Physical Tag (VIPT)
0b11 Physical Index, Physical Tag (PIPT)

The value 0b01 is reserved in Armv8.

CTR_EL0, Cache Type Register

Page 80

The value 0b00 is permitted only in an implementation that includes FEAT_VPIPT, otherwise the value is reserved.

Bits [13:4]

Reserved, RES0.

IminLine, bits [3:0]

Log2 of the number of words in the smallest cache line of all the instruction caches that are controlled by the PE.

Accessing the CTR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, CTR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0000 0b0000 0b001

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCT == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TID2 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGRTR_EL2.CTR_EL0 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return CTR_EL0;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TID2 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.CTR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return CTR_EL0;

elsif PSTATE.EL == EL2 then
return CTR_EL0;

elsif PSTATE.EL == EL3 then
return CTR_EL0;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTR_EL0, Cache Type Register

Page 81

(old) htmldiff from- (new)

CurrentEL, Current Exception Level
The CurrentEL characteristics are:

Purpose
Holds the current Exception level.

Configuration
There are no configuration notes.

Attributes
CurrentEL is a 64-bit register.

Field descriptions
The CurrentEL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 EL RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:4]

Reserved, RES0.

EL, bits [3:2]

Current Exception level. Possible values of this field are:

EL Meaning
0b00 EL0.
0b01 EL1.
0b10 EL2.
0b11 EL3.

When the HCR_EL2.NV bit is 1, EL1 read accesses to the CurrentEL register return the value of 0b10 in this field.

This field resets to the highest implemented Exception level.Level.

Bits [1:0]

Reserved, RES0.

Accessing the CurrentEL
Accesses to this register use the following encodings:

CurrentEL, Current Exception Level

Page 82

MRS <Xt>, CurrentEL

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

return Zeros(60):'10':Zeros(2);
else

return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL2 then

return Zeros(60):PSTATE.EL:Zeros(2);
elsif PSTATE.EL == EL3 then

return Zeros(60):PSTATE.EL:Zeros(2);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CurrentEL, Current Exception Level

Page 83

(old) htmldiff from- (new)

DBGBVR<n>_EL1, Debug Breakpoint Value Registers,
n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose
Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together
with control register DBGBCR<n>_EL1.

Configuration
AArch64 System register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGBVR<n>[31:0].

AArch64 System register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register
DBGBXVR<n>[31:0].

AArch64 System register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to External register
DBGBVR<n>_EL1[63:0].

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b000x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

If breakpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGBVR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT == 0b000x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] Bits[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must set all bits in this field to the same value as the most significant bit of the VA
field. If all bits in this field are not the same value as the most significant bit of the VA field, then all of the following
apply:

• It is CONSTRAINED UNPREDICTABLE whether the PE ignores this field when comparing an address.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 84

AArch64-dbgbcrn_el1.html
AArch32-dbgbvrn.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html

• If the breakpoint is not context-aware, it is IMPLEMENTATION DEFINED whether the value read back in each bit of
this field is a copy of the most significant bit of the VA field or the value written.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

Extension to VA[48:2]. ForSee more information, see VA[48:2].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Extension to RESS[14:4]. ForSee more information, see RESS[14:4].] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, bits [52:49] are part
of the RESS field.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when (FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented), HCR_EL2.E2H is 1, and either:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security state.

Otherwise, the value is compared against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b011x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 85

AArch64-contextidr_el2.html
AArch64-contextidr_el1.html

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented, VTCR_EL2.VS == 1 and EL2 is using AArch64:

Extension to VMID[7:0]. ForSee more information, see DBGBVR<n>_EL1.VMID[7:0].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 86

AArch64-contextidr_el1.html
AArch64-vtcr_el2.html

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented, VTCR_EL2.VS == 1 and EL2 is using AArch64:

Extension to VMID[7:0]. ForSee more information, see DBGBVR<n>_EL1.VMID[7:0].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is
implemented or FEAT_Debugv8p2 is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is
implemented or FEAT_Debugv8p2 is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 87

AArch64-vtcr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBVR<n>_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGBVR<n>_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGBVRn_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBVR_EL1[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBVR_EL1[UInt(CRm<3:0>)];

MSR DBGBVR<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b100

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 88

AArch64-contextidr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGBVRn_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBVR_EL1[UInt(CRm<3:0>)] = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 89

(old) htmldiff from- (new)

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
The DBGCLAIMCLR_EL1 characteristics are:

Purpose
Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configuration
AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMCLR[31:0].

AArch64 System register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to External register
DBGCLAIMCLR_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMCLR_EL1 is a 64-bit register.

Field descriptions
The DBGCLAIMCLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RAZ/WISBZ CLAIM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/WI.SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on
writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag
bits. A single write operation can clear multiple CLAIM tag bits to 0.

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 90

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

Accessing the DBGCLAIMCLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGCLAIMCLR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGCLAIM == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGCLAIMCLR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGCLAIMCLR_EL1;
elsif PSTATE.EL == EL3 then

return DBGCLAIMCLR_EL1;

MSR DBGCLAIMCLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1001 0b110

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 91

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGCLAIM == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGCLAIMCLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGCLAIMCLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DBGCLAIMCLR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 92

(old) htmldiff from- (new)

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
The DBGCLAIMSET_EL1 characteristics are:

Purpose
Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configuration
AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMSET[31:0].

AArch64 System register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to External register
DBGCLAIMSET_EL1[31:0].

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMSET_EL1 is a 64-bit register.

Field descriptions
The DBGCLAIMSET_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RAZ/WISBZ CLAIM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:8]

Reserved, RAZ/WI.SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on
writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 93

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag
bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

Accessing the DBGCLAIMSET_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGCLAIMSET_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGCLAIM == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return DBGCLAIMSET_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return DBGCLAIMSET_EL1;
elsif PSTATE.EL == EL3 then

return DBGCLAIMSET_EL1;

MSR DBGCLAIMSET_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0111 0b1000 0b110

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 94

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGCLAIM == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
DBGCLAIMSET_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

DBGCLAIMSET_EL1 = X[t];
elsif PSTATE.EL == EL3 then

DBGCLAIMSET_EL1 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 95

(old) htmldiff from- (new)

DBGWVR<n>_EL1, Debug Watchpoint Value Registers,
n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose
Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register
DBGWCR<n>_EL1.

Configuration
AArch64 System register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGWVR<n>[31:0].

AArch64 System register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to External register
DBGWVR<n>_EL1[63:0].

If watchpoint n is not implemented then accesses to this register are UNDEFINED.

Attributes
DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] Bits[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must set all bits in this field to the same value as the most significant bit of the VA
field. If all bits in this field are not the same value as the most significant bit of the VA field, then all of the following
apply:

• It is CONSTRAINED UNPREDICTABLE whether the PE ignores this field when comparing an address.
• It is IMPLEMENTATION DEFINED whether the value read back in each bit of this field is a copy of the most

significant bit of the VA field or the value written.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

Extension to VA[48:2]. ForSee more information, see VA[48:2].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Extension to RESS[14:4]. ForSee more information, see RESS[14:4].] for more details.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 96

AArch64-dbgwcrn_el1.html
AArch32-dbgwvrn.html

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, bits [52:49] are part
of the RESS field.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1
Accesses to this register use the following encodings:

MRS <Xt>, DBGWVR<n>_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.DBGWVRn_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGWVR_EL1[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGWVR_EL1[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL3 then

if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGWVR_EL1[UInt(CRm<3:0>)];

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 97

MSR DBGWVR<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 n[3:0] 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.DBGWVRn_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];
elsif PSTATE.EL == EL3 then

if OSLSR_EL1.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGWVR_EL1[UInt(CRm<3:0>)] = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 98

(old) htmldiff from- (new)

DC CIGVAC, Clean and Invalidate of Allocation Tags by
VA to PoC

The DC CIGVAC characteristics are:

Purpose
Clean and Invalidate Allocation Tags in data cache by address to Point of Coherency.

Configuration
This instruction is present only when FEAT_MTEFEAT_MTE2 is implemented. Otherwise, direct accesses to DC
CIGVAC are UNDEFINED.

Attributes
DC CIGVAC is a 64-bit System instruction.

Field descriptions
The DC CIGVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIGVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault'.

Accesses to this instruction use the following encodings:

DC CIGVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b011

DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

Page 99

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CIGVAC(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIGVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIGVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIGVAC(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC

Page 100

(old) htmldiff from- (new)

DC CISW, Data or unified Cache line Clean and
Invalidate by Set/Way

The DC CISW characteristics are:

Purpose
Clean and Invalidate data cache by set/way.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might clean and invalidate Allocation Tags from caches.

Configuration
AArch64 System instruction DC CISW performs the same function as AArch32 System instruction DCCISW.

Attributes
DC CISW is a 64-bit System instruction.

Field descriptions
The DC CISW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

Page 101

AArch32-dccisw.html

Executing the DC CISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CISW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCISW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CISW(X[t]);
elsif PSTATE.EL == EL2 then

DC_CISW(X[t]);
elsif PSTATE.EL == EL3 then

DC_CISW(X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way

Page 102

(old) htmldiff from- (new)

DC CIVAC, Data or unified Cache line Clean and
Invalidate by VA to PoC

The DC CIVAC characteristics are:

Purpose
Clean and Invalidate data cache by address to Point of Coherency.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might clean and invalidate Allocation Tags from caches.

Configuration
AArch64 System instruction DC CIVAC performs the same function as AArch32 System instruction DCCIMVAC.

Attributes
DC CIVAC is a 64-bit System instruction.

Field descriptions
The DC CIVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CIVAC instruction
Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault'.

Accesses to this instruction use the following encodings:

DC CIVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1110 0b001

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 103

AArch32-dccimvac.html

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CIVAC(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCIVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CIVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CIVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CIVAC(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC

Page 104

(old) htmldiff from- (new)

DC CSW, Data or unified Cache line Clean by Set/Way
The DC CSW characteristics are:

Purpose
Clean data cache by set/way.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configuration
AArch64 System instruction DC CSW performs the same function as AArch32 System instruction DCCSW.

Attributes
DC CSW is a 64-bit System instruction.

Field descriptions
The DC CSW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

Bit [0]

Reserved, RES0.

DC CSW, Data or unified Cache line Clean by Set/Way

Page 105

AArch32-dccsw.html

Executing the DC CSW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC CSW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b1010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CSW(X[t]);
elsif PSTATE.EL == EL2 then

DC_CSW(X[t]);
elsif PSTATE.EL == EL3 then

DC_CSW(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CSW, Data or unified Cache line Clean by Set/Way

Page 106

(old) htmldiff from- (new)

DC CVAC, Data or unified Cache line Clean by VA to
PoC

The DC CVAC characteristics are:

Purpose
Clean data cache by address to Point of Coherency.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configuration
AArch64 System instruction DC CVAC performs the same function as AArch32 System instruction DCCMVAC.

Attributes
DC CVAC is a 64-bit System instruction.

Field descriptions
The DC CVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVAC instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, subject to the constraints described in 'Permission fault'.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

Accesses to this instruction use the following encodings:

DC CVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1010 0b001

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 107

AArch32-dccmvac.html

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CVAC(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVAC(X[t]);

elsif PSTATE.EL == EL2 then
DC_CVAC(X[t]);

elsif PSTATE.EL == EL3 then
DC_CVAC(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CVAC, Data or unified Cache line Clean by VA to PoC

Page 108

(old) htmldiff from- (new)

DC CVADP, Data or unified Cache line Clean by VA to
PoDP

The DC CVADP characteristics are:

Purpose
Clean data cache by address to Point of Deep Persistence.

If the memory system does not identify a Point of Deep Persistence, then this instruction behaves as a DC CVAP.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configuration
This instruction is present only when FEAT_DPB2 is implemented. Otherwise, direct accesses to DC CVADP are
UNDEFINED.

Attributes
DC CVADP is a 64-bit System instruction.

Field descriptions
The DC CVADP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVADP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault'.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

Accesses to this instruction use the following encodings:

DC CVADP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1101 0b001

DC CVADP, Data or unified Cache line Clean by VA to PoDP

Page 109

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVADP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CVADP(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVADP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVADP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CVADP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CVADP(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CVADP, Data or unified Cache line Clean by VA to PoDP

Page 110

(old) htmldiff from- (new)

DC CVAP, Data or unified Cache line Clean by VA to
PoP

The DC CVAP characteristics are:

Purpose
Clean data cache by address to Point of Persistence.

If the memory system does not identify a Point of Persistence, then this instruction behaves as a DC CVAC.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might clean Allocation Tags from caches.

Configuration
This instruction is present only when FEAT_DPB is implemented. Otherwise, direct accesses to DC CVAP are
UNDEFINED.

Attributes
DC CVAP is a 64-bit System instruction.

Field descriptions
The DC CVAP input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC CVAP instruction
If EL0 access is enabled, when executed at EL0, this instruction requires read access permission to the VA, otherwise
it generates a Permission Fault, see 'Permission fault'.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

Accesses to this instruction use the following encodings:

DC CVAP, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b1100 0b001

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 111

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.UCI == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCCVAP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.UCI == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_CVAP(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TPCP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCCVAP == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_CVAP(X[t]);

elsif PSTATE.EL == EL2 then
DC_CVAP(X[t]);

elsif PSTATE.EL == EL3 then
DC_CVAP(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC CVAP, Data or unified Cache line Clean by VA to PoP

Page 112

(old) htmldiff from- (new)

DC GVA, Data Cache set Allocation Tag by VA
The DC GVA characteristics are:

Purpose
Write a value to the Allocation Tags of a naturally aligned block of N bytes, where the size of N is identified in
DCZID_EL0. The Allocation Tag used is determined by the input address.

Configuration
This instruction is present only when FEAT_MTEFEAT_MTE2 is implemented. Otherwise, direct accesses to DC GVA
are UNDEFINED.

Attributes
DC GVA is a 64-bit System instruction.

Field descriptions
The DC GVA input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. There is no alignment restriction on the address within the block of N bytes that is used.

Executing the DC GVA instruction
When this instruction is executed, it can generate memory faults or watchpoints which are prioritized in the same way
as other memory-related faults or watchpoints. If a synchronous data abort fault or a watchpoint is generated, the CM
bit in the ESR_ELx.ISS field is not set.

If the memory region being modified is any type of Device memory, this instruction can give an alignment fault that is
prioritized in the same way as other alignment faults that are determined by the memory type.

This instruction applies to Normal memory regardless of cacheability attributes.

This instruction behaves as a set of stores to each Allocation Tag within the block being accessed, and so it:

• Generates a Permission Fault if the translation system does not permit writes to the locations.
• Requires the same considerations for ordering and the management of coherency as any other store

instructions.

Accesses to this instruction use the following encodings:

DC GVA, <Xt>

op0 op1 CRn CRm op2
0b01 0b011 0b0111 0b0100 0b011

DC GVA, Data Cache set Allocation Tag by VA

Page 113

AArch64-dczid_el0.html

if PSTATE.EL == EL0 then
if !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.DZE == '0' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.TDZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&
HFGITR_EL2.DCZVA == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.DZE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

DC_GVA(X[t]);
elsif PSTATE.EL == EL1 then

if EL2Enabled() && HCR_EL2.TDZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCZVA == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
DC_GVA(X[t]);

elsif PSTATE.EL == EL2 then
DC_GVA(X[t]);

elsif PSTATE.EL == EL3 then
DC_GVA(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC GVA, Data Cache set Allocation Tag by VA

Page 114

(old) htmldiff from- (new)

DC ISW, Data or unified Cache line Invalidate by Set/
Way

The DC ISW characteristics are:

Purpose
Invalidate data cache by set/way.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might invalidate Allocation Tags from caches. When it
invalidates Allocation Tags from caches, it also cleans them.

Configuration
AArch64 System instruction DC ISW performs the same function as AArch32 System instruction DCISW.

Attributes
DC ISW is a 64-bit System instruction.

Field descriptions
The DC ISW input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

SetWay Level RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

SetWay, bits [31:4]

Contains two fields:

• Way, bits[31:32-A], the number of the way to operate on.
• Set, bits[B-1:L], the number of the set to operate on.

Bits[L-1:4] are RES0.

A = Log2(ASSOCIATIVITY), L = Log2(LINELEN), B = (L + S), S = Log2(NSETS).

ASSOCIATIVITY, LINELEN (line length, in bytes), and NSETS (number of sets) have their usual meanings and are the
values for the cache level being operated on. The values of A and S are rounded up to the next integer.

Level, bits [3:1]

Cache level to operate on, minus 1. For example, this field is 0 for operations on L1 cache, or 1 for operations on L2
cache.

DC ISW, Data or unified Cache line Invalidate by Set/Way

Page 115

AArch32-dcisw.html

Bit [0]

Reserved, RES0.

Executing the DC ISW instruction
If this instruction is executed with a set, way or level argument that is larger than the value supported by the
implementation then the behavior is CONSTRAINED UNPREDICTABLE and one of the following occurs:

• The instruction is UNDEFINED.
• The instruction performs cache maintenance on one of:

◦ No cache lines.
◦ A single arbitrary cache line.
◦ Multiple arbitrary cache lines.

Accesses to this instruction use the following encodings:

DC ISW, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TSW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCISW == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.SWIO == '1' then

DC_CISW(X[t]);
elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then

DC_CISW(X[t]);
else

DC_ISW(X[t]);
elsif PSTATE.EL == EL2 then

DC_ISW(X[t]);
elsif PSTATE.EL == EL3 then

DC_ISW(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC ISW, Data or unified Cache line Invalidate by Set/Way

Page 116

(old) htmldiff from- (new)

DC IVAC, Data or unified Cache line Invalidate by VA
to PoC

The DC IVAC characteristics are:

Purpose
Invalidate data cache by address to Point of Coherency.

When FEAT_MTE2FEAT_MTE is implemented, this instruction might invalidate Allocation Tags from caches. When it
invalidates Allocation Tags from caches, it also cleans them.

Configuration
AArch64 System instruction DC IVAC performs the same function as AArch32 System instruction DCIMVAC.

Attributes
DC IVAC is a 64-bit System instruction.

Field descriptions
The DC IVAC input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Virtual address to use
Virtual address to use

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Virtual address to use. No alignment restrictions apply to this VA.

Executing the DC IVAC instruction
When the instruction is executed, it can generate a watchpoint, which is prioritized in the same way as other
watchpoints. If a watchpoint is generated, the CM bit in the ESR_ELx.ISS field is set to 1.

This instruction requires write access permission to the VA, otherwise it generates a Permission Fault, subject to the
constraints described in 'Permission fault'.

Execution of this instruction might require an address translation from VA to PA, and that translation might fault. For
more information, see 'The data cache maintenance instruction (DC)'.

Accesses to this instruction use the following encodings:

DC IVAC, <Xt>

op0 op1 CRn CRm op2
0b01 0b000 0b0111 0b0110 0b001

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 117

AArch32-dcimvac.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TPCP == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.DCIVAC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<DC,VM> != '00' then

DC_CIVAC(X[t]);
else

DC_IVAC(X[t]);
elsif PSTATE.EL == EL2 then

DC_IVAC(X[t]);
elsif PSTATE.EL == EL3 then

DC_IVAC(X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DC IVAC, Data or unified Cache line Invalidate by VA to PoC

Page 118

(old) htmldiff from- (new)

DISR_EL1, Deferred Interrupt Status Register
The DISR_EL1 characteristics are:

Purpose
Records that an SError interrupt has been consumed by an ESB instruction.

Configuration
AArch64 System register DISR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to DISR_EL1 are UNDEFINED.

Attributes
DISR_EL1 is a 64-bit register.

Field descriptions
The DISR_EL1 bit assignments are:

When DISR_EL1.IDS == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 IDS RES0 AET EA RES0 DFSC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

IDS Meaning
0b0 Deferred error uses architecturally-defined format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DISR_EL1, Deferred Interrupt Status Register

Page 119

Bits [23:13]

Reserved, RES0.

AET, bits [12:10]

Asynchronous Error Type. See the description of ESR_ELx.AET for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of ESR_ELx.EA for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

Fault Status Code. See the description of ESR_ELx.DFSC for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When DISR_EL1.IDS == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 IDS ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

IDS, bit [24]

Indicates the deferred SError interrupt type.

IDS Meaning
0b1 Deferred error uses IMPLEMENTATION DEFINED format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

IMPLEMENTATION DEFINED syndrome. See the description of ESR_ELx[23:0] for an SError interrupt.

DISR_EL1, Deferred Interrupt Status Register

Page 120

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the DISR_EL1
An indirect write to DISR_EL1 made by an ESB instruction does not require an explicit synchronization operation for
the value that is written to be observed by a direct read of DISR_EL1 occurring in program order after the ESB
instruction.

DISR_EL1 is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, SCR_EL3.EA == 1, and any of the following
apply:

• At EL2.
• At EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO == 0).

Accesses to this register use the following encodings:

MRS <Xt>, DISR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AMO == '1' then

return VDISR_EL2;
elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then

return Zeros();
else

return DISR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
return Zeros();

else
return DISR_EL1;

elsif PSTATE.EL == EL3 then
return DISR_EL1;

MSR DISR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AMO == '1' then

VDISR_EL2 = X[t];
elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then

//no operation
else

DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
//no operation

else
DISR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
DISR_EL1 = X[t];

DISR_EL1, Deferred Interrupt Status Register

Page 121

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DISR_EL1, Deferred Interrupt Status Register

Page 122

(old) htmldiff from- (new)

DIT, Data Independent Timing
The DIT characteristics are:

Purpose
Allows access to the Data Independent Timing bit.

Configuration
This register is present only when FEAT_DIT is implemented. Otherwise, direct accesses to DIT are UNDEFINED.

Attributes
DIT is a 64-bit register.

Field descriptions
The DIT bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DIT RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

DIT, bit [24]

Data Independent Timing.

DIT Meaning
0b0 The architecture makes no statement about the timing properties

of any instructions.
0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive
to the value of the data being loaded or stored.

• For certain data processing instructions, the instruction
takes a time which is independent of:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.
• For certain data processing instructions, the response of

the instruction to asynchronous exceptions does not vary
based on:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

DIT, Data Independent Timing

Page 123

◦ AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H, SHA256H2,
SHA256SU0, SHA256SU1, SHA512H, SHA512H2, SHA512SU0, SHA512SU1, EOR3, RAX1, XAR, BCAX, SM3SS1,
SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B, SM3PARTW1, SM3PARTW2, SM4E, and SM4EKEY.

• A subset of those instructions which use the general-purpose register file. These instructions are:

◦ ADC, ADCS, ADD, ADDS, AND, ANDS, ASR, ASRV, BFC, BFI, BFM, BFXIL, BIC, BICS, CCMN, CCMP, CFINV, CINC,
CINV, CLS, CLZ, CMN, CMP, CNEG, CSEL, CSET, CSETM, CSINC, CSINV, CSNEG, EON, EOR, EXTR, LSL, LSLV,
LSR, LSRV, MADD, MNEG, MOV, MOVK, MOVN, MOVZ, MSUB, MUL, MVN, NEG, NEGS, NGC, NGCS, NOP, ORN, ORR,
RBIT, RET, REV, REV16, REV32, REV64, RMIF, ROR, RORV, SBC, SBCS, SBFIZ, SBFM, SBFX, SETF8, SETF16,
SMADDL, SMNEGL, SMSUBL, SMULH, SMULL, SUB, SUBS, SXTB, SXTH, SXTW, TST, UBFIZ, UBFM, UBFX, UMADDL,
UMNEGL, UMSUBL, UMULH, UMULL, UXTB, and UXTH.

• A subset of those instructionsinstuctions which use the SIMD&FP register file. These instructions are:

◦ ABS, ADD, ADDHN, ADDHN2, ADDP, ADDV, AND, BIC, BIF, BIT, BSL, CLS, CLZ, CMEQ, CMGE, CMGT, CMHI, CMHS,
CMLE, CMLT, CMTST, CNT, CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH, CRC32CW, CRC32CX, DUP,
EOR, EXT, FCSEL, INS, MLA, MLS, MOV, MOVI, MUL, MVN, MVNI, NEG, NOT, ORN, ORR, PMUL, PMULL, PMULL2,
RADDHN, RADDHN2, RBIT, REV16, REV32, RSHRN, RSHRN2, RSUBHN, RSUBHN2, SABA, SABD, SABAL, SABAL2,
SABDL, SABDL2, SADALP, SADDL, SADDL2, SADDLP, SADDLV, SADDW, SADDW2, SHADD, SHL, SHLL, SHLL2,
SHRN, SHRN2, SHSUB, SLI, SMAX, SMAXP, SMAXV, SMIN, SMINP, SMINV, SMLAL, SMLAL2, SMLSL, SMLSL2,
SMOV, SMULL, SMULL2, SRI, SSHL, SSHLL, SSHLL2, SSHR, SSRA, SSUBL, SSUBL2, SSUBW, SSUBW2, SUB,
SUBHN, SUBHN2, SXTL, SXTL2, TBL, TBX, TRN1, TRN2, UABA, UABAL, UABAL2, UABD, UABDL, UABDL2, UADALP,
UADDL, UADDL2, UADDLP, UADDLV, UADDW, UADDW2, UHADD, UHSUB, UMAX, UMAXP, UMAXV, UMIN, UMINP,
UMINV, UMLAL, UMLAL2, UMLSL, UMOV, UMLSL2, UMULL, UMULL2, USHL, USHLL, USHLL2, USHR, USRA, USUBL,
USUBL2, USUBW, USUBW2, UXTL, UXTL2, UZP1, UZP2, XTN, XTN2, ZIP1, and ZIP2.

Note

The architecture makes no statement about the timing properties when the
PSTATE.DIT bit is not set. However, it is likely that many of these instructions
have timing that is invariant of the data in many situations.

In particular, Arm strongly recommends that the Armv8.3 pointer
authentication instructions do not have their timing dependent on the key
value used in the pointer authentication in all cases, regardless of the
PSTATE.DIT bit.

On a Warm reset, this field resets to 0.

Bits [23:0]

Reserved, RES0.

Accessing the DIT
Accesses to this register use the following encodings:

MRS <Xt>, DIT

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b101

if PSTATE.EL == EL0 then
return Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL1 then
return Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL2 then
return Zeros(39):PSTATE.DIT:Zeros(24);

elsif PSTATE.EL == EL3 then
return Zeros(39):PSTATE.DIT:Zeros(24);

DIT, Data Independent Timing

Page 124

MSR DIT, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b101

if PSTATE.EL == EL0 then
PSTATE.DIT = X[t]<24>;

elsif PSTATE.EL == EL1 then
PSTATE.DIT = X[t]<24>;

elsif PSTATE.EL == EL2 then
PSTATE.DIT = X[t]<24>;

elsif PSTATE.EL == EL3 then
PSTATE.DIT = X[t]<24>;

MSR DIT, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b010

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DIT, Data Independent Timing

Page 125

(old) htmldiff from- (new)

DSPSR_EL0, Debug Saved Program Status Register
The DSPSR_EL0 characteristics are:

Purpose
Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this
register. On exiting Debug state, values are copied from this register to PSTATE.

Configuration
AArch64 System register DSPSR_EL0 bits [31:0] are architecturally mapped to AArch32 System register DSPSR[31:0].

Attributes
DSPSR_EL0 is a 64-bit register.

Field descriptions
The DSPSR_EL0 bit assignments are:

When AArch32 is supported at any Exception level and exiting Debug state to
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Copied to PSTATE.N on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Copied to PSTATE.Z on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Copied to PSTATE.C on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 126

V, bit [28]

Overflow Condition flag. Copied to PSTATE.V on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Copied to PSTATE.Q on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Copied to PSTATE.IT[1:0] on exiting Debug state.

On exiting Debug state DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR_EL0[26:25].
• IT[7:2] is DSPSR_EL0[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Copied to PSTATE.DIT on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Copied to PSTATE.SSBS on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Copied to PSTATE.PAN on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSPSR_EL0, Debug Saved Program Status Register

Page 127

SS, bit [21]

Software Step. Copied to PSTATE.SS on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Copied to PSTATE.IL on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Copied to PSTATE.GE on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Copied to PSTATE.IT[7:2] on exiting Debug state.

DSPSR_EL0.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR_EL0.E is RES0. If the implementation does not
support little-endian operation, DSPSR_EL0.E is RES1. On exiting Debug state, if the implementation does not support
big-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES0, and if the implementation does
not support little-endian operation at the Exception level being returned to, DSPSR_EL0.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Copied to PSTATE.A on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Copied to PSTATE.I on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Copied to PSTATE.F on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Copied to PSTATE.T on exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 128

M[4], bit [4]

Execution state. Copied to PSTATE.nRW on exiting Debug state.

M[4] Meaning
0b1 AArch32 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Copied to PSTATE.M[3:0] on exiting Debug state.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch64 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When AArch64 is supported at any Exception level and entering or exiting Debug
state from or to AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 129

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on entering Debug state, and copied to PSTATE.TCO on exiting
Debug state.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on entering Debug state, and copied to PSTATE.UAO on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR_EL0, Debug Saved Program Status Register

Page 130

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on entering Debug state, and copied to PSTATE.BTYPE on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on entering Debug state, and copied to PSTATE.D on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting
Debug state.

DSPSR_EL0, Debug Saved Program Status Register

Page 131

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on entering Debug state from AArch64 state, and copied to
PSTATE.nRW on exiting Debug state.

M[4] Meaning
0b0 AArch64 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

Other values are reserved. If DSPSR_EL0.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on entering Debug state and copied to PSTATE.EL on exiting Debug
state.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on entering Debug state and copied to PSTATE.SP on exiting Debug

state

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the DSPSR_EL0
Accesses to this register use the following encodings:

DSPSR_EL0, Debug Saved Program Status Register

Page 132

MRS <Xt>, DSPSR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
return DSPSR_EL0;

MSR DSPSR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
DSPSR_EL0 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DSPSR_EL0, Debug Saved Program Status Register

Page 133

(old) htmldiff from- (new)

ELR_EL1, Exception Link Register (EL1)
The ELR_EL1 characteristics are:

Purpose
When taking an exception to EL1, holds the address to return to.

Configuration
There are no configuration notes.

Attributes
ELR_EL1 is a 64-bit register.

Field descriptions
The ELR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL1 using AArch64 makes ELR_EL1 become UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ELR_EL1 or
ELR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ELR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

ELR_EL1, Exception Link Register (EL1)

Page 134

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x230];
else

return ELR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ELR_EL2;

else
return ELR_EL1;

elsif PSTATE.EL == EL3 then
return ELR_EL1;

MSR ELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x230] = X[t];
else

ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ELR_EL2 = X[t];

else
ELR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ELR_EL1 = X[t];

MRS <Xt>, ELR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x230];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ELR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return ELR_EL1;
else

UNDEFINED;

ELR_EL1, Exception Link Register (EL1)

Page 135

MSR ELR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x230] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ELR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

ELR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, ELR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ELR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ELR_EL2;
elsif PSTATE.EL == EL3 then

return ELR_EL2;

MSR ELR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ELR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ELR_EL2 = X[t];

ELR_EL1, Exception Link Register (EL1)

Page 136

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ELR_EL1, Exception Link Register (EL1)

Page 137

(old) htmldiff from- (new)

ELR_EL2, Exception Link Register (EL2)
The ELR_EL2 characteristics are:

Purpose
When taking an exception to EL2, holds the address to return to.

Configuration
AArch64 System register ELR_EL2 bits [31:0] are architecturally mapped to AArch32 System register ELR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ELR_EL2 is a 64-bit register.

Field descriptions
The ELR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Return address
Return address

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Return address.

An exception return from EL2 using AArch64 makes ELR_EL2 become UNKNOWN.

When EL2 is in AArch32 Execution state and an exception is taken from EL0, EL1, or EL2 to EL3 and AArch64
execution, the upper 32-bits of ELR_EL2 are either set to 0 or hold the same value that they did before AArch32
execution. Which option is adopted is determined by an implementation, and might vary dynamically within an
implementation. Correspondingly software must regard the value as being an UNKNOWN choice between the two
values.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the ELR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ELR_EL2 or
ELR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ELR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

ELR_EL2, Exception Link Register (EL2)

Page 138

AArch32-elr_hyp.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ELR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ELR_EL2;
elsif PSTATE.EL == EL3 then

return ELR_EL2;

MSR ELR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ELR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ELR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ELR_EL2 = X[t];

MRS <Xt>, ELR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x230];
else

return ELR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ELR_EL2;

else
return ELR_EL1;

elsif PSTATE.EL == EL3 then
return ELR_EL1;

MSR ELR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b001

ELR_EL2, Exception Link Register (EL2)

Page 139

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x230] = X[t];
else

ELR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ELR_EL2 = X[t];

else
ELR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ELR_EL1 = X[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ELR_EL2, Exception Link Register (EL2)

Page 140

(old) htmldiff from- (new)

ESR_EL1, Exception Syndrome Register (EL1)
The ESR_EL1 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL1.

Configuration
AArch64 System register ESR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFSR[31:0].

Attributes
ESR_EL1 is a 64-bit register.

Field descriptions
The ESR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ISS2

EC IL ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL1 is made UNKNOWN as a result of an exception return from EL1.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL1, the value of ESR_EL1
is UNKNOWN. The value written to ESR_EL1 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]

When FEAT_LS64 is implemented:

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

ESR_EL1, Exception Syndrome Register (EL1)

Page 141

AArch32-dfsr.html

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL1, Exception Syndrome Register (EL1)

Page 142

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with
an unknown
reason

0b000001 Trapped WF*
instruction execution.
Conditional WF*
instructions that fail
their condition code
check do not cause an
exception.

ISS encoding for
an exception
from a WF*
instruction

0b000011 Trapped MCR or MRC
access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported at
any
Exception
level

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported at
any
Exception
level

0b000101 Trapped MCR or MRC
access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported at
any
Exception
level

0b000110 Trapped LDC or STC
access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from memory
to DBGDTRTXint.

ISS encoding for
an exception
from an LDC or
STC instruction

When
AArch32 is
supported at
any
Exception
level

0b000111 Access to SVE,
Advanced SIMD or
floating-point
functionality trapped
by CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when the
value of
HCR_EL2.TGE is 1, or
because SVE or
Advanced SIMD and
floating-point are not
implemented. These
are reported with EC
value 0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

ISS encoding for
an exception
from an access to
SVE, Advanced
SIMD or floating-
point
functionality,
resulting from
the FPEN and
TFP traps

0b001010 Trapped execution of
an LD64B, ST64B,

ISS encoding for
an exception

When
FEAT_LS64

ESR_EL1, Exception Syndrome Register (EL1)

Page 143

ST64BV, or ST64BV0
instruction.

from an LD64B
or ST64B*
instruction

is
implemented

0b001100 Trapped MRRC access
with
(coproc==0b1110).

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported at
any
Exception
level

0b001101 Branch Target
Exception.

ISS encoding for
an exception
from Branch
Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution state. ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b010001 SVC instruction
execution in AArch32
state.
This is reported in
ESR_EL2 only when
the exception is
generated because the
value of
HCR_EL2.TGE is 1.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported at
any
Exception
level

0b010101 SVC instruction
execution in AArch64
state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported at
any
Exception
level

0b011000 Trapped MSR, MRS or
System instruction
execution in AArch64
state, that is not
reported using EC
0b000000, 0b000001,
or 0b000111.
This includes all
instructions that cause
exceptions that are
part of the encoding
space defined in
'System instruction
class encoding
overview', except for
those exceptions
reported using EC
values 0b000000,
0b000001, or
0b000111.

ISS encoding for
an exception
from MSR, MRS,
or System
instruction
execution in
AArch64 state

When
AArch64 is
supported at
any
Exception
level

0b011001 Access to SVE
functionality trapped
as a result of
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is
not reported using EC
0b000000.

ISS encoding for
an exception
from an access to
SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011100 Exception from a
Pointer Authentication
instruction
authentication failure

ISS encoding for
an exception
from a Pointer
Authentication

When
FEAT_FPAC
is
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 144

instruction
authentication
failure

0b100000 Instruction Abort from
a lower Exception
level.
Used for MMU faults
generated by
instruction accesses
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU faults
generated by
instruction accesses
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception level.
Used for MMU faults
generated by data
accesses, alignment
faults other than those
caused by Stack
Pointer misalignment,
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100101 Data Abort taken
without a change in
Exception level.
Used for MMU faults
generated by data
accesses, alignment
faults other than those
caused by Stack
Pointer misalignment,
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

ESR_EL1, Exception Syndrome Register (EL1)

Page 145

0b101000 Trapped floating-point
exception taken from
AArch32 state.
This EC value is valid
if the implementation
supports trapping of
floating-point
exceptions, otherwise
it is reserved. Whether
a floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch32 is
supported at
any
Exception
level

0b101100 Trapped floating-point
exception taken from
AArch64 state.
This EC value is valid
if the implementation
supports trapping of
floating-point
exceptions, otherwise
it is reserved. Whether
a floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch64 is
supported at
any
Exception
level

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint exception
from a lower
Exception level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110001 Breakpoint exception
taken without a
change in Exception
level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a lower
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110100 Watchpoint exception
from a lower
Exception level.

ISS encoding for
an exception
from a
Watchpoint
exception

0b110101 Watchpoint exception
taken without a
change in Exception
level.

ISS encoding for
an exception
from a
Watchpoint
exception

0b111000 BKPT instruction
execution in AArch32
state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch32 is
supported at
any

ESR_EL1, Exception Syndrome Register (EL1)

Page 146

Exception
level

0b111100 BRK instruction
execution in AArch64
state.
This is reported in
ESR_EL3 only if a BRK
instruction is
executed.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch64 is
supported at
any
Exception
level

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is

0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit
has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must

be either:
◦ The AArch64 view of the register number of a register that might have been used at the Exception

level from which the exception was taken.
◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 147

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.
• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of

HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

ISS encoding for an exception from a WF* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid.

ESR_EL1, Exception Syndrome Register (EL1)

Page 148

AArch64-sp_el0.html
AArch64-spsel.html

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:2]

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ESR_EL1, Exception Syndrome Register (EL1)

Page 149

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 150

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 151

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch32-cpacr.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see 'Traps to EL3 of Secure monitor
functionality from Secure EL1 using AArch32'.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISS

ISS, bits [24:0]

ISS Meaning
0b0000000000000000000000000 ST64BV instruction trapped.
0b0000000000000000000000001 ST64BV0 instruction trapped.
0b0000000000000000000000010 LD64B or ST64B instruction

trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

ESR_EL1, Exception Syndrome Register (EL1)

Page 152

AArch32-cpacr.html
AArch32-hcptr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between
the Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 153

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc ==
0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fieldssections describe configuration settings for generating exceptions that are reported using
EC value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

ESR_EL1, Exception Syndrome Register (EL1)

Page 154

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch32-pmccntr.html

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 155

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-mapped
registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 156

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 157

Bits [19:0]

Reserved, RES0.

The following fieldssections describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPENTFP, for accesses to SIMD and floating-point registers trapped to EL2.

CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE System registersregister, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fieldssections describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at EL0, EL1, or EL2,
trapped to EL2.

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.EL2.

• CPTR_EL2.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0, EL1, or EL2,
trapped to EL2. CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at EL0,
EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

ESR_EL1, Exception Syndrome Register (EL1)

Page 158

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL1, Exception Syndrome Register (EL1)

Page 159

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 160

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 161

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 162

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-trfcr_el1.html
AArch64-cnthctl_el2.html

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

ESR_EL1, Exception Syndrome Register (EL1)

Page 163

AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch32-hcr2.html

When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the Instruction
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

ESR_EL1, Exception Syndrome Register (EL1)

Page 164

For any abort other than a stage 2 fault this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 165

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2

is implemented
0b001100 Permission fault, level 0. When FEAT_LPA2

is implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010011 Synchronous External abort on
translation table walk or
hardware update of translation
table, level -1.

When FEAT_LPA2
is implemented

0b010100 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When FEAT_RAS
is not
implemented

0b011011 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level -1.

When FEAT_LPA2
is implemented
and FEAT_RAS is
not implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When FEAT_RAS
is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When FEAT_RAS
is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When FEAT_RAS
is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When FEAT_RAS
is not
implemented

0b101001 Address size fault, level -1. When FEAT_LPA2
is implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 166

0b101011 Translation fault, level -1. When FEAT_LPA2
is implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
FEAT_HAFDBS is
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can result only from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF AR VNCRBits[12:11]FnV EA CMS1PTWWnR DFSC

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding
includes ISS2, bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with
0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store
Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory access
generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault. ISV is 0 for all other faults reported in ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction
syndrome, and therefore ISV is 0 for these aborts.

ESR_EL1, Exception Syndrome Register (EL1)

Page 167

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE2FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == '1':

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]

When ISV == '1':

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item must be
sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]

When ISV == '1':

Syndrome Register Transfer. When FEAT_LS64 is implemented, if a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field holds register specifier, Xt.

ESR_EL1, Exception Syndrome Register (EL1)

Page 168

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64 view of the
register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]

When ISV == '1':

Width of the register accessed by the instruction is Sixty-Four.

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not
the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]

When ISV == '1':

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 169

VNCR, bit [13]

When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of VNCR_EL2, by

an MRS or MSR instruction executed at EL1.
0b1 The fault was generated by the use of VNCR_EL2, by an

MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data Abort
exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

LST Meaning
0b01 An ST64BV instruction generated the Data Abort.
0b10 An LD64B or ST64B instruction generated the Data Abort.
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 170

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of one of

the System instructions identified in the description of value
1.

0b1 The Data Abort was generated by either the execution of a
cache maintenance instruction or by a synchronous fault on
the execution of an address translation instruction. The DC
ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a memory

location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

ESR_EL1, Exception Syndrome Register (EL1)

Page 171

AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if
a read of the address specified by the instruction would have generated the fault which is being reported,
otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such
that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL1, Exception Syndrome Register (EL1)

Page 172

DFSC Meaning Applies when
0b000000 Address size fault, level 0

of translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2 is

implemented
0b001100 Permission fault, level 0. When FEAT_LPA2 is

implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External

abort, not on translation
table walk or hardware
update of translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2FEAT_MTE
is implemented

0b010011 Synchronous External
abort on translation table
walk or hardware update of
translation table, level -1.

When FEAT_LPA2 is
implemented

0b010100 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 0.

0b010101 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 1.

0b010110 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 2.

0b010111 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access,
not on translation table
walk.

When FEAT_RAS is not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When FEAT_LPA2 is
implemented and
FEAT_RAS is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When FEAT_RAS is not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When FEAT_RAS is not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When FEAT_RAS is not
implemented

ESR_EL1, Exception Syndrome Register (EL1)

Page 173

hardware update of
translation table, level 2.

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When FEAT_RAS is not
implemented

0b100001 Alignment fault.
0b101001 Address size fault, level -1. When FEAT_LPA2 is

implemented
0b101011 Translation fault, level -1. When FEAT_LPA2 is

implemented
0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED
fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED
fault (Unsupported
Exclusive or Atomic
access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can result only from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid

information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an
operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that occurred.
For more information, see 'Floating-point exceptions and
exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating-
pointfloating point exception from ana instructionvector that is performing floating-point operations on more
than one lane of a vector.instruction.

ESR_EL1, Exception Syndrome Register (EL1)

Page 174

Note

This is not a requirement. Implementations can set this field to 1 on a
trapped floating-point exception from ana vector instruction and return
valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IDF Meaning
0b0 Input denormal floating-point exception has not occurred.
0b1 Input denormal floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution

of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL1, Exception Syndrome Register (EL1)

Page 175

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution

of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

DZF Meaning
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in this

encoding.

Note
If FEAT_RAS is not implemented, bits
[23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

Note

ESR_EL1, Exception Syndrome Register (EL1)

Page 176

This field was previously called ISV.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by the

implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the implicit
error synchronization event and taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When FEAT_RAS is implemented:

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is reported.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 177

EA, bit [9]

When FEAT_RAS is implemented:

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of External
aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ESR_EL1, Exception Syndrome Register (EL1)

Page 178

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was
stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction was

stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0VNCR RES0 CM RES0WnR DFSC

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 179

VNCR, bit [13]

When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2

by EL1 code.

This field is 0 in ESR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in the
description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of an
address translation instruction. The DC ZVA, DC GVA, and
DC GZVA instructions are not classified as a cache
maintenance instructions, and therefore their execution
cannot cause this field to be set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Watchpoint exception caused by an instruction reading

from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a

memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns
a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

ESR_EL1, Exception Syndrome Register (EL1)

Page 180

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ESR_EL1, Exception Syndrome Register (EL1)

Page 181

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from Branch Target Identification instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

ESR_EL1, Exception Syndrome Register (EL1)

Page 182

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ESR_EL1 or
ESR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 183

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x138];
else

return ESR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL2;

else
return ESR_EL1;

elsif PSTATE.EL == EL3 then
return ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x138] = X[t];
else

ESR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL2 = X[t];

else
ESR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ESR_EL1 = X[t];

MRS <Xt>, ESR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

ESR_EL1, Exception Syndrome Register (EL1)

Page 184

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x138];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return ESR_EL1;
else

UNDEFINED;

MSR ESR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x138] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

ESR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ESR_EL2;
elsif PSTATE.EL == EL3 then

return ESR_EL2;

ESR_EL1, Exception Syndrome Register (EL1)

Page 185

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL1, Exception Syndrome Register (EL1)

Page 186

(old) htmldiff from- (new)

ESR_EL2, Exception Syndrome Register (EL2)
The ESR_EL2 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL2.

Configuration
AArch64 System register ESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HSR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ESR_EL2 is a 64-bit register.

Field descriptions
The ESR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ISS2

EC IL ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL2 is made UNKNOWN as a result of an exception return from EL2.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL2, the value of ESR_EL2
is UNKNOWN. The value written to ESR_EL2 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]

When FEAT_LS64 is implemented:

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 187

AArch32-hsr.html

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 188

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with
an unknown
reason

0b000001 Trapped WF*
instruction execution.
Conditional WF*
instructions that fail
their condition code
check do not cause an
exception.

ISS encoding for
an exception
from a WF*
instruction

0b000011 Trapped MCR or MRC
access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported at
any
Exception
level

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported at
any
Exception
level

0b000101 Trapped MCR or MRC
access with
(coproc==0b1110).

ISS encoding for
an exception
from an MCR or
MRC access

When
AArch32 is
supported at
any
Exception
level

0b000110 Trapped LDC or STC
access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from memory
to DBGDTRTXint.

ISS encoding for
an exception
from an LDC or
STC instruction

When
AArch32 is
supported at
any
Exception
level

0b000111 Access to SVE,
Advanced SIMD or
floating-point
functionality trapped
by CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when the
value of
HCR_EL2.TGE is 1, or
because SVE or
Advanced SIMD and
floating-point are not
implemented. These
are reported with EC
value 0b000000 as
described in 'The EC
used to report an
exception routed to
EL2 because
HCR_EL2.TGE is 1'.

ISS encoding for
an exception
from an access to
SVE, Advanced
SIMD or floating-
point
functionality,
resulting from
the FPEN and
TFP traps

0b001000 Trapped VMRS access,
from ID group trap,

ISS encoding for
an exception

When
AArch32 is

ESR_EL2, Exception Syndrome Register (EL2)

Page 189

that is not reported
using EC 0b000111.

from an MCR or
MRC access

supported at
any
Exception
level

0b001001 Trapped use of a
Pointer authentication
instruction because
HCR_EL2.API == 0 ||
SCR_EL3.API == 0.

ISS encoding for
an exception
from a Pointer
Authentication
instruction when
HCR_EL2.API
== 0 ||
SCR_EL3.API ==
0

When
FEAT_PAuth
is
implemented

0b001010 Trapped execution of
an LD64B, ST64B,
ST64BV, or ST64BV0
instruction.

ISS encoding for
an exception
from an LD64B
or ST64B*
instruction

When
FEAT_LS64
is
implemented

0b001100 Trapped MRRC access
with
(coproc==0b1110).

ISS encoding for
an exception
from an MCRR or
MRRC access

When
AArch32 is
supported at
any
Exception
level

0b001101 Branch Target
Exception.

ISS encoding for
an exception
from Branch
Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution state. ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b010001 SVC instruction
execution in AArch32
state.
This is reported in
ESR_EL2 only when
the exception is
generated because the
value of
HCR_EL2.TGE is 1.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported at
any
Exception
level

0b010010 HVC instruction
execution in AArch32
state, when HVC is not
disabled.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch32 is
supported at
any
Exception
level

0b010011 SMC instruction
execution in AArch32
state, when SMC is
not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because the
value of HCR_EL2.TSC
is 1.

ISS encoding for
an exception
from SMC
instruction
execution in
AArch32 state

When
AArch32 is
supported at
any
Exception
level

0b010101 SVC instruction
execution in AArch64
state.

ISS encoding for
an exception
from HVC or SVC
instruction
execution

When
AArch64 is
supported at
any
Exception
level

0b010110 HVC instruction
execution in AArch64

ISS encoding for
an exception
from HVC or SVC

When
AArch64 is
supported at

ESR_EL2, Exception Syndrome Register (EL2)

Page 190

state, when HVC is not
disabled.

instruction
execution

any
Exception
level

0b010111 SMC instruction
execution in AArch64
state, when SMC is
not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because the
value of HCR_EL2.TSC
is 1.

ISS encoding for
an exception
from SMC
instruction
execution in
AArch64 state

When
AArch64 is
supported at
any
Exception
level

0b011000 Trapped MSR, MRS or
System instruction
execution in AArch64
state, that is not
reported using EC
0b000000, 0b000001 or
0b000111.
This includes all
instructions that cause
exceptions that are
part of the encoding
space defined in
'System instruction
class encoding
overview', except for
those exceptions
reported using EC
values 0b000000,
0b000001, or
0b000111.

ISS encoding for
an exception
from MSR, MRS,
or System
instruction
execution in
AArch64 state

When
AArch64 is
supported at
any
Exception
level

0b011001 Access to SVE
functionality trapped
as a result of
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that is
not reported using EC
0b000000.

ISS encoding for
an exception
from an access to
SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011010 Trapped ERET,
ERETAA, or ERETAB
instruction execution.

ISS encoding for
an exception
from an ERET,
ERETAA, or
ERETAB
instruction

When
FEAT_PAuth
is
implemented
and
FEAT_NV is
implemented

0b011100 Exception from a
Pointer Authentication
instruction
authentication failure

ISS encoding for
an exception
from a Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b100000 Instruction Abort from
a lower Exception
level.
Used for MMU faults
generated by
instruction accesses
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

ESR_EL2, Exception Syndrome Register (EL2)

Page 191

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU faults
generated by
instruction accesses
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,
or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception level,
excluding Data Aborts
taken to EL2 as a
result of accesses
generated associated
with VNCR_EL2 as
part of nested
virtualization support.
These Data Aborts
might be generated
from Exception levels
in any Execution state.
Used for MMU faults
generated by data
accesses, alignment
faults other than those
caused by Stack
Pointer misalignment,
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100101 Data Abort without a
change in Exception
level, or Data Aborts
taken to EL2 as a
result of accesses
generated associated
with VNCR_EL2 as
part of nested
virtualization support.
Used for MMU faults
generated by data
accesses, alignment
faults other than those
caused by Stack
Pointer misalignment,
and synchronous
External aborts,
including synchronous
parity or ECC errors.
Not used for debug-
related exceptions.

ISS encoding for
an exception
from a Data
Abort

0b100110 SP alignment fault
exception.

ISS encoding for
an exception
from an Illegal
Execution state,

ESR_EL2, Exception Syndrome Register (EL2)

Page 192

AArch64-vncr_el2.html
AArch64-vncr_el2.html

or a PC or SP
alignment fault

0b101000 Trapped floating-point
exception taken from
AArch32 state.
This EC value is valid
if the implementation
supports trapping of
floating-point
exceptions, otherwise
it is reserved. Whether
a floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch32 is
supported at
any
Exception
level

0b101100 Trapped floating-point
exception taken from
AArch64 state.
This EC value is valid
if the implementation
supports trapping of
floating-point
exceptions, otherwise
it is reserved. Whether
a floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for
an exception
from a trapped
floating-point
exception

When
AArch64 is
supported at
any
Exception
level

0b101111 SError interrupt. ISS encoding for
an SError
interrupt

0b110000 Breakpoint exception
from a lower
Exception level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110001 Breakpoint exception
taken without a
change in Exception
level.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

0b110010 Software Step
exception from a lower
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110011 Software Step
exception taken
without a change in
Exception level.

ISS encoding for
an exception
from a Software
Step exception

0b110100 Watchpoint from a
lower Exception level,
excluding Watchpoint
Exceptions taken to
EL2 as a result of
accesses generated
associated with
VNCR_EL2 as part of
nested virtualization
support.
These Watchpoint
Exceptions might be
generated from

ISS encoding for
an exception
from a
Watchpoint
exception

ESR_EL2, Exception Syndrome Register (EL2)

Page 193

AArch64-vncr_el2.html

Exception levels using
any Execution state.

0b110101 Watchpoint exceptions
without a change in
Exception level, or
Watchpoint exceptions
taken to EL2 as a
result of accesses
generated associated
with VNCR_EL2 as
part of nested
virtualization support.

ISS encoding for
an exception
from a
Watchpoint
exception

0b111000 BKPT instruction
execution in AArch32
state.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch32 is
supported at
any
Exception
level

0b111010 Vector Catch
exception from
AArch32 state.
The only case where a
Vector Catch
exception is taken to
an Exception level that
is using AArch64 is
when the exception is
routed to EL2 and EL2
is using AArch64.

ISS encoding for
an exception
from a
Breakpoint or
Vector Catch
debug exception

When
AArch32 is
supported at
any
Exception
level

0b111100 BRK instruction
execution in AArch64
state.
This is reported in
ESR_EL3 only if a BRK
instruction is
executed.

ISS encoding for
an exception
from execution of
a Breakpoint
instruction

When
AArch64 is
supported at
any
Exception
level

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

ESR_EL2, Exception Syndrome Register (EL2)

Page 194

AArch64-vncr_el2.html

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is

0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions. For Breakpoint instruction exceptions, this bit
has its standard meaning:

◦ 0b0: 16-bit T32 BKPT instruction.
◦ 0b1: 32-bit A32 BKPT instruction or A64 BRK

instruction.
• An exception reported using EC value 0b000000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must

be either:
◦ The AArch64 view of the register number of a register that might have been used at the Exception

level from which the exception was taken.
◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.

ESR_EL2, Exception Syndrome Register (EL2)

Page 195

• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug
state.

• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-
debug state.

• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.
• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of

HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

ISS encoding for an exception from a WF* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:

ESR_EL2, Exception Syndrome Register (EL2)

Page 196

AArch64-sp_el0.html
AArch64-spsel.html

◦ If the instruction is conditional, COND is set to the condition code field value from the
instruction.

◦ If the instruction is unconditional, COND is set to 0b1110.
• A conditional A32 instruction that is known to pass its condition code check can be presented either:

◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:2]

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 197

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

ESR_EL2, Exception Syndrome Register (EL2)

Page 198

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see 'Traps to EL3 of Secure monitor
functionality from Secure EL1 using AArch32'.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 199

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch32-cpacr.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-jidr.html

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISS

ISS, bits [24:0]

ISS Meaning
0b0000000000000000000000000 ST64BV instruction trapped.
0b0000000000000000000000001 ST64BV0 instruction trapped.
0b0000000000000000000000010 LD64B or ST64B instruction

trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL2, Exception Syndrome Register (EL2)

Page 200

AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between
the Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 201

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc ==
0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fieldssections describe configuration settings for generating exceptions that are reported using
EC value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 202

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch32-pmccntr.html

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

ESR_EL2, Exception Syndrome Register (EL2)

Page 203

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-mapped
registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

ESR_EL2, Exception Syndrome Register (EL2)

Page 204

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:0]

Reserved, RES0.

The following fieldssections describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPENTFP, for accesses to SIMD and floating-point registers trapped to EL2.

CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE System registersregister, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

ESR_EL2, Exception Syndrome Register (EL2)

Page 205

Bits [24:0]

Reserved, RES0.

The following fieldssections describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at EL0, EL1, or EL2,
trapped to EL2.

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.EL2.

• CPTR_EL2.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0, EL1, or EL2,
trapped to EL2. CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at EL0,
EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

ESR_EL2, Exception Syndrome Register (EL2)

Page 206

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 207

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 208

Op0, bits [21:20]

The Op0 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 209

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

ESR_EL2, Exception Syndrome Register (EL2)

Page 210

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-trfcr_el1.html
AArch64-cnthctl_el2.html
AArch64-trfcr_el1.html
AArch64-trfcr_el2.html

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the Instruction
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 211

AArch32-hcr2.html

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 212

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2

is implemented
0b001100 Permission fault, level 0. When FEAT_LPA2

is implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010011 Synchronous External abort on
translation table walk or
hardware update of translation
table, level -1.

When FEAT_LPA2
is implemented

0b010100 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When FEAT_RAS
is not
implemented

0b011011 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level -1.

When FEAT_LPA2
is implemented
and FEAT_RAS is
not implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When FEAT_RAS
is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When FEAT_RAS
is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When FEAT_RAS
is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When FEAT_RAS
is not
implemented

0b101001 Address size fault, level -1. When FEAT_LPA2
is implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 213

0b101011 Translation fault, level -1. When FEAT_LPA2
is implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
FEAT_HAFDBS is
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can result only from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF AR VNCRBits[12:11]FnV EA CMS1PTWWnR DFSC

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding
includes ISS2, bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with
0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store
Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory access
generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault. ISV is 0 for all other faults reported in ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction
syndrome, and therefore ISV is 0 for these aborts.

ESR_EL2, Exception Syndrome Register (EL2)

Page 214

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE2FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == '1':

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]

When ISV == '1':

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item must be
sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]

When ISV == '1':

Syndrome Register Transfer. When FEAT_LS64 is implemented, if a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field holds register specifier, Xt.

ESR_EL2, Exception Syndrome Register (EL2)

Page 215

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64 view of the
register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]

When ISV == '1':

Width of the register accessed by the instruction is Sixty-Four.

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not
the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]

When ISV == '1':

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 216

VNCR, bit [13]

When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of VNCR_EL2, by

an MRS or MSR instruction executed at EL1.
0b1 The fault was generated by the use of VNCR_EL2, by an

MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data Abort
exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

LST Meaning
0b01 An ST64BV instruction generated the Data Abort.
0b10 An LD64B or ST64B instruction generated the Data Abort.
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 217

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of one of

the System instructions identified in the description of value
1.

0b1 The Data Abort was generated by either the execution of a
cache maintenance instruction or by a synchronous fault on
the execution of an address translation instruction. The DC
ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a memory

location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 218

AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if
a read of the address specified by the instruction would have generated the fault which is being reported,
otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such
that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL2, Exception Syndrome Register (EL2)

Page 219

DFSC Meaning Applies when
0b000000 Address size fault, level 0

of translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2 is

implemented
0b001100 Permission fault, level 0. When FEAT_LPA2 is

implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External

abort, not on translation
table walk or hardware
update of translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2FEAT_MTE
is implemented

0b010011 Synchronous External
abort on translation table
walk or hardware update of
translation table, level -1.

When FEAT_LPA2 is
implemented

0b010100 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 0.

0b010101 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 1.

0b010110 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 2.

0b010111 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access,
not on translation table
walk.

When FEAT_RAS is not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When FEAT_LPA2 is
implemented and
FEAT_RAS is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When FEAT_RAS is not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When FEAT_RAS is not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When FEAT_RAS is not
implemented

ESR_EL2, Exception Syndrome Register (EL2)

Page 220

hardware update of
translation table, level 2.

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When FEAT_RAS is not
implemented

0b100001 Alignment fault.
0b101001 Address size fault, level -1. When FEAT_LPA2 is

implemented
0b101011 Translation fault, level -1. When FEAT_LPA2 is

implemented
0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED
fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED
fault (Unsupported
Exclusive or Atomic
access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can result only from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid

information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an
operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that occurred.
For more information, see 'Floating-point exceptions and
exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating-
pointfloating point exception from ana instructionvector that is performing floating-point operations on more
than one lane of a vector.instruction.

ESR_EL2, Exception Syndrome Register (EL2)

Page 221

Note

This is not a requirement. Implementations can set this field to 1 on a
trapped floating-point exception from ana vector instruction and return
valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IDF Meaning
0b0 Input denormal floating-point exception has not occurred.
0b1 Input denormal floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution

of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL2, Exception Syndrome Register (EL2)

Page 222

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution

of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

DZF Meaning
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in this

encoding.

Note
If FEAT_RAS is not implemented, bits
[23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

Note

ESR_EL2, Exception Syndrome Register (EL2)

Page 223

This field was previously called ISV.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by the

implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the implicit
error synchronization event and taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When FEAT_RAS is implemented:

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is reported.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 224

EA, bit [9]

When FEAT_RAS is implemented:

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of External
aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ESR_EL2, Exception Syndrome Register (EL2)

Page 225

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was
stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction was

stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0VNCR RES0 CM RES0WnR DFSC

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 226

VNCR, bit [13]

When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2

by EL1 code.

This field is 0 in ESR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in the
description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of an
address translation instruction. The DC ZVA, DC GVA, and
DC GZVA instructions are not classified as a cache
maintenance instructions, and therefore their execution
cannot cause this field to be set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Watchpoint exception caused by an instruction reading

from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a

memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns
a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

ESR_EL2, Exception Syndrome Register (EL2)

Page 227

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ESR_EL2, Exception Syndrome Register (EL2)

Page 228

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from Branch Target Identification instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

ESR_EL2, Exception Syndrome Register (EL2)

Page 229

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ESR_EL2 or
ESR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return ESR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return ESR_EL2;
elsif PSTATE.EL == EL3 then

return ESR_EL2;

ESR_EL2, Exception Syndrome Register (EL2)

Page 230

MSR ESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

ESR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

ESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

ESR_EL2 = X[t];

MRS <Xt>, ESR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x138];
else

return ESR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return ESR_EL2;

else
return ESR_EL1;

elsif PSTATE.EL == EL3 then
return ESR_EL1;

MSR ESR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0010 0b000

ESR_EL2, Exception Syndrome Register (EL2)

Page 231

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ESR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x138] = X[t];
else

ESR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
ESR_EL2 = X[t];

else
ESR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
ESR_EL1 = X[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL2, Exception Syndrome Register (EL2)

Page 232

(old) htmldiff from- (new)

ESR_EL3, Exception Syndrome Register (EL3)
The ESR_EL3 characteristics are:

Purpose
Holds syndrome information for an exception taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to ESR_EL3 are UNDEFINED.

Attributes
ESR_EL3 is a 64-bit register.

Field descriptions
The ESR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ISS2

EC IL ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ESR_EL3 is made UNKNOWN as a result of an exception return from EL3.

When an UNPREDICTABLE instruction is treated as UNDEFINED, and the exception is taken to EL3, the value of ESR_EL3
is UNKNOWN. The value written to ESR_EL3 must be consistent with a value that could be created as a result of an
exception from the same Exception level that generated the exception as a result of a situation that is not
UNPREDICTABLE at that Exception level, in order to avoid the possibility of a privilege violation.

Bits [63:37]

Reserved, RES0.

ISS2, bits [36:32]

When FEAT_LS64 is implemented:

If a memory access generated by an ST64BV or ST64BV0 instruction generates a Data Abort for a Translation fault,
Access flag fault, or Permission fault, then this field holds register specifier, Xs.

For any other Data Abort, this field is RES0.

Otherwise:

Reserved, RES0.

EC, bits [31:26]

Exception Class. Indicates the reason for the exception that this register holds information about.

For each EC value, the table references a subsection that gives information about:

ESR_EL3, Exception Syndrome Register (EL3)

Page 233

• The cause of the exception, for example the configuration required to enable the trap.
• The encoding of the associated ISS.

Possible values of the EC field are:

ESR_EL3, Exception Syndrome Register (EL3)

Page 234

EC Meaning ISS Applies
when

0b000000 Unknown reason. ISS encoding for
exceptions with an
unknown reason

0b000001 Trapped WF*
instruction
execution.
Conditional WF*
instructions that fail
their condition code
check do not cause
an exception.

ISS encoding for an
exception from a
WF* instruction

0b000011 Trapped MCR or
MRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCR or MRC
access

When
AArch32 is
supported at
any
Exception
level

0b000100 Trapped MCRR or
MRRC access with
(coproc==0b1111)
that is not reported
using EC 0b000000.

ISS encoding for an
exception from an
MCRR or MRRC
access

When
AArch32 is
supported at
any
Exception
level

0b000101 Trapped MCR or
MRC access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCR or MRC
access

When
AArch32 is
supported at
any
Exception
level

0b000110 Trapped LDC or STC
access.
The only architected
uses of these
instruction are:
• An STC to write

data to memory
from
DBGDTRRXint.

• An LDC to read
data from
memory to
DBGDTRTXint.

ISS encoding for an
exception from an
LDC or STC
instruction

When
AArch32 is
supported at
any
Exception
level

0b000111 Access to SVE,
Advanced SIMD or
floating-point
functionality
trapped by
CPACR_EL1.FPEN,
CPTR_EL2.FPEN,
CPTR_EL2.TFP, or
CPTR_EL3.TFP
control.
Excludes exceptions
resulting from
CPACR_EL1 when
the value of
HCR_EL2.TGE is 1,
or because SVE or
Advanced SIMD and
floating-point are
not implemented.
These are reported
with EC value
0b000000 as
described in 'The EC
used to report an
exception routed to

ISS encoding for an
exception from an
access to SVE,
Advanced SIMD or
floating-point
functionality,
resulting from the
FPEN and TFP
traps

ESR_EL3, Exception Syndrome Register (EL3)

Page 235

EL2 because
HCR_EL2.TGE is 1'.

0b001001 Trapped use of a
Pointer
authentication
instruction because
HCR_EL2.API == 0
|| SCR_EL3.API ==
0.

ISS encoding for an
exception from a
Pointer
Authentication
instruction when
HCR_EL2.API == 0
|| SCR_EL3.API ==
0

When
FEAT_PAuth
is
implemented

0b001010 Trapped execution
of an LD64B, ST64B,
ST64BV, or ST64BV0
instruction.

ISS encoding for an
exception from an
LD64B or ST64B*
instruction

When
FEAT_LS64
is
implemented

0b001100 Trapped MRRC
access with
(coproc==0b1110).

ISS encoding for an
exception from an
MCRR or MRRC
access

When
AArch32 is
supported at
any
Exception
level

0b001101 Branch Target
Exception.

ISS encoding for an
exception from
Branch Target
Identification
instruction

When
FEAT_BTI is
implemented

0b001110 Illegal Execution
state.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b010011 SMC instruction
execution in
AArch32 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for an
exception from
SMC instruction
execution in
AArch32 state

When
AArch32 is
supported at
any
Exception
level

0b010101 SVC instruction
execution in
AArch64 state.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When
AArch64 is
supported at
any
Exception
level

0b010110 HVC instruction
execution in
AArch64 state, when
HVC is not disabled.

ISS encoding for an
exception from
HVC or SVC
instruction
execution

When
AArch64 is
supported at
any
Exception
level

0b010111 SMC instruction
execution in
AArch64 state, when
SMC is not disabled.
This is reported in
ESR_EL2 only when
the exception is
generated because
the value of
HCR_EL2.TSC is 1.

ISS encoding for an
exception from
SMC instruction
execution in
AArch64 state

When
AArch64 is
supported at
any
Exception
level

0b011000 Trapped MSR, MRS
or System
instruction
execution in
AArch64 state, that
is not reported using
EC 0b000000,

ISS encoding for an
exception from
MSR, MRS, or
System instruction
execution in
AArch64 state

When
AArch64 is
supported at
any
Exception
level

ESR_EL3, Exception Syndrome Register (EL3)

Page 236

0b000001 or
0b000111.
This includes all
instructions that
cause exceptions
that are part of the
encoding space
defined in 'System
instruction class
encoding overview',
except for those
exceptions reported
using EC values
0b000000, 0b000001,
or 0b000111.

0b011001 Access to SVE
functionality
trapped as a result
of CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ, that
is not reported using
EC 0b000000.

ISS encoding for an
exception from an
access to SVE
functionality,
resulting from
CPACR_EL1.ZEN,
CPTR_EL2.ZEN,
CPTR_EL2.TZ, or
CPTR_EL3.EZ

When
FEAT_SVE is
implemented

0b011100 Exception from a
Pointer
Authentication
instruction
authentication
failure

ISS encoding for an
exception from a
Pointer
Authentication
instruction
authentication
failure

When
FEAT_FPAC
is
implemented

0b011111 IMPLEMENTATION
DEFINED exception to
EL3.

ISS encoding for an
IMPLEMENTATION
DEFINED
exception to EL3

0b100000 Instruction Abort
from a lower
Exception level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from an
Instruction Abort

0b100001 Instruction Abort
taken without a
change in Exception
level.
Used for MMU
faults generated by
instruction accesses
and synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from an
Instruction Abort

0b100010 PC alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b100100 Data Abort from a
lower Exception
level.

ISS encoding for an
exception from a
Data Abort

ESR_EL3, Exception Syndrome Register (EL3)

Page 237

Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

0b100101 Data Abort taken
without a change in
Exception level.
Used for MMU
faults generated by
data accesses,
alignment faults
other than those
caused by Stack
Pointer
misalignment, and
synchronous
External aborts,
including
synchronous parity
or ECC errors. Not
used for debug-
related exceptions.

ISS encoding for an
exception from a
Data Abort

0b100110 SP alignment fault
exception.

ISS encoding for an
exception from an
Illegal Execution
state, or a PC or SP
alignment fault

0b101100 Trapped floating-
point exception
taken from AArch64
state.
This EC value is
valid if the
implementation
supports trapping of
floating-point
exceptions,
otherwise it is
reserved. Whether a
floating-point
implementation
supports trapping of
floating-point
exceptions is
IMPLEMENTATION
DEFINED.

ISS encoding for an
exception from a
trapped floating-
point exception

When
AArch64 is
supported at
any
Exception
level

0b101111 SError interrupt. ISS encoding for an
SError interrupt

0b111100 BRK instruction
execution in
AArch64 state.
This is reported in
ESR_EL3 only if a
BRK instruction is
executed in EL3.
This is the only
debug exception
that can be taken to
EL3 when EL3 is

ISS encoding for an
exception from
execution of a
Breakpoint
instruction

When
AArch64 is
supported at
any
Exception
level

ESR_EL3, Exception Syndrome Register (EL3)

Page 238

using
AArch64.executed.

All other EC values are reserved by Arm, and:

• Unused values in the range 0b000000 - 0b101100 (0x00 - 0x2C) are reserved for future use for synchronous
exceptions.

• Unused values in the range 0b101101 - 0b111111 (0x2D - 0x3F) are reserved for future use, and might be used
for synchronous or asynchronous exceptions.

The effect of programming this field to a reserved value is that behavior is CONSTRAINED UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [25]

Instruction Length for synchronous exceptions. Possible values of this bit are:

IL Meaning
0b0 16-bit instruction trapped.
0b1 32-bit instruction trapped. This value is also used when the

exception is one of the following:
• An SError interrupt.
• An Instruction Abort exception.
• A PC alignment fault exception.
• An SP alignment fault exception.
• A Data Abort exception for which the value of the ISV bit is

0.
• An Illegal Execution state exception.
• Any debug exception except for Breakpoint instruction

exceptions.
• An exception reported using EC value 0b000000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [24:0]

Instruction Specific Syndrome. Architecturally, this field can be defined independently for each defined Exception
class. However, in practice, some ISS encodings are used for more than one Exception class.

Typically, an ISS encoding has a number of subfields. When an ISS subfield holds a register number, the value
returned in that field is the AArch64 view of the register number.

For an exception taken from AArch32 state, see 'Mapping of the general-purpose registers between the Execution
states'.

If the AArch32 register descriptor is 0b1111, then:

• If the instruction that generated the exception was not UNPREDICTABLE, the field takes the value 0b11111.
• If the instruction that generated the exception was UNPREDICTABLE, the field takes an UNKNOWN value that must

be either:
◦ The AArch64 view of the register number of a register that might have been used at the Exception

level from which the exception was taken.
◦ The value 0b11111.

When the EC field is 0b000000, indicating an exception with an unknown reason, the ISS field is not valid, RES0.

ISS encoding for exceptions with an unknown reason

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 239

When an exception is reported using this EC code the IL field is set to 1.

This EC code is used for all exceptions that are not covered by any other EC value. This includes exceptions
that are generated in the following situations:

• The attempted execution of an instruction bit pattern that has no allocated instruction or that is not
accessible at the current Exception level and Security state, including:

◦ A read access using a System register pattern that is not allocated for reads or that does not
permit reads at the current Exception level and Security state.

◦ A write access using a System register pattern that is not allocated for writes or that does
not permit writes at the current Exception level and Security state.

◦ Instruction encodings that are unallocated.
◦ Instruction encodings for instructions or System registers that are not implemented in the

implementation.
• In Debug state, the attempted execution of an instruction bit pattern that is not accessible in Debug

state.
• In Non-debug state, the attempted execution of an instruction bit pattern that is not accessible in Non-

debug state.
• In AArch32 state, attempted execution of a short vector floating-point instruction.
• In an implementation that does not include Advanced SIMD and floating-point functionality, an

attempted access to Advanced SIMD or floating-point functionality under conditions where that access
would be permitted if that functionality was present. This includes the attempted execution of an
Advanced SIMD or floating-point instruction, and attempted accesses to Advanced SIMD and floating-
point System registers.

• An exception generated because of the value of one of the SCTLR_EL1.{ITD, SED, CP15BEN} control
bits.

• Attempted execution of:
◦ An HVC instruction when disabled by HCR_EL2.HCD or SCR_EL3.HCE.
◦ An SMC instruction when disabled by SCR_EL3.SMD.
◦ An HLT instruction when disabled by EDSCR.HDE.

• Attempted execution of an MSR or MRS instruction to access SP_EL0 when the value of SPSel.SP is 0.
• Attempted execution of an MSR or MRS instruction using a _EL12 register name when HCR_EL2.E2H

== 0.
• Attempted execution, in Debug state, of:

◦ A DCPS1 instruction when the value of HCR_EL2.TGE is 1 and EL2 is disabled or not
implemented in the current Security state.

◦ A DCPS2 instruction from EL1 or EL0 when EL2 is disabled or not implemented in the
current Security state.

◦ A DCPS3 instruction when the value of EDSCR.SDD is 1, or when EL3 is not implemented.
• When EL3 is using AArch64, attempted execution from Secure EL1 of an SRS instruction using

R13_mon. See 'Traps to EL3 of Secure monitor functionality from Secure EL1 using AArch32'.
• In Debug state when the value of EDSCR.SDD is 1, the attempted execution at EL2, EL1, or EL0 of an

instruction that is configured to trap to EL3.
• In AArch32 state, the attempted execution of an MRS (banked register) or an MSR (banked register)

instruction to SPSR_mon, SP_mon, or LR_mon.
• An exception that is taken to EL2 because the value of HCR_EL2.TGE is 1 that, if the value of

HCR_EL2.TGE was 0 would have been reported with an ESR_ELx.EC value of 0b000111.

ISS encoding for an exception from a WF* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0 TI

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

ESR_EL3, Exception Syndrome Register (EL3)

Page 240

AArch64-sp_el0.html
AArch64-spsel.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:2]

Reserved, RES0.

TI, bits [1:0]

Trapped instruction. Possible values of this bit are:

TI Meaning Applies when
0b00 WFI trapped.
0b01 WFE trapped.
0b10 WFIT trapped. When FEAT_WFxT is implemented
0b11 WFET trapped. When FEAT_WFxT is implemented

When FEAT_WFxT is implemented, this is a two bit field as shown. Otherwise, bit[1] is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating this exception:

• SCTLR_EL1.{nTWE, nTWI}.
• HCR_EL2.{TWE, TWI}.
• SCR_EL3.{TWE, TWI}.

ISS encoding for an exception from an MCR or MRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc2 Opc1 CRn Rt CRm Direction

CV, bit [24]

Condition code valid.

ESR_EL3, Exception Syndrome Register (EL3)

Page 241

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc2, bits [19:17]

The Opc2 value from the issued instruction.

For a trapped VMRS access, holds the value 0b000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [16:14]

The Opc1 value from the issued instruction.

For a trapped VMRS access, holds the value 0b111.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

For a trapped VMRS access, holds the reg field from the VMRS instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 242

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

For a trapped VMRS access, holds the value 0b0000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCR instruction.
0b1 Read from System register space. MRC or VMRS

instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000011:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or
EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to Performance Monitor registers from EL0 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers from EL0 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU} for execution of cache maintenance instructions at EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register at EL1 using AArch32 state, MCR or
MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations at EL0 and EL1 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID registers at EL0 and EL1 using AArch32 state, MCR
or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1 or CPACR using AArch32 state, MCR or MRC access
(coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCR or MRC access (coproc
== 0b1111) trapped to EL2.

• CNTHCTL_EL2.EL1PCEN, for accesses to the Generic Timer registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers from EL0 and EL1 using AArch32 state,
MCR or MRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL3.TCPAC, for accesses to CPACR from EL1 and EL2, and accesses to HCPTR from EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCR or MRC access (coproc == 0b1111) trapped to EL3.

• For information on other traps using EC value 0b000011, see 'Traps to EL3 of Secure monitor
functionality from Secure EL1 using AArch32'.

• If FEAT_FGT is implemented, MCR or MRC access to some registers at EL0, trapped to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 243

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch32-cpacr.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch32-cpacr.html
AArch32-hcptr.html

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000101:

• CPACR_EL1.TTA for accesses to trace registers, MCR or MRC access (coproc == 0b1110) trapped to
EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers at EL0 and
EL1 using AArch32 state, MCR or MRC access (coproc == 0b1110) trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• HCR_EL2.TID0, for accesses to the JIDR register in the ID group 0 at EL0 and EL1 using AArch32,
MRC access (coproc == 0b1110) trapped to EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCR or MRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers, using AArch32 state, MCR or MRC
access (coproc == 0b1110) trapped to EL2.

• MDCR_EL2.TDA, for accesses to other debug registers, using AArch32 state, MCR or MRC access
(coproc == 0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCR or MRC access (coproc ==
0b1110) trapped to EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers using AArch32, MCR or MRC access
(coproc == 0b1110) trapped to EL3.

• MDCR_EL3.TDA, for accesses to other debug registers, using AArch32, MCR or MRC access (coproc
== 0b1110) trapped to EL3.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b001000:

• HCR_EL2.TID0, for accesses to the FPSID register in ID group 0 at EL1 using AArch32 state, VMRS
access trapped to EL2.

• HCR_EL2.TID3, for accesses to registers in ID group 3 including MVFR0, MVFR1 and MVFR2, VMRS
access trapped to EL2.

ISS encoding for an exception from an LD64B or ST64B* instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISS

ISS, bits [24:0]

ISS Meaning
0b0000000000000000000000000 ST64BV instruction trapped.
0b0000000000000000000000001 ST64BV0 instruction trapped.
0b0000000000000000000000010 LD64B or ST64B instruction

trapped.

All other values are reserved.

ISS encoding for an exception from an MCRR or MRRC access

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND Opc1 RES0 Rt2 Rt CRm Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

ESR_EL3, Exception Syndrome Register (EL3)

Page 244

AArch32-jidr.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Opc1, bits [19:16]

The Opc1 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [15]

Reserved, RES0.

Rt2, bits [14:10]

The Rt2 value from the issued instruction, the second general-purpose register used for the transfer. The
reported value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between
the Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the first general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 245

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to System register space. MCRR instruction.
0b1 Read from System register space. MRRC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe configuration settings for generating exceptions that are reported using EC
value 0b000100:

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN}, for accesses to the Generic Timer
Registers from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1
or EL2.

• PMUSERENR_EL0.{CR, EN}, for accesses to Performance Monitor registers from EL0 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL1 or EL2.

• AMUSERENR_EL0.{EN}, for accesses to Activity Monitors registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped
to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers from EL1 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• HSTR_EL2.T<n>, for accesses to System registers using AArch32 state, MCRR or MRRC access
(coproc == 0b1111) trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers from EL0 and
EL1 using AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers from EL0 and EL1 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers registers AMEVCNTR0<n> and
AMEVCNTR1<n> from EL0 and EL1 using AArch32 state, MCRR or MRRC access (coproc ==
0b1111) trapped to EL2.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers from EL0, EL1 and EL2 using
AArch32 state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers from EL0, EL1 and EL2 using AArch32
state, MCRR or MRRC access (coproc == 0b1111) trapped to EL3.

• If FEAT_FGT is implemented, HDFGRTR_EL2.PMCCNTR_EL0 for MRRC access and
HDFGWTR_EL2.PMCCNTR_EL0 for MCRR access to PMCCNTR at EL0, trapped to EL2.

The following fieldssections describe configuration settings for generating exceptions that are reported using
EC value 0b001100:

• MDSCR_EL1.TDCC, for accesses to the Debug ROM registers DBGDSAR and DBGDRAR at EL0 using
AArch32 state, MCRR or MRRC access (coproc == 0b1110) trapped to EL1 or EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers DBGDRAR and AArch-DBGDSAR using
AArch32, MCRR or MRRC access (coproc == 0b1110) trapped to EL2.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

• CPACR_EL1.TTA for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL1 or EL2.

• CPTR_EL2.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL2.

• CPTR_EL3.TTA, for accesses to trace registers using AArch32, MCRR or MRRC access (coproc ==
0b1110) trapped to EL3.

Note

If the Armv8-A architecture is implemented with an ETMv4
implementation, MCRR and MRRC accesses to trace registers are
UNDEFINED and the resulting exception is higher priority than an
exception due to these traps.

ESR_EL3, Exception Syndrome Register (EL3)

Page 246

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-hstr_el2.html
AArch64-cnthctl_el2.html
AArch32-pmccntr.html

ISS encoding for an exception from an LDC or STC instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND imm8 RES0 Rn Offset AM Direction

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

imm8, bits [19:12]

The immediate value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 247

Rn, bits [9:5]

The Rn value from the issued instruction, the general-purpose register used for the transfer. The reported
value gives the AArch64 view of the register. See 'Mapping of the general-purpose registers between the
Execution states'.

This field is valid only when AM[2] is 0, indicating an immediate form of the LDC or STC instruction. When
AM[2] is 1, indicating a literal form of the LDC or STC instruction, this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Offset, bit [4]

Indicates whether the offset is added or subtracted:

Offset Meaning
0b0 Subtract offset.
0b1 Add offset.

This bit corresponds to the U bit in the instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AM, bits [3:1]

Addressing mode. The permitted values of this field are:

AM Meaning
0b000 Immediate unindexed.
0b001 Immediate post-indexed.
0b010 Immediate offset.
0b011 Immediate pre-indexed.
0b100 For a trapped STC instruction or a trapped T32 LDC

instruction this encoding is reserved.
0b110 For a trapped STC instruction, this encoding is reserved.

The values 0b101 and 0b111 are reserved. The effect of programming this field to a reserved value is that
behavior is CONSTRAINED UNPREDICTABLE, as described in 'Reserved values in System and memory-mapped
registers and translation table entries'.

Bit [2] in this subfield indicates the instruction form, immediate or literal.

Bits [1:0] in this subfield correspond to the bits {P, W} in the instruction encoding.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write to memory. STC instruction.
0b1 Read from memory. LDC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following fields describe the configuration settings for the traps that are reported using EC value
0b000110:

• MDSCR_EL1.TDCC, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint trapped to EL1 or EL2.

• MDCR_EL2.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL2.

• MDCR_EL3.TDA, for accesses using AArch32 state, LDC access to DBGDTRTXint or STC access to
DBGDTRRXint MCR or MRC access trapped to EL3.

ESR_EL3, Exception Syndrome Register (EL3)

Page 248

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for LDC and STC accesses to the DCC registers at
EL0 and EL1 trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1,
and EL2 trapped to EL3.

ISS encoding for an exception from an access to SVE, Advanced SIMD or
floating-point functionality, resulting from the FPEN and TFP traps

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND RES0

The accesses covered by this trap include:

• Execution of SVE or Advanced SIMD and floating-point instructions.
• Accesses to the Advanced SIMD and floating-point System registers.

For an implementation that does not include either SVE or support for floating-point and Advanced SIMD, the
exception is reported using the EC value 0b000000.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 249

Bits [19:0]

Reserved, RES0.

The following fieldssections describe the configuration settings for the traps that are reported using EC value
0b000111:

• CPACR_EL1.FPEN, for accesses to SIMD and floating-point registers trapped to EL1.
• CPTR_EL2.FPENTFP, for accesses to SIMD and floating-point registers trapped to EL2.

CPTR_EL2.TFP, for accesses to SIMD and floating-point registers trapped to EL2.
• CPTR_EL3.TFP, for accesses to SIMD and floating-point registers trapped to EL3.

ISS encoding for an exception from an access to SVE functionality,
resulting from CPACR_EL1.ZEN, CPTR_EL2.ZEN, CPTR_EL2.TZ, or
CPTR_EL3.EZ

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

The accesses covered by this trap include:

• Execution of SVE instructions.
• Accesses to the SVE System registersregister, ZCR_ELx.

For an implementation that does not include SVE, the exception is reported using the EC value 0b000000.

Bits [24:0]

Reserved, RES0.

The following fieldssections describe the configuration settings for the traps that are reported using EC value
0b011001:

• CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at EL0, EL1, or EL2,
trapped to EL2.

• CPACR_EL1.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0 or EL1,
trapped to EL1.EL2.

• CPTR_EL2.ZEN, for execution of SVE instructions and accesses to SVE registers at EL0, EL1, or EL2,
trapped to EL2. CPTR_EL2.TZ, for execution of SVE instructions and accesses to SVE registers at EL0,
EL1, or EL2, trapped to EL2.

• CPTR_EL3.EZ, for execution of SVE instructions and accesses to SVE registers from all Exception
levels, trapped to EL3.

ISS encoding for an exception from an Illegal Execution state, or a PC or SP
alignment fault

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

There are no configuration settings for generating Illegal Execution state exceptions and PC alignment fault
exceptions. For more information about these exceptions, see 'The Illegal Execution state exception' and 'PC
alignment checking'.

'SP alignment checking' describes the configuration settings for generating SP alignment fault exceptions.

ISS encoding for an exception from HVC or SVC instruction execution

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

ESR_EL3, Exception Syndrome Register (EL3)

Page 250

Bits [24:16]

Reserved, RES0.

imm16, bits [15:0]

The value of the immediate field from the HVC or SVC instruction.

For an HVC instruction, and for an A64 SVC instruction, this is the value of the imm16 field of the issued
instruction.

For an A32 or T32 SVC instruction:

• If the instruction is unconditional, then:
◦ For the T32 instruction, this field is zero-extended from the imm8 field of the instruction.
◦ For the A32 instruction, this field is the bottom 16 bits of the imm24 field of the instruction.

• If the instruction is conditional, this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

In AArch32 state, the HVC instruction is unconditional, and a conditional SVC instruction generates an
exception only if it passes its condition code check. Therefore, the syndrome information for these exceptions
does not require conditionality information.

For T32 and A32 instructions, see 'SVC' and 'HVC'.

For A64 instructions, see 'SVC' and 'HVC'.

If FEAT_FGT is implemented, HFGITR_EL2.{SVC_EL1, SVC_EL0} control fine-grained traps on SVC
execution.

ISS encoding for an exception from SMC instruction execution in AArch32
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CV COND CCKNOWNPASS RES0

For an SMC instruction that completes normally and generates an exception that is taken to EL3, the ISS
encoding is RES0.

For an SMC instruction that is trapped to EL2 from EL1 because HCR_EL2.TSC is 1, the ISS encoding is as
shown in the diagram.

CV, bit [24]

Condition code valid.

CV Meaning
0b0 The COND field is not valid.
0b1 The COND field is valid.

For exceptions taken from AArch64, CV is set to 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1.
• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether CV is set to 1 or set to 0. See

the description of the COND field for more information.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

COND, bits [23:20]

For exceptions taken from AArch64, this field is set to 0b1110.

ESR_EL3, Exception Syndrome Register (EL3)

Page 251

The condition code for the trapped instruction. This field is valid only for exceptions taken from AArch32, and
only when the value of CV is 1.

For exceptions taken from AArch32:

• When an A32 instruction is trapped, CV is set to 1 and:
◦ If the instruction is conditional, COND is set to the condition code field value from the

instruction.
◦ If the instruction is unconditional, COND is set to 0b1110.

• A conditional A32 instruction that is known to pass its condition code check can be presented either:
◦ With COND set to 0b1110, the value for unconditional.
◦ With the COND value held in the instruction.

• When a T32 instruction is trapped, it is IMPLEMENTATION DEFINED whether:
◦ CV is set to 0 and COND is set to an UNKNOWN value. Software must examine the SPSR.IT

field to determine the condition, if any, of the T32 instruction.
◦ CV is set to 1 and COND is set to the condition code for the condition that applied to the

instruction.
• For an implementation that, for both A32 and T32 instructions, takes an exception on a trapped

conditional instruction only if the instruction passes its condition code check, these definitions mean
that when CV is set to 1 it is IMPLEMENTATION DEFINED whether the COND field is set to 0b1110, or to
the value of any condition that applied to the instruction.

This field is valid only if CCKNOWNPASS is 1, otherwise it is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CCKNOWNPASS, bit [19]

Indicates whether the instruction might have failed its condition code check.

CCKNOWNPASS Meaning
0b0 The instruction was unconditional, or was

conditional and passed its condition code
check.

0b1 The instruction was conditional, and might
have failed its condition code check.

Note

In an implementation in which an SMC instruction that fails it code
check is not trapped, this field can always return the value 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [18:0]

Reserved, RES0.

HCR_EL2.TSC describes the configuration settings for trapping SMC instructions to EL2.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from SMC instruction execution in AArch64
state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 imm16

Bits [24:16]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 252

imm16, bits [15:0]

The value of the immediate field from the issued SMC instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The value of ISS[24:0] described here is used both:

• When an SMC instruction is trapped from EL1 modes.
• When an SMC instruction is not trapped, so completes normally and generates an exception that is

taken to EL3.

HCR_EL2.TSC describes the configuration settings for trapping SMC from EL1 modes.

'System calls' describes the case where these exceptions are trapped to EL3.

ISS encoding for an exception from MSR, MRS, or System instruction
execution in AArch64 state

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Op0 Op2 Op1 CRn Rt CRm Direction

Bits [24:22]

Reserved, RES0.

Op0, bits [21:20]

The Op0 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op2, bits [19:17]

The Op2 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Op1, bits [16:14]

The Op1 value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRn, bits [13:10]

The CRn value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Rt, bits [9:5]

The Rt value from the issued instruction, the general-purpose register used for the transfer.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CRm, bits [4:1]

The CRm value from the issued instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 253

Direction, bit [0]

Indicates the direction of the trapped instruction.

Direction Meaning
0b0 Write access, including MSR instructions.
0b1 Read access, including MRS instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For exceptions caused by System instructions, see 'System instructions' subsection of 'Branches, exception
generating and System instructions' for the encoding values returned by an instruction.

The following fields describe configuration settings for generating the exception that is reported using EC
value 0b011000:

• SCTLR_EL1.UCI, for execution of cache maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• SCTLR_EL1.UCT, for accesses to CTR_EL0 using AArch64 state, MSR or MRS access trapped to EL1
or EL2.

• SCTLR_EL1.DZE, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL1 or EL2.

• SCTLR_EL1.UMA, for accesses to the PSTATE interrupt masks using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• CPACR_EL1.TTA, for accesses to the trace registers using AArch64 state, MSR or MRS access trapped
to EL1 or EL2.

• MDSCR_EL1.TDCC, for accesses to the Debug Communications Channel (DCC) registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• If FEAT_FGT is implemented, MDCR_EL2.TDCC for accesses to the DCC registers at EL0 and EL1
trapped to EL2, and MDCR_EL3.TDCC for accesses to the DCC registers at EL0, EL1, and EL2
trapped to EL3.

• CNTKCTL_EL1.{EL0PTEN, EL0VTEN, EL0PCTEN, EL0VCTEN} accesses to the Generic Timer
registers using AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• PMUSERENR_EL0.{ER, CR, SW, EN}, for accesses to the Performance Monitor registers using
AArch64 state, MSR or MRS access trapped to EL1 or EL2.

• AMUSERENR_EL0.EN, for accesses to Activity Monitors registers using AArch64 state, MSR or MRS
access trapped to EL1 or EL2.

• HCR_EL2.{TRVM, TVM}, for accesses to virtual memory control registers using AArch64 state, MSR
or MRS access trapped to EL2.

• HCR_EL2.TDZ, for execution of DC ZVA instructions using AArch64 state, MSR or MRS access
trapped to EL2.

• HCR_EL2.TTLB, for execution of TLB maintenance instructions using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{TSW, TPC, TPU}, for execution of cache maintenance instructions using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TACR, for accesses to the Auxiliary Control Register, ACTLR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• HCR_EL2.TIDCP, for accesses to lockdown, DMA, and TCM operations using AArch64 state, MSR or
MRS access trapped to EL2.

• HCR_EL2.{TID1, TID2, TID3}, for accesses to ID group 1, ID group 2 or ID group 3 registers, using
AArch64 state, MSR or MRS access trapped to EL2.

• CPTR_EL2.TCPAC, for accesses to CPACR_EL1, using AArch64 state, MSR or MRS access trapped to
EL2.

• CPTR_EL2.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL2.

• MDCR_EL2.TTRF, for accesses to the trace filter control register, TRFCR_EL1, using AArch64 state,
MSR or MRS access trapped to EL2.

• MDCR_EL2.TDRA, for accesses to Debug ROM registers, using AArch64 state, MSR or MRS access
trapped to EL2.

• MDCR_EL2.TDOSA, for accesses to powerdown debug registers using AArch64 state, MSR or MRS
access trapped to EL2.

• CNTHCTL_EL2.{EL1PCEN, EL1PCTEN}, for accesses to the Generic Timer registers using AArch64
state, MSR or MRS access trapped to EL2.

• MDCR_EL2.TDA, for accesses to debug registers using AArch64 state, MSR or MRS access trapped to
EL2.

• MDCR_EL2.{TPM, TPMCR}, for accesses to Performance Monitor registers, using AArch64 state,
MSR or MRS access trapped to EL2.

• CPTR_EL2.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access
trapped to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 254

AArch64-cntkctl_el1.html
AArch64-pmuserenr_el0.html
AArch64-amuserenr_el0.html
AArch64-actlr_el1.html
AArch64-trfcr_el1.html
AArch64-cnthctl_el2.html

• HCR_EL2.APK, for accesses to Pointer authentication key registers. using AArch64 state, MSR or MRS
access trapped to EL2.

• HCR_EL2.{NV, NV1}, for Nested virtualization register access, using AArch64 state, MSR or MRS
access, trapped to EL2.

• HCR_EL2.AT, for execution of AT S1E* instructions, using AArch64 state, MSR or MRS access,
trapped to EL2.

• HCR_EL2.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access,
trapped to EL2.

• SCR_EL3.APK, for accesses to Pointer authentication key registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• SCR_EL3.ST, for accesses to the Counter-timer Physical Secure timer registers, using AArch64 state,
MSR or MRS access trapped to EL3.

• SCR_EL3.{TERR, FIEN}, for accesses to RAS registers, using AArch64 state, MSR or MRS access
trapped to EL3.

• CPTR_EL3.TCPAC, for accesses to CPTR_EL2 and CPACR_EL1 using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TTA, for accesses to the trace registers, using AArch64 state, MSR or MRS access trapped
to EL3.

• MDCR_EL3.TTRF, for accesses to the trace filter control registers, TRFCR_EL1 and TRFCR_EL2, using
AArch64 state, MSR or MRS access trapped to EL3.

• MDCR_EL3.TDA, for accesses to debug registers, using AArch64 state, MSR or MRS access trapped to
EL3.

• MDCR_EL3.TDOSA, for accesses to powerdown debug registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• MDCR_EL3.TPM, for accesses to Performance Monitor registers, using AArch64 state, MSR or MRS
access trapped to EL3.

• CPTR_EL3.TAM, for accesses to Activity Monitors registers, using AArch64 state, MSR or MRS access,
trapped to EL3.

• If FEAT_EVT is implemented, the following registers control traps for EL1 and EL0 Cache controls
that use this EC value:

◦ HCR_EL2.{TTLBOS, TTLBIS, TICAB, TOCU, TID4}.
◦ HCR2.{TTLBIS, TICAB, TOCU, TID4}.

• If FEAT_FGT is implemented:
◦ SCR_EL3.FGTEn, for accesses to the fine-grained trap registers, MSR or MRS access at EL2

trapped to EL3.
◦ HFGRTR_EL2 for reads and HFGWTR_EL2 for writes of registers, using AArch64 state, MSR

or MRS access at EL0 and EL1 trapped to EL2.
◦ HFGITR_EL2 for execution of system instructions, MSR or MRS access trapped to EL2
◦ HDFGRTR_EL2 for reads and HDFGWTR_EL2 for writes of registers, using AArch64 state,

MSR or MRS access at EL0 and EL1 state trapped to EL2.
◦ HAFGRTR_EL2 for reads of Activity Monitor counters, using AArch64 state, MRS access at

EL0 and EL1 trapped to EL2.

ISS encoding for an IMPLEMENTATION DEFINED exception to EL3

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [24:0]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from an Instruction Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SET FnV EA RES0S1PTWRES0 IFSC

Bits [24:13]

Reserved, RES0.

SET, bits [12:11]

ESR_EL3, Exception Syndrome Register (EL3)

Page 255

AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch32-hcr2.html

When FEAT_RAS is implemented:

Synchronous Error Type. When IFSC is 0b010000, describes the PE error state after taking the Instruction
Abort exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
a PE state that is not recoverable.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the IFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [8]

Reserved, RES0.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

ESR_EL3, Exception Syndrome Register (EL3)

Page 256

For any abort other than a stage 2 fault this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 257

IFSC Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table
base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2

is implemented
0b001100 Permission fault, level 0. When FEAT_LPA2

is implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External abort, not

on translation table walk or
hardware update of translation
table.

0b010011 Synchronous External abort on
translation table walk or
hardware update of translation
table, level -1.

When FEAT_LPA2
is implemented

0b010100 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 0.

0b010101 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 1.

0b010110 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 2.

0b010111 Synchronous External abort on
translation table walk or
hardware update of translation
table, level 3.

0b011000 Synchronous parity or ECC error
on memory access, not on
translation table walk.

When FEAT_RAS
is not
implemented

0b011011 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level -1.

When FEAT_LPA2
is implemented
and FEAT_RAS is
not implemented

0b011100 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 0.

When FEAT_RAS
is not
implemented

0b011101 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 1.

When FEAT_RAS
is not
implemented

0b011110 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 2.

When FEAT_RAS
is not
implemented

0b011111 Synchronous parity or ECC error
on memory access on translation
table walk or hardware update of
translation table, level 3.

When FEAT_RAS
is not
implemented

0b101001 Address size fault, level -1. When FEAT_LPA2
is implemented

ESR_EL3, Exception Syndrome Register (EL3)

Page 258

0b101011 Translation fault, level -1. When FEAT_LPA2
is implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
FEAT_HAFDBS is
implemented

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can result only from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a Data Abort

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV SAS SSE SRT SF AR VNCRBits[12:11]FnV EA CMS1PTWWnR DFSC

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV or ST64BV0 instruction
generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this ISS encoding
includes ISS2, bits[36:32].

ISV, bit [24]

Instruction Syndrome Valid. Indicates whether the syndrome information in ISS[23:14] is valid.

ISV Meaning
0b0 No valid instruction syndrome. ISS[23:14] are RES0.
0b1 ISS[23:14] hold a valid instruction syndrome.

In ESR_EL2, ISV is 1 when FEAT_LS64 is implemented and a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault.

For other faults reported in ESR_EL2, ISV is 0 except for the following stage 2 aborts:

• AArch64 loads and stores of a single general-purpose register (including the register specified with
0b11111, including those with Acquire/Release semantics, but excluding Load Exclusive or Store
Exclusive and excluding those with writeback).

• AArch32 instructions where the instruction:
◦ Is an LDR, LDA, LDRT, LDRSH, LDRSHT, LDRH, LDAH, LDRHT, LDRSB, LDRSBT, LDRB,

LDAB, LDRBT, STR, STL, STRT, STRH, STLH, STRHT, STRB, STLB, or STRBT instruction.
◦ Is not performing register writeback.
◦ Is not using R15 as a source or destination register.

For these stage 2 aborts, ISV is UNKNOWN if the exception was generated in Debug state in memory access
mode, and otherwise indicates whether ISS[23:14] hold a valid syndrome.

For faults reported in ESR_EL1 or ESR_EL3, ISV is 1 when FEAT_LS64 is implemented and a memory access
generated by an ST64BV, ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation
fault, Access flag fault, or Permission fault. ISV is 0 for all other faults reported in ESR_EL1 or ESR_EL3.

When FEAT_RAS is implemented, ISV is 0 for any synchronous External abort.

For ISS reporting, a stage 2 abort on a stage 1 translation table walk does not return a valid instruction
syndrome, and therefore ISV is 0 for these aborts.

ESR_EL3, Exception Syndrome Register (EL3)

Page 259

When FEAT_RAS is not implemented, it is IMPLEMENTATION DEFINED whether ISV is set to 1 or 0 on a
synchronous External abort on a stage 2 translation table walk.

When FEAT_MTE2FEAT_MTE is implemented, for a synchronous Tag Check Fault abort taken to ELx,
ESR_ELx.FNV is 0 and FAR_ELx is valid.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SAS, bits [23:22]

When ISV == '1':

Syndrome Access Size. Indicates the size of the access attempted by the faulting operation.

SAS Meaning
0b00 Byte
0b01 Halfword
0b10 Word
0b11 Doubleword

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0b11.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSE, bit [21]

When ISV == '1':

Syndrome Sign Extend. For a byte, halfword, or word load operation, indicates whether the data item must be
sign extended.

SSE Meaning
0b0 Sign-extension not required.
0b1 Data item must be sign-extended.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

For all other operations, this field is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SRT, bits [20:16]

When ISV == '1':

Syndrome Register Transfer. When FEAT_LS64 is implemented, if a memory access generated by an ST64BV,
ST64BV0, ST64B, or LD64B instruction generates a Data Abort for a Translation fault, Access flag fault, or
Permission fault, then this field holds register specifier, Xt.

ESR_EL3, Exception Syndrome Register (EL3)

Page 260

If the exception was taken from an Exception level that is using AArch32, then this is the AArch64 view of the
register. See 'Mapping of the general-purpose registers between the Execution states'.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SF, bit [15]

When ISV == '1':

Width of the register accessed by the instruction is Sixty-Four.

SF Meaning
0b0 Instruction loads/stores a 32-bit wide register.
0b1 Instruction loads/stores a 64-bit wide register.

Note

This field specifies the register width identified by the instruction, not
the Execution state.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 1.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AR, bit [14]

When ISV == '1':

Acquire/Release.

AR Meaning
0b0 Instruction did not have acquire/release semantics.
0b1 Instruction did have acquire/release semantics.

When FEAT_LS64 is implemented, if a memory access generated by an ST64BV, ST64BV0, ST64B, or LD64B
instruction generates a Data Abort for a Translation fault, Access flag fault, or Permission fault, then this field
is 0.

This field is UNKNOWN when the value of ISV is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 261

VNCR, bit [13]

When FEAT_NV2 is implemented:

Indicates that the fault came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The fault was not generated by the use of VNCR_EL2, by

an MRS or MSR instruction executed at EL1.
0b1 The fault was generated by the use of VNCR_EL2, by an

MRS or MSR instruction executed at EL1.

This field is 0 in ESR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SET, bits [12:11]

When FEAT_RAS is implemented and FEAT_LS64 is not implemented:

Synchronous Error Type. When DFSC is 0b010000, describes the PE error state after taking the Data Abort
exception.

SET Meaning
0b00 Recoverable state (UER).
0b10 Uncontainable (UC).
0b11 Restartable state (UEO).

All other values are reserved.

Note

Software can use this information to determine what recovery might be
possible. Taking a synchronous External Abort exception might result in
a PE state that is not recoverable.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_LS64 is implemented:

Load/Store Type. Used when an LD64B, ST64B, ST64BV, or ST64BV0 instruction generates a Data Abort for a
Translation fault, Access flag fault, or Permission fault.

LST Meaning
0b01 An ST64BV instruction generated the Data Abort.
0b10 An LD64B or ST64B instruction generated the Data Abort.
0b11 An ST64BV0 instruction generated the Data Abort.

All other values are reserved.

This field is valid only if the DFSC code is 0b110101. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 262

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html

FnV, bit [10]

FAR not Valid, for a synchronous External abort other than a synchronous External abort on a translation
table walk.

FnV Meaning
0b0 FAR is valid.
0b1 FAR is not valid, and holds an UNKNOWN value.

This field is valid only if the DFSC code is 0b010000. It is RES0 for all other aborts.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort type. This bit can provide an IMPLEMENTATION DEFINED classification of External aborts.

For any abort other than an External abort this bit returns a value of 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CM, bit [8]

Cache maintenance. Indicates whether the Data Abort came from a cache maintenance or address translation
instruction:

CM Meaning
0b0 The Data Abort was not generated by the execution of one of

the System instructions identified in the description of value
1.

0b1 The Data Abort was generated by either the execution of a
cache maintenance instruction or by a synchronous fault on
the execution of an address translation instruction. The DC
ZVA, DC GVA, and DC GZVA instructions are not classified as
cache maintenance instructions, and therefore their
execution cannot cause this field to be set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

S1PTW, bit [7]

For a stage 2 fault, indicates whether the fault was a stage 2 fault on an access made for a stage 1 translation
table walk:

S1PTW Meaning
0b0 Fault not on a stage 2 translation for a stage 1

translation table walk.
0b1 Fault on the stage 2 translation of an access for a stage

1 translation table walk.

For any abort other than a stage 2 fault this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

WnR, bit [6]

Write not Read. Indicates whether a synchronous abort was caused by an instruction writing to a memory
location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Abort caused by an instruction reading from a memory

location.
0b1 Abort caused by an instruction writing to a memory

location.

For faults on cache maintenance and address translation instructions, this bit always returns a value of 1.

ESR_EL3, Exception Syndrome Register (EL3)

Page 263

AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

For faults from an atomic instruction that both reads and writes from a memory location, this bit is set to 0 if
a read of the address specified by the instruction would have generated the fault which is being reported,
otherwise it is set to 1. The architecture permits, but does not require, a relaxation of this requirement such
that for all stage 2 aborts on stage 1 translation table walks for atomic instructions, the WnR bit is always 0.

This field is UNKNOWN for:

• An External abort on an Atomic access.
• A fault reported using a DFSC value of 0b110101 or 0b110001, indicating an unsupported Exclusive or

atomic access.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

ESR_EL3, Exception Syndrome Register (EL3)

Page 264

DFSC Meaning Applies when
0b000000 Address size fault, level 0

of translation or translation
table base register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2 is

implemented
0b001100 Permission fault, level 0. When FEAT_LPA2 is

implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010000 Synchronous External

abort, not on translation
table walk or hardware
update of translation table.

0b010001 Synchronous Tag Check
Fault.

When
FEAT_MTE2FEAT_MTE
is implemented

0b010011 Synchronous External
abort on translation table
walk or hardware update of
translation table, level -1.

When FEAT_LPA2 is
implemented

0b010100 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 0.

0b010101 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 1.

0b010110 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 2.

0b010111 Synchronous External
abort on translation table
walk or hardware update of
translation table, level 3.

0b011000 Synchronous parity or ECC
error on memory access,
not on translation table
walk.

When FEAT_RAS is not
implemented

0b011011 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level -1.

When FEAT_LPA2 is
implemented and
FEAT_RAS is not
implemented

0b011100 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 0.

When FEAT_RAS is not
implemented

0b011101 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 1.

When FEAT_RAS is not
implemented

0b011110 Synchronous parity or ECC
error on memory access on
translation table walk or

When FEAT_RAS is not
implemented

ESR_EL3, Exception Syndrome Register (EL3)

Page 265

hardware update of
translation table, level 2.

0b011111 Synchronous parity or ECC
error on memory access on
translation table walk or
hardware update of
translation table, level 3.

When FEAT_RAS is not
implemented

0b100001 Alignment fault.
0b101001 Address size fault, level -1. When FEAT_LPA2 is

implemented
0b101011 Translation fault, level -1. When FEAT_LPA2 is

implemented
0b110000 TLB conflict abort.
0b110001 Unsupported atomic

hardware update fault.
When FEAT_HAFDBS
is implemented

0b110100 IMPLEMENTATION DEFINED
fault (Lockdown).

0b110101 IMPLEMENTATION DEFINED
fault (Unsupported
Exclusive or Atomic
access).

All other values are reserved.

For more information about the lookup level associated with a fault, see 'The level associated with MMU
faults'.

Note

Because Access flag faults and Permission faults can result only from a
Block or Page translation table descriptor, they cannot occur at level 0.

If the S1PTW bit is set, then the level refers the level of the stage2 translation that is translating a stage 1
translation walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS encoding for an exception from a trapped floating-point exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0TFV RES0 VECITR IDF RES0 IXF UFFOFFDZF IOF

Bit [24]

Reserved, RES0.

TFV, bit [23]

Trapped Fault Valid bit. Indicates whether the IDF, IXF, UFF, OFF, DZF, and IOF bits hold valid information
about trapped floating-point exceptions.

TFV Meaning
0b0 The IDF, IXF, UFF, OFF, DZF, and IOF bits do not hold valid

information about trapped floating-point exceptions and are
UNKNOWN.

0b1 One or more floating-point exceptions occurred during an
operation performed while executing the reported
instruction. The IDF, IXF, UFF, OFF, DZF, and IOF bits
indicate trapped floating-point exceptions that occurred.
For more information, see 'Floating-point exceptions and
exception traps'.

It is IMPLEMENTATION DEFINED whether this field is set to 0 on an exception generated by a trapped floating-
pointfloating point exception from ana instructionvector that is performing floating-point operations on more
than one lane of a vector.instruction.

ESR_EL3, Exception Syndrome Register (EL3)

Page 266

Note

This is not a requirement. Implementations can set this field to 1 on a
trapped floating-point exception from ana vector instruction and return
valid information in the {IDF, IXF, UFF, OFF, DZF, IOF} fields.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [22:11]

Reserved, RES0.

VECITR, bits [10:8]

For a trapped floating-point exception from an instruction executed in AArch32 state this field is RES1.

For a trapped floating-point exception from an instruction executed in AArch64 state this field is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

IDF Meaning
0b0 Input denormal floating-point exception has not occurred.
0b1 Input denormal floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the possible
values of this bit are:

IXF Meaning
0b0 Inexact floating-point exception has not occurred.
0b1 Inexact floating-point exception occurred during execution

of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

UFF Meaning
0b0 Underflow floating-point exception has not occurred.
0b1 Underflow floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ESR_EL3, Exception Syndrome Register (EL3)

Page 267

OFF, bit [2]

Overflow floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

OFF Meaning
0b0 Overflow floating-point exception has not occurred.
0b1 Overflow floating-point exception occurred during execution

of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise, the
possible values of this bit are:

DZF Meaning
0b0 Divide by Zero floating-point exception has not occurred.
0b1 Divide by Zero floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation floating-point exception trapped bit. If the TFV field is 0, this bit is UNKNOWN. Otherwise,
the possible values of this bit are:

IOF Meaning
0b0 Invalid Operation floating-point exception has not occurred.
0b1 Invalid Operation floating-point exception occurred during

execution of the reported instruction.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

In an implementation that supports the trapping of floating-point exceptions:

• From an Exception level using AArch64, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

• From an Exception level using AArch32, the FPSCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits enable each
of the floating-point exception traps.

ISS encoding for an SError interrupt

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IDS RES0 IESB AET EA RES0 DFSC

IDS, bit [24]

IMPLEMENTATION DEFINED syndrome.

IDS Meaning
0b0 Bits [23:0] of the ISS field holds the fields described in this

encoding.

Note
If FEAT_RAS is not implemented, bits
[23:0] of the ISS field are RES0.

0b1 Bits [23:0] of the ISS field holds IMPLEMENTATION DEFINED
syndrome information that can be used to provide additional
information about the SError interrupt.

Note

ESR_EL3, Exception Syndrome Register (EL3)

Page 268

This field was previously called ISV.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:14]

Reserved, RES0.

IESB, bit [13]

When FEAT_IESB is implemented:

Implicit error synchronization event.

IESB Meaning
0b0 The SError interrupt was either not synchronized by the

implicit error synchronization event or not taken
immediately.

0b1 The SError interrupt was synchronized by the implicit
error synchronization event and taken immediately.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AET, bits [12:10]

When FEAT_RAS is implemented:

Asynchronous Error Type.

When DFSC is 0b010001, describes the PE error state after taking the SError interrupt exception.

AET Meaning
0b000 Uncontainable (UC).
0b001 Unrecoverable state (UEU).
0b010 Restartable state (UEO).
0b011 Recoverable state (UER).
0b110 Corrected (CE).

All other values are reserved.

If multiple errors are taken as a single SError interrupt exception, the overall PE error state is reported.

Note

Software can use this information to determine what recovery might be
possible. The recovery software must also examine any implemented
fault records to determine the location and extent of the error.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 269

EA, bit [9]

When FEAT_RAS is implemented:

External abort type. When DFSC is 0b010001, provides an IMPLEMENTATION DEFINED classification of External
aborts.

This field is valid only if the DFSC code is 0b010001. It is RES0 for all other errors.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [8:6]

Reserved, RES0.

DFSC, bits [5:0]

When FEAT_RAS is implemented:

Data Fault Status Code.

DFSC Meaning
0b000000 Uncategorized error.
0b010001 Asynchronous SError interrupt.

All other values are reserved.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ISS encoding for an exception from a Breakpoint or Vector Catch debug
exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IFSC

Bits [24:6]

Reserved, RES0.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions:

• For exceptions from AArch64, see 'Breakpoint exceptions'.
• For exceptions from AArch32, see 'Breakpoint exceptions' and 'Vector Catch exceptions'.

ESR_EL3, Exception Syndrome Register (EL3)

Page 270

ISS encoding for an exception from a Software Step exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ISV RES0 EX IFSC

ISV, bit [24]

Instruction syndrome valid. Indicates whether the EX bit, ISS[6], is valid, as follows:

ISV Meaning
0b0 EX bit is RES0.
0b1 EX bit is valid.

See the EX bit description for more information.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:7]

Reserved, RES0.

EX, bit [6]

Exclusive operation. If the ISV bit is set to 1, this bit indicates whether a Load-Exclusive instruction was
stepped.

EX Meaning
0b0 An instruction other than a Load-Exclusive instruction was

stepped.
0b1 A Load-Exclusive instruction was stepped.

If the ISV bit is set to 0, this bit is RES0, indicating no syndrome data is available.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IFSC, bits [5:0]

Instruction Fault Status Code.

IFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Software Step exceptions'.

ISS encoding for an exception from a Watchpoint exception

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 RES0VNCR RES0 CM RES0WnR DFSC

Bits [24:15]

Reserved, RES0.

Bit [14]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 271

VNCR, bit [13]

When FEAT_NV2 is implemented:

Indicates that the watchpoint came from use of VNCR_EL2 register by EL1 code.

VNCR Meaning
0b0 The watchpoint was not generated by the use of

VNCR_EL2 by EL1 code.
0b1 The watchpoint was generated by the use of VNCR_EL2

by EL1 code.

This field is 0 in ESR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [12:9]

Reserved, RES0.

CM, bit [8]

Cache maintenance. Indicates whether the Watchpoint exception came from a cache maintenance or address
translation instruction:

CM Meaning
0b0 The Watchpoint exception was not generated by the

execution of one of the System instructions identified in the
description of value 1.

0b1 The Watchpoint exception was generated by either the
execution of a cache maintenance instruction or by a
synchronous Watchpoint exception on the execution of an
address translation instruction. The DC ZVA, DC GVA, and
DC GZVA instructions are not classified as a cache
maintenance instructions, and therefore their execution
cannot cause this field to be set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

WnR, bit [6]

Write not Read. Indicates whether the Watchpoint exception was caused by an instruction writing to a
memory location, or by an instruction reading from a memory location.

WnR Meaning
0b0 Watchpoint exception caused by an instruction reading

from a memory location.
0b1 Watchpoint exception caused by an instruction writing to a

memory location.

For Watchpoint exceptions on cache maintenance and address translation instructions, this bit always returns
a value of 1.

For Watchpoint exceptions from an atomic instruction, this field is set to 0 if a read of the location would have
generated the Watchpoint exception, otherwise it is set to 1.

ESR_EL3, Exception Syndrome Register (EL3)

Page 272

AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-vncr_el2.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

If multiple watchpoints match on the same access, it is UNPREDICTABLE which watchpoint generates the
Watchpoint exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DFSC, bits [5:0]

Data Fault Status Code.

DFSC Meaning
0b100010 Debug exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Watchpoint exceptions'.

ISS encoding for an exception from execution of a Breakpoint instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Comment

Bits [24:16]

Reserved, RES0.

Comment, bits [15:0]

Set to the instruction comment field value, zero extended as necessary.

For the AArch32 BKPT instructions, the comment field is described as the immediate field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see 'Breakpoint instruction exceptions'.

ISS encoding for an exception from an ERET, ERETAA, or ERETAB instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ERETERETA

This EC value applies when FEAT_FGT is implemented, or when HCR_EL2.NV is 1.

Bits [24:2]

Reserved, RES0.

ERET, bit [1]

Indicates whether an ERET or ERETA* instruction was trapped to EL2.

ERET Meaning
0b0 ERET instruction trapped to EL2.
0b1 ERETAA or ERETAB instruction trapped to EL2.

If this bit is 0, the ERETA field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ERETA, bit [0]

Indicates whether an ERETAA or ERETAB instruction was trapped to EL2.

ESR_EL3, Exception Syndrome Register (EL3)

Page 273

ERETA Meaning
0b0 ERETAA instruction trapped to EL2.
0b1 ERETAB instruction trapped to EL2.

When the ERET field is 0, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For more information about generating these exceptions, see HCR_EL2.NV.

If FEAT_FGT is implemented, HFGITR_EL2.ERET controls fine-grained trap exceptions from ERET, ERETAA
and ERETAB execution.

ISS encoding for an exception from Branch Target Identification instruction

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BTYPE

Bits [24:2]

Reserved, RES0.

BTYPE, bits [1:0]

This field is set to the PSTATE.BTYPE value that generated the Branch Target Exception.

For more information about generating these exceptions, see 'The AArch64 application level programmers
model'.

ISS encoding for an exception from a Pointer Authentication instruction
when HCR_EL2.API == 0 || SCR_EL3.API == 0

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0

Bits [24:0]

Reserved, RES0.

For more information about generating these exceptions, see:

• HCR_EL2.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped
to EL2.

• SCR_EL3.API, for exceptions from Pointer authentication instructions, using AArch64 state, trapped to
EL3.

ISS encoding for an exception from a Pointer Authentication instruction
authentication failure

24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RES0

Exception
as a result

of an
Instruction

key or a
Data key

Exception
as a

result of
an A key

or a B
key

Bits [24:2]

Reserved, RES0.

ESR_EL3, Exception Syndrome Register (EL3)

Page 274

Bit [1]

This field indicates whether the exception is as a result of an Instruction key or a Data key.

Meaning
0b0 Instruction Key.
0b1 Data Key.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [0]

This field indicates whether the exception is as a result of an A key or a B key.

Meaning
0b0 A key.
0b1 B key.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The following instructions generate an exception when the Pointer Authentication Code (PAC) is incorrect:

• AUTIASP, AUTIAZ, AUTIA1716.
• AUTIBSP, AUTIBZ, AUTIB1716.
• AUTIA, AUTDA, AUTIB, AUTDB.
• AUTIZA, AUTIZB, AUTDZA, AUTDZB.

It is IMPLEMENTATION DEFINED whether the following instructions generate an exception directly from the
authorization failure, rather than changing the address in a way that will generate a translation fault when
the address is accessed:

• RETAA, RETAB.
• BRAA, BRAB, BLRAA, BLRAB.
• BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB.
• LDRAA, LDRAB, whether the authenticated address is written back to the base register or not.

Accessing the ESR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ESR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return ESR_EL3;

MSR ESR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0101 0b0010 0b000

ESR_EL3, Exception Syndrome Register (EL3)

Page 275

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
ESR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ESR_EL3, Exception Syndrome Register (EL3)

Page 276

(old) htmldiff from- (new)

FAR_EL1, Fault Address Register (EL1)
The FAR_EL1 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint
exceptions that are taken to EL1.

Configuration
AArch64 System register FAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (NS)
(NS)..

AArch64 System register FAR_EL1 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0]
(NS) (NS)..

Attributes
FAR_EL1 is a 64-bit register.

Field descriptions
The FAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Faulting Virtual Address for synchronous exceptions taken to EL1
Faulting Virtual Address for synchronous exceptions taken to EL1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL1. Exceptions that set the FAR_EL1 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or
0x35). ESR_EL1.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of
FAR_EL1 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL1.FnV is 0, and the FAR_EL1 is UNKNOWN if ESR_EL1.FnV is 1.

For all other exceptions taken to EL1, the FAR_EL1 is UNKNOWN.

If a memory fault that sets FAR_EL1, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL1 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by DC

ZVA.

If the exception that updates FAR_EL1 is taken from an Exception level that is using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

FAR_EL1, Fault Address Register (EL1)

Page 277

AArch32-dfar.html
AArch32-ifar.html
AArch32-ifar.html
AArch64-dc-zva.html
AArch64-dc-zva.html

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see 'Address
tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL0 makes FAR_EL1 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch
or data access that caused the exception that gave rise to the instruction or
data abort. It is the lower address that gave rise to the fault. Where different
faults from different addresses arise from the same instruction, such as for an
instruction that loads or stores a mis-aligned address that crosses a page
boundary, the architecture does not prioritize between those different faults.

FAR_EL1 is made UNKNOWN on an exception return from EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic FAR_EL1 or
FAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x220];
else

return FAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL2;

else
return FAR_EL1;

elsif PSTATE.EL == EL3 then
return FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 278

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x220] = X[t];
else

FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL2 = X[t];

else
FAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
FAR_EL1 = X[t];

MRS <Xt>, FAR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x220];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return FAR_EL1;
else

UNDEFINED;

MSR FAR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0110 0b0000 0b000

FAR_EL1, Fault Address Register (EL1)

Page 279

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x220] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

FAR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return FAR_EL2;
elsif PSTATE.EL == EL3 then

return FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FAR_EL1, Fault Address Register (EL1)

Page 280

(old) htmldiff from- (new)

FAR_EL1, Fault Address Register (EL1)

Page 281

(old) htmldiff from- (new)

FAR_EL2, Fault Address Register (EL2)
The FAR_EL2 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort, PC alignment fault and Watchpoint
exceptions that are taken to EL2.

Configuration
AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDFAR[31:0].

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HIFAR[31:0].

AArch64 System register FAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (S)
(S) when EL2 is implemented.

AArch64 System register FAR_EL2 bits [63:32] are architecturally mapped to AArch32 System register IFAR[31:0] (S)
(S) when EL2 is implemented.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
FAR_EL2 is a 64-bit register.

Field descriptions
The FAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Faulting Virtual Address for synchronous exceptions taken to EL2
Faulting Virtual Address for synchronous exceptions taken to EL2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL2. Exceptions that set the FAR_EL2 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), PC alignment faults (EC 0x22), and Watchpoints (EC 0x34 or
0x35). ESR_EL2.EC holds the EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of
FAR_EL2 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL2.FnV is 0, and the FAR_EL2 is UNKNOWN if ESR_EL2.FnV is 1.

For all other exceptions taken to EL2, the FAR_EL2 is UNKNOWN.

If a memory fault that sets FAR_EL2, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL2 is IMPLEMENTATION DEFINED as one of the following:

FAR_EL2, Fault Address Register (EL2)

Page 282

AArch32-dfar.html
AArch32-ifar.html

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by DC

ZVA.

If the exception that updates FAR_EL2 is taken from an Exception level that is using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see 'Address
tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL1 or EL0 makes FAR_EL2 become UNKNOWN.

Note

The address held in this field is an address accessed by the instruction fetch
or data access that caused the exception that gave rise to the instruction or
data abort. It is the lower address that gave rise to the fault. Where different
faults from different addresses arise from the same instruction, such as for an
instruction that loads or stores a mis-aligned address that crosses a page
boundary, the architecture does not prioritize between those different faults.

FAR_EL2 is made UNKNOWN on an exception return from EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic FAR_EL2 or FAR_EL1
are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, FAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return FAR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return FAR_EL2;
elsif PSTATE.EL == EL3 then

return FAR_EL2;

MSR FAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b000

FAR_EL2, Fault Address Register (EL2)

Page 283

AArch64-dc-zva.html
AArch64-dc-zva.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

FAR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

FAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

FAR_EL2 = X[t];

MRS <Xt>, FAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x220];
else

return FAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return FAR_EL2;

else
return FAR_EL1;

elsif PSTATE.EL == EL3 then
return FAR_EL1;

MSR FAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.FAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x220] = X[t];
else

FAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
FAR_EL2 = X[t];

else
FAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
FAR_EL1 = X[t];

FAR_EL2, Fault Address Register (EL2)

Page 284

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL2, Fault Address Register (EL2)

Page 285

(old) htmldiff from- (new)

FAR_EL3, Fault Address Register (EL3)
The FAR_EL3 characteristics are:

Purpose
Holds the faulting Virtual Address for all synchronous Instruction or Data Abort and PC alignment fault exceptions
that are taken to EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to FAR_EL3 are UNDEFINED.

Attributes
FAR_EL3 is a 64-bit register.

Field descriptions
The FAR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Faulting Virtual Address for synchronous exceptions taken to EL3
Faulting Virtual Address for synchronous exceptions taken to EL3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Faulting Virtual Address for synchronous exceptions taken to EL3. Exceptions that set the FAR_EL3 are Instruction
Aborts (EC 0x20 or 0x21), Data Aborts (EC 0x24 or 0x25), and PC alignment faults (EC 0x22). ESR_EL3.EC holds the
EC value for the exception.

For a synchronous External abort, if the VA that generated the abort was from an address range for which
TCR_ELx.TBI{<0|1>} == 1 for the translation regime in use when the abort was generated, then the top eight bits of
FAR_EL3 are UNKNOWN.

For a synchronous External abort other than a synchronous External abort on a translation table walk, this field is
valid only if ESR_EL3.FnV is 0, and the FAR_EL3 is UNKNOWN if ESR_EL3.FnV is 1.

For all other exceptions taken to EL3, the FAR_EL3 is UNKNOWN.

If a memory fault that sets FAR_EL3, other than a Tag Check Fault, is generated from a data cache maintenance or
other DC instruction, this field holds the address specified in the register argument of the instruction.

On an exception due to a Tag Check Fault caused by a data cache maintenance or other DC instruction, the address
held in FAR_EL3 is IMPLEMENTATION DEFINED as one of the following:

• The lowest address that gave rise to the fault.
• The address specified in the register argument of the instruction as generated by MMU faults caused by DC

ZVA.

If the exception that updates FAR_EL3 is taken from an Exception levelLevel using AArch32, the top 32 bits are all
zero, unless both of the following apply, in which case the top 32 bits of FAR_ELx are 0x00000001:

• The faulting address was generated by a load or store instruction that sequentially incremented from address
0xFFFFFFFF. Such a load or store instruction is CONSTRAINED UNPREDICTABLE.

• The implementation treats such incrementing as setting bit[32] of the virtual address to 1.

FAR_EL3, Fault Address Register (EL3)

Page 286

AArch64-dc-zva.html
AArch64-dc-zva.html

For a Data Abort or Watchpoint exception, if address tagging is enabled for the address accessed by the data access
that caused the exception, then this field includes the tag. For more information about address tagging, see 'Address
tagging in AArch64 state'.

For a synchronous Tag Check Fault abort, bits[63:60] are UNKNOWN.

Execution at EL2, EL1 or EL0 makes FAR_EL3 become UNKNOWN.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that actually gave rise to the
instruction or data abort. It is the lowest address that gave rise to the fault.
Where different faults from different addresses arise from the same
instruction, such as for an instruction that loads or stores a mis-aligned
address that crosses a page boundary, the architecture does not prioritize
between those different faults.

FAR_EL3 is made UNKNOWN on an exception return from EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FAR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, FAR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return FAR_EL3;

MSR FAR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
FAR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FAR_EL3, Fault Address Register (EL3)

Page 287

(old) htmldiff from- (new)

FPCR, Floating-point Control Register
The FPCR characteristics are:

Purpose
Controls floating-point behavior.

Configuration
AArch64The Systemnamed fields in this register FPCRmap bitsto [26:15]the areequivalent architecturallyfields
mappedin tothe AArch32 System register FPSCR[26:15].

AArch64 System register FPCR bits [12:8] are architecturally mapped to AArch32 System register FPSCR[12:8].

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will
cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Attributes
FPCR is a 64-bit register.

Field descriptions
The FPCR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 AHPDNFZRModeStrideFZ16 Len IDE RES0 IXEUFEOFEDZEIOE RES0 NEPAHFIZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:27]

Reserved, RES0.

AHP, bit [26]

Alternative half-precision control bit.

AHP Meaning
0b0 IEEE half-precision format selected.
0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision format,
and ignore the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN usemode forcontrol NaN propagation.bit.

FPCR, Floating-point Control Register

Page 288

DN Meaning
0b0 NaN operands propagate through to the output of a floating-point

operation.
0b1 Any operation involving one or more NaNs returns the Default

NaN.
ThisIf FPCR.AH is 1, this bit has no effect on the output of
FABS,the FMAX*,, FMAXP, FMAXV, FMIN*,, FMINP, and
FNEGFMINV instructions, and a default NaN is never returned as
a result of these instructions.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

FlushingFlush-to-zero denormalized numbers to zeromode control bit.

FZ Meaning
0b0 IfFlush-to-zero FPCR.AHmode isdisabled. 0,Behavior disables

flushing to zero of inputsthe andfloating-point outputssystem thatis
arefully single-precision,compliant double-precision,with andthe
BF16IEEE denormalized754 numbers, other than for some
instructions. For more information, see 'Flushing denormalized
numbers to zero'.standard.
If FPCR.AH is 1, disables flushing to zero of outputs that are
single-precision, double-precision, and BF16 denormalized
numbers, other than for some instructions. For more information,
see 'Flushing denormalized numbers to zero'.

0b1 FlushingFlush-to-zero denormalized numbers to zeromode
enabled.
If FPCR.AH is 0, enables flushing to zero of inputs and outputs that
are single-precision, double-precision, and BF16 denormalized
numbers, other than for some instructions. For more information,
see 'Flushing denormalized numbers to zero'.1:

• This bit does not generate Input Denormal exceptions.
• This bit does not cause input denormal operands to be

flushed to zero.
• When the output is flushed to zero:

◦ An Inexact floating-point exception is generated.
◦ The test for a denormalized number for half-

precision, single-precision, and double-precision
numbers occurs after rounding with an unbounded
exponent.

If FPCR.AH is 1, enables flushing to zero of outputs that are single-
precision, double-precision, and BF16 denormalized numbers,
other than for some instructions. For more information, see
'Flushing denormalized numbers to zero'.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

This bit has no effect on half-precision calculations.

If the result of an FMAX, FMAXP, FMAXV, FMIN, FMINP, or FMINV instruction is a denormalized number, it is not
flushed to zero, regardless of the value of this bit.

Denormalized outputs of the following instructions, as determined after rounding with an unbounded exponent, are
not affected by the value of this bit:

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

• Single-precision and double-precision FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field.

FPCR, Floating-point Control Register

Page 289

RMode Meaning
0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by both scalar and Advanced SIMD floating-point instructions.

If FPCR.AH is 1, then the following instructions use Round to Nearest mode regardless of the value of this bit:

• The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS instructions.

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

This field is included only for context saving and restoration of the AArch32 FPSCR.Stride field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When FEAT_FP16 is implemented:

FlushingFlush-to-zero denormalized numbers to zeromode control bit on half-precision data-processing instructions.

FZ16 Meaning
0b0 ForFlush-to-zero somemode instructions,disabled. thisBehavior

bit disables flushing to zero of inputsthe andfloating-point
outputssystem thatis arefully half-precisioncompliant
denormalizedwith numbers.the ForIEEE more754 information,
see 'Flushing denormalized numbers to zero'.standard.

0b1 • When the output is flushed to zero:
◦ An Inexact floating-point exception is generated.
◦ The test for a denormalized number for half-

precision, single-precision, and double-precision
numbers occurs after rounding with an unbounded
exponent.

FlushingFlush-to-zero denormalized numbers to zeromode
enabled.
ForIf someFPCR.AH instructionsis that do not convert a half-
precision input to a higher precision output, this bit enables
flushing to zero of inputs and outputs that are half-precision
denormalized numbers. For more information, see 'Flushing
denormalized numbers to zero'.1:

If the result of an FMAX, FMAXP, FMAXV, FMIN, FMINP, or FMINV instruction is a denormalized number, it is not
flushed to zero, regardless of the value of this bit.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations. A half-
precision floating-point number that is flushed to zero as a result of the value of the FZ16 bit does not generate an
Input Denormal exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

This field has no function in AArch64 state, and non-zero values are ignored during execution in AArch64 state.

FPCR, Floating-point Control Register

Page 290

This field is included only for context saving and restoration of the AArch32 FPSCR.Len field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

IDE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.IDC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IDC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

IXE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.IXC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IXC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

UFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.UFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs and Flush-to-zero is not enabled, the PE does
not update the FPSR.UFC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

FPCR, Floating-point Control Register

Page 291

OFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.OFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.OFC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

DZE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.DZC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.DZC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

IOE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the FPSR.IOC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the FPSR.IOC bit.

The value of this bit controls both scalar and Advanced SIMD floating-point arithmetic.

If the implementation does not support this exception, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:3]

Reserved, RES0.

NEP, bit [2]

When FEAT_AFP is implemented:

Controls how the output elements other than the lowest element of the vector are determined for Advanced SIMD
scalar instructions.

FPCR, Floating-point Control Register

Page 292

NEP Meaning
0b0 Does not affect how the output elements other than the lowest

are determined for Advanced SIMD scalar instructions.
0b1 The output elements other than the lowest are taken from the

following registers:
• For 3-input scalar versions of the FMLA (by element) and

FMLS (by element) instructions, the <Hd>, <Sd>, or
<Dd> register.

• For 3-input versions of the FMADD, FMSUB, FNMADD,
and FNMSUB instructions, the <Ha>, <Sa>, or <Da>
register.

• For 2-input scalar versions of the FACGE, FACGT, FCMEQ
(register), FCMGE (register), and FCMGT (register)
instructions, the <Hm>, <Sm>, or <Dm> register.

• For 2-input scalar versions of the FABD, FADD (scalar),
FDIV (scalar), FMAX (scalar), FMAXNM (scalar), FMIN
(scalar), FMINNM (scalar), FMUL (by element), FMUL
(scalar), FMULX (by element), FMULX, FNMUL (scalar),
FRECPS, FRSQRTS, and FSUB (scalar) instructions, the
<Hn>, <Sn>, or <Dn> register.

• For 1-input scalar versions of the following instructions,
the <Hd>, <Sd>, or <Dd> register:

◦ The (vector) versions of the FCVTAS, FCVTAU,
FCVTMS, FCVTMU, FCVTNS, FCVTNU, FCVTPS,
and FCVTPU instructions.

◦ The (vector, fixed-point) and (vector, integer)
versions of the FCVTZS, FCVTZU, SCVTF, and
UCVTF instructions.

◦ The (scalar) versions of the FABS, FNEG,
FRINT32X, FRINT32Z, FRINT64X, FRINT64Z,
FRINTA, FRINTI, FRINTM, FRINTN, FRINTP,
FRINTX, FRINTZ, and FSQRT instructions.

◦ The (scalar, fixed-point) and (scalar, integer)
versions of the SCVTF and UCVTF instructions.

◦ The BFCVT, FCVT, FCVTXN, FRECPE, FRECPX, and
FRSQRTE instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AH, bit [1]

When FEAT_AFP is implemented:

Alternate Handling. Controls alternate handling of denormalized floating-point numbers.

FPCR, Floating-point Control Register

Page 293

AH Meaning
0b0 FPCR.FZDoes controlsnot flushingaffect tohandling zero of

inputsdenormalized andfloating-point outputs that are single-
precision, double-precision, and BF16 denormalized numbers.
FPCR.FIZ is RES0. For half-precision, single-precision, and double-
precision numbers, the test for a denormalized number for the
purpose of flushing the output to zero occurs before rounding. For
more information, see 'Flushing denormalized numbers to zero'.

0b1 For all floating-point instructions other than BFDOT and BFMMLA,
detection of underflow occurs after rounding with an unbounded
exponent.
If an operation, other than FMAX, FMAXP, FMAXV, FMIN, FMINP,
and FMINV, has two floating-point inputs in the <Vn>, <Hn>,
<Sn>, or <Dn> register or the <Vm>, <Hm>, <Sm>, or <Dm>
register, and two NaN inputs, then the output is derived from the
NaN held in the <Vn>, <Hn>, <Sn>, or <Dn> register, regardless
of whether any input is a signaling NaN or a quiet NaN.
For the BFMLALB, BFMLALT, FCMLA, FMADD, FMLA, FMLAL,
FMLAL2, FMLS, FMLSL, FMLSL2, FMSUB, FNMADD, and
FNMSUB instructions, regardless of whether any input is a
signaling NaN or a quiet NaN:

• If the operation has three NaN inputs, then the output is
derived from the NaN held in the <Vn>, <Hn>, <Sn>, or
<Dn> register.

• If the operation has two NaN inputs and the <Vn>, <Hn>,
<Sn>, or <Dn> register holds a NaN, then the output is
derived from the NaN held in that register.

• If the operation has two NaN inputs and the <Vn>, <Hn>,
<Sn>, or <Dn> register does not hold a NaN, then the
output is derived from the NaN held in the <Hm>, <Sm>,
or <Dm> register.

The FMAX, FMAXP, FMAXV, FMIN, FMINP, and FMINV
instructions change their algorithm to calculate the minimum and
maximum so that:

• If the result is a denormalized number, it is not flushed to
zero, regardless of FPCR.FZ or FPCR.FZ16.

• If either input is a quiet NaN or a signaling NaN, then the
second operand is returned as the result of the instruction
and an Invalid Operation floating-point exception is
generated.

• If the two operands are +0 and -0 in any order, the second
operand of the instruction is returned as the result of the
instruction.

• FPCR.DN has no effect on the output and a default NaN is
never returned as the result of the instruction.

The FCVTAS, FCVTAU, FCVTMS, FCVTMU, FCVTNS, FCVTNU,
FCVTPS, FCVTPU, FCVTZS, FCVTZU, FJCVTZS, FRINT32X,
FRINT32Z, FRINT64X, FRINT64Z, FRINTA, FRINTI, FRINTM,
FRINTN, FRINTP, FRINTX, and FRINTZ instructions never
generate an Input Denormal floating-point exception.
The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and
BFMLALT instructions:

• Use Round to Nearest rounding mode, regardless of the
rounding mode selected in FPCR.RMode.

• Flush all denormalized inputs to zero, retaining the sign,
regardless of FPCR.FIZ.

• Flush all denormalized outputs, as determined after
rounding with an unbounded exponent, to zero, retaining
the sign, regardless of FPCR.FZ.

• Do not generate any floating-point exceptions, regardless of
their input or output values.

The FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS
instructions:

• Use Round to Nearest rounding mode, regardless of the
rounding mode selected in FPCR.RMode.

• Do not generate any floating-point exceptions.
• The single-precision and double-precision variants of these

instructions:
◦ Flush all denormalized inputs to zero, retaining the

sign, regardless of FPCR.FIZ.

FPCR, Floating-point Control Register

Page 294

◦ Flush all denormalized outputs, as determined after
rounding with an unbounded exponent, to zero,
retaining the sign, regardless of FPCR.FZ.

When the output is flushed to zero:
• An Inexact floating-point exception is generated.
• The test for a denormalized number for half-precision,

single-precision, and double-precision numbers occurs after
rounding with an unbounded exponent.

If FPCR.FZ is 1, this does not cause any Input Denormal exceptions
and does not cause input denormal operands to be flushed to zero.
If FPCR.FIZ is 0, any operation that unpacks a denormalized
floating-point number, other than a BFloat or half-precision
number, will generate an Input Denormal floating-point exception,
except when:

• One of the other operands of the instruction is a NaN.
• The operation also generates an Invalid Operation floating-

point exception or a Divide by Zero floating-point exception.
• The operation was generated by a BFCVT, BFCVTN,

BFCVTN2, or BFCVTNT instruction.
FPCR.FZThe controlssign-bit flushing to zero of outputs that are
single-precision, double-precision, and BF16 denormalized
numbers. For all precisions, the testdefault forNaN aencoding
denormalizedis numberset for the purpose of flushing the output to
zero occurs after rounding with an unbounded exponent. FPCR.FIZ
controls flushing to zero of inputs that are single-precision, double-
precision, and BF16 denormalized numbers. Some instructions
unconditionally flush to zero. For more information, see 'Flushing
denormalized numbers to zero'.1.

The AH bit affects the generation and operation of floating-point exceptions. For more information, see 'Floating-point
exceptions and exception traps'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FIZ, bit [0]

When FEAT_AFP is implemented:

Flush Inputs to Zero. Controls whether single-precision, double-precision, and BFloat16 input operands that are
denormalized numbers are flushed to zero.

FPCR, Floating-point Control Register

Page 295

FIZ Meaning
0b0 • One of the other operands of the instruction is a NaN.

• The operation also generates an Invalid Operation floating-
point exception or a Divide by Zero floating-point
exception.

• The operation was generated by a BFCVTN, BFCVTN2,
BFCVT, or a BFCVTNT instruction.

If FPCR.AH is 0, thisdoes bitnot isaffect whether denormalized
floating-point inputs are flushed to zero. RES0.
If FPCR.AH is 1, disablesany flushingoperation tothat zerounpacks
ofa inputssingle-precision thator are single-precision, double-
precision, and BF16 denormalized numbers,floating-point
othernumber thanwill forgenerate somean instructions.Input
ForDenormal morefloating-point informationexception, seeexcept
'Flushing denormalized numbers to zero'.when:

0b1 IfAll FPCR.AHsingle-precision, isdouble-precision, 0and BFloat16
input operands that are denormalized numbers, thisexcept
bitFABS isand FNEG, are flushed to zero, retaining the sign. RES0.
If FPCR.AH is 1, enablesor flushingFPCR.FZ tois zero0,
ofdenormalized inputsnumbers that are single-precision,flushed
double-precision,to andzero BF16by denormalizedthis
numbers,field otherdo thannot forgenerate somean
instructions.Input ForDenormal more information, see 'Flushing
denormalized numbers to zero'.exception.

The following instructions are not affected by the value of this bit:

• The BFCVT, BFCVTN, BFCVTN2, BFCVTNT, BFMLALB, and BFMLALT instructions.

• Single-precision and double-precision variants of the FRECPE, FRECPS, FRECPX, FRSQRTE, and FRSQRTS
instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the FPCR
Accesses to this register use the following encodings:

MRS <Xt>, FPCR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b000

FPCR, Floating-point Control Register

Page 296

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPCR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif CPACR_EL1.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPCR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPCR;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPCR;

MSR FPCR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b000

FPCR, Floating-point Control Register

Page 297

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPCR = X[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif CPACR_EL1.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPCR = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPCR = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPCR = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPCR, Floating-point Control Register

Page 298

(old) htmldiff from- (new)

FPEXC32_EL2, Floating-Point Exception Control
register

The FPEXC32_EL2 characteristics are:

Purpose
Allows access to the AArch32 register FPEXC from AArch64 state only. Its value has no effect on execution in AArch64
state.

Configuration
AArch64 System register FPEXC32_EL2 bits [31:0] are architecturally mapped to AArch32 System register
FPEXC[31:0].

This register is present only when EL1 is capable of using AArch32. Otherwise, direct accesses to FPEXC32_EL2 are
UNDEFINED.

If EL2 is not implemented but EL3 is implemented, and EL1 is capable of using AArch32, then this register is not RES0.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPEXC32_EL2 is a 64-bit register.

Field descriptions
The FPEXC32_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EX ENDEXFP2VVVTFV RES0 VECITR IDF RES0 IXFUFFOFFDZFIOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting
this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

FPEXC32_EL2, Floating-Point Exception Control register

Page 299

AArch32-fpsid.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html

EN Meaning
0b0 Accesses to the FPSCR, and any of the SIMD and floating-point

registers Q0-Q15, including their views as D0-D31 registers or
S0-S31 registers, are UNDEFINED at all Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-
point functionality at all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.
◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.

• For Advanced SIMD instructions only:
◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is
1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {1, 1} then behavior is as if the
value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {0, 1} then it is IMPLEMENTATION
DEFINED whether the behavior is:

◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC32_EL2.EN, as described in

this field description. However, Arm deprecates using the value
of FPEXC32_EL2.EN to determine behavior.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was
generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the
pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the
FPEXC32_EL2.TFV field is valid.

The meaning of this bit is:

DEX Meaning
0b0 The exception was generated by the attempted execution of an

unallocated instruction in the encoding space that is identified by
the pseudocode function ExecutingCP10or11Instr(). If
FPEXC32_EL2.TFV is RW then it is invalid and UNKNOWN. If
FPEXC32_EL2.{IDF, IXF, UFF, OFF, DZF, IOF} are RW then they
are invalid and UNKNOWN.

0b1 The exception was generated during the execution of an
allocatedunallocated encoding. FPEXC32_EL2.TFV is valid and
indicates the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the AArch32
FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPEXC32_EL2, Floating-Point Exception Control register

Page 300

AArch32-cpacr.html
AArch32-hcptr.html
AArch32-nsacr.html
AArch32-cpacr.html
AArch32-hcptr.html
AArch32-nsacr.html

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the
exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0b0 The exception was caused by the execution of a floating-point

VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA,
VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VSQRT,
or VSUB instruction when one or both of FPSCR.{Stride, Len}
was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits
are RW then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of
trapped floating-point exceptions that had occurred at the time of
the exception. Bits are set for all trapped exceptions that had
occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as
RAZ, this bit is RAO/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Input Denormal exception occurred while FPSCR.IDE was 1:

IDF Meaning
0b0 Input Denormal exception has not occurred.
0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

FPEXC32_EL2, Floating-Point Exception Control register

Page 301

A half-precision floating-point value that is flushed to zero because the value
of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Inexact exception occurred while FPSCR.IXE was 1:

IXF Meaning
0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Underflow exception occurred while FPSCR.UFE was 1:

UFF Meaning
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC32_EL2.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Overflow exception occurred while FPSCR.OFE was 1:

OFF Meaning
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

FPEXC32_EL2, Floating-Point Exception Control register

Page 302

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a
Divide by Zero exception occurred while FPSCR.DZE was 1:

DZF Meaning
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Invalid Operation exception occurred while FPSCR.IOE was 1:

IOF Meaning
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FPEXC32_EL2
Accesses to this register use the following encodings:

MRS <Xt>, FPEXC32_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0011 0b000

FPEXC32_EL2, Floating-Point Exception Control register

Page 303

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPEXC32_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPEXC32_EL2;

MSR FPEXC32_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPEXC32_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPEXC32_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

FPEXC32_EL2, Floating-Point Exception Control register

Page 304

(old) htmldiff from- (new)

FPEXC32_EL2, Floating-Point Exception Control register

Page 305

(old) htmldiff from- (new)

FPSR, Floating-point Status Register
The FPSR characteristics are:

Purpose
Provides floating-point system status information.

Configuration
AArch64The Systemnamed fields in this register FPSRmap bitsto [31:27]the areequivalent architecturallyfields
mappedin tothe AArch32 System register FPSCR[31:27].

AArch64 System register FPSR bit [7] is architecturally mapped to AArch32 System register FPSCR[7].

AArch64 System register FPSR bits [4:0] are architecturally mapped to AArch32 System register FPSCR[4:0].

Attributes
FPSR is a 64-bit register.

Field descriptions
The FPSR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V QC RES0 IDC RES0 IXCUFCOFCDZCIOC
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:

Negative condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.N flag instead.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FPSR, Floating-point Status Register

Page 306

Z, bit [30]

When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:

Zero condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.Z flag instead.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [29]

When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:

Carry condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.C flag instead.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

V, bit [28]

When AArch32 is supported at any Exception level and AArch32 floating-point is implemented:

Overflow condition flag for AArch32 floating-point comparison operations.

Note

AArch64 floating-point comparisons set the PSTATE.V flag instead.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer
operation has saturated since 0 was last written to this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [26:8]

Reserved, RES0.

FPSR, Floating-point Status Register

Page 307

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-
point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IDE bit.
This bit is set to 1 to indicate a floating-point exception only if FPCR.IDE is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact exception floating-point
exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IXE bit.
This bit is set to 1 to indicate a floating-point exception only if FPCR.IXE is 0.

The criteria for the Inexact floating-point exception to occur are affected by whether denormalized numbers are
flushed to zero and by the value of the FPCR.AH bit. For more information, see 'Floating-point exceptions and
exception traps'.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For details, see
'Flush-to-zero'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point
exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.UFE bit.
This bit is set to 1 to indicate a floating-point exception only if FPCR.UFE is 0 or if flushing denormalized numbers to
zeroFlush-to-zero is enabled.

The criteria for the Underflow floating-point exception to occur are affected by whether denormalized numbers are
flushed to zero and by the value of the FPCR.AH bit. For more information, see 'Floating-point exceptions and
exception traps'.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For details, see
'Flush-to-zero'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point
exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.OFE bit.
This bit is set to 1 to indicate a floating-point exception only if FPCR.OFE is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-
point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.DZE bit.
This bit is set to 1 to indicate a floating-point exception only if FPCR.DZE is 0.

FPSR, Floating-point Status Register

Page 308

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation
floating-point exception has occurred since 0 was last written to this bit.

How scalar and Advanced SIMD floating-point instructions update this bit depends on the value of the FPCR.IOE bit.
This bit is set to 1 to indicate a floating-point exception only if FPCR.IOE is 0.

The criteria for the Invalid Operation floating-point exception to occur are affected by the value of the FPCR.AH bit.
For more information, see 'Floating-point exceptions and exception traps'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FPSR
Accesses to this register use the following encodings:

MRS <Xt>, FPSR

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b001

FPSR, Floating-point Status Register

Page 309

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPSR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif CPACR_EL1.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPSR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
return FPSR;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

return FPSR;

MSR FPSR, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0100 0b001

FPSR, Floating-point Status Register

Page 310

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN != '11' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x00);
else

AArch64.SystemAccessTrap(EL1, 0x07);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN != '11' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPSR = X[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.TFP == '1' then
UNDEFINED;

elsif CPACR_EL1.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x07);

elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPSR = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.TFP == '1' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x07);
elsif HaveEL(EL3) && CPTR_EL3.TFP == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x07);

else
FPSR = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.TFP == '1' then

AArch64.SystemAccessTrap(EL3, 0x07);
else

FPSR = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPSR, Floating-point Status Register

Page 311

(old) htmldiff from- (new)

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-
Grained Read Trap Register

The HAFGRTR_EL2 characteristics are:

Purpose
Provides controls for traps of MRS reads of Activity Monitors System registers.

Configuration
This register is present only when FEAT_AMUv1 is implemented and FEAT_FGT is implemented. Otherwise, direct
accesses to HAFGRTR_EL2 are UNDEFINED.

Attributes
HAFGRTR_EL2 is a 64-bit register.

Field descriptions
The HAFGRTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 AMEVTYPER115_EL0AMEVCNTR115_EL0AMEVTYPER114_EL0AMEVCNTR114_EL0AMEVTYPER113_EL0AMEVCNTR113_EL0AMEVTYPER112_EL0AMEVCNTR112_EL0AMEVTYPER111_EL0AMEVCNTR111_EL0AMEVTYPER110_EL0AMEVCNTR110_EL0AMEVTYPER19_EL0AMEVCNTR19_EL0AMEVTYPER18_EL0AMEVCNTR18_EL0AMEVTYPER17_EL0AMEVCNTR17_EL0

AMEVTYPER16_EL0AMEVCNTR16_EL0AMEVTYPER15_EL0AMEVCNTR15_EL0AMEVTYPER14_EL0AMEVCNTR14_EL0AMEVTYPER13_EL0AMEVCNTR13_EL0AMEVTYPER12_EL0AMEVCNTR12_EL0AMEVTYPER11_EL0AMEVCNTR11_EL0AMEVTYPER10_EL0AMEVCNTR10_EL0 AMCNTEN1 RES0 AMEVCNTR03_EL0 AMEVCNTR02_EL0 AMEVCNTR01_EL0 AMEVCNTR00_EL0 AMCNTEN0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:50]

Reserved, RES0.

AMEVTYPER1<x>_EL0, bit [19+2x], for x = 15 to 0

Trap MRS reads of AMEVTYPER1<x>_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVTYPER1<x> at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVTYPER1<x>_EL0 Meaning
0b0 MRS reads of AMEVTYPER1<x>_EL0 at EL1

and EL0 using AArch64 and MRC reads of
AMEVTYPER1<x> at EL0 using AArch32 are
not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H,
TGE} != {1, 1}, EL1 is using AArch64, and
either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the
read generates a higher priority exception:

• MRS reads of AMEVTYPER1<x>_EL0 at
EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome
value 0x18.

• MRC reads of AMEVTYPER1<x> at EL0
using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 312

AArch64-amevtyper1n_el0.html
AArch32-amevtyper1n.html
AArch64-amevtyper1n_el0.html
AArch32-amevtyper1n.html
AArch64-amevtyper1n_el0.html
AArch32-amevtyper1n.html

AMEVCNTR1<x>_EL0, bit [18+2x], for x = 15 to 0

Trap MRS reads of AMEVCNTR1<x>_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR1<x> at EL0
using AArch32 when EL1 is using AArch64 to EL2.

AMEVCNTR1<x>_EL0 Meaning
0b0 MRS reads of AMEVCNTR1<x>_EL0 at EL1

and EL0 using AArch64 and MRC reads of
AMEVCNTR1<x> at EL0 using AArch32 are
not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H, TGE}
!= {1, 1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then, unless the read generates a
higher priority exception:

• MRS reads of AMEVCNTR1<x>_EL0 at
EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome
value 0x18.

• MRC reads of AMEVCNTR1<x> at EL0
using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AMCNTEN<x>, bit [17x], for x = 1 to 0

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of AMCNTENCLR<x>_EL0 and AMCNTENSET<x>_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of AMCNTENCLR<x> and AMCNTENSET<x>.

AMCNTEN<x> Meaning
0b0 The operations listed above are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1
is using AArch64, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then, unless the read
generates a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of
AMCNTENCLR<x>_EL0 and
AMCNTENSET<x>_EL0 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads at EL0 using AArch32 of
AMCNTENCLR<x> and AMCNTENSET<x> are
trapped to EL2 and reported with EC syndrome
value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [16:5]

Reserved, RES0.

AMEVCNTR0<x>_EL0, bit [x+1], for x = 3 to 0

Trap MRS reads of AMEVCNTR0<x>_EL0 at EL1 and EL0 using AArch64 and MRC reads of AMEVCNTR0<x> at EL0
using AArch32 when EL1 is using AArch64 to EL2.

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 313

AArch64-amevcntr1n_el0.html
AArch32-amevcntr1n.html
AArch64-amevcntr1n_el0.html
AArch32-amevcntr1n.html
AArch64-amevcntr1n_el0.html
AArch32-amevcntr1n.html
AArch64-amevcntr0n_el0.html
AArch32-amevcntr0n.html

AMEVCNTR0<x>_EL0 Meaning
0b0 MRS reads of AMEVCNTR0<x>_EL0 at EL1

and EL0 using AArch64 and MRC reads of
AMEVCNTR0<x> at EL0 using AArch32 are
not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the
current Security state, HCR_EL2.{E2H, TGE}
!= {1, 1}, EL1 is using AArch64, and either
EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then, unless the read generates a
higher priority exception:

• MRS reads of AMEVCNTR0<x>_EL0 at
EL1 and EL0 using AArch64 are trapped
to EL2 and reported with EC syndrome
value 0x18.

• MRC reads of AMEVCNTR0<x> at EL0
using AArch32 are trapped to EL2 and
reported with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HAFGRTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HAFGRTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1E8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HAFGRTR_EL2;

elsif PSTATE.EL == EL3 then
return HAFGRTR_EL2;

MSR HAFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b110

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 314

AArch64-amevcntr0n_el0.html
AArch32-amevcntr0n.html
AArch64-amevcntr0n_el0.html
AArch32-amevcntr0n.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1E8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HAFGRTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HAFGRTR_EL2 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register

Page 315

(old) htmldiff from- (new)

HCR_EL2, Hypervisor Configuration Register
The HCR_EL2 characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration
AArch64 System register HCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HCR[31:0].

AArch64 System register HCR_EL2 bits [63:32] are architecturally mapped to AArch32 System register HCR2[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if EL2 is not
enabled in the current Security state.

Attributes
HCR_EL2 is a 64-bit register.

Field descriptions
The HCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
TWEDEL TWEDEnTID5 DCT ATATTLBOSTTLBISEnSCXTTOCUAMVOFFENTICABTID4RES0FIENFWBNV2 AT NV1NVAPIAPKRES0MIOCNCE TEA TERRTLOR E2H ID CD

RWTRVMHCDTDZ TGE TVMTTLBTPU Bit[23] TSW TACR TIDCP TSC TID3 TID2 TID1 TID0TWE TWI DC BSU FB VSE VI VF AMO IMO FMO PTWSWIOVM
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TWEDEL, bits [63:60]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when HCR_EL2.TWEDEn is 1, encodes the minimum delay in taking a trap
of WFE* caused by HCR_EL2.TWE as 2(TWEDEL + 8) cycles.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [59]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by HCR_EL2.TWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of cycles

defined in HCR_EL2.TWEDEL.

HCR_EL2, Hypervisor Configuration Register

Page 316

AArch32-hcr.html
AArch32-hcr2.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID5, bit [58]

When FEAT_MTE2 is implemented:

Trap ID group 5. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• GMID_EL1.
TID5 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 5 registers are

trapped to EL2.

When the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field has an Effective value of 0 for all purposes other than a
direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DCT, bit [57]

When FEAT_MTE2 is implemented:

Default Cacheability Tagging. When HCR_EL2.DC is in effect, controls whether stage 1 translations are treated as
Tagged or Untagged.

DCT Meaning
0b0 Stage 1 translations are treated as Untagged.
0b1 Stage 1 translations are treated as Tagged.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA, bit [56]

When FEAT_MTE2 is implemented:

When access is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

HCR_EL2, Hypervisor Configuration Register

Page 317

AArch64-gmid_el1.html

• MRS and MSR instructions at EL1 using GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2, or TFSRE0_EL1 that
are not UNDEFINED are trapped to EL2.

Allocation Tag Access. When HCR_EL2.{E2H,TGE} != {1,1}, controls EL1 and EL0 access to Allocation Tags.

ATA Meaning
0b0 Access is prevented. Accesses at EL1 to GCR_EL1, RGSR_EL1,

TFSR_EL1, TFSR_EL2, or TFSRE0_EL1 that are not UNDEFINED
are trapped to EL2.

0b1 Access is not prevented.

This field is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBOS, bit [55]

When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Outer Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

TLBI VMALLE1OS, TLBI VAE1OS, TLBI ASIDE1OS,TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS,TLBI RVAE1OS,
TLBI RVAAE1OS,TLBI RVALE1OS, and TLBI RVAALE1OS.

TTLBOS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TTLBIS, bit [54]

When FEAT_EVT is implemented:

Trap TLB maintenance instructions that operate on the Inner Shareable domain. Traps execution of those TLB
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the
following instructions:

• When EL1 is using AArch64, TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS,
TLBI VAALE1IS, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, and TLBI RVAALE1IS.

• When EL1 is using AArch32, TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, and
TLBIMVAALIS.

TTLBIS Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 318

AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsre0_el1.html
AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsre0_el1.html
AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html

Otherwise:

Reserved, RES0.

EnSCXT, bit [53]

When FEAT_CSV2 is implemented:

Enable Access to the SCXTNUM_EL1 and SCXTNUM_EL0 registers. The defined values are:

EnSCXT Meaning
0b0 When HCR_EL2.E2H is (HCR_EL2.TGE==0 or HCR_EL2.TGE

is HCR_EL2.E2H==0,) and EL2 is enabled in the current
Security state, EL1 and EL0 access to SCXTNUM_EL0 and
EL1 access to SCXTNUM_EL1 is disabled by this mechanism,
causing an exception to EL2, and the values of these registers
to be treated as 0.
When HCR_EL2.{E2H,((HCR_EL2.TGE==1 TGE}and is
{HCR_EL2.E2H==1, 1}) and EL2 is enabled in the current
Security state, EL0 access to SCXTNUM_EL0 is disabled by
this mechanism, causing an exception to EL2, and the value
of this register to be treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0 or
SCXTNUM_EL1 to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TOCU, bit [52]

When FEAT_EVT is implemented:

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state. This applies to the following
instructions:

• When SCTLR_EL1.UCI is 1, HCR_EL2.{TGE, E2H} is not {1, 1}, and EL0 is using AArch64, IC IVAU, DC
CVAU.

• When EL1 is using AArch64, IC IVAU, IC IALLU, DC CVAU.
• When EL1 is using AArch32, ICIMVAU, ICIALLU, DCCMVAU.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at

EL0 using AArch32.

TOCU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions are trapped to EL2.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

HCR_EL2, Hypervisor Configuration Register

Page 319

AArch64-ic-ivau.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-dc-cvau.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-dccmvau.html
AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [51]

When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Virtualization of the Activity Monitors is disabled.

Indirect reads of the virtual offset registers are zero.
0b1 Virtualization of the Activity Monitors is enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TICAB, bit [50]

When FEAT_EVT is implemented:

Trap ICIALLUIS/IC IALLUIS cache maintenance instructions. Traps execution of those cache maintenance instructions
at EL1 to EL2, when EL2 is enabled in the current Security state. This applies to the following instructions:

• When EL1 is using AArch64, IC IALLUIS.
• When EL1 is using AArch32, ICIALLUIS.

TICAB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to EL2.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TID4, bit [49]

When FEAT_EVT is implemented:

Trap ID group 4. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state:

AArch64:

• EL1 reads of CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1.
• EL1 writes to CSSELR_EL1.

HCR_EL2, Hypervisor Configuration Register

Page 320

AArch64-ic-ialluis.html
AArch32-icialluis.html
AArch64-ccsidr2_el1.html

AArch32:

• EL1 reads of CCSIDR, CCSIDR2, CLIDR, and CSSELR.
• EL1 writes to CSSELR.

TID4 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 4 registers are

trapped to EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [48]

Reserved, RES0.

FIEN, bit [47]

When FEAT_RASv1p1 is implemented:

Fault Injection Enable. Unless this bit is set to 1, accesses to the ERXPFGCDN_EL1, ERXPFGCTL_EL1, and
ERXPFGF_EL1 registers from EL1 generate a Trap exception to EL2, when EL2 is enabled in the current Security
state, reported using EC syndrome value 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 are trapped to EL2,

when EL2 is enabled in the current Security state.
0b1 This control does not cause any instructions to be trapped.

If EL2 is disabled in the current Security state, the Effective value of HCR_EL2.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using System
registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be
RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FWB, bit [46]

When FEAT_S2FWB is implemented:

Forced Write-Back. Defines the combined cacheability attributes in a 2 stage translation regime.

Note

When FEAT_MTE2 is implemented, if the stage 1 page or block descriptor
specifies the Tagged attribute, the final memory type is Tagged only if the final
cacheable memory type is Inner and Outer Write-back cacheable and the final
allocation hints are Read-Allocate, Write-Allocate.

HCR_EL2, Hypervisor Configuration Register

Page 321

AArch32-ccsidr.html
AArch32-ccsidr2.html
AArch32-clidr.html
AArch32-csselr.html
AArch32-csselr.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
AArch64-erridr_el1.html

FWB Meaning
0b0 When this bit is 0, then:

• The combination of stage 1 and stage 2 translations on
memory type and cacheability attributes are as described
in the Armv8.0 architecture. For more information, see
'Combining the stage 1 and stage 2 attributes, EL1&0
translation regime'.

• The encoding of the stage 2 memory type and cacheability
attributes in bits[5:2] of the stage 2 page or block
descriptors are as described in the Armv8.0 architecture.

0b1 When this bit is 1, then:
• Bit[5] of stage 2 page or block descriptor is RES0.
• When bit[4] of stage 2 page or block descriptor is 1 and

when:
◦ Bits[3:2] of stage 2 page or block descriptor are

0b11, the resultant memory type and inner or outer
cacheability attribute is the same as the stage 1
memory type and inner or outer cacheability
attribute.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the resultant memory type and attribute is
Normal Write-Back.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b0x, the resultant memory type will be Normal
Non-cacheable except where the stage 1 memory
type was Device-<attr> the resultant memory type
will be Device-<attr>

• When bit[4] of stage 2 page or block descriptor is 0 the
memory type is Device, and when:

◦ Bits[3:2] of stage 2 page or block descriptor are
0b00, the stage 2 memory type is Device-nGnRnE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b01, the stage 2 memory type is Device-nGnRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b10, the stage 2 memory type is Device-nGRE.

◦ Bits[3:2] of stage 2 page or block descriptor are
0b11, the stage 2 memory type is Device-GRE.

• If the stage 1 translation specifies a cacheable memory
type, then the stage 1 cache allocation hint is applied to
the final cache allocation hint where the final memory
type is cacheable.

• If the stage 1 translation does not specify a cacheable
memory type, then if the final memory type is cacheable,
it is treated as read allocate, write allocate.

The stage 1 and stage 2 memory types are combined in the
manner described in 'Combining the stage 1 and stage 2
attributes, EL1&0 translation regime'.

In Secure state, this bit applies to both the Secure stage 2 translation and the Non-secure stage 2 translation.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV2, bit [45]

When FEAT_NV2 is implemented:

Nested Virtualization. Changes the behaviors of HCR_EL2.{NV1, NV} to provide a mechanism for hardware to
transform reads and writes from System registers into reads and writes from memory.

HCR_EL2, Hypervisor Configuration Register

Page 322

NV2 Meaning
0b0 This bit has no effect on the behavior of HCR_EL2.{NV1, NV}.

The behavior of HCR_EL2.{NV1, NV} is as defined for FEAT_NV.
0b1 Redefines behavior of HCR_EL2{NV1, NV} to enable:

• Transformation of read/writes to registers into read/writes
to memory.

• Redirection of EL2 registers to EL1 registers.
Any exception taken from EL1 and taken to EL1 causes
SPSR_EL1.M[3:2] to be set to 0b10 and not 0b01.

When HCR_EL2.NV is 0, the Effective value of this field is 0 and this field is treated as 0 for all purposes other than
direct reads and writes of this field.0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AT, bit [44]

When FEAT_NV is implemented:

Address Translation. EL1 execution of the following address translation instructions is trapped to EL2, when EL2 is
enabled in the current Security state, reported using EC syndrome value 0x18:

• AT S1E0R, AT S1E0W, AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP.
AT Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified instructions is trapped to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV1, bit [43]

When FEAT_NV2 is implemented:

Nested Virtualization.

NV1 Meaning
0b0 If HCR_EL2.{NV2, NV} are both 1, accesses executed from EL1

to implemented EL12, EL02, or EL2 registers are transformed to
loads and stores.
If HCR_EL2.NV2 is 0 or HCR_EL2.{NV2, NV} == {1, 0}, this
control does not cause any instructions to be trapped.

0b1 If HCR_EL2.NV2 is 1, accesses executed from EL1 to
implemented EL2 registers are transformed to loads and stores.
If HCR_EL2.NV2 is 0, EL1 accesses to VBAR_EL1, ELR_EL1,
SPSR_EL1, and, when FEAT_CSV2 is implemented,
SCXTNUM_EL1, are trapped to EL2, when EL2 is enabled in the
current Security state, and are reported using EC syndrome value
0x18.

If HCR_EL2.NV2 is 1, the value of HCR_EL2.NV1 defines which EL1 register accesses are transformed to loads and
stores. These transformed accesses have priority over the trapping of registers.

The trapping of EL1 registers caused by other control bits has priority over the transformation of these accesses.

If a register is specified that is not implemented by an implementation, then access to that register are UNDEFINED.

For the list of registers affected, see 'Enhanced support for nested virtualization'.

HCR_EL2, Hypervisor Configuration Register

Page 323

AArch64-at-s1e0r.html
AArch64-at-s1e0w.html
AArch64-at-s1e1r.html
AArch64-at-s1e1w.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html

If HCR_EL2.{NV1, NV} is {0, 1}, any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be
set to 0b10, and not 0b01.

If HCR_EL2.{NV1, NV} is {1, 1}, then:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the
bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.{NV1, NV} are {1, 0}, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading than reading back
the value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading than reading back
the value of the HCR_EL2.NV1 bit.

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. EL1 accesses to certain registers are trapped to EL2, when EL2 is enabled in the current
Security state.

NV1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to VBAR_EL1, ELR_EL1, SPSR_EL1, and, when

FEAT_CSV2 is implemented, SCXTNUM_EL1, are trapped to EL2,
when EL2 is enabled in the current Security state, and are
reported using EC syndrome value 0x18.

If HCR_EL2.NV is 1 and HCR_EL2.NV1 is 0, then the following effects also apply:

• Any exception taken from EL1, and taken to EL1, causes the SPSR_EL1.M[3:2] to be set to 0b10, and not 0b01.

If HCR_EL2.NV and HCR_EL2.NV1 are both set to 1, then the following effects also apply:

• The EL1 translation table Block and Page descriptors:
◦ Bit[54] holds the PXN instead of the UXN.
◦ Bit[53] is RES0.
◦ Bit[6] is treated as 0 regardless of the actual value.

• If Hierarchical Permissions are enabled, the EL1 translation table Table descriptors are as follows:
◦ Bit[61] is treated as 0 regardless of the actual value.
◦ Bit[60] holds the PXNTable instead of the UXNTable.
◦ Bit[59] is RES0.

• When executing at EL1, the PSTATE.PAN bit is treated as zero for all purposes except reading the value of the
bit.

• When executing at EL1, the LDTR* instructions are treated as the equivalent LDR* instructions, and the
STTR* instructions are treated as the equivalent STR* instructions.

If HCR_EL2.NV is 0 and HCR_EL2.NV1 is 1, then the behavior is a CONSTRAINED UNPREDICTABLE choice of:

• Behaving as if HCR_EL2.NV is 1 and HCR_EL2.NV1 is 1 for all purposes other than reading than reading back
the value of the HCR_EL2.NV bit.

• Behaving as if HCR_EL2.NV is 0 and HCR_EL2.NV1 is 0 for all purposes other than reading than reading back
the value of the HCR_EL2.NV1 bit.

HCR_EL2, Hypervisor Configuration Register

Page 324

• Behaving with regard to the HCR_EL2.NV and HCR_EL2.NV1 bits behavior as defined in the rest of this
description.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NV, bit [42]

When FEAT_NV2 is implemented:

Nested Virtualization.

When HCR_EL2.NV2 is 1, redefines register accesses so that:

• Instructions accessing the Special purpose registers SPSR_EL2 and ELR_EL2 instead access SPSR_EL1 and
ELR_EL1 respectively.

• Instructions accessing the System registers ESR_EL2 and FAR_EL2 instead access ESR_EL1 and FAR_EL1.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, traps functionality that is permitted at EL2 and would
be UNDEFINED at EL1 if this field was 0, when EL2 is enabled in the current Security state. This applies to the following
operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and

above.
NV Meaning
0b0 When this bit is set to 0, then the PE behaves as if HCR_EL2.NV2

is 0 for all purposes other than reading this register. This control
does not cause any instructions to be trapped.
When HCR_EL2.NV2 is 1, no FEAT_NV2 functionality is
implemented.

0b1 When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, EL1
accesses to the specified registers or the execution of the specified
instructions are trapped to EL2, when EL2 is enabled in the
current Security state. EL1 read accesses to the CurrentEL
register return a value of 0x2.
When HCR_EL2.NV2 is 1, this control redefines EL1 register
accesses so that instructions accessing SPSR_EL2, ELR_EL2,
ESR_EL2, and FAR_EL2 instead access SPSR_EL1, ELR_EL1,
ESR_EL1, and FAR_EL1 respectively.

When HCR_EL2.NV2 is 0, or if FEAT_NV2 is not implemented, then:

• The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome
value 0x18 are as follows:

◦ Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
◦ Registers accessed using MRS or MSR with a name ending in _EL12.
◦ Registers accessed using MRS or MSR with a name ending in _EL02.
◦ Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or

MSR.
◦ Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

• The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:
◦ EL2 translation regime Address Translation instructions and TLB maintenance instructions.
◦ EL1 translation regime Address Translation instructions and TLB maintenance instructions that are

accessible only from EL2 and EL3.
• The instructions for which the execution is trapped as follows:

◦ SMC in an implementation that does not include EL3 and when HCR_EL2.TSC is 1. HCR_EL2.TSC bit
is not RES0 in this case. This is reported using EC syndrome value 0x17.

◦ The ERET, ERETAA, and ERETAB instructions, reported using EC syndrome value 0x1A.

Note

HCR_EL2, Hypervisor Configuration Register

Page 325

AArch64-sp_el2.html
AArch64-sp_el1.html

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If
both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_NV is implemented:

Nested Virtualization. Traps functionality that is permitted at EL2 and would be UNDEFINED at EL1 if this field was 0,
when EL2 is enabled in the current Security state. This applies to the following operations:

• EL1 accesses to Special-purpose registers that are not UNDEFINED at EL2.
• EL1 accesses to System registers that are not UNDEFINED at EL2.
• Execution of EL1 or EL2 translation regime address translation and TLB maintenance instructions for EL2 and

above.

The possible values are:

NV Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers or the execution of the

specified instructions are trapped to EL2, when EL2 is enabled in
the current Security state. EL1 read accesses to the CurrentEL
register return a value of 0x2.

The System or Special-purpose registers for which accesses are trapped and reported using EC syndrome value 0x18
are as follows:

• Registers accessed using MRS or MSR with a name ending in _EL2, except SP_EL2.
• Registers accessed using MRS or MSR with a name ending in _EL12.
• Registers accessed using MRS or MSR with a name ending in _EL02.
• Special-purpose registers SPSR_irq, SPSR_abt, SPSR_und and SPSR_fiq, accessed using MRS or MSR.
• Special-purpose register SP_EL1 accessed using the dedicated MRS or MSR instruction.

The instructions for which the execution is trapped and reported using EC syndrome value 0x18 are as follows:

• EL2 translation regime Address Translation instructions and TLB maintenance instructions.
• EL1 translation regime Address Translation instructions and TLB maintenance instructions that are accessible

only from EL2 and EL3.

The execution of the ERET, ERETAA, and ERETAB instructions are trapped and reported using EC syndrome value
0x1A

Note

The priority of this trap is higher than the priority of the HCR_EL2.API trap. If
both of these bits are set so that EL1 execution of an ERETAA or ERETAB
instruction is trapped to EL2, then the syndrome reported is 0x1A.

The execution of the SMC instructions in an implementation that does not include EL3 and when HCR_EL2.TSC is 1
are trapped and reported using EC syndrome value 0x17. HCR_EL2.TSC bit is not RES0 in this case.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 326

AArch64-sp_el2.html
AArch64-sp_el1.html

API, bit [41]

When FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• In EL0, when HCR_EL2.TGE==0 or HCR_EL2.E2H==0, and the associated SCTLR_EL1.En<N><M>==1.
• In EL1, the associated SCTLR_EL1.En<N><M>==1.

Traps are reported using EC syndrome value 0x09. The Pointer Authentication instructions trapped are:

• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,
AUTIBZ, AUTIZA, AUTIZB.

• PACGA, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB, PACIB1716,
PACIBSP, PACIBZ, PACIZA, PACIZB.

• RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ, BLRAAZ, BLRABZ.
• ERETAA, ERETAB, LDRAA and LDRAB.

API Meaning
0b0 The instructions related to Pointer Authentication are trapped to

EL2, when EL2 is enabled in the current Security state and the
instructions are enabled for the EL1&0 translation regime, from:

• EL0 when HCR_EL2.TGE==0 or HCR_EL2.E2H==0.
• EL1.

If HCR_EL2.NV is 1, the HCR_EL2.NV trap takes precedence over
the HCR_EL2.API trap for the ERETAA and ERETAB instructions.
If EL2 is implemented and enabled in the current Security state
and HFGITR_EL2.ERET == 1, execution at EL1 using AArch64 of
ERETAA or ERETAB instructions is reported with EC syndrome value
0x1A with its associated ISS field, as the fine-grained trap has
higher priority than the HCR_EL2.API == 0.

0b1 This control does not cause any instructions to be trapped.

If FEAT_PAuth is implemented but EL2 is not implemented or disabled in the current Security state, the system
behaves as if this bit is 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [40]

When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers from EL1 to
EL2, when EL2 is enabled in the current Security state, reported using EC syndrome value 0x18:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1, APDAKeyLo_EL1, APDAKeyHi_EL1,
APDBKeyLo_EL1, APDBKeyHi_EL1, APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 are trapped to EL2, when EL2 is enabled
in the current Security state.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL2 is not implemented or is disabled in
the current Security state, the system behaves as if this bit is 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 327

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html

Otherwise:

Reserved, RES0.

Bit [39]

Reserved, RES0.

MIOCNCE, bit [38]

Mismatched Inner/Outer Cacheable Non-Coherency Enable, for the EL1&0 translation regimes.

MIOCNCE Meaning
0b0 For the EL1&0 translation regimes, for permitted accesses

to a memory location that use a common definition of the
Shareability and Cacheability of the location, there must be
no loss of coherency if the Inner Cacheability attribute for
those accesses differs from the Outer Cacheability
attribute.

0b1 For the EL1&0 translation regimes, for permitted accesses
to a memory location that use a common definition of the
Shareability and Cacheability of the location, there might
be a loss of coherency if the Inner Cacheability attribute
for those accesses differs from the Outer Cacheability
attribute.

For more information see 'Mismatched memory attributes'.

This field can be implemented as RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this
field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TEA, bit [37]

When FEAT_RAS is implemented:

Route synchronous External abort exceptions to EL2.

TEA Meaning
0b0 This control does not cause exceptions to be routed from EL0 and

EL1 to EL2.
0b1 Route synchronous External abort exceptions from EL0 and EL1

to EL2, when EL2 is enabled in the current Security state, if not
routed to EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [36]

When FEAT_RAS is implemented:

Trap Error record accesses. Trap accesses to the RAS error registers from EL1 to EL2 as follows:

• If EL1 is using AArch64 state, accesses to the following registers are trapped to EL2, reported using EC
syndrome value 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

HCR_EL2, Hypervisor Configuration Register

Page 328

AArch64-erridr_el1.html
AArch64-errselr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxmisc0_el1.html
AArch64-erxmisc1_el1.html
AArch64-erxstatus_el1.html

◦ When FEAT_RASv1p1 is implemented, ERXMISC2_EL1, and ERXMISC3_EL1.
• If EL1 is using AArch32 state, MCR or MRC accesses are trapped to EL2, reported using EC syndrome value

0x03, MCRR or MRRC accesses are trapped to EL2, reported using EC syndrome value 0x04:
◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0,

ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.
◦ When FEAT_RASv1p1 is implemented, ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.

TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 generate a Trap

exception to EL2, when EL2 is enabled in the current Security
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [35]

When FEAT_LOR is implemented:

Trap LOR registers. Traps Non-secure EL1 accesses to LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and
LORID_EL1 registers to EL2.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 accesses to the LOR registers are trapped to

EL2.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2H, bit [34]

When FEAT_VHE is implemented:

EL2 Host. Enables a configuration where a Host Operating System is running in EL2, and the Host Operating System's
applications are running in EL0.

E2H Meaning
0b0 The facilities to support a Host Operating System at EL2 are

disabled.
0b1 The facilities to support a Host Operating System at EL2 are

enabled.

For information on the behavior of this bit see 'Behavior of HCR_EL2.E2H'.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HCR_EL2, Hypervisor Configuration Register

Page 329

AArch64-erxmisc2_el1.html
AArch64-erxmisc3_el1.html
AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html

ID, bit [33]

Stage 2 Instruction access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current
Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for instruction accesses to Normal
memory to be Non-cacheable.

ID Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime.
0b1 Forces all stage 2 translations for instruction accesses to Normal

memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this
field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CD, bit [32]

Stage 2 Data access cacheability disable. For the EL1&0 translation regime, when EL2 is enabled in the current
Security state and HCR_EL2.VM==1, this control forces all stage 2 translations for data accesses and translation table
walks to Normal memory to be Non-cacheable.

CD Meaning
0b0 This control has no effect on stage 2 of the EL1&0 translation

regime for data accesses and translation table walks.
0b1 Forces all stage 2 translations for data accesses and translation

table walks to Normal memory to be Non-cacheable.

This bit has no effect on the EL2, EL2&0, or EL3 translation regimes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, the PE ignores the value of this
field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

RW, bit [31]

When AArch32 is supported at any Exception level:

Execution state control for lower Exception levels:

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The Execution state for EL1 is AArch64. The Execution state for

EL0 is determined by the current value of PSTATE.nRW when
executing at EL0.

If AArch32 state is not supported by the implementation at EL1, then this bit is RAO/WI.

In an implementation that includes EL3, when EL2 is not enabled in Secure state, the PE behaves as if this bit has the
same value as the SCR_EL3.RW bit for all purposes other than a direct read or write access of HCR_EL2.

The RW bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 1 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

HCR_EL2, Hypervisor Configuration Register

Page 330

TRVM, bit [30]

Trap Reads of Virtual Memory controls. Traps EL1 reads of the virtual memory control registers to EL2, when EL2 is
enabled in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome
value 0x18.

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MRC to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MRRC are trapped to EL2 and reported using EC
syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

TRVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 read accesses to the specified Virtual Memory controls are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

EL2 provides a second stage of address translation, that a hypervisor can use
to remap the address map defined by a Guest OS. In addition, a hypervisor can
trap attempts by a Guest OS to write to the registers that control the memory
system. A hypervisor might use this trap as part of its virtualization of memory
management.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCD, bit [29]

When EL3 is not implemented:

HVC instruction disable. Disables EL1 execution of HVC instructions, from both Execution states, when EL2 is enabled
in the current Security state, reported using EC syndrome value 0x00.

HCD Meaning
0b0 HVC instruction execution is enabled at EL2 and EL1.
0b1 HVC instructions are UNDEFINED at EL2 and EL1. Any resulting

exception is taken to the Exception level at which the HVC
instruction is executed.

Note

HVC instructions are always UNDEFINED at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDZ, bit [28]

Trap DC ZVA instructions. Traps EL0 and EL1 execution of DC ZVA instructions to EL2, when EL2 is enabled in the
current Security state, from AArch64 state only, reported using EC syndrome value 0x18.

If FEAT_MTEFEAT_MTE2 is implemented, this trap also applies to DC GVA and DC GZVA.

HCR_EL2, Hypervisor Configuration Register

Page 331

AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html
AArch64-dc-zva.html
AArch64-dc-zva.html
AArch64-dc-gzva.html

TDZ Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 In AArch64 state, any attempt to execute an instruction this trap

applies to at EL1, or at EL0 when the instruction is not UNDEFINED
at EL0, is trapped to EL2 when EL2 is enabled in the current
Security state.
Reading the DCZID_EL0 returns a value that indicates that the
instructions this trap applies to are not supported.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TGE, bit [27]

Trap General Exceptions, from EL0.

TGE Meaning
0b0 This control has no effect on execution at EL0.
0b1 When EL2 is not enabled in the current Security state, this

control has no effect on execution at EL0.
When EL2 is enabled in the current Security state, in all cases:

• All exceptions that would be routed to EL1 are routed to
EL2.

• If EL1 is using AArch64, the SCTLR_EL1.M field is treated
as being 0 for all purposes other than returning the result of
a direct read of SCTLR_EL1.

• If EL1 is using AArch32, the SCTLR.M field is treated as
being 0 for all purposes other than returning the result of a
direct read of SCTLR.

• All virtual interrupts are disabled.
• Any IMPLEMENTATION DEFINED mechanisms for signaling

virtual interrupts are disabled.
• An exception return to EL1 is treated as an illegal exception

return.
• The MDCR_EL2.{TDRA, TDOSA, TDA, TDE} fields are

treated as being 1 for all purposes other than returning the
result of a direct read of MDCR_EL2.

In addition, when EL2 is enabled in the current Security state, if:
• HCR_EL2.E2H is 0, the Effective values of the

HCR_EL2.{FMO, IMO, AMO} fields are 1.
• HCR_EL2.E2H is 1, the Effective values of the

HCR_EL2.{FMO, IMO, AMO} fields are 0.
For further information on the behavior of this bit when E2H is 1,
see 'Behavior of HCR_EL2.E2H'.

HCR_EL2.TGE must not be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TVM, bit [26]

Trap Virtual Memory controls. Traps EL1 writes to the virtual memory control registers to EL2, when EL2 is enabled
in the current Security state, as follows:

• If EL1 is using AArch64 state, the following registers are trapped to EL2 and reported using EC syndrome
value 0x18:

◦ SCTLR_EL1, TTBR0_EL1, TTBR1_EL1, TCR_EL1, ESR_EL1, FAR_EL1, AFSR0_EL1, AFSR1_EL1,
MAIR_EL1, AMAIR_EL1, CONTEXTIDR_EL1.

• If EL1 is using AArch32 state, accesses using MCR to the following registers are trapped to EL2 and
reported using EC syndrome value 0x03, accesses using MCRR are trapped to EL2 and reported using EC
syndrome value 0x04:

◦ SCTLR, TTBR0, TTBR1, TTBCR, TTBCR2, DACR, DFSR, IFSR, DFAR, IFAR, ADFSR, AIFSR, PRRR,
NMRR, MAIR0, MAIR1, AMAIR0, AMAIR1, CONTEXTIDR.

HCR_EL2, Hypervisor Configuration Register

Page 332

AArch64-dczid_el0.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-afsr0_el1.html
AArch64-afsr1_el1.html
AArch64-amair_el1.html
AArch64-contextidr_el1.html
AArch32-ttbr0.html
AArch32-ttbr1.html
AArch32-ttbcr.html
AArch32-ttbcr2.html
AArch32-dacr.html
AArch32-dfsr.html
AArch32-ifsr.html
AArch32-dfar.html
AArch32-ifar.html
AArch32-adfsr.html
AArch32-aifsr.html
AArch32-amair0.html
AArch32-amair1.html
AArch32-contextidr.html

TVM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 write accesses to the specified EL1 virtual memory control

registers are trapped to EL2, when EL2 is enabled in the current
Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TTLB, bit [25]

Trap TLB maintenance instructions. Traps EL1 execution of TLB maintenance instructions to EL2, when EL2 is
enabled in the current Security state, as follows:

• When EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x18:

◦ TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1.
◦ TLBI VMALLE1IS, TLBI VAE1IS, TLBI ASIDE1IS, TLBI VAAE1IS, TLBI VALE1IS, TLBI VAALE1IS.
◦ If FEAT_TLBIOS is implemented, this trap applies to TLBI VMALLE1OS, TLBI VAE1OS, TLBI

ASIDE1OS, TLBI VAAE1OS, TLBI VALE1OS, TLBI VAALE1OS.
◦ If FEAT_TLBIRANGE is implemented, this trap applies to TLBI RVAE1, TLBI RVAAE1, TLBI RVALE1,

TLBI RVAALE1, TLBI RVAE1IS, TLBI RVAAE1IS, TLBI RVALE1IS, TLBI RVAALE1IS.
◦ If FEAT_TLBIOS and FEAT_TLBIRANGE are implemented, this trap appplies to TLBI RVAE1OS, TLBI

RVAAE1OS, TLBI RVALE1OS, TLBI RVAALE1OS.

• When EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC
syndrome value 0x03:

◦ TLBIALLIS, TLBIMVAIS, TLBIASIDIS, TLBIMVAAIS, TLBIMVALIS, TLBIMVAALIS.
◦ TLBIALL, TLBIMVA, TLBIASID, TLBIMVAA, TLBIMVAL, TLBIMVAAL
◦ ITLBIALL, ITLBIMVA, ITLBIASID.
◦ DTLBIALL, DTLBIMVA, DTLBIASID.

TTLB Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 execution of the specified TLB maintenance instructions are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

The TLB maintenance instructions are UNDEFINED at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPU, bit [24]

Trap cache maintenance instructions that operate to the Point of Unification. Traps execution of those cache
maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are trapped
to EL2 and reported with EC syndrome value 0x18:

◦ IC IVAU, DC CVAU. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED at EL0 and
any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported with EC syndrome
value 0x18:

◦ IC IVAU, IC IALLU, IC IALLUIS, DC CVAU.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported with EC syndrome

value 0x18:
◦ ICIMVAU, ICIALLU, ICIALLUIS, DCCMVAU.

Note

HCR_EL2, Hypervisor Configuration Register

Page 333

AArch32-tlbiallis.html
AArch32-tlbimvais.html
AArch32-tlbiasidis.html
AArch32-tlbimvaais.html
AArch32-tlbimvalis.html
AArch32-tlbimvaalis.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-tlbimvaa.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch64-ic-ivau.html
AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html
AArch64-dc-cvau.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2. In addition:

• IC IALLUIS and IC IALLU are always UNDEFINED at EL0 using AArch64.
• ICIMVAU, ICIALLU, ICIALLUIS, and DCCMVAU are always UNDEFINED at

EL0 using AArch32.

TPU Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate to the Point of Unification instruction can be trapped when the value of this control
is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TPCP, bit [23]

When FEAT_DPB is implemented:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency or Persistence. Traps
execution of those cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as
follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, the following instructions are trapped
to EL2 and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC, DC CVAP. If the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED
at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, the following instructions are trapped to EL2 and reported using EC syndrome
value 0x18:

◦ DC IVAC, DC CIVAC, DC CVAC, DC CVAP.
• If EL1 is using AArch32 state, the following instructions are trapped to EL2 and reported using EC syndrome

value 0x03:
◦ DCIMVAC, DCCIMVAC, DCCMVAC.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTEFEAT_MTE2 is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC IGVAC, DC IGDVAC,
DC CGVAC, DC CGDVAC, DC CGVAP and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTEFEAT_MTE2 are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at

EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is

named TPCP.

TPCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

HCR_EL2, Hypervisor Configuration Register

Page 334

AArch64-ic-ialluis.html
AArch64-ic-iallu.html
AArch32-icimvau.html
AArch32-iciallu.html
AArch32-icialluis.html
AArch32-dccmvau.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch64-dc-cigdvac.html
AArch64-dc-igvac.html
AArch64-dc-igdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html

If HCR_EL2.{E2H, TGE} is set to {1, 1}, this field behaves as 0 for all purposes other than a direct read of the value of
this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap data or unified cache maintenance instructions that operate to the Point of Coherency. Traps execution of those
cache maintenance instructions to EL2, when EL2 is enabled in the current Security state as follows:

• If EL0 is using AArch64 state and the value of SCTLR_EL1.UCI is not 0, accesses to the following registers are
trapped and reported using EC syndrome value 0x18:

◦ DC CIVAC, DC CVAC. However, if the value of SCTLR_EL1.UCI is 0 these instructions are UNDEFINED
at EL0 and any resulting exception is higher priority than this trap to EL2.

• If EL1 is using AArch64 state, accesses to DC IVAC, DC CIVAC, DC CVAC are trapped and reported using EC
syndrome value 0x18.

• When EL1 is using AArch32, accesses to DCIMVAC, DCCIMVAC, and DCCMVAC are trapped and reported
using EC syndrome value 0x03.

Note
• An exception generated because an instruction is UNDEFINED at EL0 is

higher priority than this trap to EL2. In addition:
◦ AArch64 instructions which invalidate by VA to the Point of

Coherency are always UNDEFINED at EL0 using AArch64.
◦ DCIMVAC, DCCIMVAC, and DCCMVAC are always UNDEFINED at

EL0 using AArch32.
• In Armv8.0 and Armv8.1, this field is named TPC. From Armv8.2 it is

named TPCP.

TPC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, invalidate, or clean and invalidate instruction that operates by VA to the point of
coherency can be trapped when the value of this control is 1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSW, bit [22]

Trap data or unified cache maintenance instructions that operate by Set/Way. Traps execution of those cache
maintenance instructions at EL1 to EL2, when EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to DC ISW, DC CSW, DC CISW are trapped to EL2, reported using EC
syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to DCISW, DCCSW, DCCISW are trapped to EL2, reported using EC
syndrome value 0x03.

If FEAT_MTE2 is implemented, this trap also applies to DC IGSW, DC IGDSW, DC CGSW, DC CGDW, DC CIGSW, and
DC CIGDSW.

Note

An exception generated because an instruction is UNDEFINED at EL0 is higher
priority than this trap to EL2, and these instructions are always UNDEFINED at
EL0.

TSW Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Execution of the specified instructions is trapped to EL2, when

EL2 is enabled in the current Security state.

HCR_EL2, Hypervisor Configuration Register

Page 335

AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch32-dcimvac.html
AArch32-dccimvac.html
AArch32-dccmvac.html
AArch32-dcisw.html
AArch32-dccsw.html
AArch32-dccisw.html
AArch64-dc-igsw.html
AArch64-dc-igdsw.html
AArch64-dc-cgsw.html
AArch64-dc-cgdsw.html
AArch64-dc-cigsw.html
AArch64-dc-cigdsw.html

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TACR, bit [21]

Trap Auxiliary Control Registers. Traps EL1 accesses to the Auxiliary Control Registers to EL2, when EL2 is enabled in
the current Security state, as follows:

• If EL1 is using AArch64 state, accesses to ACTLR_EL1 to EL2, are trapped to EL2 and reported using EC
syndrome value 0x18.

• If EL1 is using AArch32 state, accesses to ACTLR and, if implemented, ACTLR2 are trapped to EL2 and
reported using EC syndrome value 0x03.

TACR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to the specified registers are trapped to EL2, when

EL2 is enabled in the current Security state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

Note

ACTLR_EL1 is not accessible at EL0

ACTLR, and ACTLR2 are not accessible at EL0.

The Auxiliary Control Registers are IMPLEMENTATION DEFINED registers that
might implement global control bits for the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TIDCP, bit [20]

Trap IMPLEMENTATION DEFINED functionality. Traps EL1 accesses to the encodings reserved for IMPLEMENTATION DEFINED
functionality to EL2, when EL2 is enabled in the current Security state as follows:

• In AArch64 state, access to any of the encodings in the following reserved encoding spaces are trapped and
reported using EC syndrome 0x18:

◦ IMPLEMENTATION DEFINED System instructions, which are accessed using SYS and SYSL, with CRn ==
{11, 15}.

◦ IMPLEMENTATION DEFINED System registers, which are accessed using MRS and MSR with the
S3_<op1>_<Cn>_<Cm>_<op2> register name.

• In AArch32 state, MCR and MRC access to instructions with the following encodings are trapped and reported
using EC syndrome 0x03:

◦ All coproc==p15, CRn==c9, opc1 == {0-7}, CRm == {c0-c2, c5-c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c10, opc1 =={0-7}, CRm == {c0, c1, c4, c8}, opc2 == {0-7}.
◦ All coproc==p15, CRn==c11, opc1=={0-7}, CRm == {c0-c8, c15}, opc2 == {0-7}.

When the value of HCR_EL2.TIDCP is 1, it is IMPLEMENTATION DEFINED whether any of this functionality accessed from
EL0 is trapped to EL2. If it is not, then it is UNDEFINED, and any attempt to access it from EL0 generates an exception
that is taken to EL1.

TIDCP Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 accesses to or execution of the specified encodings

reserved for IMPLEMENTATION DEFINED functionality are trapped
to EL2, when EL2 is enabled in the current Security state.

An implementation can also include IMPLEMENTATION DEFINED registers that provide additional controls, to give finer-
grained control of the trapping of IMPLEMENTATION DEFINED features.

Note

Arm expects the trapping of EL0 accesses to these functions to EL2 to be
unusual, and used only when the hypervisor is virtualizing EL0 operation. Arm

HCR_EL2, Hypervisor Configuration Register

Page 336

AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html
AArch64-actlr_el1.html
AArch32-actlr.html
AArch32-actlr2.html
AArch64-s3_op1_cn_cm_op2.html

strongly recommends that unless the hypervisor must virtualize EL0
operation, an EL0 access to any of these functions is UNDEFINED, as it would be
if the implementation did not include EL2. The PE then takes any resulting
exception to EL1.

The trapping of accesses to these registers from EL1 is higher priority than an
exception resulting from the register access being UNDEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TSC, bit [19]

Trap SMC instructions. Traps EL1 execution of SMC instructions to EL2, when EL2 is enabled in the current Security
state.

If execution is in AArch64 state, the trap is reported using EC syndrome value 0x17.

If execution is in AArch32 state, the trap is reported using EC syndrome value 0x13.

Note

HCR_EL2.TSC traps execution of the SMC instruction. It is not a routing
control for the SMC exception. Trap exceptions and SMC exceptions have
different preferred return addresses.

TSC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 If EL3 is implemented, then any attempt to execute an SMC

instruction at EL1 is trapped to EL2, when EL2 is enabled in the
current Security state, regardless of the value of SCR_EL3.SMD.
If EL3 is not implemented, FEAT_NV is implemented, and
HCR_EL2.NV is 1, then any attempt to execute an SMC
instruction at EL1 using AArch64 is trapped to EL2, when EL2 is
enabled in the current Security state.
If EL3 is not implemented, and either FEAT_NV is not
implemented or HCR_EL2.NV is 0, then it is IMPLEMENTATION
DEFINED whether:

• Any attempt to execute an SMC instruction at EL1 is trapped
to EL2, when EL2 is enabled in the current Security state.

• Any attempt to execute an SMC instruction is UNDEFINED.

In AArch32 state, the Armv8-A architecture permits, but does not require, this trap to apply to conditional SMC
instructions that fail their condition code check, in the same way as with traps on other conditional instructions.

SMC instructions are UNDEFINED at EL0.

If EL3 is not implemented and HCR_EL2.NV is 0, it is IMPLEMENTATION DEFINED whether this bit is:

• RES0.
• Implemented with the functionality as described in HCR_EL2.TSC.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID3, bit [18]

Trap ID group 3. Traps EL1 reads of group 3 ID registers to EL2, when EL2 is enabled in the current Security state, as
follows:

In AArch64 state:

• Reads of the following registers are trapped to EL2, reported using EC syndrome value 0x18:

◦ ID_PFR0_EL1, ID_PFR1_EL1, ID_PFR2_EL1, ID_DFR0_EL1, ID_AFR0_EL1, ID_MMFR0_EL1,
ID_MMFR1_EL1, ID_MMFR2_EL1, ID_MMFR3_EL1, ID_ISAR0_EL1, ID_ISAR1_EL1,

HCR_EL2, Hypervisor Configuration Register

Page 337

AArch64-id_pfr2_el1.html
AArch64-id_dfr0_el1.html
AArch64-id_afr0_el1.html
AArch64-id_mmfr0_el1.html
AArch64-id_mmfr1_el1.html
AArch64-id_mmfr2_el1.html
AArch64-id_mmfr3_el1.html
AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html

ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1, ID_ISAR5_EL1, MVFR0_EL1, MVFR1_EL1,
MVFR2_EL1.

◦ ID_AA64PFR0_EL1, ID_AA64PFR1_EL1, ID_AA64DFR0_EL1, ID_AA64DFR1_EL1,
ID_AA64ISAR0_EL1, ID_AA64ISAR1_EL1, ID_AA64MMFR0_EL1, ID_AA64MMFR1_EL1,
ID_AA64AFR0_EL1, ID_AA64AFR1_EL1.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2.

▪ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2.

▪ ID_DFR1_EL1 is trapped to EL2.

▪ ID_AA64ZFR0_EL1 is trapped to EL2.

▪ ID_AA64ISAR2_EL1 is trapped to EL2.

▪ This field traps all MRS accesses to registers in the following range that are not already
mentioned in this field description: Op0 == 3, op1 == 0, CRn == c0, CRm == {c1-c7},
op2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4_EL1 and ID_MMFR5_EL1 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_MMFR4_EL1 or
ID_MMFR5_EL1 are trapped to EL2.

▪ ID_AA64MMFR2_EL1 and ID_ISAR6_EL1 are trapped to EL2, unless implemented as RAZ,
when it is IMPLEMENTATION DEFINED whether accesses to ID_AA64MMFR2_EL1 or
ID_ISAR6_EL1 are trapped to EL2.

▪ ID_DFR1_EL1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1_EL1 are trapped to EL2.

▪ ID_AA64ZFR0_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ZFR0_EL1 are trapped to EL2.

▪ ID_AA64ISAR2_EL1 is trapped to EL2, unless implemented as RAZ then it is
IMPLEMENTATION DEFINED whether accesses to ID_AA64ISAR2_EL1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps MRS accesses to registers
in the following range that are not already mentioned in this field description: Op0 == 3,
op1 == 0, CRn == c0, CRm == {c1-c7}, op2 == {0-7}.

In AArch32 state:

• VMRS access to MVFR0, MVFR1, and MVFR2, are trapped to EL2, reported using EC syndrome value 0x08,
unless access is also trapped by HCPTR which takes priority.

• MRC access to the following registers are trapped to EL2, reported using EC syndrome value 0x03:

◦ ID_PFR0, ID_PFR1, ID_PFR2, ID_DFR0, ID_AFR0, ID_MMFR0, ID_MMFR1, ID_MMFR2,
ID_MMFR3, ID_ISAR0, ID_ISAR1, ID_ISAR2, ID_ISAR3, ID_ISAR4, ID_ISAR5.

◦ If FEAT_FGT is implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2.

▪ ID_ISAR6 is trapped to EL2.

▪ ID_DFR1 is trapped to EL2.

▪ This field traps all MRC accesses to encodings in the following range that are not already
mentioned in this field description: coproc == p15, opc1 == 0, CRn == c0, CRm ==
{c2-c7}, opc2 == {0-7}.

◦ If FEAT_FGT is not implemented:

▪ ID_MMFR4 and ID_MMFR5 are trapped to EL2, unless implemented as RAZ, when it is
IMPLEMENTATION DEFINED whether accesses to ID_MMFR4 or ID_MMFR5 are trapped.

HCR_EL2, Hypervisor Configuration Register

Page 338

AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html
AArch64-mvfr0_el1.html
AArch64-mvfr1_el1.html
AArch64-mvfr2_el1.html
AArch64-id_aa64dfr0_el1.html
AArch64-id_aa64dfr1_el1.html
AArch64-id_aa64mmfr0_el1.html
AArch64-id_aa64afr0_el1.html
AArch64-id_aa64afr1_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_dfr1_el1.html
AArch64-id_aa64isar2_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_mmfr4_el1.html
AArch64-id_dfr1_el1.html
AArch64-id_dfr1_el1.html
AArch64-id_aa64isar2_el1.html
AArch64-id_aa64isar2_el1.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-hcptr.html
AArch32-id_pfr2.html
AArch32-id_dfr0.html
AArch32-id_afr0.html
AArch32-id_mmfr0.html
AArch32-id_mmfr1.html
AArch32-id_mmfr2.html
AArch32-id_mmfr3.html
AArch32-id_isar0.html
AArch32-id_isar1.html
AArch32-id_isar2.html
AArch32-id_isar3.html
AArch32-id_isar4.html
AArch32-id_isar5.html
AArch32-id_mmfr4.html
AArch32-id_isar6.html
AArch32-id_dfr1.html
AArch32-id_mmfr4.html
AArch32-id_mmfr4.html

▪ ID_ISAR6 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_ISAR6 are trapped to EL2.

▪ ID_DFR1 is trapped to EL2, unless implemented as RAZ, when it is IMPLEMENTATION
DEFINED whether accesses to ID_DFR1 are trapped to EL2.

▪ Otherwise, it is IMPLEMENTATION DEFINED whether this bit traps all MRC accesses to
registers in the following range not already mentioned in this field description with coproc
== p15, opc1 == 0, CRn == c0, CRm == {c2-c7}, opc2 == {0-7}.

TID3 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 3 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID2, bit [17]

Trap ID group 2. Traps the following register accesses to EL2, when EL2 is enabled in the current Security state, as
follows:

• If EL1 is using AArch64, reads of CTR_EL0, CCSIDR_EL1, CCSIDR2_EL1, CLIDR_EL1, and CSSELR_EL1 are
trapped to EL2, reported using EC syndrome value 0x18.

• If EL0 is using AArch64 and the value of SCTLR_EL1.UCT is not 0, reads of CTR_EL0 are trapped to EL2,
reported using EC syndrome value 0x18. If the value of SCTLR_EL1.UCT is 0 then EL0 reads of CTR_EL0 are
UNDEFINED and any resulting exception takes precedence over this trap.

• If EL1 is using AArch64, writes to CSSELR_EL1 are trapped to EL2, reported using EC syndrome value 0x18.
• If EL1 is using AArch32, reads of CTR, CCSIDR, CCSIDR2, CLIDR, and CSSELR are trapped to EL2, reported

using EC syndrome value 0x03.
• If EL1 is using AArch32, writes to CSSELR are trapped to EL2, reported using EC syndrome value 0x03.

TID2 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 and EL0 accesses to ID group 2 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TID1, bit [16]

Trap ID group 1. Traps EL1 reads of the following registers to EL2, when EL2 is enabled in the current Security state
as follows:

• In AArch64 state, accesses of REVIDR_EL1, AIDR_EL1, reported using EC syndrome value 0x18.

• In AArch32 state, accesses of TCMTR, TLBTR, REVIDR, AIDR, reported using EC syndrome value 0x03.

TID1 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 1 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 339

AArch32-id_isar6.html
AArch32-id_isar6.html
AArch32-id_dfr1.html
AArch32-id_dfr1.html
AArch64-ccsidr2_el1.html
AArch32-ctr.html
AArch32-ccsidr.html
AArch32-ccsidr2.html
AArch32-clidr.html
AArch32-csselr.html
AArch32-csselr.html
AArch64-revidr_el1.html
AArch64-aidr_el1.html
AArch32-tcmtr.html
AArch32-tlbtr.html
AArch32-revidr.html
AArch32-aidr.html

TID0, bit [15]

When AArch32 is supported at any Exception level:

Trap ID group 0. Traps the following register accesses to EL2:

• EL1 reads of the JIDR, reported using EC syndrome value 0x05.
• If the JIDR is RAZ from EL0, EL0 reads of the JIDR, reported using EC syndrome value 0x05.
• EL1 accesses using VMRS of the FPSID, reported using EC syndrome value 0x08.

Note
• It is IMPLEMENTATION DEFINED whether the JIDR is RAZ or UNDEFINED at

EL0. If it is UNDEFINED at EL0 then any resulting exception takes
precedence over this trap.

• The FPSID is not accessible at EL0 using AArch32.
• Writes to the FPSID are ignored, and not trapped by this control.

TID0 Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 The specified EL1 read accesses to ID group 0 registers are

trapped to EL2, when EL2 is enabled in the current Security
state.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [14]

Traps EL0 and EL1 execution of WFE instructions to EL2, when EL2 is enabled in the current Security state, from
both Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWE or
SCTLR_EL1.nTWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is trapped only if the instruction passes its
condition code check.

Note

Since a WFE can complete at any time, even without a Wakeup event, the
traps on WFE are not guaranteed to be taken, even if the WFE is executed
when there is no Wakeup event. The only guarantee is that if the instruction
does not complete in finite time in the absence of a Wakeup event, the trap
will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for Event
mechanism and Send event'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 340

AArch32-jidr.html
AArch32-jidr.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-jidr.html
AArch32-fpsid.html
AArch32-fpsid.html

TWI, bit [13]

Traps EL0 and EL1 execution of WFI instructions to EL2, when EL2 is enabled in the current Security state, from both
Execution states, reported using EC syndrome value 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at EL0 or EL1 is

trapped to EL2, when EL2 is enabled in the current Security
state, if the instruction would otherwise have caused the PE to
enter a low-power state and it is not trapped by SCTLR.nTWI or
SCTLR_EL1.nTWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is trapped only if the instruction passes its
condition code check.

Note

Since a WFI can complete at any time, even without a Wakeup event, the traps
on WFI are not guaranteed to be taken, even if the WFI is executed when
there is no Wakeup event. The only guarantee is that if the instruction does
not complete in finite time in the absence of a Wakeup event, the trap will be
taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DC, bit [12]

Default Cacheability.

DC Meaning
0b0 This control has no effect on the EL1&0 translation regime.
0b1 In both Security states:

• When EL1 is using AArch64, the PE behaves as if the value of
the SCTLR_EL1.M field is 0 for all purposes other than
returning the value of a direct read of SCTLR_EL1.

• When EL1 is using AArch32, the PE behaves as if the value of
the SCTLR.M field is 0 for all purposes other than returning
the value of a direct read of SCTLR.

• The PE behaves as if the value of the HCR_EL2.VM field is 1
for all purposes other than returning the value of a direct
read of HCR_EL2.

• The memory type produced by stage 1 of the EL1&0
translation regime is Normal Non-Shareable, Inner Write-
Back Read-Allocate Write-Allocate, Outer Write-Back Read-
Allocate Write-Allocate.

This field has no effect on the EL2, EL2&0, and EL3 translation regimes.

This field is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 341

BSU, bits [11:10]

Barrier Shareability upgrade. This field determines the minimum shareability domain that is applied to any barrier
instruction executed from EL1 or EL0:

BSU Meaning
0b00 No effect.
0b01 Inner Shareable.
0b10 Outer Shareable.
0b11 Full system.

This value is combined with the specified level of the barrier held in its instruction, using the same principles as
combining the shareability attributes from two stages of address translation.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0b00 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FB, bit [9]

Force broadcast. Causes the following instructions to be broadcast within the Inner Shareable domain when executed
from EL1:

AArch32: BPIALL, TLBIALL, TLBIMVA, TLBIASID, DTLBIALL, DTLBIMVA, DTLBIASID, ITLBIALL, ITLBIMVA,
ITLBIASID, TLBIMVAA, ICIALLU, TLBIMVAL, TLBIMVAAL.

AArch64: TLBI VMALLE1, TLBI VAE1, TLBI ASIDE1, TLBI VAAE1, TLBI VALE1, TLBI VAALE1, IC IALLU, TLBI RVAE1,
TLBI RVAAE1, TLBI RVALE1, TLBI RVAALE1.

FB Meaning
0b0 This field has no effect on the operation of the specified

instructions.
0b1 When one of the specified instruction is executed at EL1, the

instruction is broadcast within the Inner Shareable shareability
domain.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VSE, bit [8]

Virtual SError interrupt.

VSE Meaning
0b0 This mechanism is not making a virtual SError interrupt pending.
0b1 A virtual SError interrupt is pending because of this mechanism.

The virtual SError interrupt is enabled only when the value of HCR_EL2.{TGE, AMO} is {0, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VI, bit [7]

Virtual IRQ Interrupt.

VI Meaning
0b0 This mechanism is not making a virtual IRQ pending.
0b1 A virtual IRQ is pending because of this mechanism.

The virtual IRQ is enabled only when the value of HCR_EL2.{TGE, IMO} is {0, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCR_EL2, Hypervisor Configuration Register

Page 342

AArch32-bpiall.html
AArch32-tlbiall.html
AArch32-tlbimva.html
AArch32-tlbiasid.html
AArch32-dtlbiall.html
AArch32-dtlbimva.html
AArch32-dtlbiasid.html
AArch32-itlbiall.html
AArch32-itlbimva.html
AArch32-itlbiasid.html
AArch32-tlbimvaa.html
AArch32-iciallu.html
AArch32-tlbimval.html
AArch32-tlbimvaal.html
AArch64-ic-iallu.html

VF, bit [6]

Virtual FIQ Interrupt.

VF Meaning
0b0 This mechanism is not making a virtual FIQ pending.
0b1 A virtual FIQ is pending because of this mechanism.

The virtual FIQ is enabled only when the value of HCR_EL2.{TGE, FMO} is {0, 1}.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AMO, bit [5]

Physical SError interrupt routing.

AMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• Physical SError interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 0, if the PE is executing

at EL2 using AArch64, physical SError interrupts are not
taken unless they are routed to EL3 by the SCR_EL3.EA bit.

• Virtual SError interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in the

current Security state:
• Physical SError interrupts are taken to EL2, unless they are

routed to EL3.
• When the value of HCR_EL2.TGE is 0, then virtual SError

interrupts are enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the AMO bit physical asynchronous External aborts and SError interrupts target
EL2 unless they are routed to EL3.

• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other
than a direct read of the value of this bit.

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMO, bit [4]

Physical IRQ Routing.

IMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• Physical IRQ interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 0, if the PE is executing

at EL2 using AArch64, physical IRQ interrupts are not taken
unless they are routed to EL3 by the SCR_EL3.IRQ bit.

• Virtual IRQ interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in the

current Security state:
• Physical IRQ interrupts are taken to EL2, unless they are

routed to EL3.
• When the value of HCR_EL2.TGE is 0, then Virtual IRQ

interrupts are enabled.

If EL2 is enabled in the current Security state, and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the IMO bit, physical IRQ Interrupts target EL2 unless they are routed to EL3.
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.

HCR_EL2, Hypervisor Configuration Register

Page 343

• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a
direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FMO, bit [3]

Physical FIQ Routing.

FMO Meaning
0b0 When executing at Exception levels below EL2, and EL2 is

enabled in the current Security state:
• Physical FIQ interrupts are not taken to EL2.
• When the value of HCR_EL2.TGE is 0, if the PE is executing

at EL2 using AArch64, physical FIQ interrupts are not taken
unless they are routed to EL3 by the SCR_EL3.FIQ bit.

• Virtual FIQ interrupts are disabled.
0b1 When executing at any Exception level, and EL2 is enabled in the

current Security state:
• Physical FIQ interrupts are taken to EL2, unless they are

routed to EL3.
• When HCR_EL2.TGE is 0, then Virtual FIQ interrupts are

enabled.

If EL2 is enabled in the current Security state and the value of HCR_EL2.TGE is 1:

• Regardless of the value of the FMO bit, physical FIQ Interrupts target EL2 unless they are routed to EL3.
• When FEAT_VHE is not implemented, or if HCR_EL2.E2H is 0, this field behaves as 1 for all purposes other

than a direct read of the value of this bit.
• When FEAT_VHE is implemented and HCR_EL2.E2H is 1, this field behaves as 0 for all purposes other than a

direct read of the value of this bit.

For more information, see 'Asynchronous exception routing'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [2]

Protected Table Walk. In the EL1&0 translation regime, a translation table access made as part of a stage 1 translation
table walk is subject to a stage 2 translation. The combining of the memory type attributes from the two stages of
translation means the access might be made to a type of Device memory. If this occurs, then the value of this bit
determines the behavior:

PTW Meaning
0b0 The translation table walk occurs as if it is to Normal Non-

cacheable memory. This means it can be made speculatively.
0b1 The memory access generates a stage 2 Permission fault.

This field is permitted to be cached in a TLB.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SWIO, bit [1]

Set/Way Invalidation Override. Causes EL1 execution of the data cache invalidate by set/way instructions to perform a
data cache clean and invalidate by set/way:

SWIO Meaning
0b0 This control has no effect on the operation of data cache

invalidate by set/way instructions.
0b1 Data cache invalidate by set/way instructions perform a data

cache clean and invalidate by set/way.

HCR_EL2, Hypervisor Configuration Register

Page 344

When the value of this bit is 1:

AArch32: DCISW performs the same invalidation as a DCCISW instruction.

AArch64: DC ISW performs the same invalidation as a DC CISW instruction.

This bit can be implemented as RES1.

When HCR_EL2.TGE is 1, the PE ignores the value of this field for all purposes other than a direct read of this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VM, bit [0]

Virtualization enable. Enables stage 2 address translation for the EL1&0 translation regime, when EL2 is enabled in
the current Security state.

VM Meaning
0b0 EL1&0 stage 2 address translation disabled.
0b1 EL1&0 stage 2 address translation enabled.

When the value of this bit is 1, data cache invalidate instructions executed at EL1 perform a data cache clean and
invalidate. For the invalidate by set/way instruction this behavior applies regardless of the value of the
HCR_EL2.SWIO bit.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this field behaves as 0 for all
purposes other than a direct read of the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the HCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x078];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HCR_EL2;
elsif PSTATE.EL == EL3 then

return HCR_EL2;

MSR HCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b000

HCR_EL2, Hypervisor Configuration Register

Page 345

AArch32-dcisw.html
AArch32-dccisw.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x078] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HCR_EL2 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCR_EL2, Hypervisor Configuration Register

Page 346

(old) htmldiff from- (new)

HCRX_EL2, Extended Hypervisor Configuration
Register

The HCRX_EL2 characteristics are:

Purpose
Provides configuration controls for virtualization, including defining whether various operations are trapped to EL2.

Configuration
This register is present only when FEAT_HCX is implemented. Otherwise, direct accesses to HCRX_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

The bits in this register behave as if they are 0 for all purposes other than direct reads of the register if:

• EL2 is not enabled in the current Security state.
• SCR_EL3.HXEn is 0.

Attributes
HCRX_EL2 is a 64-bit register.

Field descriptions
The HCRX_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 FGTnXSFnXSEnASREnALSEnAS0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

FGTnXS, bit [4]

When FEAT_XS is implemented:

Determines if the fine-grained traps in HFGITR_EL2 that apply to each of the TLBI maintenance instructions that are
accessible at EL1 also apply to the corresponding TLBI maintenance instructions with the nXS qualifier.

FGTnXS Meaning
0b0 The fine-grained trap in the HFGITR_EL2 that applies to a

TLBI maintenance instruction at EL1 also applies to the
corresponding TLBI instruction with the nXS qualifier at EL1.

0b1 The fine-grained trap in the HFGITR_EL2 that applies to a
TLBI maintenance instruction at EL1 does not apply to the
corresponding TLBI instruction with the nXS qualifier at EL1.

On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 347

Otherwise:

Reserved, RES0.

FnXS, bit [3]

When FEAT_XS is implemented:

Determines the behavior of TLBI instructions affected by the XS attribute.

This control bit also determines whether an AArch64 DSB instruction behaves as a DSB instruction with an nXS
qualifier when executed at EL0 and EL1.

FnXS Meaning
0b0 This control does not have any effect on the behavior of the TLBI

maintenance instructions.
0b1 A TLBI maintenance instruction without the nXS qualifier

executed at EL1 behaves in the same way as the corresponding
TLBI maintenance instruction with the nXS qualifier.
An AArch64 DSB instruction executed at EL1 or EL0 behaves in
the same way as the corresponding DSB instruction with the nXS
qualifier executed at EL1 or EL0.

This bit is permitted to be cached in a TLB.

On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

EnASR, bit [2]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 or EL1 to EL2.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2 if

the execution is not trapped by SCTLR_EL1.EnASR.
Execution of an ST64BV instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

EnALS, bit [1]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 or EL1 to EL2.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped

to EL2 if the execution is not trapped by SCTLR_EL1.EnALS.
Execution of an LD64B or ST64B instruction at EL1 is trapped
to EL2.

0b1 This control does not cause any instructions to be trapped.

HCRX_EL2, Extended Hypervisor Configuration Register

Page 348

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

EnAS0, bit [0]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 or EL1 to EL2.

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL2

if the execution is not trapped by SCTLR_EL1.EnAS0.
Execution of an ST64BV0 instruction at EL1 is trapped to EL2.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

On a Warm reset, when EL3 is not implemented and EL2 is implemented, this field resets to 0.

Otherwise:

Reserved, RES0.

Accessing the HCRX_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HCRX_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0xA0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.HXEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HCRX_EL2;

elsif PSTATE.EL == EL3 then
return HCRX_EL2;

HCRX_EL2, Extended Hypervisor Configuration Register

Page 349

MSR HCRX_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0xA0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.HXEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.HXEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HCRX_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HCRX_EL2 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HCRX_EL2, Extended Hypervisor Configuration Register

Page 350

(old) htmldiff from- (new)

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read
Trap Register

The HDFGRTR_EL2 characteristics are:

Purpose
Provides controls for traps of MRS and MRC reads of debug, trace, PMU, and Statistical Profiling System registers.

Configuration
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HDFGRTR_EL2 are
UNDEFINED.

Attributes
HDFGRTR_EL2 is a 64-bit register.

Field descriptions
The HDFGRTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 nPMSNEVFR_EL1 RES0 PMCEIDn_EL0PMUSERENR_EL0 RES0 TRCVICTLR TRCSTATR TRCSSCSRn TRCSEQSTR TRCPRGCTLR TRCOSLSR RES0 TRCIMSPECnTRCID RES0 TRCCNTVRn TRCCLAIM TRCAUXCTLR TRCAUTHSTATUS TRC PMSLATFR_EL1

PMSIRR_EL1 PMSIDR_EL1 PMSICR_EL1PMSFCR_EL1PMSEVFR_EL1 PMSCR_EL1 PMBSR_EL1 PMBPTR_EL1PMBLIMITR_EL1PMMIR_EL1RES0PMSELR_EL0PMOVSPMINTEN PMCNTEN PMCCNTR_EL0PMCCFILTR_EL0PMEVTYPERn_EL0PMEVCNTRn_EL0OSDLR_EL1OSECCR_EL1 OSLSR_EL1 RES0 DBGPRCR_EL1DBGAUTHSTATUS_EL1 DBGCLAIM MDSCR_EL1DBGWVRn_EL1 DBGWCRn_EL1 DBGBVRn_EL1 DBGBCRn_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

nPMSNEVFR_EL1, bit [62]

When FEAT_SPEv1p2 is implemented:

Trap MRS reads of PMSNEVFR_EL1 at EL1 using AArch64 to EL2.

nPMSNEVFR_EL1 Meaning
0b0 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
orthen SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSNEVFR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

0b1 MRS reads of PMSNEVFR_EL1 are not
trappedaffected by this mechanism.bit.

This bit is ignored by the PE and treated as zero when EL3 is implemented and SCR_EL3.FGTEn == 0b0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 351

Bits [61:59]

Reserved, RES0.

PMCEIDn_EL0, bit [58]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCEID<n> at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMCEIDn_EL0 Meaning
0b0 MRS reads of PMCEID<n>_EL0 at EL1 and EL0 using

AArch64 and MRC reads of PMCEID<n> at EL0 using
AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1
is using AArch64, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then, unless the read
generates a higher priority exception:

• MRS reads of PMCEID<n>_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MRC reads of PMCEID<n> at EL0 using AArch32
are trapped to EL2 and reported with EC
syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMUSERENR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMUSERENR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMUSERENR_EL0 Meaning
0b0 MRS reads of PMUSERENR_EL0 at EL1 and EL0

using AArch64 and MRC reads of PMUSERENR at
EL0 using AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the read generates a higher priority
exception:

• MRS reads of PMUSERENR_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of PMUSERENR at EL0 using
AArch32 are trapped to EL2 and reported
with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 352

AArch64-pmuserenr_el0.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html
AArch32-pmuserenr.html

Bits [56:49]

Reserved, RES0.

TRCVICTLR, bit [48]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCVICTLR at EL1 using AArch64 to EL2.

TRCVICTLR Meaning
0b0 MRS reads of TRCVICTLR are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TRCVICTLR
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSTATR, bit [47]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCSTATR at EL1 using AArch64 to EL2.

TRCSTATR Meaning
0b0 MRS reads of TRCSTATR are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TRCSTATR at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETMv4 is implemented, TRCSSCSR<n> are implemented and System register access to the PE Trace Unit registers is
implemented:

Trap MRS reads of TRCSSCSR<n> at EL1 using AArch64 to EL2.

TRCSSCSRn Meaning
0b0 MRS reads of TRCSSCSR<n> are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
TRCSSCSR<n> at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 353

AArch64-trcvictlr.html
AArch64-trcvictlr.html
AArch64-trcvictlr.html
AArch64-trcstatr.html
AArch64-trcstatr.html
AArch64-trcstatr.html
AArch64-trcsscsrn.html
AArch64-trcsscsrn.html
AArch64-trcsscsrn.html

If Single-shot Comparator n is not implementented, a read of TRCSSCSR<n> is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When FEAT_ETMv4 is implemented, TRCSEQSTR is implemented and System register access to the PE Trace Unit registers is
implemented:

Trap MRS reads of TRCSEQSTR at EL1 using AArch64 to EL2.

TRCSEQSTR Meaning
0b0 MRS reads of TRCSEQSTR are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TRCSEQSTR
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCPRGCTLR at EL1 using AArch64 to EL2.

TRCPRGCTLR Meaning
0b0 MRS reads of TRCPRGCTLR are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
TRCPRGCTLR at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCOSLSR, bit [43]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCOSLSR at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 354

AArch64-trcsscsrn.html
AArch64-trcseqstr.html
AArch64-trcseqstr.html
AArch64-trcseqstr.html
AArch64-trcprgctlr.html
AArch64-trcprgctlr.html
AArch64-trcprgctlr.html
AArch64-trcoslsr.html

TRCOSLSR Meaning
0b0 MRS reads of TRCOSLSR are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TRCOSLSR at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

TRCIMSPECn Meaning
0b0 MRS reads of TRCIMSPEC<n> are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
TRCIMSPEC<n> at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a read of TRCIMSPEC<n> is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCID, bit [40]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• TRCDEVARCH.
• TRCDEVID.
• TRCIDR<n>.

TRCID Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads at EL1 using AArch64 of any of the
System registers listed above are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates a
higher priority exception.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 355

AArch64-trcoslsr.html
AArch64-trcoslsr.html
AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trcdevarch.html
AArch64-trcdevid.html

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETMv4 is implemented, TRCCNTVR<n> are implemented and System register access to the PE Trace Unit registers is
implemented:

Trap MRS reads of TRCCNTVR<n> at EL1 using AArch64 to EL2.

TRCCNTVRn Meaning
0b0 MRS reads of TRCCNTVR<n> are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
TRCCNTVR<n> at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

If Counter n is not implemented, a read of TRCCNTVR<n> is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• TRCCLAIMCLR.
• TRCCLAIMSET.

TRCCLAIM Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUXCTLR, bit [35]

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 356

AArch64-trccntvrn.html
AArch64-trccntvrn.html
AArch64-trccntvrn.html
AArch64-trccntvrn.html
AArch64-trcclaimclr.html
AArch64-trcclaimset.html

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCAUXCTLR at EL1 using AArch64 to EL2.

TRCAUXCTLR Meaning
0b0 MRS reads of TRCAUXCTLR are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
TRCAUXCTLR at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUTHSTATUS, bit [34]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of TRCAUTHSTATUS at EL1 using AArch64 to EL2.

TRCAUTHSTATUS Meaning
0b0 MRS reads of TRCAUTHSTATUS are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
TRCAUTHSTATUS at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRC, bit [33]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• TRCACATR<n>.
• TRCACVR<n>.
• TRCBBCTLR.
• TRCCCCTLR.
• TRCCIDCCTLR0.
• TRCCIDCCTLR1.
• TRCCIDCVR<n>.
• TRCCNTCTLR<n>.
• TRCCNTRLDVR<n>.
• TRCCONFIGR.
• TRCEVENTCTL0R.
• TRCEVENTCTL1R.
• TRCEXTINSELR.
• TRCQCTLR.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 357

AArch64-trcauxctlr.html
AArch64-trcauxctlr.html
AArch64-trcauxctlr.html
AArch64-trcauthstatus.html
AArch64-trcauthstatus.html
AArch64-trcauthstatus.html
AArch64-trcacatrn.html
AArch64-trcacvrn.html
AArch64-trcbbctlr.html
AArch64-trcccctlr.html
AArch64-trccidcctlr0.html
AArch64-trccidcctlr1.html
AArch64-trccidcvrn.html
AArch64-trccntctlrn.html
AArch64-trccntrldvrn.html
AArch64-trcconfigr.html
AArch64-trceventctl0r.html
AArch64-trceventctl1r.html
AArch64-trcqctlr.html

• TRCRSCTLR<n>.
• TRCSEQEVR<n>.
• TRCSEQRSTEVR.
• TRCSSCCR<n>.
• TRCSSPCICR<n>.
• TRCSTALLCTLR.
• TRCSYNCPR.
• TRCTRACEIDR.
• TRCTSCTLR.
• TRCVIIECTLR.
• TRCVIPCSSCTLR.
• TRCVISSCTLR.
• TRCVMIDCCTLR0.
• TRCVMIDCCTLR1.
• TRCVMIDCVR<n>.

TRC Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security state,

and either EL3 is not implemented or SCR_EL3.FGTEn == 0b1,
then MRS reads at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with EC
syndrome value 0x18, unless the read generates a higher priority
exception.

A read of an unimplemented register is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:

Trap MRS reads of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

PMSLATFR_EL1 Meaning
0b0 MRS reads of PMSLATFR_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSLATFR_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:

Trap MRS reads of PMSIRR_EL1 at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 358

AArch64-trcrsctlrn.html
AArch64-trcseqevrn.html
AArch64-trcseqrstevr.html
AArch64-trcssccrn.html
AArch64-trcsspcicrn.html
AArch64-trcstallctlr.html
AArch64-trcsyncpr.html
AArch64-trctraceidr.html
AArch64-trctsctlr.html
AArch64-trcviiectlr.html
AArch64-trcvipcssctlr.html
AArch64-trcvissctlr.html
AArch64-trcvmidcctlr0.html
AArch64-trcvmidcctlr1.html
AArch64-trcvmidcvrn.html
AArch64-pmslatfr_el1.html
AArch64-pmslatfr_el1.html
AArch64-pmslatfr_el1.html
AArch64-pmsirr_el1.html

PMSIRR_EL1 Meaning
0b0 MRS reads of PMSIRR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSIRR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIDR_EL1, bit [30]

When FEAT_SPE is implemented:

Trap MRS reads of PMSIDR_EL1 at EL1 using AArch64 to EL2.

PMSIDR_EL1 Meaning
0b0 MRS reads of PMSIDR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSIDR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:

Trap MRS reads of PMSICR_EL1 at EL1 using AArch64 to EL2.

PMSICR_EL1 Meaning
0b0 MRS reads of PMSICR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSICR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 359

AArch64-pmsirr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsicr_el1.html

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

Trap MRS reads of PMSFCR_EL1 at EL1 using AArch64 to EL2.

PMSFCR_EL1 Meaning
0b0 MRS reads of PMSFCR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSFCR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

Trap MRS reads of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

PMSEVFR_EL1 Meaning
0b0 MRS reads of PMSEVFR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMSEVFR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

Trap MRS reads of PMSCR_EL1 at EL1 using AArch64 to EL2.

PMSCR_EL1 Meaning
0b0 MRS reads of PMSCR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of PMSCR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 360

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmscr_el1.html
AArch64-pmscr_el1.html
AArch64-pmscr_el1.html

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

Trap MRS reads of PMBSR_EL1 at EL1 using AArch64 to EL2.

PMBSR_EL1 Meaning
0b0 MRS reads of PMBSR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of PMBSR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBPTR_EL1, bit [24]

When FEAT_SPE is implemented:

Trap MRS reads of PMBPTR_EL1 at EL1 using AArch64 to EL2.

PMBPTR_EL1 Meaning
0b0 MRS reads of PMBPTR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
PMBPTR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

Trap MRS reads of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 361

AArch64-pmbsr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmblimitr_el1.html

PMBLIMITR_EL1 Meaning
0b0 MRS reads of PMBLIMITR_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
PMBLIMITR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMMIR_EL1, bit [22]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMMIR_EL1 at EL1 using AArch64 to EL2.

PMMIR_EL1 Meaning
0b0 MRS reads of PMMIR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of PMMIR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [21:20]

Reserved, RES0.

PMSELR_EL0, bit [19]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMSELR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMSELR at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 362

AArch64-pmblimitr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmmir_el1.html
AArch64-pmmir_el1.html
AArch64-pmmir_el1.html

PMSELR_EL0 Meaning
0b0 MRS reads of PMSELR_EL0 at EL1 and EL0 using

AArch64 and MRC reads of PMSELR at EL0 using
AArch32 are not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the read
generates a higher priority exception:

• MRS reads of PMSELR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of PMSELR at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome
value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMOVSCLR_EL0 and PMOVSSET_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMOVSR and PMOVSSET.

PMOVS Meaning
0b0 The operations listed above are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using AArch64,
and either EL3 is not implemented or SCR_EL3.FGTEn ==
0b1, then, unless the read generates a higher priority
exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMOVSCLR_EL0 and PMOVSSET_EL0 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MRC reads at EL0 using AArch32 of PMOVSR and
PMOVSSET are trapped to EL2 and reported with EC
syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• PMINTENCLR_EL1.
• PMINTENSET_EL1.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 363

AArch64-pmovsclr_el0.html
AArch64-pmovsset_el0.html
AArch32-pmovsr.html
AArch32-pmovsset.html
AArch64-pmovsclr_el0.html
AArch64-pmovsset_el0.html
AArch32-pmovsr.html
AArch32-pmovsset.html
AArch64-pmintenclr_el1.html
AArch64-pmintenset_el1.html

PMINTEN Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMCNTENCLR_EL0 and PMCNTENSET_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMCNTENCLR and PMCNTENSET.

PMCNTEN Meaning
0b0 The operations listed above are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the read generates
a higher priority exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMCNTENCLR_EL0 and PMCNTENSET_EL0 are
trapped to EL2 and reported with EC syndrome value
0x18.

• MRC reads at EL0 using AArch32 of PMCNTENCLR
and PMCNTENSET are trapped to EL2 and reported
with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MRC and MRRC reads of PMCCNTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 364

AArch64-pmcntenclr_el0.html
AArch64-pmcntenset_el0.html
AArch32-pmcntenclr.html
AArch32-pmcntenset.html
AArch64-pmcntenclr_el0.html
AArch64-pmcntenset_el0.html
AArch32-pmcntenclr.html
AArch32-pmcntenset.html
AArch64-pmccntr_el0.html
AArch32-pmccntr.html

PMCCNTR_EL0 Meaning
0b0 MRS reads of PMCCNTR_EL0 at EL1 and EL0 using

AArch64 and MRC and MRRC reads of PMCCNTR at EL0
using AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1
is using AArch64, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then, unless the read
generates a higher priority exception:

• MRS reads of PMCCNTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MRC and MRRC reads of PMCCNTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03 (for MRC) or 0x04 (for
MRRC).

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

Trap MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MRC reads of PMCCFILTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMCCFILTR_EL0 Meaning
0b0 MRS reads of PMCCFILTR_EL0 at EL1 and EL0 using

AArch64 and MRC reads of PMCCFILTR at EL0 using
AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the read generates a higher priority
exception:

• MRS reads of PMCCFILTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads of PMCCFILTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when PMSELR_EL0.SEL == 31,
and PMCCFILTR can also be accessed in AArch32 state using PMXEVTYPER when PMSELR.SEL == 31.

Setting this fieldbit to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER, regardless of the value of
PMSELR_EL0.SEL or PMSELR.SEL.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 365

AArch64-pmccntr_el0.html
AArch32-pmccntr.html
AArch64-pmccntr_el0.html
AArch32-pmccntr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVTYPER<n>_EL0 and PMXEVTYPER_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMEVTYPER<n> and PMXEVTYPER.

PMEVTYPERn_EL0 Meaning
0b0 The operations listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the read generates a higher priority
exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MRC reads at EL0 using AArch32 of
PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC
syndrome value 0x03.

Regardless of the value of this bit, for each value n:

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:
◦ In AArch64 state, a read of PMEVTYPER<n>_EL0, or, if n is not 31, a read of PMXEVTYPER_EL0

when PMSELR_EL0.SEL == n.
◦ In AArch32 state, a read of PMEVTYPER<n>, or, if n is not 31, a read of PMXEVTYPER when

PMSELR.SEL == n.
• If event counter n is implemented, nand EL2 is greater-than-or-equal-toimplemented and enabled in the

current Security state, the following generate a Trap exception to EL2 from EL0 or EL1: MDCR_EL2.HPMN,
and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to
EL2 from EL0 or EL1:

◦ In AArch64 state, a read of PMEVTYPER<n>_EL0, or a read of PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a read of PMEVTYPER<n>, or a read of PMXEVTYPER when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

See also HDFGRTR_EL2.PMCCFILTR_EL0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When FEAT_PMUv3 is implemented:

Trap MRS reads and MRC reads of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MRS reads of PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MRC reads of PMEVCNTR<n> and PMXEVCNTR.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 366

PMEVCNTRn_EL0 Meaning
0b0 The operations listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the read generates a higher priority
exception:

• MRS reads at EL1 and EL0 using AArch64 of
PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0
are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads at EL0 using AArch32 of
PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC
syndrome value 0x03.

Regardless of the value of this bit, for each value n:

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:
◦ In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0 when

PMSELR_EL0.SEL == n.
◦ In AArch32 state, a read of PMEVCNTR<n> , or a read of PMXEVCNTR when PMSELR.SEL == n.

• If event counter n is implemented, nand EL2 is greater-than-or-equal-toimplemented and enabled in the
current Security state, the following generate a Trap exception to EL2 from EL0 or EL1: MDCR_EL2.HPMN,
and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to
EL2 from EL0 or EL1:

◦ In AArch64 state, a read of PMEVCNTR<n>_EL0, or a read of PMXEVCNTR_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a read of PMEVCNTR<n>, or a read of PMXEVCNTR when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

Trap MRS reads of OSDLR_EL1 at EL1 using AArch64 to EL2.

OSDLR_EL1 Meaning
0b0 MRS reads of OSDLR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of OSDLR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 367

AArch64-osdlr_el1.html
AArch64-osdlr_el1.html
AArch64-osdlr_el1.html

OSECCR_EL1, bit [10]

Trap MRS reads of OSECCR_EL1 at EL1 using AArch64 to EL2.

OSECCR_EL1 Meaning
0b0 MRS reads of OSECCR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
OSECCR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

OSLSR_EL1, bit [9]

Trap MRS reads of OSLSR_EL1 at EL1 using AArch64 to EL2.

OSLSR_EL1 Meaning
0b0 MRS reads of OSLSR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of OSLSR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [8]

Reserved, RES0.

DBGPRCR_EL1, bit [7]

Trap MRS reads of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

DBGPRCR_EL1 Meaning
0b0 MRS reads of DBGPRCR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
DBGPRCR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGAUTHSTATUS_EL1, bit [6]

Trap MRS reads of DBGAUTHSTATUS_EL1 at EL1 using AArch64 to EL2.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 368

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-dbgprcr_el1.html
AArch64-dbgprcr_el1.html
AArch64-dbgprcr_el1.html
AArch64-dbgauthstatus_el1.html

DBGAUTHSTATUS_EL1 Meaning
0b0 MRS reads of DBGAUTHSTATUS_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the

current Security state, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1,
then MRS reads of DBGAUTHSTATUS_EL1 at
EL1 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGCLAIM, bit [5]

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.
• DBGCLAIMSET_EL1.

DBGCLAIM Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MRS reads of MDSCR_EL1 at EL1 using AArch64 to EL2.

MDSCR_EL1 Meaning
0b0 MRS reads of MDSCR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of MDSCR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]

Trap MRS reads of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWVRn_EL1 Meaning
0b0 MRS reads of DBGWVR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
DBGWVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

If watchpoint n is not implemented, a read of DBGWVR<n>_EL1 is UNDEFINED.

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 369

AArch64-dbgauthstatus_el1.html
AArch64-dbgauthstatus_el1.html

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MRS reads of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWCRn_EL1 Meaning
0b0 MRS reads of DBGWCR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
DBGWCR<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

If watchpoint n is not implemented, a read of DBGWCR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBVRn_EL1, bit [1]

Trap MRS reads of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBVRn_EL1 Meaning
0b0 MRS reads of DBGBVR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
DBGBVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBVR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MRS reads of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBCRn_EL1 Meaning
0b0 MRS reads of DBGBCR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
DBGBCR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

If breakpoint n is not implemented, a read of DBGBCR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HDFGRTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HDFGRTR_EL2

op0 op1 CRn CRm op2

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 370

AArch64-dbgwcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html

0b11 0b100 0b0011 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1D0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HDFGRTR_EL2;

elsif PSTATE.EL == EL3 then
return HDFGRTR_EL2;

MSR HDFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1D0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HDFGRTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HDFGRTR_EL2 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register

Page 371

(old) htmldiff from- (new)

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write
Trap Register

The HDFGWTR_EL2 characteristics are:

Purpose
Provides controls for traps of MSR and MCR writes of debug, trace, PMU, and Statistical Profiling System registers.

Configuration
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HDFGWTR_EL2 are
UNDEFINED.

Attributes
HDFGWTR_EL2 is a 64-bit register.

Field descriptions
The HDFGWTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 nPMSNEVFR_EL1 RES0 PMUSERENR_EL0 RES0 TRFCR_EL1TRCVICTLR RES0 TRCSSCSRn TRCSEQSTR TRCPRGCTLR RES0 TRCOSLAR TRCIMSPECn RES0 TRCCNTVRn TRCCLAIM TRCAUXCTLR RES0 TRC PMSLATFR_EL1

PMSIRR_EL1 RES0 PMSICR_EL1PMSFCR_EL1PMSEVFR_EL1PMSCR_EL1 PMBSR_EL1 PMBPTR_EL1PMBLIMITR_EL1RES0PMCR_EL0PMSWINC_EL0PMSELR_EL0PMOVS PMINTEN PMCNTEN PMCCNTR_EL0PMCCFILTR_EL0PMEVTYPERn_EL0PMEVCNTRn_EL0OSDLR_EL1OSECCR_EL1 RES0 OSLAR_EL1DBGPRCR_EL1RES0 DBGCLAIM MDSCR_EL1DBGWVRn_EL1DBGWCRn_EL1DBGBVRn_EL1 DBGBCRn_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bit [63]

Reserved, RES0.

nPMSNEVFR_EL1, bit [62]

When FEAT_SPEv1p2 is implemented:

Trap MSR writes of PMSNEVFR_EL1 at EL1 using AArch64 to EL2.

nPMSNEVFR_EL1 Meaning
0b0 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
orthen SCR_EL3.FGTEn == 0b1, then MSR writes of
PMSNEVFR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

0b1 MSR writes of PMSNEVFR_EL1 are not
trappedaffected by this mechanism.bit.

This bit is ignored by the PE and treated as zero when EL3 is implemented and SCR_EL3.FGTEn == 0b0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 372

Bits [61:58]

Reserved, RES0.

PMUSERENR_EL0, bit [57]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMUSERENR_EL0 at EL1 using AArch64 to EL2.

PMUSERENR_EL0 Meaning
0b0 MSR writes of PMUSERENR_EL0 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
PMUSERENR_EL0 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [56:50]

Reserved, RES0.

TRFCR_EL1, bit [49]

When FEAT_TRF is implemented:

Trap MSR writes of TRFCR_EL1 at EL1 using AArch64 to EL2.

TRFCR_EL1 Meaning
0b0 MSR writes of TRFCR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of TRFCR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCVICTLR, bit [48]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCVICTLR at EL1 using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 373

AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmuserenr_el0.html
AArch64-trfcr_el1.html
AArch64-trfcr_el1.html
AArch64-trfcr_el1.html
AArch64-trcvictlr.html

TRCVICTLR Meaning
0b0 MSR writes of TRCVICTLR are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of TRCVICTLR
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [47]

Reserved, RES0.

TRCSSCSRn, bit [46]

When FEAT_ETMv4 is implemented, TRCSSCSR<n> are implemented and System register access to the PE Trace Unit registers is
implemented:

Trap MSR writes of TRCSSCSR<n> at EL1 using AArch64 to EL2.

TRCSSCSRn Meaning
0b0 MSR writes of TRCSSCSR<n> are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TRCSSCSR<n> at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If Single-shot Comparator n is not implementented, a write of TRCSSCSR<n> is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCSEQSTR, bit [45]

When FEAT_ETMv4 is implemented, TRCSEQSTR is implemented and System register access to the PE Trace Unit registers is
implemented:

Trap MSR writes of TRCSEQSTR at EL1 using AArch64 to EL2.

TRCSEQSTR Meaning
0b0 MSR writes of TRCSEQSTR are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TRCSEQSTR at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 374

AArch64-trcvictlr.html
AArch64-trcvictlr.html
AArch64-trcsscsrn.html
AArch64-trcsscsrn.html
AArch64-trcsscsrn.html
AArch64-trcsscsrn.html
AArch64-trcseqstr.html
AArch64-trcseqstr.html
AArch64-trcseqstr.html

Otherwise:

Reserved, RES0.

TRCPRGCTLR, bit [44]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCPRGCTLR at EL1 using AArch64 to EL2.

TRCPRGCTLR Meaning
0b0 MSR writes of TRCPRGCTLR are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TRCPRGCTLR at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [43]

Reserved, RES0.

TRCOSLAR, bit [42]

When System register access to the PE Trace Unit registers is implemented and FEAT_ETMv4 is implemented:

Trap MSR writes of TRCOSLAR at EL1 using AArch64 to EL2.

TRCOSLAR Meaning
0b0 MSR writes of TRCOSLAR are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of TRCOSLAR
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCIMSPECn, bit [41]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCIMSPEC<n> at EL1 using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 375

AArch64-trcprgctlr.html
AArch64-trcprgctlr.html
AArch64-trcprgctlr.html
AArch64-trcimspecn.html

TRCIMSPECn Meaning
0b0 MSR writes of TRCIMSPEC<n> are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TRCIMSPEC<n> at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

TRCIMSPEC<1-7> are optional. If TRCIMSPEC<n> is not implemented, a write of TRCIMSPEC<n> is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [40:38]

Reserved, RES0.

TRCCNTVRn, bit [37]

When FEAT_ETMv4 is implemented, TRCCNTVR<n> are implemented and System register access to the PE Trace Unit registers is
implemented:

Trap MSR writes of TRCCNTVR<n> at EL1 using AArch64 to EL2.

TRCCNTVRn Meaning
0b0 MSR writes of TRCCNTVR<n> are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TRCCNTVR<n> at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

If Counter n is not implemented, a write of TRCCNTVR<n> is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCCLAIM, bit [36]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• TRCCLAIMCLR.
• TRCCLAIMSET.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 376

AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trcimspecn.html
AArch64-trccntvrn.html
AArch64-trccntvrn.html
AArch64-trccntvrn.html
AArch64-trccntvrn.html
AArch64-trcclaimclr.html
AArch64-trcclaimset.html

TRCCLAIM Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TRCAUXCTLR, bit [35]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of TRCAUXCTLR at EL1 using AArch64 to EL2.

TRCAUXCTLR Meaning
0b0 MSR writes of TRCAUXCTLR are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TRCAUXCTLR at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18, unless
the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [34]

Reserved, RES0.

TRC, bit [33]

When FEAT_ETMv4 is implemented and System register access to the PE Trace Unit registers is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• TRCACATR<n>.
• TRCACVR<n>.
• TRCBBCTLR.
• TRCCCCTLR.
• TRCCIDCCTLR0.
• TRCCIDCCTLR1.
• TRCCIDCVR<n>.
• TRCCNTCTLR<n>.
• TRCCNTRLDVR<n>.
• TRCCONFIGR.
• TRCEVENTCTL0R.
• TRCEVENTCTL1R.
• TRCEXTINSELR.
• TRCQCTLR.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 377

AArch64-trcauxctlr.html
AArch64-trcauxctlr.html
AArch64-trcauxctlr.html
AArch64-trcacatrn.html
AArch64-trcacvrn.html
AArch64-trcbbctlr.html
AArch64-trcccctlr.html
AArch64-trccidcctlr0.html
AArch64-trccidcctlr1.html
AArch64-trccidcvrn.html
AArch64-trccntctlrn.html
AArch64-trccntrldvrn.html
AArch64-trcconfigr.html
AArch64-trceventctl0r.html
AArch64-trceventctl1r.html
AArch64-trcqctlr.html

• TRCRSCTLR<n>.
• TRCSEQEVR<n>.
• TRCSEQRSTEVR.
• TRCSSCCR<n>.
• TRCSSPCICR<n>.
• TRCSTALLCTLR.
• TRCSYNCPR.
• TRCTRACEIDR.
• TRCTSCTLR.
• TRCVIIECTLR.
• TRCVIPCSSCTLR.
• TRCVISSCTLR.
• TRCVMIDCCTLR0.
• TRCVMIDCCTLR1.
• TRCVMIDCVR<n>.

TRC Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security state,

and either EL3 is not implemented or SCR_EL3.FGTEn == 0b1,
then MSR writes at EL1 using AArch64 of any of the System
registers listed above are trapped to EL2 and reported with EC
syndrome value 0x18, unless the write generates a higher priority
exception.

A write of an unimplemented register is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSLATFR_EL1, bit [32]

When FEAT_SPE is implemented:

Trap MSR writes of PMSLATFR_EL1 at EL1 using AArch64 to EL2.

PMSLATFR_EL1 Meaning
0b0 MSR writes of PMSLATFR_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
PMSLATFR_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSIRR_EL1, bit [31]

When FEAT_SPE is implemented:

Trap MSR writes of PMSIRR_EL1 at EL1 using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 378

AArch64-trcrsctlrn.html
AArch64-trcseqevrn.html
AArch64-trcseqrstevr.html
AArch64-trcssccrn.html
AArch64-trcsspcicrn.html
AArch64-trcstallctlr.html
AArch64-trcsyncpr.html
AArch64-trctraceidr.html
AArch64-trctsctlr.html
AArch64-trcviiectlr.html
AArch64-trcvipcssctlr.html
AArch64-trcvissctlr.html
AArch64-trcvmidcctlr0.html
AArch64-trcvmidcctlr1.html
AArch64-trcvmidcvrn.html
AArch64-pmslatfr_el1.html
AArch64-pmslatfr_el1.html
AArch64-pmslatfr_el1.html
AArch64-pmsirr_el1.html

PMSIRR_EL1 Meaning
0b0 MSR writes of PMSIRR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
PMSIRR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [30]

Reserved, RES0.

PMSICR_EL1, bit [29]

When FEAT_SPE is implemented:

Trap MSR writes of PMSICR_EL1 at EL1 using AArch64 to EL2.

PMSICR_EL1 Meaning
0b0 MSR writes of PMSICR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
PMSICR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSFCR_EL1, bit [28]

When FEAT_SPE is implemented:

Trap MSR writes of PMSFCR_EL1 at EL1 using AArch64 to EL2.

PMSFCR_EL1 Meaning
0b0 MSR writes of PMSFCR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
PMSFCR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 379

AArch64-pmsirr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

PMSEVFR_EL1, bit [27]

When FEAT_SPE is implemented:

Trap MSR writes of PMSEVFR_EL1 at EL1 using AArch64 to EL2.

PMSEVFR_EL1 Meaning
0b0 MSR writes of PMSEVFR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
PMSEVFR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSCR_EL1, bit [26]

When FEAT_SPE is implemented:

Trap MSR writes of PMSCR_EL1 at EL1 using AArch64 to EL2.

PMSCR_EL1 Meaning
0b0 MSR writes of PMSCR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of PMSCR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBSR_EL1, bit [25]

When FEAT_SPE is implemented:

Trap MSR writes of PMBSR_EL1 at EL1 using AArch64 to EL2.

PMBSR_EL1 Meaning
0b0 MSR writes of PMBSR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of PMBSR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 380

AArch64-pmscr_el1.html
AArch64-pmscr_el1.html
AArch64-pmscr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmbsr_el1.html

Otherwise:

Reserved, RES0.

PMBPTR_EL1, bit [24]

When FEAT_SPE is implemented:

Trap MSR writes of PMBPTR_EL1 at EL1 using AArch64 to EL2.

PMBPTR_EL1 Meaning
0b0 MSR writes of PMBPTR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
PMBPTR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMBLIMITR_EL1, bit [23]

When FEAT_SPE is implemented:

Trap MSR writes of PMBLIMITR_EL1 at EL1 using AArch64 to EL2.

PMBLIMITR_EL1 Meaning
0b0 MSR writes of PMBLIMITR_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
PMBLIMITR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

PMCR_EL0, bit [21]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCR at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 381

AArch64-pmbptr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmblimitr_el1.html

PMCR_EL0 Meaning
0b0 MSR writes of PMCR_EL0 at EL1 and EL0 using AArch64

and MCR writes of PMCR at EL0 using AArch32 are not
trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the write generates
a higher priority exception:

• MSR writes of PMCR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of PMCR at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSWINC_EL0, bit [20]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMSWINC_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSWINC at EL0 using AArch32
when EL1 is using AArch64 to EL2.

PMSWINC_EL0 Meaning
0b0 MSR writes of PMSWINC_EL0 at EL1 and EL0 using

AArch64 and MCR writes of PMSWINC at EL0 using
AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1
is using AArch64, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then, unless the write
generates a higher priority exception:

• MSR writes of PMSWINC_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MCR writes of PMSWINC at EL0 using AArch32
are trapped to EL2 and reported with EC
syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMSELR_EL0, bit [19]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMSELR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMSELR at EL0 using AArch32
when EL1 is using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 382

AArch64-pmswinc_el0.html
AArch32-pmswinc.html
AArch64-pmswinc_el0.html
AArch32-pmswinc.html
AArch64-pmswinc_el0.html
AArch32-pmswinc.html

PMSELR_EL0 Meaning
0b0 MSR writes of PMSELR_EL0 at EL1 and EL0 using

AArch64 and MCR writes of PMSELR at EL0 using
AArch32 are not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the write
generates a higher priority exception:

• MSR writes of PMSELR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of PMSELR at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome
value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMOVS, bit [18]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMOVSCLR_EL0 and PMOVSSET_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMOVSR and PMOVSSET.

PMOVS Meaning
0b0 The operations listed above are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using AArch64,
and either EL3 is not implemented or SCR_EL3.FGTEn ==
0b1, then, unless the write generates a higher priority
exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMOVSCLR_EL0 and PMOVSSET_EL0 are trapped to
EL2 and reported with EC syndrome value 0x18.

• MCR writes at EL0 using AArch32 of PMOVSR and
PMOVSSET are trapped to EL2 and reported with EC
syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMINTEN, bit [17]

When FEAT_PMUv3 is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• PMINTENCLR_EL1.
• PMINTENSET_EL1.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 383

AArch64-pmovsclr_el0.html
AArch64-pmovsset_el0.html
AArch32-pmovsr.html
AArch32-pmovsset.html
AArch64-pmovsclr_el0.html
AArch64-pmovsset_el0.html
AArch32-pmovsr.html
AArch32-pmovsset.html
AArch64-pmintenclr_el1.html
AArch64-pmintenset_el1.html

PMINTEN Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCNTEN, bit [16]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMCNTENCLR_EL0 and PMCNTENSET_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMCNTENCLR and PMCNTENSET.

PMCNTEN Meaning
0b0 The operations listed above are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the write generates
a higher priority exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMCNTENCLR_EL0 and PMCNTENSET_EL0 are
trapped to EL2 and reported with EC syndrome value
0x18.

• MCR writes at EL0 using AArch32 of PMCNTENCLR
and PMCNTENSET are trapped to EL2 and reported
with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCNTR_EL0, bit [15]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCCNTR_EL0 at EL1 and EL0 using AArch64 and MCR and MCRR writes of PMCCNTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 384

AArch64-pmcntenclr_el0.html
AArch64-pmcntenset_el0.html
AArch32-pmcntenclr.html
AArch32-pmcntenset.html
AArch64-pmcntenclr_el0.html
AArch64-pmcntenset_el0.html
AArch32-pmcntenclr.html
AArch32-pmcntenset.html
AArch64-pmccntr_el0.html
AArch32-pmccntr.html

PMCCNTR_EL0 Meaning
0b0 MSR writes of PMCCNTR_EL0 at EL1 and EL0 using

AArch64 and MCR and MCRR writes of PMCCNTR at
EL0 using AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1
is using AArch64, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then, unless the write
generates a higher priority exception:

• MSR writes of PMCCNTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18.

• MCR and MCRR writes of PMCCNTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03 (for MCR) or 0x04 (for
MCRR).

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMCCFILTR_EL0, bit [14]

When FEAT_PMUv3 is implemented:

Trap MSR writes of PMCCFILTR_EL0 at EL1 and EL0 using AArch64 and MCR writes of PMCCFILTR at EL0 using
AArch32 when EL1 is using AArch64 to EL2.

PMCCFILTR_EL0 Meaning
0b0 MSR writes of PMCCFILTR_EL0 at EL1 and EL0

using AArch64 and MCR writes of PMCCFILTR at
EL0 using AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the write generates a higher priority
exception:

• MSR writes of PMCCFILTR_EL0 at EL1 and EL0
using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes of PMCCFILTR at EL0 using
AArch32 are trapped to EL2 and reported with
EC syndrome value 0x03.

PMCCFILTR_EL0 can also be accessed in AArch64 state using PMXEVTYPER_EL0 when PMSELR_EL0.SEL == 31,
and PMCCFILTR can also be accessed in AArch32 state using PMXEVTYPER when PMSELR.SEL == 31.

Setting this fieldbit to 1 has no effect on accesses to PMXEVTYPER_EL0 and PMXEVTYPER, regardless of the value of
PMSELR_EL0.SEL or PMSELR.SEL.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 385

AArch64-pmccntr_el0.html
AArch32-pmccntr.html
AArch64-pmccntr_el0.html
AArch32-pmccntr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html
AArch64-pmccfiltr_el0.html
AArch32-pmccfiltr.html

PMEVTYPERn_EL0, bit [13]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVTYPER<n>_EL0 and PMXEVTYPER_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMEVTYPER<n> and PMXEVTYPER.

PMEVTYPERn_EL0 Meaning
0b0 The operations listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the write generates a higher priority
exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMEVTYPER<n>_EL0 and
PMXEVTYPER_EL0 are trapped to EL2 and
reported with EC syndrome value 0x18.

• MCR writes at EL0 using AArch32 of
PMEVTYPER<n> and PMXEVTYPER are
trapped to EL2 and reported with EC
syndrome value 0x03.

Regardless of the value of this bit, for each value n:

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:
◦ In AArch64 state, a write of PMEVTYPER<n>_EL0, or, if n is not 31, a write of PMXEVTYPER_EL0

when PMSELR_EL0.SEL == n.
◦ In AArch32 state, a write of PMEVTYPER<n>, or, if n is not 31, a write of PMXEVTYPER when

PMSELR.SEL == n.
• If event counter n is implemented, nand EL2 is greater-than-or-equal-toimplemented and enabled in the

current Security state, the following generate a Trap exception to EL2 from EL0 or EL1: MDCR_EL2.HPMN,
and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to
EL2 from EL0 or EL1:

◦ In AArch64 state, a write of PMEVTYPER<n>_EL0, or a write of PMXEVTYPER_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a write of PMEVTYPER<n>, or a write of PMXEVTYPER when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

See also HDFGWTR_EL2.PMCCFILTR_EL0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

PMEVCNTRn_EL0, bit [12]

When FEAT_PMUv3 is implemented:

Trap MSR writes and MCR writes of multiple System registers.

Enables a trap to EL2 the following operations:

• At EL1 and EL0 using AArch64: MSR writes of PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0.
• At EL0 using Arch32 when EL1 is using AArch64: MCR writes of PMEVCNTR<n> and PMXEVCNTR.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 386

PMEVCNTRn_EL0 Meaning
0b0 The operations listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1},
EL1 is using AArch64, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then,
unless the write generates a higher priority
exception:

• MSR writes at EL1 and EL0 using AArch64 of
PMEVCNTR<n>_EL0 and PMXEVCNTR_EL0
are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes at EL0 using AArch32 of
PMEVCNTR<n> and PMXEVCNTR are
trapped to EL2 and reported with EC
syndrome value 0x03.

Regardless of the value of this bit, for each value n:

When FEAT_FGT is implemented, then, regardless of the value of this bit, for each value n:

• If event counter n is not implemented, the following accesses are UNDEFINED:
◦ In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of PMXEVCNTR_EL0 when

PMSELR_EL0.SEL == n.
◦ In AArch32 state, a write of PMEVCNTR<n> , or a write of PMXEVCNTR when PMSELR.SEL == n.

• If event counter n is implemented, nand EL2 is greater-than-or-equal-toimplemented and enabled in the
current Security state, the following generate a Trap exception to EL2 from EL0 or EL1: MDCR_EL2.HPMN,
and EL2 is implemented and enabled in the current Security state, the following generate a Trap exception to
EL2 from EL0 or EL1:

◦ In AArch64 state, a write of PMEVCNTR<n>_EL0, or a write of PMXEVCNTR_EL0 when
PMSELR_EL0.SEL == n, reported with EC syndrome value 0x18.

◦ In AArch32 state, a write of PMEVCNTR<n>, or a write of PMXEVCNTR when PMSELR.SEL == n,
reported with EC syndrome value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

OSDLR_EL1, bit [11]

When FEAT_DoubleLock is implemented:

Trap MSR writes of OSDLR_EL1 at EL1 using AArch64 to EL2.

OSDLR_EL1 Meaning
0b0 MSR writes of OSDLR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of OSDLR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 387

AArch64-osdlr_el1.html
AArch64-osdlr_el1.html
AArch64-osdlr_el1.html

OSECCR_EL1, bit [10]

Trap MSR writes of OSECCR_EL1 at EL1 using AArch64 to EL2.

OSECCR_EL1 Meaning
0b0 MSR writes of OSECCR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
OSECCR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [9]

Reserved, RES0.

OSLAR_EL1, bit [8]

Trap MSR writes of OSLAR_EL1 at EL1 using AArch64 to EL2.

OSLAR_EL1 Meaning
0b0 MSR writes of OSLAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of OSLAR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGPRCR_EL1, bit [7]

Trap MSR writes of DBGPRCR_EL1 at EL1 using AArch64 to EL2.

DBGPRCR_EL1 Meaning
0b0 MSR writes of DBGPRCR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
DBGPRCR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [6]

Reserved, RES0.

DBGCLAIM, bit [5]

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• DBGCLAIMCLR_EL1.
• DBGCLAIMSET_EL1.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 388

AArch64-oslar_el1.html
AArch64-oslar_el1.html
AArch64-oslar_el1.html
AArch64-dbgprcr_el1.html
AArch64-dbgprcr_el1.html
AArch64-dbgprcr_el1.html

DBGCLAIM Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MDSCR_EL1, bit [4]

Trap MSR writes of MDSCR_EL1 at EL1 using AArch64 to EL2.

MDSCR_EL1 Meaning
0b0 MSR writes of MDSCR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
MDSCR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWVRn_EL1, bit [3]

Trap MSR writes of DBGWVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWVRn_EL1 Meaning
0b0 MSR writes of DBGWVR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
DBGWVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

If watchpoint n is not implemented, a write of DBGWVR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGWCRn_EL1, bit [2]

Trap MSR writes of DBGWCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGWCRn_EL1 Meaning
0b0 MSR writes of DBGWCR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
DBGWCR<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority
exception.

If watchpoint n is not implemented, a write of DBGWCR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 389

AArch64-dbgwcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgwcrn_el1.html

DBGBVRn_EL1, bit [1]

Trap MSR writes of DBGBVR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBVRn_EL1 Meaning
0b0 MSR writes of DBGBVR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
DBGBVR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

If breakpoint n is not implemented, a write of DBGBVR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DBGBCRn_EL1, bit [0]

Trap MSR writes of DBGBCR<n>_EL1 at EL1 using AArch64 to EL2.

DBGBCRn_EL1 Meaning
0b0 MSR writes of DBGBCR<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
DBGBCR<n>_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

If breakpoint n is not implemented, a write of DBGBCR<n>_EL1 is UNDEFINED.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HDFGWTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HDFGWTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b101

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 390

AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgbcrn_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1D8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HDFGWTR_EL2;

elsif PSTATE.EL == EL3 then
return HDFGWTR_EL2;

MSR HDFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0011 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1D8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HDFGWTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HDFGWTR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register

Page 391

(old) htmldiff from- (new)

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap
Register

The HFGITR_EL2 characteristics are:

Purpose
Provides instruction trap controls.

Configuration
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGITR_EL2 are
UNDEFINED.

Attributes
HFGITR_EL2 is a 64-bit register.

Field descriptions
The HFGITR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 DCCVAC SVC_EL1 SVC_EL0 ERET CPPRCTX DVPRCTX CFPRCTX TLBIVAALE1TLBIVALE1TLBIVAAE1TLBIASIDE1TLBIVAE1TLBIVMALLE1TLBIRVAALE1TLBIRVALE1TLBIRVAAE1TLBIRVAE1TLBIRVAALE1ISTLBIRVALE1ISTLBIRVAAE1ISTLBIRVAE1ISTLBIVAALE1ISTLBIVALE1IS

TLBIVAAE1ISTLBIASIDE1ISTLBIVAE1ISTLBIVMALLE1ISTLBIRVAALE1OSTLBIRVALE1OSTLBIRVAAE1OSTLBIRVAE1OSTLBIVAALE1OSTLBIVALE1OSTLBIVAAE1OSTLBIASIDE1OSTLBIVAE1OSTLBIVMALLE1OSATS1E1WPATS1E1RP ATS1E0W ATS1E0R ATS1E1W ATS1E1R DCZVA DCCIVAC DCCVADP DCCVAP DCCVAU DCCISW DCCSW DCISW DCIVAC ICIVAU ICIALLU ICIALLUIS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:55]

Reserved, RES0.

DCCVAC, bit [54]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CVAC.
• DC CGVAC, if FEAT_MTE is implemented.
• DC CGDVAC, if FEAT_MTE is implemented.

DCCVAC Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then execution at
EL1 and EL0 using AArch64 of any of the instructions listed
above is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SVC_EL1, bit [53]

Trap execution of SVC at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 392

AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html

SVC_EL1 Meaning
0b0 Execution of SVC is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then execution of SVC at EL1 using AArch64 is
trapped to EL2 and reported with EC syndrome value 0x15,
unless the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SVC_EL0, bit [52]

Trap execution of SVC at EL0 using AArch64 and execution of SVC at EL0 using AArch32 when EL1 is using AArch64 to
EL2.

SVC_EL0 Meaning
0b0 Execution of SVC at EL0 using AArch64 and execution of SVC

at EL0 using AArch32 is not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the instruction
generates a higher priority exception:

• Execution of SVC at EL0 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x15.

• Execution of SVC at EL0 using AArch32 is trapped to
EL2 and reported with EC syndrome value 0x11.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ERET, bit [51]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• ERET.
• ERETAA, if FEAT_PAuth is implemented.
• ERETAB, if FEAT_PAuth is implemented.

ERET Meaning
0b0 Execution of the instructions listed above is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security state,

and either EL3 is not implemented or SCR_EL3.FGTEn == 0b1,
then execution at EL1 using AArch64 of any of the instructions
listed above is trapped to EL2 and reported with EC syndrome
value 0x1A, unless the instruction generates a higher priority
exception.

If EL2 is implemented and enabled in the current Security state, HCR_EL2.API == 0b0, and this fieldbit enables a fine-
grained trap on the instruction, then execution at EL1 using AArch64 of ERETAA or ERETAB instructions is trapped to
EL2 and reported with EC syndrome value 0x1A with its associated ISS field, as the fine-grained trap has higher
priority than the trap enabled by HCR_EL2.API == 0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPPRCTX, bit [50]

When FEAT_SPECRES is implemented:

Trap execution of CPP RCTX at EL1 and EL0 using AArch64 and execution of CPPRCTX at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 393

AArch64-cpp-rctx.html
AArch32-cpprctx.html

CPPRCTX Meaning
0b0 Execution of CPP RCTX at EL1 and EL0 using AArch64 and

execution of CPPRCTX at EL0 using AArch32 is not
trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the instruction
generates a higher priority exception:

• Execution of CPP RCTX at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome
value 0x18.

• Execution of CPPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome value
0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DVPRCTX, bit [49]

When FEAT_SPECRES is implemented:

Trap execution of DVP RCTX at EL1 and EL0 using AArch64 and execution of DVPRCTX at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

DVPRCTX Meaning
0b0 Execution of DVP RCTX at EL1 and EL0 using AArch64 and

execution of DVPRCTX at EL0 using AArch32 is not
trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the instruction
generates a higher priority exception:

• Execution of DVP RCTX at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome
value 0x18.

• Execution of DVPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome value
0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

CFPRCTX, bit [48]

When FEAT_SPECRES is implemented:

Trap execution of CFP RCTX at EL1 and EL0 using AArch64 and execution of CFPRCTX at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 394

AArch64-cpp-rctx.html
AArch32-cpprctx.html
AArch64-cpp-rctx.html
AArch32-cpprctx.html
AArch64-dvp-rctx.html
AArch32-dvprctx.html
AArch64-dvp-rctx.html
AArch32-dvprctx.html
AArch64-dvp-rctx.html
AArch32-dvprctx.html
AArch64-cfp-rctx.html
AArch32-cfprctx.html

CFPRCTX Meaning
0b0 Execution of CFP RCTX at EL1 and EL0 using AArch64 and

execution of CFPRCTX at EL0 using AArch32 is not
trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the instruction
generates a higher priority exception:

• Execution of CFP RCTX at EL1 and EL0 using AArch64
is trapped to EL2 and reported with EC syndrome
value 0x18.

• Execution of CFPRCTX at EL0 using AArch32 is
trapped to EL2 and reported with EC syndrome value
0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1, bit [47]

Trap execution of TLBI VAALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAALE1NXS.

TLBIVAALE1 Meaning
0b0 Execution of TLBI VAALE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VAALE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1, bit [46]

Trap execution of TLBI VALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VALE1NXS.

TLBIVALE1 Meaning
0b0 Execution of TLBI VALE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI VALE1
at EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1, bit [45]

Trap execution of TLBI VAAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAAE1NXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 395

AArch64-cfp-rctx.html
AArch32-cfprctx.html
AArch64-cfp-rctx.html
AArch32-cfprctx.html

TLBIVAAE1 Meaning
0b0 Execution of TLBI VAAE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI VAAE1
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1, bit [44]

Trap execution of TLBI ASIDE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI ASIDE1NXS.

TLBIASIDE1 Meaning
0b0 Execution of TLBI ASIDE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
ASIDE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1, bit [43]

Trap execution of TLBI VAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAE1NXS.

TLBIVAE1 Meaning
0b0 Execution of TLBI VAE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI VAE1 at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1, bit [42]

Trap execution of TLBI VMALLE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VMALLE1NXS.

TLBIVMALLE1 Meaning
0b0 Execution of TLBI VMALLE1 is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VMALLE1 at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1, bit [41]

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 396

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAALE1NXS.

TLBIRVAALE1 Meaning
0b0 Execution of TLBI RVAALE1 is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAALE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1, bit [40]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVALE1NXS.

TLBIRVALE1 Meaning
0b0 Execution of TLBI RVALE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVALE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1, bit [39]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAAE1NXS.

TLBIRVAAE1 Meaning
0b0 Execution of TLBI RVAAE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAAE1 at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 397

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1, bit [38]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1 at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAE1NXS.

TLBIRVAE1 Meaning
0b0 Execution of TLBI RVAE1 is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI RVAE1
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAALE1IS, bit [37]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAALE1ISNXS.

TLBIRVAALE1IS Meaning
0b0 Execution of TLBI RVAALE1IS is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1IS, bit [36]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVALE1ISNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 398

TLBIRVALE1IS Meaning
0b0 Execution of TLBI RVALE1IS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1IS, bit [35]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAAE1ISNXS.

TLBIRVAAE1IS Meaning
0b0 Execution of TLBI RVAAE1IS is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAAE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1IS, bit [34]

When FEAT_TLBIRANGE is implemented:

Trap execution of TLBI RVAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAE1ISNXS.

TLBIRVAE1IS Meaning
0b0 Execution of TLBI RVAE1IS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAE1IS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 399

TLBIVAALE1IS, bit [33]

Trap execution of TLBI VAALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAALE1ISNXS.

TLBIVAALE1IS Meaning
0b0 Execution of TLBI VAALE1IS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VAALE1IS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVALE1IS, bit [32]

Trap execution of TLBI VALE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VALE1ISNXS.

TLBIVALE1IS Meaning
0b0 Execution of TLBI VALE1IS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VALE1IS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAAE1IS, bit [31]

Trap execution of TLBI VAAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAAE1ISNXS.

TLBIVAAE1IS Meaning
0b0 Execution of TLBI VAAE1IS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VAAE1IS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIASIDE1IS, bit [30]

Trap execution of TLBI ASIDE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI ASIDE1ISNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 400

TLBIASIDE1IS Meaning
0b0 Execution of TLBI ASIDE1IS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
ASIDE1IS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVAE1IS, bit [29]

Trap execution of TLBI VAE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAE1ISNXS.

TLBIVAE1IS Meaning
0b0 Execution of TLBI VAE1IS is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI VAE1IS
at EL1 using AArch64 is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIVMALLE1IS, bit [28]

Trap execution of TLBI VMALLE1IS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VMALLE1ISNXS.

TLBIVMALLE1IS Meaning
0b0 Execution of TLBI VMALLE1IS is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then execution of TLBI
VMALLE1IS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TLBIRVAALE1OS, bit [27]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAALE1OSNXS.

TLBIRVAALE1OS Meaning
0b0 Execution of TLBI RVAALE1OS is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAALE1OS at EL1 using AArch64 is trapped to
EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority
exception.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 401

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVALE1OS, bit [26]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVALE1OSNXS.

TLBIRVALE1OS Meaning
0b0 Execution of TLBI RVALE1OS is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVALE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAAE1OS, bit [25]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAAE1OSNXS.

TLBIRVAAE1OS Meaning
0b0 Execution of TLBI RVAAE1OS is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAAE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIRVAE1OS, bit [24]

When FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented:

Trap execution of TLBI RVAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI RVAE1OSNXS.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 402

TLBIRVAE1OS Meaning
0b0 Execution of TLBI RVAE1OS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
RVAE1OS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAALE1OS, bit [23]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAALE1OSNXS.

TLBIVAALE1OS Meaning
0b0 Execution of TLBI VAALE1OS is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VAALE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVALE1OS, bit [22]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VALE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VALE1OSNXS.

TLBIVALE1OS Meaning
0b0 Execution of TLBI VALE1OS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VALE1OS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 403

TLBIVAAE1OS, bit [21]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAAE1OSNXS.

TLBIVAAE1OS Meaning
0b0 Execution of TLBI VAAE1OS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VAAE1OS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIASIDE1OS, bit [20]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI ASIDE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI ASIDE1OSNXS.

TLBIASIDE1OS Meaning
0b0 Execution of TLBI ASIDE1OS is not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
ASIDE1OS at EL1 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless
the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVAE1OS, bit [19]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VAE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VAE1OSNXS.

TLBIVAE1OS Meaning
0b0 Execution of TLBI VAE1OS is not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of TLBI
VAE1OS at EL1 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 404

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

TLBIVMALLE1OS, bit [18]

When FEAT_TLBIOS is implemented:

Trap execution of TLBI VMALLE1OS at EL1 using AArch64 to EL2.

If FEAT_XS is implemented and HCRX_EL2.FGTnXS == 0b0, this field also traps execution of TLBI VMALLE1OSNXS.

TLBIVMALLE1OS Meaning
0b0 Execution of TLBI VMALLE1OS is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then execution of
TLBI VMALLE1OS at EL1 using AArch64 is
trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1WP, bit [17]

When FEAT_PAN2 is implemented:

Trap execution of AT S1E1WP at EL1 using AArch64 to EL2.

ATS1E1WP Meaning
0b0 Execution of AT S1E1WP is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of AT S1E1WP at
EL1 using AArch64 is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E1RP, bit [16]

When FEAT_PAN2 is implemented:

Trap execution of AT S1E1RP at EL1 using AArch64 to EL2.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 405

AArch64-at-s1e1wp.html
AArch64-at-s1e1wp.html
AArch64-at-s1e1wp.html
AArch64-at-s1e1rp.html

ATS1E1RP Meaning
0b0 Execution of AT S1E1RP is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of AT S1E1RP at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ATS1E0W, bit [15]

Trap execution of AT S1E0W at EL1 using AArch64 to EL2.

ATS1E0W Meaning
0b0 Execution of AT S1E0W is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of AT S1E0W at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E0R, bit [14]

Trap execution of AT S1E0R at EL1 using AArch64 to EL2.

ATS1E0R Meaning
0b0 Execution of AT S1E0R is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of AT S1E0R at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ATS1E1W, bit [13]

Trap execution of AT S1E1W at EL1 using AArch64 to EL2.

ATS1E1W Meaning
0b0 Execution of AT S1E1W is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of AT S1E1W at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 406

AArch64-at-s1e1rp.html
AArch64-at-s1e1rp.html
AArch64-at-s1e0w.html
AArch64-at-s1e0w.html
AArch64-at-s1e0w.html
AArch64-at-s1e0r.html
AArch64-at-s1e0r.html
AArch64-at-s1e0r.html
AArch64-at-s1e1w.html
AArch64-at-s1e1w.html
AArch64-at-s1e1w.html

ATS1E1R, bit [12]

Trap execution of AT S1E1R at EL1 using AArch64 to EL2.

ATS1E1R Meaning
0b0 Execution of AT S1E1R is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of AT S1E1R at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCZVA, bit [11]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC ZVA.
• DC GVA, if FEAT_MTE is implemented.
• DC GZVA, if FEAT_MTE is implemented.

DCZVA Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then execution at
EL1 and EL0 using AArch64 of any of the instructions listed
above is trapped to EL2 and reported with EC syndrome value
0x18, unless the instruction generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCIVAC, bit [10]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CIVAC.
• DC CIGVAC, if FEAT_MTE is implemented.
• DC CIGDVAC, if FEAT_MTE is implemented.

DCCIVAC Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 0b1, then
execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCVADP, bit [9]

When FEAT_DPB2 is implemented:

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CVADP.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 407

AArch64-at-s1e1r.html
AArch64-at-s1e1r.html
AArch64-at-s1e1r.html
AArch64-dc-zva.html
AArch64-dc-gzva.html
AArch64-dc-cigdvac.html

• DC CGVADP, if FEAT_MTE is implemented.
• DC CGDVADP, if FEAT_MTE is implemented.

DCCVADP Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 0b1, then
execution at EL1 and EL0 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported
with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

DCCVAP, bit [8]

Trap execution of multiple instructions. Enables a trap on execution at EL1 and EL0 using AArch64 of any of the
following AArch64 instructions to EL2:

• DC CVAP.
• DC CGVAP, if FEAT_MTE is implemented.
• DC CGDVAP, if FEAT_MTE is implemented.

DCCVAP Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then execution at
EL1 and EL0 using AArch64 of any of the instructions listed
above is trapped to EL2 and reported with EC syndrome
value 0x18, unless the instruction generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCVAU, bit [7]

Trap execution of DC CVAU at EL1 and EL0 using AArch64 to EL2.

DCCVAU Meaning
0b0 Execution of DC CVAU is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then execution of
DC CVAU at EL1 and EL0 using AArch64 is trapped to EL2
and reported with EC syndrome value 0x18, unless the
instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCISW, bit [6]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC CISW.
• DC CIGSW, if FEAT_MTE2FEAT_MTE is implemented.
• DC CIGDSW, if FEAT_MTE2FEAT_MTE is implemented.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 408

AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-dc-cvau.html
AArch64-dc-cigsw.html
AArch64-dc-cigdsw.html

DCCISW Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then execution at EL1 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCCSW, bit [5]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC CSW.
• DC CGSW, if FEAT_MTE2FEAT_MTE is implemented.
• DC CGDSW, if FEAT_MTE2FEAT_MTE is implemented.

DCCSW Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then execution at EL1 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCISW, bit [4]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC ISW.
• DC IGSW, if FEAT_MTE2FEAT_MTE is implemented.
• DC IGDSW, if FEAT_MTE2FEAT_MTE is implemented.

DCISW Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then execution at EL1 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCIVAC, bit [3]

Trap execution of multiple instructions. Enables a trap on execution at EL1 using AArch64 of any of the following
AArch64 instructions to EL2:

• DC IVAC.
• DC IGVAC, if FEAT_MTE2FEAT_MTE is implemented.
• DC IGDVAC, if FEAT_MTE2FEAT_MTE is implemented.

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 409

AArch64-dc-cgsw.html
AArch64-dc-cgdsw.html
AArch64-dc-igsw.html
AArch64-dc-igdsw.html
AArch64-dc-igvac.html
AArch64-dc-igdvac.html

DCIVAC Meaning
0b0 Execution of the instructions listed above is not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then execution at EL1 using AArch64 of any of the
instructions listed above is trapped to EL2 and reported with
EC syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIVAU, bit [2]

Trap execution of IC IVAU at EL1 and EL0 using AArch64 to EL2.

ICIVAU Meaning
0b0 Execution of IC IVAU is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then execution of IC
IVAU at EL1 and EL0 using AArch64 is trapped to EL2 and
reported with EC syndrome value 0x18, unless the instruction
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIALLU, bit [1]

Trap execution of IC IALLU at EL1 using AArch64 to EL2.

ICIALLU Meaning
0b0 Execution of IC IALLU is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then execution of IC IALLU at EL1 using AArch64 is
trapped to EL2 and reported with EC syndrome value 0x18,
unless the instruction generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ICIALLUIS, bit [0]

Trap execution of IC IALLUIS at EL1 using AArch64 to EL2.

ICIALLUIS Meaning
0b0 Execution of IC IALLUIS is not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then execution of IC IALLUIS at
EL1 using AArch64 is trapped to EL2 and reported with EC
syndrome value 0x18, unless the instruction generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HFGITR_EL2
Accesses to this register use the following encodings:

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 410

AArch64-ic-ivau.html
AArch64-ic-ivau.html
AArch64-ic-ivau.html
AArch64-ic-ivau.html
AArch64-ic-iallu.html
AArch64-ic-iallu.html
AArch64-ic-iallu.html
AArch64-ic-ialluis.html
AArch64-ic-ialluis.html
AArch64-ic-ialluis.html

MRS <Xt>, HFGITR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1C8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HFGITR_EL2;

elsif PSTATE.EL == EL3 then
return HFGITR_EL2;

MSR HFGITR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1C8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGITR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HFGITR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register

Page 411

(old) htmldiff from- (new)

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap
Register

The HFGRTR_EL2 characteristics are:

Purpose
Provides controls for traps of MRS and MRC reads of System registers.

Configuration
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGRTR_EL2 are
UNDEFINED.

Attributes
HFGRTR_EL2 is a 64-bit register.

Field descriptions
The HFGRTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 nACCDATA_EL1ERXADDR_EL1ERXPFGCDN_EL1ERXPFGCTL_EL1ERXPFGF_EL1ERXMISCn_EL1ERXSTATUS_EL1 ERXCTLR_EL1 ERXFR_EL1ERRSELR_EL1ERRIDR_EL1ICC_IGRPENn_EL1VBAR_EL1TTBR1_EL1TTBR0_EL1 TPIDR_EL0 TPIDRRO_EL0 TPIDR_EL1 TCR_EL1

SCXTNUM_EL0SCXTNUM_EL1SCTLR_EL1REVIDR_EL1PAR_EL1MPIDR_EL1MIDR_EL1MAIR_EL1LORSA_EL1LORN_EL1LORID_EL1LOREA_EL1LORC_EL1 ISR_EL1 FAR_EL1 ESR_EL1 DCZID_EL0 CTR_EL0 CSSELR_EL1 CPACR_EL1 CONTEXTIDR_EL1 CLIDR_EL1 CCSIDR_EL1 APIBKey APIAKey APGAKey APDBKey APDAKey AMAIR_EL1 AIDR_EL1 AFSR1_EL1AFSR0_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64 is implemented:

Trap MRS reads of ACCDATA_EL1 at EL1 using AArch64 to EL2.

nACCDATA_EL1 Meaning
0b0 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
orthen SCR_EL3.FGTEn == 0b1, then MRS reads of
ACCDATA_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

0b1 MRS reads of ACCDATA_EL1 are not trappedaffected
by this mechanism.bit.

This bit is ignored by the PE and treated as zero when EL3 is implemented and SCR_EL3.FGTEn == 0b0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 412

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MRS reads of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning
0b0 MRS reads of ERXADDR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXADDR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning
0b0 MRS reads of ERXPFGCDN_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXPFGCDN_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MRS reads of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning
0b0 MRS reads of ERXPFGCTL_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXPFGCTL_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 413

AArch64-erxaddr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgctl_el1.html

Otherwise:

Reserved, RES0.

ERXPFGF_EL1, bit [46]

When FEAT_RAS is implemented:

Trap MRS reads of ERXPFGF_EL1 at EL1 using AArch64 to EL2.

ERXPFGF_EL1 Meaning
0b0 MRS reads of ERXPFGF_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXPFGF_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MRS reads of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

ERXMISCn_EL1 Meaning
0b0 MRS reads of ERXMISC<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXMISC<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MRS reads of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 414

AArch64-erxpfgf_el1.html
AArch64-erxpfgf_el1.html
AArch64-erxpfgf_el1.html
AArch64-erxstatus_el1.html

ERXSTATUS_EL1 Meaning
0b0 MRS reads of ERXSTATUS_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXSTATUS_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MRS reads of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

ERXCTLR_EL1 Meaning
0b0 MRS reads of ERXCTLR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
ERXCTLR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXFR_EL1, bit [42]

When FEAT_RAS is implemented:

Trap MRS reads of ERXFR_EL1 at EL1 using AArch64 to EL2.

ERXFR_EL1 Meaning
0b0 MRS reads of ERXFR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of ERXFR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERRSELR_EL1, bit [41]

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 415

AArch64-erxstatus_el1.html
AArch64-erxstatus_el1.html
AArch64-erxctlr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxfr_el1.html
AArch64-erxfr_el1.html

When FEAT_RAS is implemented:

Trap MRS reads of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning
0b0 MRS reads of ERRSELR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
ERRSELR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERRIDR_EL1, bit [40]

When FEAT_RAS is implemented:

Trap MRS reads of ERRIDR_EL1 at EL1 using AArch64 to EL2.

ERRIDR_EL1 Meaning
0b0 MRS reads of ERRIDR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
ERRIDR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MRS reads of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

ICC_IGRPENn_EL1 Meaning
0b0 MRS reads of ICC_IGRPEN<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 416

AArch64-errselr_el1.html
AArch64-errselr_el1.html
AArch64-errselr_el1.html
AArch64-erridr_el1.html
AArch64-erridr_el1.html
AArch64-erridr_el1.html

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MRS reads of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning
0b0 MRS reads of VBAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of VBAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR1_EL1, bit [37]

Trap MRS reads of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning
0b0 MRS reads of TTBR1_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TTBR1_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MRS reads of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning
0b0 MRS reads of TTBR0_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TTBR0_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURW at EL0 using AArch32 when
EL1 is using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 417

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-tpidr_el0.html
AArch32-tpidrurw.html

TPIDR_EL0 Meaning
0b0 MRS reads of TPIDR_EL0 at EL1 and EL0 using AArch64

and MRC reads of TPIDRURW at EL0 using AArch32 are
not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the read generates
a higher priority exception:

• MRS reads of TPIDR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of TPIDRURW at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]

Trap MRS reads of TPIDRRO_EL0 at EL1 and EL0 using AArch64 and MRC reads of TPIDRURO at EL0 using AArch32
when EL1 is using AArch64 to EL2.

TPIDRRO_EL0 Meaning
0b0 MRS reads of TPIDRRO_EL0 at EL1 and EL0 using

AArch64 and MRC reads of TPIDRURO at EL0 using
AArch32 are not trappedaffected by this
mechanism.bit.

0b1 If EL2 is implemented and enabled in the current
Security state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is
using AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the read
generates a higher priority exception:

• MRS reads of TPIDRRO_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MRC reads of TPIDRURO at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome
value 0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MRS reads of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning
0b0 MRS reads of TPIDR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of TPIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]

Trap MRS reads of TCR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 418

AArch64-tpidr_el0.html
AArch32-tpidrurw.html
AArch64-tpidr_el0.html
AArch32-tpidrurw.html
AArch64-tpidrro_el0.html
AArch32-tpidruro.html
AArch64-tpidrro_el0.html
AArch32-tpidruro.html
AArch64-tpidrro_el0.html
AArch32-tpidruro.html
AArch64-tpidr_el1.html
AArch64-tpidr_el1.html
AArch64-tpidr_el1.html

TCR_EL1 Meaning
0b0 MRS reads of TCR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads of TCR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

When FEAT_CSV2 is implemented:

Trap MRS reads of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning
0b0 MRS reads of SCXTNUM_EL0 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1}, and
either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads of SCXTNUM_EL0 at EL1 and
EL0 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When FEAT_CSV2 is implemented:

Trap MRS reads of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning
0b0 MRS reads of SCXTNUM_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
SCXTNUM_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MRS reads of SCTLR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 419

SCTLR_EL1 Meaning
0b0 MRS reads of SCTLR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of SCTLR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

REVIDR_EL1, bit [28]

Trap MRS reads of REVIDR_EL1 at EL1 using AArch64 to EL2.

REVIDR_EL1 Meaning
0b0 MRS reads of REVIDR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
REVIDR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

PAR_EL1, bit [27]

Trap MRS reads of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning
0b0 MRS reads of PAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads of PAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MPIDR_EL1, bit [26]

Trap MRS reads of MPIDR_EL1 at EL1 using AArch64 to EL2.

MPIDR_EL1 Meaning
0b0 MRS reads of MPIDR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of MPIDR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MIDR_EL1, bit [25]

Trap MRS reads of MIDR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 420

AArch64-revidr_el1.html
AArch64-revidr_el1.html
AArch64-revidr_el1.html
AArch64-midr_el1.html

MIDR_EL1 Meaning
0b0 MRS reads of MIDR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of MIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

MAIR_EL1, bit [24]

Trap MRS reads of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning
0b0 MRS reads of MAIR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of MAIR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MRS reads of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning
0b0 MRS reads of LORSA_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of LORSA_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MRS reads of LORN_EL1 at EL1 using AArch64 to EL2.

LORN_EL1 Meaning
0b0 MRS reads of LORN_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of LORN_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 421

AArch64-midr_el1.html
AArch64-midr_el1.html
AArch64-lorn_el1.html
AArch64-lorn_el1.html
AArch64-lorn_el1.html

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORID_EL1, bit [21]

When FEAT_LOR is implemented:

Trap MRS reads of LORID_EL1 at EL1 using AArch64 to EL2.

LORID_EL1 Meaning
0b0 MRS reads of LORID_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of LORID_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MRS reads of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning
0b0 MRS reads of LOREA_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of LOREA_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MRS reads of LORC_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 422

AArch64-lorid_el1.html
AArch64-lorid_el1.html
AArch64-lorid_el1.html
AArch64-lorc_el1.html

LORC_EL1 Meaning
0b0 MRS reads of LORC_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of LORC_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ISR_EL1, bit [18]

Trap MRS reads of ISR_EL1 at EL1 using AArch64 to EL2.

ISR_EL1 Meaning
0b0 MRS reads of ISR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads of ISR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

FAR_EL1, bit [17]

Trap MRS reads of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning
0b0 MRS reads of FAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads of FAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ESR_EL1, bit [16]

Trap MRS reads of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning
0b0 MRS reads of ESR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads of ESR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

DCZID_EL0, bit [15]

Trap MRS reads of DCZID_EL0 at EL1 and EL0 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 423

AArch64-lorc_el1.html
AArch64-lorc_el1.html
AArch64-isr_el1.html
AArch64-isr_el1.html
AArch64-isr_el1.html
AArch64-dczid_el0.html

DCZID_EL0 Meaning
0b0 MRS reads of DCZID_EL0 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is
not implemented or SCR_EL3.FGTEn == 0b1, then MRS
reads of DCZID_EL0 at EL1 and EL0 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the read generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CTR_EL0, bit [14]

Trap MRS reads of CTR_EL0 at EL1 and EL0 using AArch64 to EL2.

CTR_EL0 Meaning
0b0 MRS reads of CTR_EL0 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, HCR_EL2.{E2H, TGE} != {1, 1}, and either EL3 is not
implemented or SCR_EL3.FGTEn == 0b1, then MRS reads of
CTR_EL0 at EL1 and EL0 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CSSELR_EL1, bit [13]

Trap MRS reads of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning
0b0 MRS reads of CSSELR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
CSSELR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPACR_EL1, bit [12]

Trap MRS reads of CPACR_EL1 at EL1 using AArch64 to EL2.

CPACR_EL1 Meaning
0b0 MRS reads of CPACR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of CPACR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]

Trap MRS reads of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 424

AArch64-dczid_el0.html
AArch64-dczid_el0.html
AArch64-contextidr_el1.html

CONTEXTIDR_EL1 Meaning
0b0 MRS reads of CONTEXTIDR_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MRS reads of
CONTEXTIDR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the read generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CLIDR_EL1, bit [10]

Trap MRS reads of CLIDR_EL1 at EL1 using AArch64 to EL2.

CLIDR_EL1 Meaning
0b0 MRS reads of CLIDR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of CLIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CCSIDR_EL1, bit [9]

Trap MRS reads of CCSIDR_EL1 at EL1 using AArch64 to EL2.

CCSIDR_EL1 Meaning
0b0 MRS reads of CCSIDR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of
CCSIDR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads at EL1 using AArch64 of any of the
System registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 425

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apibkeylo_el1.html

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MRS reads at EL1 using AArch64 of any of the
System registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless the read
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

APGAKey Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 426

AArch64-apiakeyhi_el1.html
AArch64-apiakeylo_el1.html
AArch64-apgakeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apdbkeylo_el1.html

APDBKey Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MRS reads of multiple System registers. Enables a trap on MRS reads at EL1 using AArch64 of any of the following
AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning
0b0 MRS reads of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the read generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MRS reads of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning
0b0 MRS reads of AMAIR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of AMAIR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AIDR_EL1, bit [2]

Trap MRS reads of AIDR_EL1 at EL1 using AArch64 to EL2.

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 427

AArch64-apdakeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-amair_el1.html
AArch64-amair_el1.html
AArch64-amair_el1.html
AArch64-aidr_el1.html

AIDR_EL1 Meaning
0b0 MRS reads of AIDR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of AIDR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the read generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AFSR1_EL1, bit [1]

Trap MRS reads of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning
0b0 MRS reads of AFSR1_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of AFSR1_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AFSR0_EL1, bit [0]

Trap MRS reads of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning
0b0 MRS reads of AFSR0_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MRS reads of AFSR0_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the read generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HFGRTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HFGRTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b100

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 428

AArch64-aidr_el1.html
AArch64-aidr_el1.html
AArch64-afsr1_el1.html
AArch64-afsr1_el1.html
AArch64-afsr1_el1.html
AArch64-afsr0_el1.html
AArch64-afsr0_el1.html
AArch64-afsr0_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1B8];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HFGRTR_EL2;

elsif PSTATE.EL == EL3 then
return HFGRTR_EL2;

MSR HFGRTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1B8] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGRTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HFGRTR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register

Page 429

(old) htmldiff from- (new)

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap
Register

The HFGWTR_EL2 characteristics are:

Purpose
Provides controls for traps of MSR and MCR writes of System registers.

Configuration
This register is present only when FEAT_FGT is implemented. Otherwise, direct accesses to HFGWTR_EL2 are
UNDEFINED.

Attributes
HFGWTR_EL2 is a 64-bit register.

Field descriptions
The HFGWTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 nACCDATA_EL1ERXADDR_EL1ERXPFGCDN_EL1ERXPFGCTL_EL1RES0ERXMISCn_EL1ERXSTATUS_EL1 ERXCTLR_EL1 RES0ERRSELR_EL1 RES0 ICC_IGRPENn_EL1VBAR_EL1TTBR1_EL1TTBR0_EL1 TPIDR_EL0 TPIDRRO_EL0 TPIDR_EL1 TCR_EL1

SCXTNUM_EL0SCXTNUM_EL1SCTLR_EL1RES0PAR_EL1RES0MAIR_EL1LORSA_EL1LORN_EL1RES0LOREA_EL1LORC_EL1 RES0 FAR_EL1 ESR_EL1 RES0 CSSELR_EL1 CPACR_EL1 CONTEXTIDR_EL1 RES0 APIBKey APIAKey APGAKey APDBKey APDAKey AMAIR_EL1 RES0 AFSR1_EL1AFSR0_EL1
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:51]

Reserved, RES0.

nACCDATA_EL1, bit [50]

When FEAT_LS64 is implemented:

Trap MSR writes of ACCDATA_EL1 at EL1 using AArch64 to EL2.

nACCDATA_EL1 Meaning
0b0 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
orthen SCR_EL3.FGTEn == 0b1, then MSR writes of
ACCDATA_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

0b1 MSR writes of ACCDATA_EL1 are not trappedaffected
by this mechanism.bit.

This bit is ignored by the PE and treated as zero when EL3 is implemented and SCR_EL3.FGTEn == 0b0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 430

ERXADDR_EL1, bit [49]

When FEAT_RAS is implemented:

Trap MSR writes of ERXADDR_EL1 at EL1 using AArch64 to EL2.

ERXADDR_EL1 Meaning
0b0 MSR writes of ERXADDR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
ERXADDR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCDN_EL1, bit [48]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCDN_EL1 at EL1 using AArch64 to EL2.

ERXPFGCDN_EL1 Meaning
0b0 MSR writes of ERXPFGCDN_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
ERXPFGCDN_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXPFGCTL_EL1, bit [47]

When FEAT_RASv1p1 is implemented:

Trap MSR writes of ERXPFGCTL_EL1 at EL1 using AArch64 to EL2.

ERXPFGCTL_EL1 Meaning
0b0 MSR writes of ERXPFGCTL_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
ERXPFGCTL_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 431

AArch64-erxaddr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgctl_el1.html

Otherwise:

Reserved, RES0.

Bit [46]

Reserved, RES0.

ERXMISCn_EL1, bit [45]

When FEAT_RAS is implemented:

Trap MSR writes of ERXMISC<n>_EL1 at EL1 using AArch64 to EL2.

ERXMISCn_EL1 Meaning
0b0 MSR writes of ERXMISC<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
ERXMISC<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXSTATUS_EL1, bit [44]

When FEAT_RAS is implemented:

Trap MSR writes of ERXSTATUS_EL1 at EL1 using AArch64 to EL2.

ERXSTATUS_EL1 Meaning
0b0 MSR writes of ERXSTATUS_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
ERXSTATUS_EL1 at EL1 using AArch64 are trapped
to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

ERXCTLR_EL1, bit [43]

When FEAT_RAS is implemented:

Trap MSR writes of ERXCTLR_EL1 at EL1 using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 432

AArch64-erxstatus_el1.html
AArch64-erxstatus_el1.html
AArch64-erxstatus_el1.html
AArch64-erxctlr_el1.html

ERXCTLR_EL1 Meaning
0b0 MSR writes of ERXCTLR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
ERXCTLR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

ERRSELR_EL1, bit [41]

When FEAT_RAS is implemented:

Trap MSR writes of ERRSELR_EL1 at EL1 using AArch64 to EL2.

ERRSELR_EL1 Meaning
0b0 MSR writes of ERRSELR_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
ERRSELR_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [40]

Reserved, RES0.

ICC_IGRPENn_EL1, bit [39]

When FEAT_GICv3 is implemented:

Trap MSR writes of ICC_IGRPEN<n>_EL1 at EL1 using AArch64 to EL2.

ICC_IGRPENn_EL1 Meaning
0b0 MSR writes of ICC_IGRPEN<n>_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
ICC_IGRPEN<n>_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 433

AArch64-erxctlr_el1.html
AArch64-erxctlr_el1.html
AArch64-errselr_el1.html
AArch64-errselr_el1.html
AArch64-errselr_el1.html

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

VBAR_EL1, bit [38]

Trap MSR writes of VBAR_EL1 at EL1 using AArch64 to EL2.

VBAR_EL1 Meaning
0b0 MSR writes of VBAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of VBAR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR1_EL1, bit [37]

Trap MSR writes of TTBR1_EL1 at EL1 using AArch64 to EL2.

TTBR1_EL1 Meaning
0b0 MSR writes of TTBR1_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of TTBR1_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TTBR0_EL1, bit [36]

Trap MSR writes of TTBR0_EL1 at EL1 using AArch64 to EL2.

TTBR0_EL1 Meaning
0b0 MSR writes of TTBR0_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of TTBR0_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL0, bit [35]

Trap MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64 and MCR writes of TPIDRURW at EL0 using AArch32
when EL1 is using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 434

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-tpidr_el0.html
AArch32-tpidrurw.html

TPIDR_EL0 Meaning
0b0 MSR writes of TPIDR_EL0 at EL1 and EL0 using AArch64

and MCR writes of TPIDRURW at EL0 using AArch32 are
not trappedaffected by this mechanism.bit.

0b1 If EL2 is implemented and enabled in the current Security
state, HCR_EL2.{E2H, TGE} != {1, 1}, EL1 is using
AArch64, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then, unless the write generates
a higher priority exception:

• MSR writes of TPIDR_EL0 at EL1 and EL0 using
AArch64 are trapped to EL2 and reported with EC
syndrome value 0x18.

• MCR writes of TPIDRURW at EL0 using AArch32 are
trapped to EL2 and reported with EC syndrome value
0x03.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDRRO_EL0, bit [34]

Trap MSR writes of TPIDRRO_EL0 at EL1 using AArch64 to EL2.

TPIDRRO_EL0 Meaning
0b0 MSR writes of TPIDRRO_EL0 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
TPIDRRO_EL0 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TPIDR_EL1, bit [33]

Trap MSR writes of TPIDR_EL1 at EL1 using AArch64 to EL2.

TPIDR_EL1 Meaning
0b0 MSR writes of TPIDR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of TPIDR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

TCR_EL1, bit [32]

Trap MSR writes of TCR_EL1 at EL1 using AArch64 to EL2.

TCR_EL1 Meaning
0b0 MSR writes of TCR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes of TCR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

SCXTNUM_EL0, bit [31]

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 435

AArch64-tpidr_el0.html
AArch32-tpidrurw.html
AArch64-tpidr_el0.html
AArch32-tpidrurw.html
AArch64-tpidrro_el0.html
AArch64-tpidrro_el0.html
AArch64-tpidrro_el0.html
AArch64-tpidr_el1.html
AArch64-tpidr_el1.html
AArch64-tpidr_el1.html

When FEAT_CSV2 is implemented:

Trap MSR writes of SCXTNUM_EL0 at EL1 and EL0 using AArch64 to EL2.

SCXTNUM_EL0 Meaning
0b0 MSR writes of SCXTNUM_EL0 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, HCR_EL2.{E2H, TGE} != {1, 1}, and
either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes of SCXTNUM_EL0 at EL1
and EL0 using AArch64 are trapped to EL2 and
reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCXTNUM_EL1, bit [30]

When FEAT_CSV2 is implemented:

Trap MSR writes of SCXTNUM_EL1 at EL1 using AArch64 to EL2.

SCXTNUM_EL1 Meaning
0b0 MSR writes of SCXTNUM_EL1 are not trappedaffected

by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
SCXTNUM_EL1 at EL1 using AArch64 are trapped to
EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority
exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

SCTLR_EL1, bit [29]

Trap MSR writes of SCTLR_EL1 at EL1 using AArch64 to EL2.

SCTLR_EL1 Meaning
0b0 MSR writes of SCTLR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of SCTLR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [28]

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 436

PAR_EL1, bit [27]

Trap MSR writes of PAR_EL1 at EL1 using AArch64 to EL2.

PAR_EL1 Meaning
0b0 MSR writes of PAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes of PAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [26:25]

Reserved, RES0.

MAIR_EL1, bit [24]

Trap MSR writes of MAIR_EL1 at EL1 using AArch64 to EL2.

MAIR_EL1 Meaning
0b0 MSR writes of MAIR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of MAIR_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

LORSA_EL1, bit [23]

When FEAT_LOR is implemented:

Trap MSR writes of LORSA_EL1 at EL1 using AArch64 to EL2.

LORSA_EL1 Meaning
0b0 MSR writes of LORSA_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of LORSA_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORN_EL1, bit [22]

When FEAT_LOR is implemented:

Trap MSR writes of LORN_EL1 at EL1 using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 437

AArch64-lorn_el1.html

LORN_EL1 Meaning
0b0 MSR writes of LORN_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of LORN_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [21]

Reserved, RES0.

LOREA_EL1, bit [20]

When FEAT_LOR is implemented:

Trap MSR writes of LOREA_EL1 at EL1 using AArch64 to EL2.

LOREA_EL1 Meaning
0b0 MSR writes of LOREA_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of LOREA_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

LORC_EL1, bit [19]

When FEAT_LOR is implemented:

Trap MSR writes of LORC_EL1 at EL1 using AArch64 to EL2.

LORC_EL1 Meaning
0b0 MSR writes of LORC_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of LORC_EL1 at
EL1 using AArch64 are trapped to EL2 and reported with
EC syndrome value 0x18, unless the write generates a
higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 438

AArch64-lorn_el1.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorc_el1.html
AArch64-lorc_el1.html

Bit [18]

Reserved, RES0.

FAR_EL1, bit [17]

Trap MSR writes of FAR_EL1 at EL1 using AArch64 to EL2.

FAR_EL1 Meaning
0b0 MSR writes of FAR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes of FAR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

ESR_EL1, bit [16]

Trap MSR writes of ESR_EL1 at EL1 using AArch64 to EL2.

ESR_EL1 Meaning
0b0 MSR writes of ESR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes of ESR_EL1 at EL1 using AArch64
are trapped to EL2 and reported with EC syndrome value
0x18, unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [15:14]

Reserved, RES0.

CSSELR_EL1, bit [13]

Trap MSR writes of CSSELR_EL1 at EL1 using AArch64 to EL2.

CSSELR_EL1 Meaning
0b0 MSR writes of CSSELR_EL1 are not trappedaffected by

this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of
CSSELR_EL1 at EL1 using AArch64 are trapped to EL2
and reported with EC syndrome value 0x18, unless the
write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CPACR_EL1, bit [12]

Trap MSR writes of CPACR_EL1 at EL1 using AArch64 to EL2.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 439

CPACR_EL1 Meaning
0b0 MSR writes of CPACR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of CPACR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

CONTEXTIDR_EL1, bit [11]

Trap MSR writes of CONTEXTIDR_EL1 at EL1 using AArch64 to EL2.

CONTEXTIDR_EL1 Meaning
0b0 MSR writes of CONTEXTIDR_EL1 are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented
or SCR_EL3.FGTEn == 0b1, then MSR writes of
CONTEXTIDR_EL1 at EL1 using AArch64 are
trapped to EL2 and reported with EC syndrome
value 0x18, unless the write generates a higher
priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bits [10:9]

Reserved, RES0.

APIBKey, bit [8]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APIBKeyHi_EL1.
• APIBKeyLo_EL1.

APIBKey Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes at EL1 using AArch64 of any of the
System registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless the write
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APIAKey, bit [7]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 440

AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-contextidr_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apibkeylo_el1.html

• APIAKeyHi_EL1.
• APIAKeyLo_EL1.

APIAKey Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or SCR_EL3.FGTEn
== 0b1, then MSR writes at EL1 using AArch64 of any of the
System registers listed above are trapped to EL2 and
reported with EC syndrome value 0x18, unless the write
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APGAKey, bit [6]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APGAKeyHi_EL1.
• APGAKeyLo_EL1.

APGAKey Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

APDBKey, bit [5]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDBKeyHi_EL1.
• APDBKeyLo_EL1.

APDBKey Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 441

AArch64-apiakeyhi_el1.html
AArch64-apiakeylo_el1.html
AArch64-apgakeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apdbkeylo_el1.html

Otherwise:

Reserved, RES0.

APDAKey, bit [4]

When FEAT_PAuth is implemented:

Trap MSR writes of multiple System registers. Enables a trap on MSR writes at EL1 using AArch64 of any of the
following AArch64 System registers to EL2:

• APDAKeyHi_EL1.
• APDAKeyLo_EL1.

APDAKey Meaning
0b0 MSR writes of the System registers listed above are not

trappedaffected by this mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes at EL1 using
AArch64 of any of the System registers listed above are
trapped to EL2 and reported with EC syndrome value 0x18,
unless the write generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Otherwise:

Reserved, RES0.

AMAIR_EL1, bit [3]

Trap MSR writes of AMAIR_EL1 at EL1 using AArch64 to EL2.

AMAIR_EL1 Meaning
0b0 MSR writes of AMAIR_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current

Security state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of AMAIR_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [2]

Reserved, RES0.

AFSR1_EL1, bit [1]

Trap MSR writes of AFSR1_EL1 at EL1 using AArch64 to EL2.

AFSR1_EL1 Meaning
0b0 MSR writes of AFSR1_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of AFSR1_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 442

AArch64-apdakeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-amair_el1.html
AArch64-amair_el1.html
AArch64-amair_el1.html
AArch64-afsr1_el1.html
AArch64-afsr1_el1.html
AArch64-afsr1_el1.html

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

AFSR0_EL1, bit [0]

Trap MSR writes of AFSR0_EL1 at EL1 using AArch64 to EL2.

AFSR0_EL1 Meaning
0b0 MSR writes of AFSR0_EL1 are not trappedaffected by this

mechanism.bit.
0b1 If EL2 is implemented and enabled in the current Security

state, and either EL3 is not implemented or
SCR_EL3.FGTEn == 0b1, then MSR writes of AFSR0_EL1
at EL1 using AArch64 are trapped to EL2 and reported
with EC syndrome value 0x18, unless the write generates
a higher priority exception.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HFGWTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HFGWTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x1C0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return HFGWTR_EL2;

elsif PSTATE.EL == EL3 then
return HFGWTR_EL2;

MSR HFGWTR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b101

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 443

AArch64-afsr0_el1.html
AArch64-afsr0_el1.html
AArch64-afsr0_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x1C0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.FGTEn == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.FGTEn == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
HFGWTR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
HFGWTR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register

Page 444

(old) htmldiff from- (new)

HPFAR_EL2, Hypervisor IPA Fault Address Register
The HPFAR_EL2 characteristics are:

Purpose
Holds the faulting IPA for some aborts on a stage 2 translation taken to EL2.

Configuration
AArch64 System register HPFAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HPFAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

The HPFAR_EL2 is written for:

• Translation or Access faults in the second stage of translation.
• An abort in the second stage of translation performed during the translation table walk of a first stage

translation, caused by a Translation fault, an Access flag fault, or a Permission fault.
• A stage 2 Address size fault.

For all other exceptions taken to EL2, this register is UNKNOWN.

Note

The address held in this register is an address accessed by the instruction
fetch or data access that caused the exception that gave rise to the instruction
or data abort. It is the lowest address that gave rise to the fault. Where
different faults from different addresses arise from the same instruction, such
as for an instruction that loads or stores a mis-aligned address that crosses a
page boundary, the architecture does not prioritize between those different
faults.

Attributes
HPFAR_EL2 is a 64-bit register.

Field descriptions
The HPFAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 FIPA

FIPA RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Execution at EL1 or EL0 makes HPFAR_EL2 become UNKNOWN.

NS, bit [63]

When FEAT_SEL2 is implemented:

Faulting IPA address space.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 445

AArch32-hpfar.html

NS Meaning
0b0 Faulting IPA is from the Secure IPA space.
0b1 Faulting IPA is from the Non-secure IPA space.

For Data Aborts or Instruction Aborts taken to Non-secure EL2, this field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [62:44]

Reserved, RES0.

FIPA, bits [43:4]

FIPA encoding when FEAT_LPA is implemented

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543210
FIPA

FIPA, bits [38:0]

Faulting Intermediate Physical Address.

When 52-bit addresses and a 64KB translation granule are in use for the stage 1 translation,
FIPAHPFAR_EL2.FIPA[38:35] forms the upper part of the address value.

WhenFor 52-bitimplementations addressesor arestage not1 intranslation usegranules forwith stagefewer
1than translation,52 FIPAphysical address bits the HPFAR_EL2.FIPA[38:35] is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FIPA encoding when FEAT_LPA is not implemented

38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 543210
RES0 FIPA

Bits [38:35]

Reserved, RES0.

FIPA, bits [34:0]

Faulting Intermediate Physical Address.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are
RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [3:0]

Reserved, RES0.

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 446

Accessing the HPFAR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, HPFAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HPFAR_EL2;
elsif PSTATE.EL == EL3 then

return HPFAR_EL2;

MSR HPFAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0110 0b0000 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HPFAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

HPFAR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HPFAR_EL2, Hypervisor IPA Fault Address Register

Page 447

(old) htmldiff from- (new)

ICC_AP1R<n>_EL1, Interrupt Controller Active
Priorities Group 1 Registers, n = 0 - 3

The ICC_AP1R<n>_EL1 characteristics are:

Purpose
Provides information about Group 1 active priorities.

Configuration
AArch64 System register ICC_AP1R<n>_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_AP1R<n>[31:0] (S) (S)..

AArch64 System register ICC_AP1R<n>_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_AP1R<n>[31:0] (NS) (NS)..

Attributes
ICC_AP1R<n>_EL1 is a 64-bit register.

Field descriptions
The ICC_AP1R<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

IMPLEMENTATION DEFINED
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP1R<n>_EL1
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1_EL1 is only implemented in implementations that support 6 or more bits of priority. ICC_AP1R2_EL1 and
ICC_AP1R3_EL1 are only implemented in implementations that support 7 or more bits of priority. Unimplemented
registers are UNDEFINED.

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 448

Note

The number of bits of preemption is indicated by ICH_VTR_EL2.PREbits.

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>_EL1.
• Secure ICC_AP1R<n>_EL1.
• Non-secure ICC_AP1R<n>_EL1.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_AP1R<n>_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 449

AArch64-icc_ap0rn_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_AP1R_EL1[UInt(op2<1:0>)];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1[UInt(op2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_AP1R_EL1_S[UInt(op2<1:0>)];

else
return ICC_AP1R_EL1_NS[UInt(op2<1:0>)];

MSR ICC_AP1R<n>_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 450

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1[UInt(op2<1:0>)] = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_AP1R_EL1_S[UInt(op2<1:0>)] = X[t];

else
ICC_AP1R_EL1_NS[UInt(op2<1:0>)] = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 451

(old) htmldiff from- (new)

ICC_BPR1_EL1, Interrupt Controller Binary Point
Register 1

The ICC_BPR1_EL1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

Configuration
AArch64 System register ICC_BPR1_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_BPR1[31:0] (S) (S)..

AArch64 System register ICC_BPR1_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_BPR1[31:0] (NS) (NS)..

Virtual accesses to this register update ICH_VMCR_EL2.VBPR1.

Attributes
ICC_BPR1_EL1 is a 64-bit register.

Field descriptions
The ICC_BPR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 BinaryPoint
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field
controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. For more information about priorities, see 'Priority grouping' in ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The minimum value of the Non-secure copy of this register is the minimum value of ICC_BPR0_EL1 + 1. The minimum
value of the Secure copy of this register is the minimum value of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1S is 1:

• When SCR_EL3.EEL2 is 1 and HCR_EL2.IMO is 1, Secure accesses to this register at EL1 access the state of
ICV_BPR1_EL1.

• Otherwise, Secure accesses to this register at EL1 access the state of ICC_BPR0_EL1.

If EL3 is implemented and ICC_CTLR_EL3.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2
behave as follows, depending on the values of HCR_EL2.IMO and SCR_EL3.IRQ:

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 452

AArch64-ich_vmcr_el2.html
AArch64-icc_bpr0_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icv_bpr1_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_ctlr_el3.html

HCR_EL2.IMO SCR_EL3.IRQ Behavior
0b0 0b0 Non-secure EL1 and EL2 reads return

ICC_BPR0_EL1 + 1 saturated
to0b111. Non-secure EL1 and EL2
writes are ignored.

0b0 0b1 Non-secure EL1 and EL2 accesses
trap to EL3.

0b1 0b0 Non-secure EL1 accesses affect
virtual interrupts. Non-secure EL2
reads return ICC_BPR0_EL1 + 1
saturated to0b111. Non-secure EL2
writes are ignored.

0b1 0b1 Non-secure EL1 accesses affect
virtual interrupts. Non-secure EL2
accesses trap to EL3.

If EL3 is not implemented and ICC_CTLR_EL1.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave
as follows, depending on the values of HCR_EL2.IMO:

HCR_EL2.IMO Behavior
0b0 Non-secure EL1 and EL2 reads return ICC_BPR0_EL1 +

1 saturated to0b111. Non-secure EL1 and EL2 writes are
ignored.

0b1 Non-secure EL1 accesses affect virtual interrupts. Non-
secure EL2 reads return ICC_BPR0_EL1 + 1 saturated
to0b111. Non-secure EL2 writes are ignored.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the ICC_BPR1_EL1
On a reset, the binary point field is UNKNOWN.

An attempt to program the binary point field to a value less than the minimum value sets the field to the minimum
value.

Accesses to this register use the following encodings:

MRS <Xt>, ICC_BPR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b011

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 453

AArch64-icc_bpr0_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_bpr0_el1.html
AArch64-icc_bpr0_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_BPR1_EL1;

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

else
return ICC_BPR1_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

else
return ICC_BPR1_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_BPR1_EL1_S;

else
return ICC_BPR1_EL1_NS;

MSR ICC_BPR1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b011

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 454

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_BPR1_EL1 = X[t];

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

else
ICC_BPR1_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

else
ICC_BPR1_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_BPR1_EL1_S = X[t];

else
ICC_BPR1_EL1_NS = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1

Page 455

(old) htmldiff from- (new)

ICC_CTLR_EL1, Interrupt Controller Control Register
(EL1)

The ICC_CTLR_EL1 characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch64 System register ICC_CTLR_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_CTLR[31:0] (S) (S)..

AArch64 System register ICC_CTLR_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_CTLR[31:0] (NS) (NS)..

Attributes
ICC_CTLR_EL1 is a 64-bit register.

Field descriptions
The ICC_CTLR_EL1 bit assignments are:

636261605958575655545352 51 50 49 48 47 46 454443424140 39 38 37363534 33 32
RES0

RES0 ExtRangeRSSRES0A3VSEIS IDbits PRIbitsRES0PMHE RES0 EOImodeCBPR
313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0

Bits [63:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
• Behaviour is UNPREDICTABLE if the IRI delivers an

interrupt in the range 1024 to 8191 to the CPU
interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191
• All INTIDs in the range 1024..8191 are treated as

requiring deactivation.

If EL3 is implemented, ICC_CTLR_EL1.ExtRange is an alias of ICC_CTLR_EL3.ExtRange.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 456

AArch64-icc_ctlr_el3.html

RSS, bit [18]

Range Selector Support. Possible values are:

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0b0 The CPU interface logic only supports zero values of Affinity 3 in

SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of Affinity 3 in

SGI generation System registers.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0b0 The CPU interface logic does not support local generation of

SEIs.
0b1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is implemented, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority
bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4
priority bits).

Note

This field always returns the number of priority bits implemented, regardless
of the Security state of the access or the value of GICD_CTLR.DS.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 457

AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el3.html

For physical accesses, this field determines the minimum value of ICC_BPR0_EL1.

If EL3 is implemented, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0b0 Disables use of ICC_PMR_EL1 as a hint for interrupt

distribution.
0b1 Enables use of ICC_PMR_EL1 as a hint for interrupt

distribution.

If EL3 is implemented, this bit is an alias of ICC_CTLR_EL3.PMHE. Whether this bit can be written as part of an
access to this register depends on the value of GICD_CTLR.DS:

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the
interrupt:

EOImode Meaning
0b0 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide both priority

drop and interrupt deactivation functionality. Accesses to
ICC_DIR_EL1 are UNPREDICTABLE.

0b1 ICC_EOIR0_EL1 and ICC_EOIR1_EL1 provide priority drop
functionality only. ICC_DIR_EL1 provides interrupt
deactivation functionality.

The Secure ICC_CTLR_EL1.EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1S.

The Non-secure ICC_CTLR_EL1.EOImode is an alias of ICC_CTLR_EL3.EOImode_EL1NS

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0
and Group 1 interrupts:

CBPR Meaning
0b0 ICC_BPR0_EL1 determines the preemption group for Group 0

interrupts only.
ICC_BPR1_EL1 determines the preemption group for Group 1
interrupts.

0b1 ICC_BPR0_EL1 determines the preemption group for both
Group 0 and Group 1 interrupts.

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 458

AArch64-icc_bpr0_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icc_pmr_el1.html
AArch64-icc_pmr_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_eoir0_el1.html
AArch64-icc_eoir1_el1.html
AArch64-icc_dir_el1.html
AArch64-icc_ctlr_el3.html
AArch64-icc_ctlr_el3.html
AArch64-icc_bpr0_el1.html
AArch64-icc_bpr0_el1.html

If EL3 is implemented:

• This bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to the current Security
state.

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, this bit is read/write.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the ICC_CTLR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_CTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b100

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 459

AArch64-icc_ctlr_el3.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FMO == '1' then
return ICV_CTLR_EL1;

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
return ICV_CTLR_EL1;

elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

else
return ICC_CTLR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

else
return ICC_CTLR_EL1;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
return ICC_CTLR_EL1_S;

else
return ICC_CTLR_EL1_NS;

MSR ICC_CTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b100

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 460

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && ICH_HCR_EL2.TC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FMO == '1' then
ICV_CTLR_EL1 = X[t];

elsif EL2Enabled() && HCR_EL2.IMO == '1' then
ICV_CTLR_EL1 = X[t];

elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

else
ICC_CTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

else
ICC_CTLR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

if SCR_EL3.NS == '0' then
ICC_CTLR_EL1_S = X[t];

else
ICC_CTLR_EL1_NS = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)

Page 461

(old) htmldiff from- (new)

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt
Group 1 Enable register

The ICC_IGRPEN1_EL1 characteristics are:

Purpose
Controls whether Group 1 interrupts are enabled for the current Security state.

Configuration
AArch64 System register ICC_IGRPEN1_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_IGRPEN1[31:0] (S) (S)..

AArch64 System register ICC_IGRPEN1_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_IGRPEN1[31:0] (NS) (NS)..

Attributes
ICC_IGRPEN1_EL1 is a 64-bit register.

Field descriptions
The ICC_IGRPEN1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 Enable
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0b0 Group 1 interrupts are disabled for the current Security state.
0b1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR_EL2.VENG1.

If EL3 is present:

• The Secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1S bit.
• The Non-secure ICC_IGRPEN1_EL1.Enable bit is a read/write alias of the ICC_IGRPEN1_EL3.EnableGrp1NS

bit.

If the highest priority pending interrupt for that PE is a Group 1 interrupt using 1 of N model, then the interrupt will
target another PE as a result of the Enable bit changing from 1 to 0.

On a Warm reset, this field resets to 0.

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 462

AArch64-ich_vmcr_el2.html
AArch64-icc_igrpen1_el3.html
AArch64-icc_igrpen1_el3.html

Accessing the ICC_IGRPEN1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ICC_IGRPEN1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.ICC_IGRPENn_EL1 ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

return ICV_IGRPEN1_EL1;
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;
else

return ICC_IGRPEN1_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;
else

return ICC_IGRPEN1_EL1;
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
if SCR_EL3.NS == '0' then

return ICC_IGRPEN1_EL1_S;
else

return ICC_IGRPEN1_EL1_NS;

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 463

MSR ICC_IGRPEN1_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif ICC_SRE_EL1.SRE == '0' then
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.ICC_IGRPENn_EL1 ==
'1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && ICH_HCR_EL2.TALL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.IMO == '1' then

ICV_IGRPEN1_EL1 = X[t];
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];
else

ICC_IGRPEN1_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif ICC_SRE_EL2.SRE == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) then
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];
else

ICC_IGRPEN1_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if ICC_SRE_EL3.SRE == '0' then
AArch64.SystemAccessTrap(EL3, 0x18);

else
if SCR_EL3.NS == '0' then

ICC_IGRPEN1_EL1_S = X[t];
else

ICC_IGRPEN1_EL1_NS = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register

Page 464

(old) htmldiff from- (new)

ICC_SRE_EL1, Interrupt Controller System Register
Enable register (EL1)

The ICC_SRE_EL1 characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL1.

Configuration
AArch64 System register ICC_SRE_EL1 bits [31:0] (S) are architecturally mapped to AArch32 System register
ICC_SRE[31:0] (S) (S)..

AArch64 System register ICC_SRE_EL1 bits [31:0] (NS) are architecturally mapped to AArch32 System register
ICC_SRE[31:0] (NS) (NS)..

Attributes
ICC_SRE_EL1 is a 64-bit register.

Field descriptions
The ICC_SRE_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 DIBDFBSRE
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_SRE_EL3.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_SRE_EL3.DIB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DIB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

On a Warm reset, this field resets to 0.

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 465

AArch64-icc_sre_el3.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el2.html

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_SRE_EL3.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_SRE_EL3.DFB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DFB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_SRE_EL2.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

On a Warm reset, this field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Access at EL1 to

any ICC_* System register other than ICC_SRE_EL1 is trapped to
EL1.

0b1 The System register interface for the current Security state is
enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI. If ICC_SRE_EL3.SRE is
changed from zero to one, the Secure copy of this bit becomes UNKNOWN.

If EL2 is implemented and ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI. If ICC_SRE_EL2.SRE is
changed from zero to one, the Non-secure copy of this bit becomes UNKNOWN.

If EL3 is implemented and ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI. If ICC_SRE_EL3.SRE is
changed from zero to one, the Non-secure copy of this bit becomes UNKNOWN.

GICv3 implementations that do not require GICv2 compatibility might choose to make this bit RAO/WI. The following
options are supported:

• The Non-secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL2.SRE is also RAO/WI. This means
all Non-secure software, including VMs using only virtual interrupts, must access the GIC using System
registers.

• The Secure copy of ICC_SRE_EL1.SRE can be RAO/WI if ICC_SRE_EL3.SRE and ICC_SRE_EL2.SRE are also
RAO/WI. This means that all Secure software must access the GIC using System registers and all Non-secure
accesses to registers for physical interrupts must use System registers.

Note

A VM using only virtual interrupts might still use memory-mapped access if
the Non-secure copy of ICC_SRE_EL1.SRE is not RAO/WI.

On a Warm reset, this field resets to 0.

Accessing the ICC_SRE_EL1
Execution with ICC_SRE_EL1.SRE set to 0 might make some System registers UNKNOWN.

Accesses to this register use the following encodings:

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 466

AArch64-icc_sre_el3.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el2.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el2.html

MRS <Xt>, ICC_SRE_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif EL2Enabled() && ICC_SRE_EL2.Enable == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_SRE_EL1_S;

else
return ICC_SRE_EL1_NS;

else
return ICC_SRE_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_SRE_EL1_S;

else
return ICC_SRE_EL1_NS;

else
return ICC_SRE_EL1;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

return ICC_SRE_EL1_S;
else

return ICC_SRE_EL1_NS;

MSR ICC_SRE_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b1100 0b101

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 467

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif EL2Enabled() && ICC_SRE_EL2.Enable == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_SRE_EL1_S = X[t];

else
ICC_SRE_EL1_NS = X[t];

else
ICC_SRE_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_SRE_EL1_S = X[t];

else
ICC_SRE_EL1_NS = X[t];

else
ICC_SRE_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_SRE_EL1_S = X[t];
else

ICC_SRE_EL1_NS = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)

Page 468

(old) htmldiff from- (new)

ICH_VTR_EL2, Interrupt Controller VGIC Type Register
The ICH_VTR_EL2 characteristics are:

Purpose
Reports supported GIC virtualization features.

Configuration
AArch64 System register ICH_VTR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
ICH_VTR[31:0].

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ICH_VTR_EL2 is a 64-bit register.

Field descriptions
The ICH_VTR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PRIbits PREbits IDbits SEISA3VnV4TDSDVIM RES0 ListRegs
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR_EL1.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of ICH_VTR_EL2.PRIbits.

The maximum value of this field is 6, indicating 7 bits of preemption.

This field determines the minimum value of ICH_VMCR_EL2.VBPR0.

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 469

AArch64-icv_ctlr_el1.html
AArch64-ich_vmcr_el2.html

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR_EL1.IDbits.

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support generation of

SEIs.
0b1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR_EL1.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of

Affinity 3 in SGI generation System registers.
0b1 The virtual CPU interface logic supports non-zero values of

Affinity 3 in SGI generation System registers.

This bit is an alias of ICV_CTLR_EL1.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

nV4 Meaning
0b0 The CPU interface logic supports direct injection of virtual

interrupts.
0b1 The CPU interface logic does not support direct injection of virtual

interrupts.

InIf GICv3,FEAT_GICv4 theis onlynot permittedimplemented, valuethis bit is 0b1RES1.

TDS, bit [19]

Separate trapping of EL1 writes to ICV_DIR_EL1 supported.

TDS Meaning
0b0 Implementation does not support ICH_HCR_EL2.TDIR.
0b1 Implementation supports ICH_HCR_EL2.TDIR.

DVIM, bit [18]

Masking of directly-injected virtual interrupts.

DVIM Meaning
0b0 Masking of Directly-injected Virtual Interrupts not supported.
0b1 Masking of Directly-injected Virtual Interrupts is supported.

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 470

AArch64-icv_ctlr_el1.html
AArch64-icv_ctlr_el1.html
AArch64-icv_ctlr_el1.html
AArch64-icv_dir_el1.html
AArch64-ich_hcr_el2.html
AArch64-ich_hcr_el2.html

Bits [17:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of
16 List registers are implemented.

Accessing the ICH_VTR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, ICH_VTR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b1011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_SRE_EL2.SRE == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ICH_VTR_EL2;

elsif PSTATE.EL == EL3 then
if ICC_SRE_EL3.SRE == '0' then

AArch64.SystemAccessTrap(EL3, 0x18);
else

return ICH_VTR_EL2;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICH_VTR_EL2, Interrupt Controller VGIC Type Register

Page 471

(old) htmldiff from- (new)

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute
Register 0

The ID_AA64ISAR0_EL1 characteristics are:

Purpose
Provides information about the instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64ISAR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64ISAR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RNDR TLB TS FHM DP SM4 SM3 SHA3
RDM RES0 Atomic CRC32 SHA2 SHA1 AES RES0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDR, bits [63:60]

Indicates support for Random Number instructions in AArch64 state. Defined values are:

Defined values are:

RNDR Meaning
0b0000 No Random Number instructions are implemented.
0b0001 RNDR and RNDRRS registers are implemented.

All other values are reserved.

FEAT_RNG implements the functionality identified by the value 0b0001.

From Armv8.5, the permitted values are 0b0000 and 0b0001.

TLB, bits [59:56]

Indicates support for Outer shareable and TLB range maintenance instructions. Defined values are:

TLB Meaning
0b0000 Outer shareable and TLB range maintenance instructions are

not implemented.
0b0001 Outer shareable TLB maintenance instructions are

implemented.
0b0010 Outer shareable and TLB range maintenance instructions are

implemented.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 472

All other values are reserved.

FEAT_TLBIOS implements the functionality identified by the values 0b0001 and 0b0010.

FEAT_TLBIRANGE implements the functionality identified by the value 0b0010.

From Armv8.4, the only permitted value is 0b0010.

TS, bits [55:52]

Indicates support for flag manipulation instructions. Defined values are:

TS Meaning
0b0000 No flag manipulation instructions are implemented.
0b0001 CFINV, RMIF, SETF16, and SETF8 instructions are

implemented.
0b0010 CFINV, RMIF, SETF16, SETF8, AXFLAG, and XAFLAG

instructions are implemented.

All other values are reserved.

FEAT_FlagM implements the functionality identified by the value 0b0001.

FEAT_FlagM2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

In Armv8.4, the only permitted value is 0b0001.

From Armv8.5, the only permitted value is 0b0010.

FHM, bits [51:48]

Indicates support for FMLAL and FMLSL instructions. Defined values are:

FHM Meaning
0b0000 FMLAL and FMLSL instructions are not implemented.
0b0001 FMLAL and FMLSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

DP, bits [47:44]

Indicates support for Dot Product instructions in AArch64 state. Defined values are:

DP Meaning
0b0000 No Dot Product instructions implemented.
0b0001 UDOT and SDOT instructions implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

SM4, bits [43:40]

Indicates support for SM4 instructions in AArch64 state. Defined values are:

SM4 Meaning
0b0000 No SM4 instructions implemented.
0b0001 SM4E and SM4EKEY instructions implemented.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 473

All other values are reserved.

If FEAT_SM4 is not implemented, the value 0b0001 is reserved.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM3.

SM3, bits [39:36]

Indicates support for SM3 instructions in AArch64 state. Defined values are:

SM3 Meaning
0b0000 No SM3 instructions implemented.
0b0001 SM3SS1, SM3TT1A, SM3TT1B, SM3TT2A, SM3TT2B,

SM3PARTW1, and SM3PARTW2 instructions implemented.

All other values are reserved.

If FEAT_SM3 is not implemented, the value 0b0001 is reserved.

FEAT_SM3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

This field must have the same value as ID_AA64ISAR0_EL1.SM4.

SHA3, bits [35:32]

Indicates support for SHA3 instructions in AArch64 state. Defined values are:

SHA3 Meaning
0b0000 No SHA3 instructions implemented.
0b0001 EOR3, RAX1, XAR, and BCAX instructions implemented.

All other values are reserved.

If FEAT_SHA3 is not implemented, the value 0b0001 is reserved.

FEAT_SHA3 implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0001, ID_AA64ISAR0_EL1.SHA2 must have the value 0b0010.

RDM, bits [31:28]

Indicates support for SQRDMLAH and SQRDMLSH instructions in AArch64 state. Defined values are:

RDM Meaning
0b0000 No RDMA instructions implemented.
0b0001 SQRDMLAH and SQRDMLSH instructions implemented.

All other values are reserved.

FEAT_RDM implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

Bits [27:24]

Reserved, RES0.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 474

Atomic, bits [23:20]

Indicates support for Atomic instructions in AArch64 state. Defined values are:

Atomic Meaning
0b0000 No Atomic instructions implemented.
0b0010 LDADD, LDCLR, LDEOR, LDSET, LDSMAX, LDSMIN,

LDUMAX, LDUMIN, CAS, CASP, and SWP instructions
implemented.

All other values are reserved.

FEAT_LSE implements the functionality identified by the value 0b0010.

From Armv8.1, the only permitted value is 0b0010.

CRC32, bits [19:16]

Indicates support for CRC32 instructions in AArch64 state. Defined values are:

CRC32 Meaning
0b0000 No CRC32 instructions implemented.
0b0001 CRC32B, CRC32H, CRC32W, CRC32X, CRC32CB, CRC32CH,

CRC32CW, and CRC32CX instructions implemented.

All other values are reserved.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.1, the only permitted value is 0b0001.

SHA2, bits [15:12]

Indicates support for SHA2 instructions in AArch64 state. Defined values are:

SHA2 Meaning
0b0000 No SHA2 instructions implemented.
0b0001 Implements instructions: SHA256H, SHA256H2, SHA256SU0,

and SHA256SU1.
0b0010 Implements instructions:

• SHA256H, SHA256H2, SHA256SU0, and SHA256SU1.
• SHA512H, SHA512H2, SHA512SU0, and SHA512SU1.

All other values are reserved.

FEAT_SHA256 implements the functionality identified by the value 0b0001.

FEAT_SHA512 implements the functionality identified by the value 0b0010.

In Armv8, the permitted values are 0b0000 and 0b0001.

From Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

If the value of ID_AA64ISAR0_EL1.SHA1 is 0b0000, this field must have the value 0b0000.

If the value of this field is 0b0010, ID_AA64ISAR0_EL1.SHA3 must have the value 0b0001.

SHA1, bits [11:8]

Indicates support for SHA1 instructions in AArch64 state. Defined values are:

SHA1 Meaning
0b0000 No SHA1 instructions implemented.
0b0001 SHA1C, SHA1P, SHA1M, SHA1H, SHA1SU0, and SHA1SU1

instructions implemented.

All other values are reserved.

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 475

FEAT_SHA1 implements the functionality identified by the value 0b0001.

From Armv8, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR0_EL1.SHA2 is 0b0000, this field must have the value 0b0000.

AES, bits [7:4]

Indicates support for AES instructions in AArch64 state. Defined values are:

AES Meaning
0b0000 No AES instructions implemented.
0b0001 AESE, AESD, AESMC, and AESIMC instructions implemented.
0b0010 As for 0b0001, plus PMULL/PMULL2 instructions operating on

64-bit data quantities.

FEAT_AES implements the functionality identified by the value 0b0001.

FEAT_PMULL implements the functionality identified by the value 0b0010.

All other values are reserved.

From Armv8, the permitted values are 0b0000 and 0b0010.

Bits [3:0]

Reserved, RES0.

Accessing the ID_AA64ISAR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64ISAR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64ISAR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64ISAR0_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0

Page 476

(old) htmldiff from- (new)

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute
Register 1

The ID_AA64ISAR1_EL1 characteristics are:

Purpose
Provides information about the features and instructions implemented in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
If ID_AA64ISAR1_EL1.{API, APA} == {0000, 0000}, then:

• The TCR_EL1.{TBID,TBID0}, TCR_EL2.{TBID0,TBID1}, TCR_EL2.TBID and TCR_EL3.TBID bits are RES0.
• APIAKeyHi_EL1, APIAKeyLo_EL1, APIBKeyHi_EL1, APIBKeyLo_EL1, APDAKeyHi_EL1, APDAKeyLo_EL1,

APDBKeyHi_EL1, APDBKeyLo_EL1 are not allocated.
• SCTLR_ELx.EnIA, SCTLR_ELx.EnIB, SCTLR_ELx.EnDA, SCTLR_ELx.EnDB are all RES0.

If ID_AA64ISAR1_EL1.{GPI, GPA, API, APA} == {0000, 0000, 0000, 0000}, then:

• HCR_EL2.APK and HCR_EL2.API are RES0.
• SCR_EL3.APK and SCR_EL3.API are RES0.

Attributes
ID_AA64ISAR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64ISAR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
LS64 XS I8MM DGH BF16 SPECRES SB FRINTTS
GPI GPA LRCPC FCMA JSCVT API APA DPB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LS64, bits [63:60]

Indicates support for LD64B and ST64B* instructions, and the ACCDATA_EL1 register. Defined values of this field are:

LS64 Meaning
0b0000 The LD64B and ST64B* instructions, the ACCDATA_EL1

register, and associated traps are not supported.
0b0001 The LD64B and ST64B instructions are supported.
0b0010 The LD64B, ST64B, and ST64BV instructions, and their

associated traps are supported.
0b0011 The LD64 and ST64B* instructions, the ACCDATA_EL1 register,

and their associated traps are supported.

All other values are reserved.

FEAT_LS64 implements the functionality identified by 0b0001.

FEAT_LS64_V implements the functionality identified by 0b0010.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 477

AArch64-apiakeyhi_el1.html
AArch64-apiakeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apdbkeylo_el1.html

FEAT_LS64_ACCDATA implements the functionality identified by 0b0011.

From Armv8.7, the permitted values are 0b0000, 0b0001, 0b0010, and 0b0011.

XS, bits [59:56]

Indicates support for the XS attribute, the TLBI and DSB instructions with the nXS qualifier, and the
HCRX_EL2.{FGTnXS, FnXS} fields in AArch64 state. Defined values are:

XS Meaning
0b0000 The XS attribute, the TLBI and DSB instructions with the nXS

qualifier, and the HCRX_EL2.{FGTnXS, FnXS} fields are not
supported.

0b0001 The XS attribute, the TLBI and DSB instructions with the nXS
qualifier, and the HCRX_EL2.{FGTnXS, FnXS} fields are
supported.

All other values are reserved.

FEAT_XS implements the functionality identified by 0b0001.

From Armv8.7, the only permitted value is 0b0001.

I8MM, bits [55:52]

Indicates support for Advanced SIMD and Floating-point Int8 matrix multiplication instructions in AArch64 state.
Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions

are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

DGH, bits [51:48]

Indicates support for the Data Gathering Hint instruction. Defined values are:

DGH Meaning
0b0000 Data Gathering Hint is not implemented.
0b0001 Data Gathering Hint is implemented.

All other values are reserved.

FEAT_DGH implements the functionality identified by 0b0001.

From ARMv8.0, the permitted values are 0b0000 and 0b0001.

If the DGH instruction has no effect in preventing the merging of memory accesses, the value of this field is 0b0000.

BF16, bits [47:44]

Indicates support for Advanced SIMD and Floating-point BFloat16 instructions in AArch64 state. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFCVT, BFCVTN, BFCVTN2, BFDOT, BFMLALB, BFMLALT, and

BFMMLA instructions are implemented.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 478

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ZFR0_EL1.BF16.

From Armv8.6, the only permitted value is 0b0001.

SPECRES, bits [43:40]

Indicates support for prediction invalidation instructions in AArch64 state. Defined values are:

SPECRES Meaning
0b0000 CFP RCTX, DVP RCTX, and CPP RCTX instructions are not

implemented.
0b0001 CFP RCTX, DVP RCTX, and CPP RCTX instructions are

implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [39:36]

Indicates support for SB instruction in AArch64 state. Defined values are:

SB Meaning
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FRINTTS, bits [35:32]

Indicates support for the FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X instructions are implemented. Defined
values are:

FRINTTS Meaning
0b0000 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X

instructions are not implemented.
0b0001 FRINT32Z, FRINT32X, FRINT64Z, and FRINT64X

instructions are implemented.

All other values are reserved.

FEAT_FRINTTS implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

GPI, bits [31:28]

Indicates support for an IMPLEMENTATION DEFINED algorithm is implemented in the PE for generic code authentication
in AArch64 state. Defined values are:

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 479

GPI Meaning
0b0000 Generic Authentication using an IMPLEMENTATION DEFINED

algorithm is not implemented.
0b0001 Generic Authentication using an IMPLEMENTATION DEFINED

algorithm is implemented. This includes the PACGA instruction.

All other values are reserved.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPA is non-zero, this field must have the value 0b0000.

GPA, bits [27:24]

Indicates whether QARMA or Architected algorithm is implemented in the PE for generic code authentication in
AArch64 state. Defined values are:

GPA Meaning
0b0000 Generic Authentication using an Architected algorithm is not

implemented.
0b0001 Generic Authentication using the QARMA algorithm is

implemented. This includes the PACGA instruction.

All other values are reserved.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

If the value of ID_AA64ISAR1_EL1.GPI is non-zero, this field must have the value 0b0000.

LRCPC, bits [23:20]

Indicates support for weaker release consistency, RCpc, based model. Defined values are:

LRCPC Meaning
0b0000 The LDAPR*, LDAPUR*, and STLUR* instructions are not

implemented.
0b0001 The LDAPR* instructions are implemented.

The LDAPUR*, and STLUR* instructions are not implemented.
0b0010 The LDAPR*, LDAPUR*, and STLUR* instructions are

implemented.

All other values are reserved.

FEAT_LRCPC implements the functionality identified by the value 0b0001.

FEAT_LRCPC2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

In Armv8.3, the permitted values are 0b0001 and 0b0010.

From Armv8.4, the only permitted value is 0b0010.

FCMA, bits [19:16]

Indicates support for complex number addition and multiplication, where numbers are stored in vectors. Defined
values are:

FCMA Meaning
0b0000 The FCMLA and FCADD instructions are not implemented.
0b0001 The FCMLA and FCADD instructions are implemented.

All other values are reserved.

FEAT_FCMA implements the functionality identified by the value 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 480

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

JSCVT, bits [15:12]

Indicates support for JavaScript conversion from double precision floating point values to integers in AArch64 state.
Defined values are:

JSCVT Meaning
0b0000 The FJCVTZS instruction is not implemented.
0b0001 The FJCVTZS instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

API, bits [11:8]

Indicates whether an IMPLEMENTATION DEFINED algorithm is implemented in the PE for address authentication, in
AArch64 state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values
are:

API Meaning
0b0000 Address Authentication using an IMPLEMENTATION DEFINED

algorithm is not implemented.
0b0001 Address Authentication using an IMPLEMENTATION DEFINED

algorithm is implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC()
function returning TRUE, and the HaveEnhancedPAC2()
function returning FALSE.

0b0011 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, and the HaveEnhancedPAC() function
returning FALSE.

0b0100 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning FALSE,
and the HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using an IMPLEMENTATION DEFINED
algorithm is implemented, with the HaveEnhancedPAC2()
function returning TRUE, the HaveFPAC() function returning
TRUE, the HaveFPACCombined() function returning TRUE, and
the HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_PAuth2 implements the functionality added by the value 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of ID_AA64ISAR1_EL1.APA is non-zero, this field must have the value 0b0000.

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 481

APA, bits [7:4]

Indicates whether QARMA or Architected algorithm is implemented in the PE for address authentication, in AArch64
state. This applies to all Pointer Authentication instructions other than the PACGA instruction. Defined values are:

APA Meaning
0b0000 Address Authentication using an Architected algorithm is not

implemented.
0b0001 Address Authentication using the QARMA algorithm is

implemented, with the HaveEnhancedPAC() and
HaveEnhancedPAC2() functions returning FALSE.

0b0010 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC() function returning
TRUE and the HaveEnhancedPAC2() function returning FALSE.

0b0011 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning FALSE, the
HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0100 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning FALSE, and the
HaveEnhancedPAC() function returning FALSE.

0b0101 Address Authentication using the QARMA algorithm is
implemented, with the HaveEnhancedPAC2() function
returning TRUE, the HaveFPAC() function returning TRUE, the
HaveFPACCombined() function returning TRUE, and the
HaveEnhancedPAC() function returning FALSE.

All other values are reserved.

FEAT_PAuth implements the functionality added by the values 0b0000, 0b0001, and 0b0010.

FEAT_PAuth2 implements the functionality added by the value 0b0011.

FEAT_FPAC implements the functionality added by the values 0b0100 and 0b0101.

From Armv8.6, the permitted values are 0b0011, 0b0100, and 0b0101.

If the value of the ID_AA64ISAR1_EL1.API is non-zero, this field must have the value 0b0000.

DPB, bits [3:0]

Data Persistence writeback. Indicates support for the DC CVAP and DC CVADP instructions in AArch64 state. Defined
values are:

DPB Meaning
0b0000 DC CVAP not supported.
0b0001 DC CVAP supported.
0b0010 DC CVAP and DC CVADP supported.

All other values are reserved.

FEAT_DPB implements the functionality identified by the value 0b0001.

FEAT_DPB2 implements the functionality identified by the value 0b0010.

In Armv8.2, the permitted values are 0b0001 and 0b0010.

From Armv8.5, the only permitted value is 0b0010.

Accessing the ID_AA64ISAR1_EL1
Accesses to this register use the following encodings:

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 482

MRS <Xt>, ID_AA64ISAR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0110 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64ISAR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64ISAR1_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1

Page 483

(old) htmldiff from- (new)

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature
Register 1

The ID_AA64MMFR1_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64MMFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64MMFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 nTLBPAAFP AFPHCX HCXETS ETSTWED TWED

XNX SpecSEI PAN LO HPDS VH VMIDBits HAFDBS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5248]

Reserved, RES0.

nTLBPA, bits [51:48]

Indicates support for intermediate caching of translation table walks. Defined values are:

nTLBPA Meaning
0b0000 The intermediate caching of translation table walks might

include non-coherent caches of previous valid translation
table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the
location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not
include non-coherent caches of previous valid translation
table entries since the last completed TLBI applicable to the
PE where either:

• The caching is indexed by the physical address of the
location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 484

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

AFP, bits [47:44]

Indicates support for FPCR.{AH, FIZ, NEP}. Defined values are:

AFP Meaning
0b0000 The FPCR.{AH, FIZ, NEP} fields are not supported.
0b0001 The FPCR.{AH, FIZ, NEP} fields are supported.

All other values are reserved.

FEAT_AFP implements the functionality identified by the value 0b0001.

From Armv8.7, if Advanced SIMD and floating-point is implemented, the only permitted value is 0b0001.

HCX, bits [43:40]

Indicates support for HCRX_EL2 and its associated EL3 trap. Defined values are:

HCX Meaning
0b0000 HCRX_EL2 and its associated EL3 trap are not supported.
0b0001 HCRX_EL2 and its associated EL3 trap are supported.

All other values are reserved.

FEAT_HCX implements the functionality identified by the value 0b0001.

From Armv8.7, if EL2 is implemented, the only permitted value is 0b0001.

ETS, bits [39:36]

Indicates support for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

TWED, bits [35:32]

Indicates support for the configurable delayed trapping of WFE. Defined values are:

TWED Meaning
0b0000 Configurable delayed trapping of WFE is not supported.
0b0001 Configurable delayed trapping of WFE is supported.

All other values are reserved.

FEAT_TWED implements the functionality identified by the value 0b0001.

From Armv8.6, the permitted values are 0b0000 and 0b0001.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 485

XNX, bits [31:28]

Indicates support for execute-never control distinction by Exception level at stage 2. Defined values are:

XNX Meaning
0b0000 Distinction between EL0 and EL1 execute-never control at

stage 2 not supported.
0b0001 Distinction between EL0 and EL1 execute-never control at

stage 2 supported.

All other values are reserved.

FEAT_XNX implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

SpecSEI, bits [27:24]

Describes whether the PE can generate SError interrupt exceptions from speculative reads of memory, including
speculative instruction fetches. The defined values of this field are:

SpecSEI Meaning
0b0000 The PE never generates an SError interrupt due to an

External abort on a speculative read.
0b0001 The PE might generate an SError interrupt due to an

External abort on a speculative read.

All other values are reserved.

PAN, bits [23:20]

Privileged Access Never. Indicates support for the PAN bit in PSTATE, SPSR_EL1, SPSR_EL2, SPSR_EL3, and
DSPSR_EL0. Defined values are:

PAN Meaning
0b0000 PAN not supported.
0b0001 PAN supported.
0b0010 PAN supported and AT S1E1RP and AT S1E1WP instructions

supported.
0b0011 PAN supported, AT S1E1RP and AT S1E1WP instructions

supported, and SCTLR_EL1.EPAN and SCTLR_EL2.EPAN bits
supported.

All other values are reserved.

FEAT_PAN implements the functionality identified by the value 0b0001.

FEAT_PAN2 implements the functionality added by the value 0b0010.

FEAT_PAN3 implements the functionality added by the value 0b0011.

In Armv8.1, the permitted values are 0b0001 and 0b0011.

From Armv8.2, the permitted values are 0b0010 and 0b0011.

From Armv8.7, the only permitted value is 0b0011.

LO, bits [19:16]

LORegions. Indicates support for LORegions. Defined values are:

LO Meaning
0b0000 LORegions not supported.
0b0001 LORegions supported.

All other values are reserved.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 486

AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html

FEAT_LOR implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

HPDS, bits [15:12]

Hierarchical Permission Disables. Indicates support for disabling hierarchical controls in translation tables. Defined
values are:

HPDS Meaning
0b0000 Disabling of hierarchical controls not supported.
0b0001 Disabling of hierarchical controls supported with the

TCR_EL1.{HPD1, HPD0}, TCR_EL2.HPD or TCR_EL2.{HPD1,
HPD0}, and TCR_EL3.HPD bits.

0b0010 As for value 0b0001, and adds possible hardware allocation of
bits[62:59] of the translation table descriptors from the final
lookup level for IMPLEMENTATION DEFINED use.

All other values are reserved.

FEAT_HPDS implements the functionality identified by the value 0b0001.

FEAT_HPDS2 implements the functionality identified by the value 0b0010.

From Armv8.1, the value 0b0000 is not permitted.

VH, bits [11:8]

Virtualization Host Extensions. Defined values are:

VH Meaning
0b0000 Virtualization Host Extensions not supported.
0b0001 Virtualization Host Extensions supported.

All other values are reserved.

FEAT_VHE implements the functionality identified by the value 0b0001.

From Armv8.1, the only permitted value is 0b0001.

VMIDBits, bits [7:4]

Number of VMID bits. Defined values are:

VMIDBits Meaning
0b0000 8 bits
0b0010 16 bits

All other values are reserved.

FEAT_VMID16 implements the functionality identified by the value 0b0010.

From Armv8.1, the permitted values are 0b0000 and 0b0010.

HAFDBS, bits [3:0]

Hardware updates to Access flag and Dirty state in translation tables. Defined values are:

HAFDBS Meaning
0b0000 Hardware update of the Access flag and dirty state are not

supported.
0b0001 Hardware update of the Access flag is supported.
0b0010 Hardware update of both the Access flag and dirty state is

supported.

All other values are reserved.

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 487

FEAT_HAFDBS implements the functionality identified by the values 0b0001 and 0b0010.

From Armv8.1, the permitted values are 0b0000, 0b0001, and 0b0010.

Accessing the ID_AA64MMFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64MMFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64MMFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64MMFR1_EL1;

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1

Page 488

(old) htmldiff from- (new)

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature
Register 2

The ID_AA64MMFR2_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64MMFR2_EL1 is a 64-bit register.

Field descriptions
The ID_AA64MMFR2_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
E0PD EVT BBM TTL RES0 FWB IDS AT

ST NV CCIDX VARange IESB LSM UAO CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E0PD, bits [63:60]

Indicates support for the E0PD mechanism. Defined values are:

E0PD Meaning
0b0000 E0PDx mechanism is not implemented.
0b0001 E0PDx mechanism is implemented.

All other values are reserved.

FEAT_E0PD implements the functionality identified by the value 0b0001.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

EVT, bits [59:56]

Enhanced Virtualization Traps. If EL2 is implemented, indicates support for the HCR_EL2.{TTLBOS, TTLBIS, TOCU,
TICAB, TID4} traps. Defined values are:

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 489

EVT Meaning
0b0000 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are

not supported.
0b0001 HCR_EL2.{TOCU, TICAB, TID4} traps are supported.

HCR_EL2.{TTLBOS, TTLBIS} traps are not supported.
0b0010 HCR_EL2.{TTLBOS, TTLBIS, TOCU, TICAB, TID4} traps are

supported.

All other values are reserved.

FEAT_EVT implements the functionality identified by the values 0b0001 and 0b0010.

If EL2 is not implemented, the only permitted value is 0b0000.

In Armv8.2, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are:

• 0b0000 when EL2 is not implemented.
• 0b0010 when EL2 is implemented.

BBM, bits [55:52]

Allows identification of the requirements of the hardware to have break-before-make sequences when changing block
size for a translation.

BBM Meaning
0b0000 Level 0 support for changing block size is supported.
0b0001 Level 1 support for changing block size is supported.
0b0010 Level 2 support for changing block size is supported.

All other values are reserved.

FEAT_BBM implements the functionality identified by the values 0b0000, 0b0001, and 0b0010.

From Armv8.4, the permitted values are 0b0000, 0b0001, and 0b0010.

TTL, bits [51:48]

Indicates support for TTL field in address operations. Defined values are:

TTL Meaning
0b0000 TLB maintenance instructions by address have bits[47:44] as

RES0.
0b0001 TLB maintenance instructions by address have bits[47:44]

holding the TTL field.

All other values are reserved.

FEAT_TTL implements the functionality identified by the value 0b0001.

This field affects TLBI IPAS2E1, TLBI IPAS2E1IS, TLBI IPAS2E1OS, TLBI IPAS2LE1, TLBI IPAS2LE1IS, TLBI
IPAS2LE1OS, TLBI VAAE1, TLBI VAAE1IS, TLBI VAAE1OS, TLBI VAALE1, TLBI VAALE1IS, TLBI VAALE1OS, TLBI
VAE1, TLBI VAE1IS, TLBI VAE1OS, TLBI VAE2, TLBI VAE2IS, TLBI VAE2OS, TLBI VAE3, TLBI VAE3IS, TLBI
VAE3OS,TLBI VALE1, TLBI VALE1IS, TLBI VALE1OS, TLBI VALE2, TLBI VALE2IS, TLBI VALE2OS, TLBI VALE3, TLBI
VALE3IS, TLBI VALE3OS.

From Armv8.4, the only permitted value is 0b0001.

Bits [47:44]

Reserved, RES0.

FWB, bits [43:40]

Indicates support for HCR_EL2.FWB. Defined values are:

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 490

FWB Meaning
0b0000 HCR_EL2.FWB bit is not supported.
0b0001 HCR_EL2.FWB is supported.

All other values reserved.

FEAT_S2FWB implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

IDS, bits [39:36]

Indicates the value of ESR_ELx.EC that reports an exception generated by a read access to the feature ID space.
Defined values are:

IDS Meaning
0b0000 An exception which is generated by a read access to the feature

ID space, other than a trap caused by HCR_EL2.TIDx,
SCTLR_EL1.UCT, or SCTLR_EL2.UCT, is reported by
ESR_ELx.EC == 0x0.

0b0001 All exceptions generated by an AArch64 read access to the
feature ID space are reported by ESR_ELx.EC == 0x18.

All other values are reserved.

The Feature ID space is defined as the System register space in AArch64 with op0==3, op1=={0, 1, 3}, CRn==0,
CRm=={0-7}, op2=={0-7}.

FEAT_IDST implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AT, bits [35:32]

Identifies support for unaligned single-copy atomicity and atomic functions. Defined values are:

AT Meaning
0b0000 Unaligned single-copy atomicity and atomic functions are not

supported.
0b0001 Unaligned single-copy atomicity and atomic functions with a

16-byte address range aligned to 16-bytes are supported.

All other values are reserved.

FEAT_LSE2 implements the functionality identified by the value 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

ST, bits [31:28]

Identifies support for small translation tables. Defined values are:

ST Meaning
0b0000 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and

VTCR_EL2.T0SZ fields is 39.
0b0001 The maximum value of the TCR_ELx.{T0SZ,T1SZ} and

VTCR_EL2.T0SZ fields is 48 for 4KB and 16KB granules, and 47
for 64KB granules.

All other values are reserved.

FEAT_TTST implements the functionality identified by the value 0b0001.

If FEAT_SEL2 is implemented, the only permitted value is 0b0001.

In an implementation which does not support FEAT_SEL2, the permitted values are 0b0000 and 0b0001.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 491

NV, bits [27:24]

Nested Virtualization. If EL2 is implemented, indicates support for the use of nested virtualization. Defined values are:

NV Meaning
0b0000 Nested virtualization is not supported.
0b0001 The HCR_EL2.NV, HCR_EL2.NV1, HCR_EL2.AT bits are

implemented. HCR_EL2.{AT, NV1, NV} bits are implemented.
0b0010 The VNCR_EL2 register and the HCR_EL2.{AT, NV, NV1, NV2}

bits are implemented. HCR_EL2.{NV2, AT, NV1, NV} bits are
implemented.

All other values are reserved.

If EL2 is not implemented, the only permitted value is 0b0000.

FEAT_NV implements the functionality identified by the value 0b0001.

FEAT_NV2 implements the functionality identified by the value 0b0010.

In Armv8.3, if EL2 is implemented, the permitted values are 0b0000 and 0b0001.

From Armv8.4, if EL2 is implemented, the permitted values are 0b0000, 0b0001, and 0b0010.

CCIDX, bits [23:20]

Support for the use of revised CCSIDR_EL1 register format. Defined values are:

CCIDX Meaning
0b0000 32-bit format implemented for all levels of the CCSIDR_EL1.
0b0001 64-bit format implemented for all levels of the CCSIDR_EL1.

All other values are reserved.

FEAT_CCIDX implements the functionality identified by the value 0b0001.

From Armv8.3, the permitted values are 0b0000 and 0b0001.

VARange, bits [19:16]

Indicates support for a larger virtual address. Defined values are:

VARange Meaning
0b0000 VMSAv8-64 supports 48-bit VAs.
0b0001 VMSAv8-64 supports 52-bit VAs when using the 64KB

translation granule. The size for other translation granules
issupport not48-bit defined by this field.VAs.

All other values are reserved.

FEAT_LVA implements the functionality identified by the value 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

IESB, bits [15:12]

Indicates support for the IESB bit in the SCTLR_ELx registers. Defined values are:

IESB Meaning
0b0000 IESB bit in the SCTLR_ELx registers is not supported.
0b0001 IESB bit in the SCTLR_ELx registers is supported.

All other values are reserved.

FEAT_IESB implements the functionality identified by the value 0b0001.

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 492

AArch64-vncr_el2.html

LSM, bits [11:8]

Indicates support for LSMAOE and nTLSMD bits in SCTLR_EL1 and SCTLR_EL2. Defined values are:

LSM Meaning
0b0000 LSMAOE and nTLSMD bits not supported.
0b0001 LSMAOE and nTLSMD bits supported.

All other values are reserved.

FEAT_LSMAOC implements the functionality identified by the value 0b0001.

UAO, bits [7:4]

User Access Override. Defined values are:

UAO Meaning
0b0000 UAO not supported.
0b0001 UAO supported.

All other values are reserved.

FEAT_UAO implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

CnP, bits [3:0]

Indicates support for Common not Private translations. Defined values are:

CnP Meaning
0b0000 Common not Private translations not supported.
0b0001 Common not Private translations supported.

All other values are reserved.

FEAT_TTCNP implements the functionality identified by the value 0b0001.

From Armv8.2, the only permitted value is 0b0001.

Accessing the ID_AA64MMFR2_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64MMFR2_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0111 0b010

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 493

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_AA64MMFR2_EL1) || boolean IMPLEMENTATION_DEFINED "ID_AA64MMFR2

trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_AA64MMFR2_EL1;

elsif PSTATE.EL == EL2 then
return ID_AA64MMFR2_EL1;

elsif PSTATE.EL == EL3 then
return ID_AA64MMFR2_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2

Page 494

(old) htmldiff from- (new)

ID_AA64PFR0_EL1, AArch64 Processor Feature
Register 0

The ID_AA64PFR0_EL1 characteristics are:

Purpose
Provides additional information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
The external register EDPFR gives information from this register.

Attributes
ID_AA64PFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64PFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
CSV3 CSV2 RES0 DIT AMU MPAM SEL2 SVE
RAS GIC AdvSIMD FP EL3 EL2 EL1 EL0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CSV3, bits [63:60]

Speculative use of faulting data. Defined values are:

CSV3 Meaning
0b0000 This deviceDevice does not disclose whether data loaded under

speculation with a permission or domain fault can be used to
form an address or generate condition codes or SVE predicate
values to be used by instructions newer than the load in the
speculative sequence.sequence

0b0001 Data loaded under speculation with a permission or domain
fault cannot be used to form an address or generate condition
codes or SVE predicate values to be used by instructions newer
than the load in the speculative sequence.

All other values are reserved.

FEAT_CSV3 implements the functionality identified by the value 0b0001.

In Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.5, the only permitted value is 0b0001.

If FEAT_E0PD is implemented, FEAT_CSV3 must be implemented.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 495

ext-edpfr.html

CSV2, bits [59:56]

Speculative use of out of context branch targets. Defined values are:

CSV2 Meaning
0b0000 This deviceDevice does not disclose whether branch targets

trained in one hardware-describedhardware described context
can exploitativelyaffect control speculative execution in a
different hardware-describedhardware described context.

0b0001 Branch targets trained in one hardware-describedhardware
described context can exploitativelyonly controlaffect
speculative execution in a different hardware-
describedhardware described context only in a hard-to-
determine way. Contexts do not include the SCXTNUM_ELx
register contexts.contexts, Supportand forthese the
SCXTNUM_ELx registers isare definednot insupported.
ID_AA64PFR1_EL1.CSV2_frac.

0b0010 Branch targets trained in one hardware-describedhardware
described context can exploitativelyonly controlaffect
speculative execution in a different hardware-
describedhardware described context only in a hard-to-
determine way. TheContexts SCXTNUM_ELxinclude
registersthe areSCXTNUM_ELx supportedregister and the
contexts, includeand thethese SCXTNUM_ELxregisters
registerare contexts.supported.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the value 0b0001.

FEAT_CSV2_2 implements the functionality identified by the value 0b0010.

In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

Bits [55:52]

Reserved, RES0.

DIT, bits [51:48]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch64 does not guarantee constant execution time of any

instructions.
0b0001 AArch64 provides the PSTATE.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [47:44]

Indicates support for Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 FEAT_AMUv1 is implemented.
0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support

for virtualization of the activity monitor event counters.

All other values are reserved.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 496

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

MPAM, bits [43:40]

Indicates support for MPAM Extension. Defined values are:

MPAM Meaning
0b0000 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension

is not implemented.
If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension
version 0.1 is implemented.

0b0001 If ID_AA64PFR1_EL1.MPAM_frac == 0b0000, MPAM Extension
version 1.0 is implemented.
If ID_AA64PFR1_EL1.MPAM_frac == 0b0001, MPAM Extension
version 1.1 is implemented.

All other values are reserved.

SEL2, bits [39:36]

Secure EL2. Defined values are:

SEL2 Meaning
0b0000 Secure EL2 is not implemented.
0b0001 Secure EL2 is implemented.

All other values are reserved.

FEAT_SEL2 implements the functionality identified by the value 0b0001.

SVE, bits [35:32]

Scalable Vector Extension. Defined values are:

SVE Meaning
0b0000 SVE architectural state and programmers' model are not

implemented.
0b0001 SVE architectural state and programmers' model are

implemented.

All other values are reserved.

If implemented, refer to ID_AA64ZFR0_EL1 for information about which SVE instructions are available.

RAS, bits [31:28]

RAS Extension version. Defined values are:

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 497

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 FEAT_RASv1p1 present. As 0b0001, and adds support for:

• If EL3 is implemented, FEAT_DoubleFault.
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection Model
Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes simplifications
to ERR<n>STATUS and support for the optional RAS
Timestamp and RAS Common Fault Injection Model Extensions.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 and FEAT_DoubleFault implement the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1 is 0, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note

When the value of this field is 0b0001, ID_AA64PFR1_EL1.RAS_frac indicates
whether FEAT_RASv1p1 is implemented.

GIC, bits [27:24]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

AdvSIMD, bits [23:20]

Advanced SIMD. Defined values are:

AdvSIMD Meaning
0b0000 Advanced SIMD is implemented, including support for the

following SISD and SIMD operations:
• Integer byte, halfword, word and doubleword

element operations.
• Single-precision and double-precision floating-point

arithmetic.
• Conversions between single-precision and half-

precision data types, and double-precision and half-
precision data types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Advanced SIMD is not implemented.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 498

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
AArch64-erridr_el1.html

All other values are reserved.

This field must have the same value as the FP field.

The permitted values are:

• 0b0000 in an implementation with Advanced SIMD support that does not include the FEAT_FP16 extension.
• 0b0001 in an implementation with Advanced SIMD support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without Advanced SIMD support.

FP, bits [19:16]

Floating-point. Defined values are:

FP Meaning
0b0000 Floating-point is implemented, and includes support for:

• Single-precision and double-precision floating-point
types.

• Conversions between single-precision and half-precision
data types, and double-precision and half-precision data
types.

0b0001 As for 0b0000, and also includes support for half-precision
floating-point arithmetic.

0b1111 Floating-point is not implemented.

All other values are reserved.

This field must have the same value as the AdvSIMD field.

The permitted values are:

• 0b0000 in an implementation with floating-point support that does not include the FEAT_FP16 extension.
• 0b0001 in an implementation with floating-point support that includes the FEAT_FP16 extension.
• 0b1111 in an implementation without floating-point support.

EL3, bits [15:12]

EL3 Exception level handling. Defined values are:

EL3 Meaning
0b0000 EL3 is not implemented.
0b0001 EL3 can be executed in AArch64 state only.
0b0010 EL3 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL2, bits [11:8]

EL2 Exception level handling. Defined values are:

EL2 Meaning
0b0000 EL2 is not implemented.
0b0001 EL2 can be executed in AArch64 state only.
0b0010 EL2 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

EL1, bits [7:4]

EL1 Exception level handling. Defined values are:

EL1 Meaning
0b0001 EL1 can be executed in AArch64 state only.
0b0010 EL1 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 499

EL0, bits [3:0]

EL0 Exception level handling. Defined values are:

EL0 Meaning
0b0001 EL0 can be executed in AArch64 state only.
0b0010 EL0 can be executed in either AArch64 or AArch32 state.

All other values are reserved.

Accessing the ID_AA64PFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64PFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64PFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64PFR0_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0

Page 500

(old) htmldiff from- (new)

ID_AA64PFR1_EL1, AArch64 Processor Feature
Register 1

The ID_AA64PFR1_EL1 characteristics are:

Purpose
Reserved for future expansion of information about implemented PE features in AArch64 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
There are no configuration notes.

Attributes
ID_AA64PFR1_EL1 is a 64-bit register.

Field descriptions
The ID_AA64PFR1_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 CSV2_frac

RES0 MPAM_frac RAS_frac MTE SSBS BT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:3620]

Reserved, RES0.

CSV2_frac, bits [35:32]

CSV2 fractional field. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 501

CSV2_frac Meaning
0b0000 This device does not disclose whether branch targets

trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context. The SCXTNUM_ELx registers
are not supported.

0b0001 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine
way. Within a hardware-described context, branch targets
trained for branches situated at one address can control
speculative execution of branches situated at different
addresses only in a hard-to-determine way. The
SCXTNUM_ELx registers are not supported and the
contexts do not include the SCXTNUM_ELx register
contexts.

0b0010 If ID_AA64PFR0_EL1.CSV2 is 0b0001, branch targets
trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine
way. Within a hardware-described context, branch targets
trained for branches situated at one address can control
speculative execution of branches situated at different
addresses only in a hard-to-determine way. The
SCXTNUM_ELx registers are supported, but the contexts
do not include the SCXTNUM_ELx register contexts.

All other values are reserved.

FEAT_CSV2_1p1 implements the functionality identified by the value 0b0001.

FEAT_CSV2_1p2 implements the functionality identified by the value 0b0010.

In Armv8.0, the permitted values are 0b0000, 0b0001, and 0b0010.

From Armv8.5, the permitted values are 0b0001 and 0b0010.

This field is valid only if ID_AA64PFR0_EL1.CSV2 is 0b0001.

Bits [31:20]

Reserved, RES0.

MPAM_frac, bits [19:16]

MPAM Extension fractional field. Defined values are:

MPAM_frac Meaning
0b0000 If ID_AA64PFR0_EL1.MPAM == 0b0000, MPAM Extension

not implemented.
If ID_AA64PFR0_EL1.MPAM == 0b0001, MPAM Extension
v1.0 is implemented.

0b0001 If ID_AA64PFR0_EL1.MPAM == 0b0000, implements
MPAM v0.1, which is like v1.1 but reduces support for
Secure PARTIDs.
If ID_AA64PFR0_EL1.MPAM == 0b0001, implements
MPAM v1.1 and adds support for MPAM2_EL2.TIDR to
provide trapping of MPAMIDR_EL1 when MPAMHCR_EL2
is not present.

All other values are reserved.

RAS_frac, bits [15:12]

RAS Extension fractional field. Defined values are:

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 502

AArch64-mpam2_el2.html
AArch64-mpamidr_el1.html
AArch64-mpamhcr_el2.html

RAS_frac Meaning
0b0000 If ID_AA64PFR0_EL1.RAS == 0b0001, RAS Extension

implemented.
0b0001 If ID_AA64PFR0_EL1.RAS == 0b0001, as 0b0000 and adds

support for:
• Additional ERXMISC<m>_EL1 System registers.
• Additional System registers ERXPFGCDN_EL1,

ERXPFGCTL_EL1, and ERXPFGF_EL1, and the
SCR_EL3.FIEN and HCR_EL2.FIEN trap controls, to
support the optional RAS Common Fault Injection
Model Extension.

Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes
simplifications to ERR<n>STATUS, and support for the
optional RAS Timestamp and RAS Common Fault Injection
Model Extensions.

All other values are reserved.

FEAT_RASv1p1 implements the functionality identified by the value 0b0001.

This field is valid only if ID_AA64PFR0_EL1.RAS == 0b0001.

MTE, bits [11:8]

Support for the Memory Tagging Extension. Defined values are:

MTE Meaning
0b0000 Memory Tagging Extension is not implemented.
0b0001 Instruction-only Memory Tagging Extension is implemented.
0b0010 Full Memory Tagging Extension is implemented.
0b0011 Memory Tagging Extension is implemented with support for

asymmetric Tag Check Fault handling.

All other values are reserved.

FEAT_MTE implements the functionality identified by the value 0b0001.

FEAT_MTE2 implements the functionality identified by the value 0b0010

FEAT_MTE3 implements the functionality identified by the value 0b0011.

In Armv8.5, the permitted values are 0b0000, 0b0001 and 0b0010.

From Armv8.7, the value 0b0001 is not permitted

SSBS, bits [7:4]

Speculative Store Bypassing controls in AArch64 state. Defined values are:

SSBS Meaning
0b0000 AArch64 provides no mechanism to control the use of

Speculative Store Bypassing.
0b0001 AArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypass Safe.
0b0010 AArch64 provides the PSTATE.SSBS mechanism to mark

regions that are Speculative Store Bypassing Safe, and the
MSR and MRS instructions to directly read and write the
PSTATE.SSBS field.

All other values are reserved.

FEAT_SSBS implements the functionality identified by the value 0b0001.

FEAT_SSBS2 implements the functionality identified by the value 0b0010.

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 503

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html

BT, bits [3:0]

Branch Target Identification mechanism support in AArch64 state. Defined values are:

BT Meaning
0b0000 The Branch Target Identification mechanism is not

implemented.
0b0001 The Branch Target Identification mechanism is implemented.

All other values are reserved.

FEAT_BTI implements the functionality identified by the value 0b0001.

From Armv8.5, the only permitted value is 0b0001.

Accessing the ID_AA64PFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64PFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_AA64PFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_AA64PFR1_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1

Page 504

(old) htmldiff from- (new)

ID_AA64ZFR0_EL1, SVE Feature ID register 0
The ID_AA64ZFR0_EL1 characteristics are:

Purpose
Provides additional information about the implemented features of the AArch64 Scalable Vector Extension, when the
ID_AA64PFR0_EL1.SVE field is not zero.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_AA64ZFR0_EL1 is a 64-bit register.

Field descriptions
The ID_AA64ZFR0_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 F64MM F32MM RES0 I8MM RES0

RES0 BF16 RES0 SVEver
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

F64MM, bits [59:56]

Indicates support for SVE FP64 double-precision floating-point matrix multiplication instructions. Defined values are:

F64MM Meaning
0b0000 FP64 matrix multiplication and related instructions are not

implemented.
0b0001 FP64 variant of the FMMLA instruction, and LD1RO*

instructions are implemented. The 128-bit element variations
of TRN1, TRN2, UZP1, UZP2, ZIP1, and ZIP2 are also
implemented.

All other values are reserved.

FEAT_F64MM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 505

F32MM, bits [55:52]

Indicates support for the SVE FP32 single-precision floating-point matrix multiplication instruction. Defined values
are:

F32MM Meaning
0b0000 FP32 matrix multiplication instruction is not implemented.
0b0001 FP32 variant of the FMMLA instruction is implemented.

All other values are reserved.

FEAT_F32MM implements the functionality identified by 0b0001.

From Arm v8.2, the permitted values are 0b0000 and 0b0001.

Bits [51:48]

Reserved, RES0.

I8MM, bits [47:44]

Indicates support for SVE Int8 matrix multiplication instructions. Defined values are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 SMMLA, SUDOT, UMMLA, USMMLA, and USDOT instructions

are implemented.

All other values are reserved.

FEAT_I8MM implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.I8MM.

From Armv8.6, the only permitted value is 0b0001.

Bits [43:24]

Reserved, RES0.

BF16, bits [23:20]

Indicates support for SVE BFloat16 instructions. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 BFCVT, BFCVTNT, BFDOT, BFMLALB, BFMLALT, and BFMMLA

instructions are implemented.

All other values are reserved.

FEAT_BF16 implements the functionality identified by 0b0001.

When Advanced SIMD and SVE are both implemented, this field must return the same value as
ID_AA64ISAR1_EL1.BF16.

From Armv8.6, the only permitted value is 0b0001.

Bits [19:4]

Reserved, RES0.

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 506

SVEver, bits [3:0]

Indicates support for SVE version 2. Defined values are:

SVEver Meaning
0b0000 SVE instructions are implemented.

All other values are reserved. This field is valid only if theID_AA64PFR0_EL1.SVE field is not zero.

Accessing the ID_AA64ZFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_AA64ZFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0100 0b100

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_AA64ZFR0_EL1) || boolean IMPLEMENTATION_DEFINED

"ID_AA64ZFR0_EL1 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL2 then
return ID_AA64ZFR0_EL1;

elsif PSTATE.EL == EL3 then
return ID_AA64ZFR0_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_AA64ZFR0_EL1, SVE Feature ID register 0

Page 507

(old) htmldiff from- (new)

ID_ISAR6_EL1, AArch32 Instruction Set Attribute
Register 6

The ID_ISAR6_EL1 characteristics are:

Purpose
Provides information about the instruction sets implemented by the PE in AArch32 state.

Must be interpreted with ID_ISAR0_EL1, ID_ISAR1_EL1, ID_ISAR2_EL1, ID_ISAR3_EL1, ID_ISAR4_EL1 and
ID_ISAR5_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_ISAR6_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_ISAR6[31:0].

Note

Prior to the introduction of the features described by this register, this
register was unnamed and reserved, RES0 from EL1, EL2, and EL3.

Attributes
ID_ISAR6_EL1 is a 64-bit register.

Field descriptions
The ID_ISAR6_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 I8MM BF16 SPECRES SB FHM DP JSCVT
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:28]

Reserved, RES0.

I8MM, bits [27:24]

Indicates support for Advanced SIMD and floating-point Int8 matrix multiplication instructions in AArch32 state.
Defined values of this field are:

I8MM Meaning
0b0000 Int8 matrix multiplication instructions are not implemented.
0b0001 VSMMLA, VSUDOT, VUMMLA, VUSMMLA, and VUSDOT

instructions are implemented.

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 508

AArch64-id_isar0_el1.html
AArch64-id_isar1_el1.html
AArch64-id_isar2_el1.html
AArch64-id_isar3_el1.html
AArch64-id_isar4_el1.html
AArch64-id_isar5_el1.html
AArch32-id_isar6.html

All other values are reserved.

FEAT_AA32I8MM implements the functionality identified by 0b0001.

BF16, bits [23:20]

Indicates support for Advanced SIMD and floating-point BFloat16 instructions in AArch32 state. Defined values are:

BF16 Meaning
0b0000 BFloat16 instructions are not implemented.
0b0001 VCVT, VCVTB, VCVTT, VDOT, VFMAB, VFMAT, and VMMLA

instructions with BF16 operand or result types are
implemented.

All other values are reserved.

FEAT_AA32BF16 implements the functionality identified by 0b0001.

SPECRES, bits [19:16]

Indicates support for Speculation invalidation instructions in AArch32 state. Defined values are:

SPECRES Meaning
0b0000 Prediction invalidation instructions are not implemented.
0b0001 CFPRCTX, DVPRCTX, and CPPRCTX instructions are

implemented.

All other values are reserved.

FEAT_SPECRES implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

SB, bits [15:12]

Indicates support for the SB instruction in AArch32 state. Defined values are:

SB Meaning
0b0000 SB instruction is not implemented.
0b0001 SB instruction is implemented.

All other values are reserved.

FEAT_SB implements the functionality identified by 0b0001.

From Armv8.5, the only permitted value is 0b0001.

FHM, bits [11:8]

Indicates support for Advanced SIMD and floating-point VFMAL and VFMSL instructions in AArch32 state. Defined
values are:

FHM Meaning
0b0000 VFMAL and VMFSL instructions are not implemented.
0b0001 VFMAL and VMFSL instructions are implemented.

All other values are reserved.

FEAT_FHM implements the functionality identified by 0b0001.

From Armv8.2, the permitted values are 0b0000 and 0b0001.

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 509

DP, bits [7:4]

Indicates support for dotAdvanced productSIMD and floating-point VFMAL and VFMSL instructions in AArch32 state.
Defined values are:

DP Meaning
0b0000 Dot product instructions are not implemented.
0b0001 VUDOTUDOT and VSDOT instructions are implemented.

All other values are reserved.

FEAT_DotProd implements the functionality identified by 0b0001.

In Armv8.2, the permitted values are 0b0000 and 0b0001.

From Armv8.4, the only permitted value is 0b0001.

JSCVT, bits [3:0]

Indicates support for the VJCVT instruction in AArch32 state. Defined values are:

JSCVT Meaning
0b0000 The VJCVT instruction is not implemented.
0b0001 The VJCVT instruction is implemented.

All other values are reserved.

FEAT_JSCVT implements the functionality identified by 0b0001.

In Armv8.0, Armv8.1, and Armv8.2, the only permitted value is 0b0000.

From Armv8.3, if Advanced SIMD or Floating-point is implemented, the only permitted value is 0b0001.

From Armv8.3, if Advanced SIMD or Floating-point is not implemented, the only permitted value is 0b0000.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing the ID_ISAR6_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_ISAR6_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0010 0b111

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 510

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_ISAR6_EL1) || boolean IMPLEMENTATION_DEFINED "ID_ISAR6_EL1

trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_ISAR6_EL1;

elsif PSTATE.EL == EL2 then
return ID_ISAR6_EL1;

elsif PSTATE.EL == EL3 then
return ID_ISAR6_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6

Page 511

(old) htmldiff from- (new)

ID_MMFR5_EL1, AArch32 Memory Model Feature
Register 5

The ID_MMFR5_EL1 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_MMFR5_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_MMFR5[31:0].

Attributes
ID_MMFR5_EL1 is a 64-bit register.

Field descriptions
The ID_MMFR5_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 nTLBPAETS ETS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:84]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks. Defined values are:

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 512

nTLBPA Meaning
0b0000 The intermediate caching of translation table walks might

include non-coherent caches of previous valid translation
table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the
location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not
include non-coherent caches of previous valid translation
table entries since the last completed TLBI applicable to the
PE where either:

• The caching is indexed by the physical address of the
location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

ETS, bits [3:0]

Indicates supportSupport for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing the ID_MMFR5_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_MMFR5_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0011 0b110

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 513

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!IsZero(ID_MMFR5_EL1) || boolean IMPLEMENTATION_DEFINED "ID_MMFR5_EL1

trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
return ID_MMFR5_EL1;

elsif PSTATE.EL == EL2 then
return ID_MMFR5_EL1;

elsif PSTATE.EL == EL3 then
return ID_MMFR5_EL1;

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5

Page 514

(old) htmldiff from- (new)

ID_PFR0_EL1, AArch32 Processor Feature Register 0
The ID_PFR0_EL1 characteristics are:

Purpose
Gives top-level information about the instruction sets supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1_EL1.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_PFR0_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_PFR0[31:0].

Attributes
ID_PFR0_EL1 is a 64-bit register.

Field descriptions
The ID_PFR0_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RAS DIT AMU CSV2 State3 State2 State1 State0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

RAS, bits [31:28]

RAS Extension version. Defined values are:

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 FEAT_RASv1p1 present. As 0b0001, and adds support for

additional ERXMISC<m> System registers.
Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes simplifications
to ERR<n>STATUS and support for the optional RAS
Timestamp Extension.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 515

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR_EL1.NUM is 0, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note

When the value of this field is 0b0001, ID_PFR2_EL1.RAS_frac indicates
whether FEAT_RASv1p1 is implemented.

DIT, bits [27:24]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch32 does not guarantee constant execution time of any

instructions.
0b0001 AArch32 provides the PSTATE.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]

Indicates support for Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 FEAT_AMUv1 is implemented.
0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support

for virtualization of the activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

CSV2, bits [19:16]

Speculative use of out of context branch targets. Defined values are:

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 516

AArch64-erridr_el1.html
AArch64-id_pfr2_el1.html

CSV2 Meaning
0b0000 This deviceDevice does not disclose whether branch targets

trained in one hardware-describedhardware described context
can exploitativelyaffect control speculative execution in a
different hardware-describedhardware described context.

0b0001 Branch targets trained in one hardware-describedhardware
described context can exploitativelyonly controlaffect
speculative execution in a different hardware-
describedhardware described context only in a hard-to-
determine way.

0b0010 Branch targets trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine way.
Within a hardware-described context, branch targets trained
for branches situated at one address can control speculative
execution of branches situated at different addresses only in a
hard-to-determine way.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the values 0b0001 and. 0b0010.

From Armv8.5, the only permitted valuesvalue areis 0b0001 and. 0b0010.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

State3 Meaning
0b0000 Not implemented.
0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

State2, bits [11:8]

Jazelle extension support. Defined values are:

State2 Meaning
0b0000 Not implemented.
0b0001 Jazelle extension implemented, without clearing of JOSCR.CV

on exception entry.
0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on

exception entry.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

State1 Meaning
0b0000 T32 instruction set not implemented.
0b0001 T32 encodings before the introduction of Thumb-2 technology

implemented:
• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions.
• 32-bit instructions other than BL and BLX cannot be

encoded.
0b0011 T32 encodings after the introduction of Thumb-2 technology

implemented, for all 16-bit and 32-bit T32 basic instructions.

All other values are reserved.

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 517

AArch32-joscr.html
AArch32-joscr.html

In Armv8-A, the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

State0 Meaning
0b0000 A32 instruction set not implemented.
0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing the ID_PFR0_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_PFR0_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b000

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_PFR0_EL1;
elsif PSTATE.EL == EL2 then

return ID_PFR0_EL1;
elsif PSTATE.EL == EL3 then

return ID_PFR0_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_PFR0_EL1, AArch32 Processor Feature Register 0

Page 518

(old) htmldiff from- (new)

ID_PFR1_EL1, AArch32 Processor Feature Register 1
The ID_PFR1_EL1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0_EL1.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch64 System register ID_PFR1_EL1 bits [31:0] are architecturally mapped to AArch32 System register
ID_PFR1[31:0].

Attributes
ID_PFR1_EL1 is a 64-bit register.

Field descriptions
The ID_PFR1_EL1 bit assignments are:

When AArch32 is supported at any Exception level:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

GIC Virt_frac Sec_frac GenTimer Virtualization MProgMod Security ProgMod
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the
ARMv7 Virtualization Extensions. Defined values are:

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 519

Virt_frac Meaning
0b0000 No features from the ARMv7 Virtualization Extensions are

implemented.
0b0001 The following features of the ARMv7 Virtualization

Extensions are implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits

described in the Virtualization Extensions, if EL3 is
implemented.

• The MSR (banked register) and MRS (banked register)
instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is implemented.
• 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Virtualization is 0, otherwise it holds the value 0b0000.

Note

The ID_ISAR registers do not identify whether the instructions added by the
ARMv7 Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7
Security Extensions. Defined values are:

Sec_frac Meaning
0b0000 No features from the ARMv7 Security Extensions are

implemented.
0b0001 The following features from the ARMv7 Security Extensions

are implemented:
• The VBAR register.
• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-
secure physical memory is supported.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is implemented.
• 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1_EL1.Security is 0, otherwise it holds the value 0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

GenTimer Meaning
0b0000 Generic Timer is not implemented.
0b0001 Generic Timer is implemented.
0b0010 Generic Timer is implemented, and also includes support

for CNTHCTL.EVNTIS and CNTKCTL.EVNTIS fields, and
CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0, Armv8.1, Armv8.2, Armv8.3, Armv8.4, and Armv8.5, the only permitted value is 0b0001.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 520

AArch32-scr.html
AArch32-scr.html
AArch32-scr.html
AArch32-ttbcr.html
AArch32-ttbcr.html
AArch32-cnthctl.html
AArch32-cntkctl.html
AArch32-cntpctss.html
AArch32-cntvctss.html

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

Virtualization Meaning
0b0000 EL2, Hyp mode, and the HVC instruction not

implemented.
0b0001 EL2, Hyp mode, the HVC instruction, and all the

features described by Virt_frac == 0b0001
implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is not implemented.
• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:

MProgMod Meaning
0b0000 Not supported.
0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:

Security Meaning
0b0000 EL3, Monitor mode, and the SMC instruction not

implemented.
0b0001 EL3, Monitor mode, the SMC instruction, and all the features

described by Sec_frac == 0b0001 implemented.
0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit.

Not permitted in Armv8 as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is not implemented.
• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

If EL1 cannot use AArch32 then this field has the value 0b0000.

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 521

AArch32-nsacr.html
AArch32-nsacr.html

ProgMod, bits [3:0]

Support for the standard programmers' model for Armv4 and later. Model must support User, FIQ, IRQ, Supervisor,
Abort, Undefined, and System modes. Defined values are:

ProgMod Meaning
0b0000 Not supported.
0b0001 Supported.

All other values are reserved.

In Armv8-A, the permitted values are 0b0001 and 0b0000.

If EL1 cannot use AArch32 then this field has the value 0b0000.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
UNKNOWN
UNKNOWN

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Reserved, UNKNOWN.

Accessing the ID_PFR1_EL1
Accesses to this register use the following encodings:

MRS <Xt>, ID_PFR1_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0001 0b001

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TID3 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return ID_PFR1_EL1;
elsif PSTATE.EL == EL2 then

return ID_PFR1_EL1;
elsif PSTATE.EL == EL3 then

return ID_PFR1_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_PFR1_EL1, AArch32 Processor Feature Register 1

Page 522

(old) htmldiff from- (new)

LOREA_EL1, LORegion End Address (EL1)
The LOREA_EL1 characteristics are:

Purpose
Holds the physical address of the end of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Configuration
This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LOREA_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LOREA_EL1 is a 64-bit register.

Field descriptions
The LOREA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 EA[51:48] EA[47:16]

EA[47:16] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

EA[51:48], bits [51:48]

When FEAT_LPA is implemented:

Extension to EA[47:16]. ForSee more information, see EA[47:16].] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EA[47:16], bits [47:16]

Bits [47:16] of the end physical address of an LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS. Bits[15:0] of this address are defined to be 0xFFFF. For implementations with fewer than 48 bits, the
upper bits of this field are RES0.

LOREA_EL1, LORegion End Address (EL1)

Page 523

AArch64-lorc_el1.html
AArch64-lorc_el1.html
AArch64-lorc_el1.html

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, EA[51:48]
formsform the upper part of the address value. Otherwise, whenfor 52-bitimplementations addresseswith arefewer
notthan in52 usephysical address bits, EA[51:48] isare RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:0]

Reserved, RES0.

Accessing the LOREA_EL1
Accesses to this register use the following encodings:

MRS <Xt>, LOREA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LOREA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LOREA_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LOREA_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LOREA_EL1;

MSR LOREA_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b001

LOREA_EL1, LORegion End Address (EL1)

Page 524

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LOREA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
LOREA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

LOREA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LOREA_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

LOREA_EL1, LORegion End Address (EL1)

Page 525

(old) htmldiff from- (new)

LORSA_EL1, LORegion Start Address (EL1)
The LORSA_EL1 characteristics are:

Purpose
Indicates whether the current LORegion descriptor selected by LORC_EL1.DS is enabled, and holds the physical
address of the start of the LORegion.

Configuration
This register is present only when FEAT_LOR is implemented. Otherwise, direct accesses to LORSA_EL1 are
UNDEFINED.

This register is RES0 if any of the following apply:

• No LORegion descriptors are supported by the PE.
• LORC_EL1.DS points to a LORegion that is not supported by the PE.

Attributes
LORSA_EL1 is a 64-bit register.

Field descriptions
The LORSA_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 SA

SA RES0 Valid
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the fields in this register are permitted to be cached in a TLB.

Bits [63:52]

Reserved, RES0.

SA, bits [51:16]

SA encoding when FEAT_LPA is implemented

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210
SA

SA, bits [35:0]

The start physical address of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Bits[15:0] of this address are defined to be 0x0000.

When 52-bit addresses and a 64KB translation granule are in use, SALORSA_EL1.SA[35:32] forms the upper
part of the address value.

LORSA_EL1, LORegion Start Address (EL1)

Page 526

AArch64-lorc_el1.html
AArch64-lorc_el1.html
AArch64-lorc_el1.html

WhenFor 52-bitimplementations addresseswith arefewer notthan in52 usephysical address bits,
SALORSA_EL1.SA[35:32] is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SA encoding when FEAT_LPA is not implemented

35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 210
RES0 SA

Bits [35:32]

Reserved, RES0.

SA, bits [31:0]

The start physical address of the LORegion described in the current LORegion descriptor selected by
LORC_EL1.DS.

Bits[15:0] of this address are defined to be 0x0000.

For implementations with fewer than 48 bits, the upper bits of this field are RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [15:1]

Reserved, RES0.

Valid, bit [0]

Indicates whether the current LORegion Descriptor is enabled.

Valid Meaning
0b0 Disabled
0b1 Enabled

On a Warm reset, this field resets to 0.

Accessing the LORSA_EL1
Accesses to this register use the following encodings:

MRS <Xt>, LORSA_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b000

LORSA_EL1, LORegion Start Address (EL1)

Page 527

AArch64-lorc_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.LORSA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return LORSA_EL1;

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return LORSA_EL1;
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
return LORSA_EL1;

MSR LORSA_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0100 0b000

LORSA_EL1, LORegion Start Address (EL1)

Page 528

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif SCR_EL3.NS == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.TLOR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.LORSA_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
LORSA_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if SCR_EL3.NS == '0' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.TLOR == '1' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.TLOR == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

LORSA_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if SCR_EL3.NS == '0' then
UNDEFINED;

else
LORSA_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

LORSA_EL1, LORegion Start Address (EL1)

Page 529

(old) htmldiff from- (new)

MAIR_EL1, Memory Attribute Indirection Register
(EL1)

The MAIR_EL1 characteristics are:

Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL1.

Configuration
AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register PRRR[31:0]
when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MAIR0[31:0]
when TTBCR.EAE == 1.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register NMRR[31:0]
when TTBCR.EAE == 0.

AArch64 System register MAIR_EL1 bits [63:32] are architecturally mapped to AArch32 System register MAIR1[31:0]
when TTBCR.EAE == 1.

Attributes
MAIR_EL1 is a 64-bit register.

Field descriptions
The MAIR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL1 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where
AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 530

Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of

Device memory.
0b0000dd01 If FEAT_XS is implemented: Device memory with the XS

attribute set to 0. See encoding of 'dd' for the type of
Device memory. Otherwise,UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.
0booooiiii, (oooo
!= 0000 and iiii
!= 0000)

Normal memory. See encoding of 'oooo' and 'iiii' for the
type of Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-
cacheable, Outer Non-cacheable memory with the XS
attribute set to 0. Otherwise,UNPREDICTABLE.

0b10100000 If FEAT_XS is implemented: Normal Inner Write-
through Cacheable, Outer Write-through Cacheable,
Read-Allocate, No-Write Allocate, Non-transient
memory with the XS attribute set to 0.
Otherwise,UNPREDICTABLE.

0b11110000 If FEAT_MTE2FEAT_MTE is implemented: Tagged
Normal Inner Write-Back, Outer Write-Back, Read-
Allocate, Write-Allocate Non-transient memory.
Otherwise,UNPREDICTABLE.

0bxxxx0000,
(xxxx != 0000,
xxxx != 0100,
xxxx != 1010,
xxxx != 1111)

UNPREDICTABLE.

'dd' is encoded as follows:

dd Meaning
0b00 Device-nGnRnE memory
0b01 Device-nGnRE memory
0b10 Device-nGRE memory
0b11 Device-GRE memory

'oooo' is encoded as follows:

'oooo' Meaning
0b0000 See encoding of Attr
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-
transient

0b11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii' Meaning
0b0000 See encoding of Attr
0b00RW, RW
not0b00

Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
0b01RW, RW
not0b00

Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-
transient

0b11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 531

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic MAIR_EL1 or
MAIR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, MAIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x140];
else

return MAIR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return MAIR_EL2;

else
return MAIR_EL1;

elsif PSTATE.EL == EL3 then
return MAIR_EL1;

MSR MAIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x140] = X[t];
else

MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
MAIR_EL2 = X[t];

else
MAIR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MAIR_EL1 = X[t];

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 532

MRS <Xt>, MAIR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x140];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return MAIR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return MAIR_EL1;
else

UNDEFINED;

MSR MAIR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x140] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
MAIR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

MAIR_EL1 = X[t];
else

UNDEFINED;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MAIR_EL1, Memory Attribute Indirection Register (EL1)

Page 533

(old) htmldiff from- (new)

MAIR_EL2, Memory Attribute Indirection Register
(EL2)

The MAIR_EL2 characteristics are:

Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL2.

Configuration
AArch64 System register MAIR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HMAIR0[31:0].

AArch64 System register MAIR_EL2 bits [63:32] are architecturally mapped to AArch32 System register
HMAIR1[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MAIR_EL2 is a 64-bit register.

Field descriptions
The MAIR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL2 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where
AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 534

Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of

Device memory.
0b0000dd01 If FEAT_XS is implemented: Device memory with the XS

attribute set to 0. See encoding of 'dd' for the type of
Device memory. Otherwise,UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.
0booooiiii, (oooo
!= 0000 and iiii
!= 0000)

Normal memory. See encoding of 'oooo' and 'iiii' for the
type of Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-
cacheable, Outer Non-cacheable memory with the XS
attribute set to 0. Otherwise,UNPREDICTABLE.

0b10100000 If FEAT_XS is implemented: Normal Inner Write-
through Cacheable, Outer Write-through Cacheable,
Read-Allocate, No-Write Allocate, Non-transient
memory with the XS attribute set to 0.
Otherwise,UNPREDICTABLE.

0b11110000 If FEAT_MTE2FEAT_MTE is implemented: Tagged
Normal Inner Write-Back, Outer Write-Back, Read-
Allocate, Write-Allocate Non-transient memory.
Otherwise,UNPREDICTABLE.

0bxxxx0000,
(xxxx != 0000,
xxxx != 0100,
xxxx != 1010,
xxxx != 1111)

UNPREDICTABLE.

'dd' is encoded as follows:

dd Meaning
0b00 Device-nGnRnE memory
0b01 Device-nGnRE memory
0b10 Device-nGRE memory
0b11 Device-GRE memory

'oooo' is encoded as follows:

'oooo' Meaning
0b0000 See encoding of Attr
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-
transient

0b11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii' Meaning
0b0000 See encoding of Attr
0b00RW, RW
not0b00

Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
0b01RW, RW
not0b00

Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-
transient

0b11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 535

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic MAIR_EL2 or
MAIR_EL1 is not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, MAIR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return MAIR_EL2;
elsif PSTATE.EL == EL3 then

return MAIR_EL2;

MSR MAIR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

MAIR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

MAIR_EL2 = X[t];

MRS <Xt>, MAIR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 536

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MAIR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x140];
else

return MAIR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return MAIR_EL2;

else
return MAIR_EL1;

elsif PSTATE.EL == EL3 then
return MAIR_EL1;

MSR MAIR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.MAIR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x140] = X[t];
else

MAIR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
MAIR_EL2 = X[t];

else
MAIR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MAIR_EL1 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MAIR_EL2, Memory Attribute Indirection Register (EL2)

Page 537

(old) htmldiff from- (new)

MAIR_EL3, Memory Attribute Indirection Register
(EL3)

The MAIR_EL3 characteristics are:

Purpose
Provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-descriptor format
translation table entry for stage 1 translations at EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to MAIR_EL3 are UNDEFINED.

Attributes
MAIR_EL3 is a 64-bit register.

Field descriptions
The MAIR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Attr7 Attr6 Attr5 Attr4
Attr3 Attr2 Attr1 Attr0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MAIR_EL3 is permitted to be cached in a TLB.

Attr<n>, bits [8n+7:8n], for n = 7 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where
AttrIndx[2:0] gives the value of <n> in Attr<n>.

Attr is encoded as follows:

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 538

Attr Meaning
0b0000dd00 Device memory. See encoding of 'dd' for the type of

Device memory.
0b0000dd01 If FEAT_XS is implemented: Device memory with the XS

attribute set to 0. See encoding of 'dd' for the type of
Device memory. Otherwise,UNPREDICTABLE.

0b0000dd1x UNPREDICTABLE.
0booooiiii, (oooo
!= 0000 and iiii
!= 0000)

Normal memory. See encoding of 'oooo' and 'iiii' for the
type of Normal Memory.

0b01000000 If FEAT_XS is implemented: Normal Inner Non-
cacheable, Outer Non-cacheable memory with the XS
attribute set to 0. Otherwise,UNPREDICTABLE.

0b10100000 If FEAT_XS is implemented: Normal Inner Write-
through Cacheable, Outer Write-through Cacheable,
Read-Allocate, No-Write Allocate, Non-transient
memory with the XS attribute set to 0.
Otherwise,UNPREDICTABLE.

0b11110000 If FEAT_MTE2FEAT_MTE is implemented: Tagged
Normal Inner Write-Back, Outer Write-Back, Read-
Allocate, Write-Allocate Non-transient memory.
Otherwise,UNPREDICTABLE.

0bxxxx0000,
(xxxx != 0000,
xxxx != 0100,
xxxx != 1010,
xxxx != 1111)

UNPREDICTABLE.

'dd' is encoded as follows:

dd Meaning
0b00 Device-nGnRnE memory
0b01 Device-nGnRE memory
0b10 Device-nGRE memory
0b11 Device-GRE memory

'oooo' is encoded as follows:

'oooo' Meaning
0b0000 See encoding of Attr
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient

0b0100 Normal memory, Outer Non-cacheable
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient

0b10RW Normal memory, Outer Write-Through Non-
transient

0b11RW Normal memory, Outer Write-Back Non-transient

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

'iiii' is encoded as follows:

'iiii' Meaning
0b0000 See encoding of Attr
0b00RW, RW
not0b00

Normal memory, Inner Write-Through Transient

0b0100 Normal memory, Inner Non-cacheable
0b01RW, RW
not0b00

Normal memory, Inner Write-Back Transient

0b10RW Normal memory, Inner Write-Through Non-
transient

0b11RW Normal memory, Inner Write-Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in 'oooo' and 'iiii' fields have the following meanings:

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 539

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MAIR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, MAIR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MAIR_EL3;

MSR MAIR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
MAIR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MAIR_EL3, Memory Attribute Indirection Register (EL3)

Page 540

(old) htmldiff from- (new)

MDCCINT_EL1, Monitor DCC Interrupt Enable Register
The MDCCINT_EL1 characteristics are:

Purpose
Enables interrupt requests to be signaled based on the DCC status flags.

Configuration
AArch64 System register MDCCINT_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDCCINT[31:0].

Attributes
MDCCINT_EL1 is a 64-bit register.

Field descriptions
The MDCCINT_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0RX TX RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

RX Meaning
0b0 No interrupt request generated by DTRRX.
0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

TX Meaning
0b0 No interrupt request generated by DTRTX.
0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 541

Bits [28:0]

Reserved, RES0.

Accessing the MDCCINT_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MDCCINT_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return MDCCINT_EL1;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDCCINT_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCCINT_EL1;

elsif PSTATE.EL == EL3 then
return MDCCINT_EL1;

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 542

MSR MDCCINT_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
MDCCINT_EL1 = X[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

MDCCINT_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
MDCCINT_EL1 = X[t];

elsif PSTATE.EL == EL3 then
MDCCINT_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDCCINT_EL1, Monitor DCC Interrupt Enable Register

Page 543

(old) htmldiff from- (new)

MDCCSR_EL0, Monitor DCC Status Register
The MDCCSR_EL0 characteristics are:

Purpose
Read-only register containing control status flags for the DCC.

Configuration
AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to External register EDSCR[30:29].

AArch64 System register MDCCSR_EL0 bits [30:29] are architecturally mapped to AArch32 System register
DBGDSCRint[30:29].

Attributes
MDCCSR_EL0 is a 64-bit register.

Field descriptions
The MDCCSR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0RXfullTXfull RES0 RAZ RES0 RAZ RES0 RAZ RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

Bits [18:15]

Reserved, RAZ.

Bits [14:13]

Reserved, RES0.

MDCCSR_EL0, Monitor DCC Status Register

Page 544

Bit [12]

Reserved, RAZ.

Bits [11:6]

Reserved, RES0.

Bits [5:2]

Reserved, RAZ.

Bits [1:0]

Reserved, RES0.

Accessing the MDCCSR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, MDCCSR_EL0

op0 op1 CRn CRm op2
0b10 0b011 0b0000 0b0001 0b000

MDCCSR_EL0, Monitor DCC Status Register

Page 545

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return MDCCSR_EL0;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> != '00') then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCCSR_EL0;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDCCSR_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

MDCCSR_EL0, Monitor DCC Status Register

Page 546

else
return MDCCSR_EL0;

elsif PSTATE.EL == EL3 then
return MDCCSR_EL0;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDCCSR_EL0, Monitor DCC Status Register

Page 547

(old) htmldiff from- (new)

MDCR_EL2, Monitor Debug Configuration Register
(EL2)

The MDCR_EL2 characteristics are:

Purpose
Provides EL2 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration
AArch64 System register MDCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HDCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
MDCR_EL2 is a 64-bit register.

Field descriptions
The MDCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 545352 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35343332
RES0 HPMFZS RES0

RES0HPMFZOMTPMETDCCHLPRES0HCCD RES0 TTRFRES0HPMDRES0TPMSE2PBTDRATDOSATDATDEHPMETPMTPMCR HPMN
31 30 29 28 27 26 25 24 23 222120 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:37]

Reserved, RES0.

HPMFZS, bit [36]

When FEAT_SPEv1p2 is implemented:

Hyp Performance Monitors Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ, E} == {1, 1} and
PMBSR_EL1.S == 0b1.

HPMFZS Meaning
0b0 Do not freeze on Statistical Profiling Buffer Management

event.
0b1 Event counters do not count following a Statistical Profiling

Buffer Management event.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit affects the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, this bit has no effect.

This bit does not affect the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)] and PMCCNTR_EL0.

The operation of this bit applies even when EL2 is disabled in the current Security state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 548

AArch64-pmblimitr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmccntr_el0.html

Otherwise:

Reserved, RES0.

Bits [35:30]

Reserved, RES0.

HPMFZO, bit [29]

When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

HPMFZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when

PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN] is
nonzero.

If MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit affects the operation of event counters in the range
[MDCR_EL2.HPMN .. (PMCR_EL0.N-1)].

If MDCR_EL2.HPMN is equal to PMCR_EL0.N, this bit has no effect.

This bit does not affect the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)] and PMCCNTR_EL0.

The operation of this bit ignores the values of PMOVSCLR_EL0[(MDCR_EL2.HPMN-1):0].

The operation of this bit applies even when EL2 is disabled in the current Security state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>_EL0.MT is zero.
0b1 PMEVTYPER<n>_EL0.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 549

AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmovsclr_el0.html

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 If EL2 is implemented and enabled in the current Security state,

accesses to the DCC registers at EL1 and EL0 generate a Trap
exception to EL2, unless the access also generates a higher
priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state,
DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.
• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL2.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HLP, bit [26]

When FEAT_PMUv3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an eventa counter overflow
bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, this bit affects the operation of event counters in the
range [MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on
the operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit always applies if
EL2 is implemented, at all Exception levels including EL2 and EL3, and
regardless of whether EL2 is enabled in the current Security state.

For more information see the description of the MDCR_EL2.HPMN field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 550

AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting at EL2.

HCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.bit.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL2.

This fieldbit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2, as follows:

• Access to TRFCR_EL1 is trapped to EL2, reported using EC syndrome value 0x18.

• Access to TRFCR is trapped to EL2, reported using EC syndrome value 0x03.

TTRF Meaning
0b0 Accesses to TRFCR_EL1 and TRFCR at EL1 are not affected by

this control.
0b1 Accesses to TRFCR_EL1 and TRFCR at EL1 generate a trap

exception to EL2 when EL2 is enabled in the current Security
state.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. ControlsThis eventcontrol countingprohibits by some event counterscounting at
EL2.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 551

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-trfcr_el1.html
AArch32-trfcr.html
AArch64-trfcr_el1.html
AArch32-trfcr.html
AArch64-trfcr_el1.html
AArch32-trfcr.html

HPMD Meaning
0b0 Event counting andallowed at EL2. PMCCNTR_EL0 are not

affected by this mechanism.
0b1 If FEAT_Debugv8p2 is not implemented, event counting is

prohibited unless enabled by the IMPLEMENTATION DEFINED
authentication interface
ExternalSecureNoninvasiveDebugEnabled().
Event counting by some event counters is prohibited at EL2. If
PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at EL2.
Otherwise, PMCCNTR_EL0 is not affected by this mechanism.

This fieldcontrol applies only to:

• The event counters in the range [0 .. 0..(MDCR_EL2.HPMN-1)].
• If PMCR_EL0.DP is set to 1, PMCCNTR_EL0.

The other event counters are notunaffected, affected.and Whenwhen PMCR_EL0.DP is set to 0, PMCCNTR_EL0 is not
affected.unaffected.

On a Warm reset, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR_EL0 are not affected by this

mechanism.
0b1 If ExternalSecureNoninvasiveDebugEnabled() is FALSE, event

counting by some event counters is prohibited at EL2, and if
PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at EL2.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, the event counters and PMCCNTR_EL0 are not affected by
this field.

Otherwise, this field applies only to:

• The event counters in the range [0 .. (MDCR_EL2.HPMN-1)].
• If PMCR_EL0.DP is 1, PMCCNTR_EL0.

The other event counters are not affected. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:15]

Reserved, RES0.

TPMS, bit [14]

When FEAT_SPE is implemented:

Trap Performance Monitor Sampling. If EL2 is implemented and enabled in the current Security state, controls access
to Statistical Profiling control registers from EL1.

TPMS Meaning
0b0 Do not trap Statistical Profiling controls to EL2.
0b1 If EL2 is implemented and enabled in the current Security state,

accesses to Statistical Profiling control registers at EL1
generate a Trap exception to EL2.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 552

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

The Statistical Profiling control registers trapped by this control are:

• PMSCR_EL1, PMSEVFR_EL1, PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.
• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E2PB, bits [13:12]

When FEAT_SPE is implemented:

EL2 Profiling Buffer. If EL2 is implemented and enabled in the Profiling Buffer owning Security state, this field
controls the owning translation regime. If EL2 is implemented and enabled in the current Security state, this field
controls access to Profiling Buffer control registers from EL1.

E2PB Meaning
0b00 If EL2 is implemented and enabled in the Profiling Buffer

owning Security state, the Profiling Buffer uses the EL2 or
EL2&0 stage 1 translation regime. Otherwise the Profiling
Buffer uses the EL1&0 stage 1 translation regime.
If EL2 is implemented and enabled in the current Security state,
accesses to Profiling Buffer control registers at EL1 generate a
Trap exception to EL2.

0b10 Profiling Buffer uses the EL1&0 stage 1 translation regime. If
EL2 is implemented and enabled in the current Security state,
accesses to Profiling Buffer control registers at EL1 generate a
Trap exception to EL2.

0b11 Profiling Buffer uses the EL1&0 stage 1 translation regime.
Accesses to Profiling Buffer control registers at EL1 are not
trapped to EL2.

All other values are reserved.

The Profiling Buffer control registers trapped by this control are: PMBLIMITR_EL1, PMBPTR_EL1, and PMBSR_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps System register accesses to the Debug ROM registers to EL2 when
EL2 is enabled in the current Security state as follows:

• If EL1 is using AArch64 state, accesses to MDRAR_EL1 are trapped to EL2, reported using EC syndrome value
0x18.

• If EL0 or EL1 is using AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2,
reported using EC syndrome value 0x05 and MRRC or MCRR accesses are trapped to EL2, reported using EC
syndrome value 0x0C:

◦ DBGDRAR, DBGDSAR.
TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 System register accesses to the Debug ROM

registers are trapped to EL2 when EL2 is enabled in the current
Security state, unless it is trapped by DBGDSCRext.UDCCdis or
MDSCR_EL1.TDCC.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 553

AArch64-pmscr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmslatfr_el1.html
AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbsr_el1.html
AArch64-mdrar_el1.html

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional
memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to EL2,
from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, and DBGPRCR_EL1.
◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.
• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value

0x05:
◦ DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as

trapped by this bit.
TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 System register accesses to the powerdown debug

registers are trapped to EL2 when EL2 is enabled in the
current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL1 System register accesses to the powerdown debug registers to EL2,
from both Execution states as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

◦ OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.

◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies
as trapped by this bit.

• In AArch32 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x05:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 554

AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-osdlr_el1.html
AArch64-dbgprcr_el1.html
AArch32-dbgoslsr.html
AArch32-dbgoslar.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html
AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-dbgprcr_el1.html

◦ DBGOSLSR, DBGOSLAR, and DBGPRCR.

◦ Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies
as trapped by this bit.

It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 are trapped.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 System register accesses to the powerdown debug

registers are trapped to EL2 when EL2 is enabled in the
current Security state.

Note

These registers are not accessible at EL0.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

• MDCR_EL2.TDE == 1.
• HCR_EL2.TGE == 1.

Note

EL2 does not provide traps on debug register accesses through the optional
memory-mapped external debug interfaces.

System register accesses to the debug registers might have side-effects. When a System register access is trapped to
EL2, no side-effects occur before the exception is taken to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL0 and EL1 System register accesses to debug System registers that are not trapped by
MDCR_EL2.TDRA or MDCR_EL2.TDOSA, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2 reported using EC syndrome value
0x18:

◦ MDCCSR_EL0, MDCCINT_EL1, OSDTRRX_EL1, MDSCR_EL1, OSDTRTX_EL1, OSECCR_EL1,
DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_El1, DBGCLAIMSET_EL1,
DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1.

◦ When not in Debug state, DBGDTR_EL0, DBGDTRRX_EL0, DBGDTRTX_EL0.
• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2, reported using EC

syndrome value 0x05.
◦ DBGDIDR, DBGDSCRint, DBGDCCINT, DBGWFAR, DBGVCR, DBGDSCRext, DBGDTRTXext,

DBGDTRRXext, DBGBVR<n>, DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>,
DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2,
DBGOSECCR.

◦ When not in Debug state, DBGDTRRXint and DBGDTRTXint.
• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are trapped to EL2,

reported using EC syndrome value 0x06.
TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 or EL1 System register accesses to the debug registers are

trapped from both Execution states to EL2 when EL2 is enabled
in the current Security state, unless the access generates a
higher priority exception.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

Traps of AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0 are ignored in Debug state.

This field is treated as being 1 for all purposes other than a direct read when one or more of the following are true:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 555

AArch32-dbgoslsr.html
AArch32-dbgoslar.html
AArch32-dbgprcr.html
AArch64-osdlr_el1.html
AArch32-dbgosdlr.html
AArch64-dbgbcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgauthstatus_el1.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch32-dbgwfar.html
AArch32-dbgvcr.html
AArch32-dbgbvrn.html
AArch32-dbgbcrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html
AArch32-dbgauthstatus.html
AArch32-dbgdevid.html
AArch32-dbgdevid1.html
AArch32-dbgdevid2.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html

• MDCR_EL2.TDE == 1
• HCR_EL2.TGE == 1

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDE, bit [8]

Trap Debug Exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, ELD.

TDE Meaning
0b0 The debug target Exception level is EL1.
0b1 If EL2 is enabled for the current Effective value of SCR_EL3.NS,

the debug target Exception level is EL2, otherwise the debug
target Exception level is EL1.
The MDCR_EL2.{TDRA, TDOSA, TDA} fields are treated as being
1 for all purposes other than returning the result of a direct read
of the register.

For more information, see 'Routing debug exceptions'.

This field is treated as being 1 for all purposes other than a direct read when HCR_EL2.TGE == 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

[MDCR_EL2.HPMN..(N-1)] event counters enable.

HPME Meaning
0b0 Event counters in the range

[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are disabled.
0b1 Event counters in the range

[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] are enabled by
PMCNTENSET_EL0.

If MDCR_EL2.HPMN is less than PMCR_EL0.N or PMCR.N, the event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)] or [HDCR.HPMN..(PMCR.N-1)], are enabled and disabled by this bit. Otherwise
this bit has no effect on the operation of the event counters.

Note

The effect of MDCR_EL2.HPMN on the operation of this bit applies regardless
of whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap Performance Monitors accesses. Traps EL0 and EL1 accesses to all Performance Monitor registers to EL2 when
EL2 is enabled in the current Security state, from both Execution states, as follows:

• In AArch64 state, accesses to the following registers are trapped to EL2, reported using EC syndrome value
0x18:

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 556

AArch64-pmcntenset_el0.html

◦ PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0,
PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTYPER_EL0,
PMXEVCNTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ If FEAT_PMUv3p4 is implemented, PMMIR_EL1

• In AArch32 state, MRC or MCR accesses to the following registers are trapped to EL2 and reported using
EC syndrome value 0x03, MRRC or MCRR accesses are trapped to EL2 and reported using EC syndrome
value 0x04:

◦ PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1,
PMCCNTR, PMXEVTYPER, PMXEVCNTR, PMUSERENR, PMINTENSET, PMINTENCLR,
PMOVSSET, PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.

◦ If FEAT_PMUv3p4 is implemented, PMMIR.

◦ If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 accesses to all Performance Monitor registers are

trapped to EL2 when EL2 is enabled in the current Security
state.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

Trap PMCR_EL0 or PMCR accesses. Traps EL0 and EL1 accesses to EL2, when EL2 is enabled in the current Security
state, as follows:

• In AArch64 state, accesses to PMCR_EL0 are trapped to EL2, reported using EC syndrome value 0x18.

• In AArch32 state, accesses to PMCR are trapped to EL2, reported using EC syndrome value 0x03.

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 and EL1 accesses to the PMCR_EL0 or PMCR are trapped

to EL2 when EL2 is enabled in the current Security state,
unless it is trapped by PMUSERENR.EN or
PMUSERENR_EL0.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 557

AArch64-pmcntenset_el0.html
AArch64-pmcntenclr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmswinc_el0.html
AArch64-pmceid0_el0.html
AArch64-pmceid1_el0.html
AArch64-pmccntr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmintenset_el1.html
AArch64-pmintenclr_el1.html
AArch64-pmovsset_el0.html
AArch64-pmccfiltr_el0.html
AArch64-pmmir_el1.html
AArch32-pmcntenset.html
AArch32-pmcntenclr.html
AArch32-pmovsr.html
AArch32-pmswinc.html
AArch32-pmceid0.html
AArch32-pmceid1.html
AArch32-pmccntr.html
AArch32-pmuserenr.html
AArch32-pmintenset.html
AArch32-pmintenclr.html
AArch32-pmovsset.html
AArch32-pmccfiltr.html
AArch32-pmmir.html
AArch32-pmceid2.html
AArch32-pmceid3.html
AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

Defines the number of event counters that are accessible from EL3, EL2, EL1, and from EL0 if permitted.

If HPMN is less than PMCR_EL0.N, HPMN divides the Performance Monitors into two ranges: [0..(HPMN-1)] and
[HPMN..(PMCR_EL0.N-1)].

For an event counter in the range [0..(HPMN-1)]:

• The counter is accessible from EL3, EL2, and EL1, and from EL0 if permitted by PMUSERENR_EL0 or
PMUSERENR.

• If FEAT_PMUv3p5 is implemented, PMCR_EL0.LP or PMCR.LP determines whether the counter overflow flag
is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or PMEVCNTR<n>_EL0[63:0].

• The counter is enabled by PMCR_EL0.E or PMCR.E and bit <n> of PMCNTENSET_EL0.

Note

If HPMN is equal to PMCR_EL0.N, this applies to all event counters.

If HPMN is less than PMCR_EL0.N, for an event counter in the range [HPMN..(PMCR_EL0.N-1)]:

• The counter is accessible from EL2 and EL3.
• If FEAT_SEL2 is disabled or is not implemented, the counter is also accessible from Secure EL1, and from

Secure EL0 if permitted by PMUSERENR_EL0.
• If FEAT_PMUv3p5 is implemented, MDCR_EL2.HLP or HDCR.HLP determines whether the counter overflow

flag is set on unsigned overflow of PMEVCNTR<n>_EL0[31:0] or PMEVCNTR<n>_EL0[63:0].
• The counter is enabled by MDCR_EL2.HPME or HDCR.HPME and bit <n> of PMCNTENSET_EL0.

If this field is set to 0, or to a value larger than PMCR_EL0.N, then the following CONSTRAINED UNPREDICTABLE behaviors
apply:

• The value returned by a direct read of MDCR_EL2.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 and EL3 use. That is, the PE behaves as if
MDCR_EL2.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR_EL0.N.

◦ All counters are reserved for EL2 and EL3 use, meaning no counters are accessible from EL1 and
EL0.

On a Warm reset, this field resets to the value in PMCR_EL0.N.

Otherwise:

Reserved, RES0.

Accessing the MDCR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, MDCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b001

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 558

AArch64-pmuserenr_el0.html
AArch32-pmuserenr.html
AArch64-pmcntenset_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmcntenset_el0.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return MDCR_EL2;

elsif PSTATE.EL == EL3 then
return MDCR_EL2;

MSR MDCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
MDCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
MDCR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDCR_EL2, Monitor Debug Configuration Register (EL2)

Page 559

(old) htmldiff from- (new)

MDCR_EL3, Monitor Debug Configuration Register
(EL3)

The MDCR_EL3 characteristics are:

Purpose
Provides EL3 configuration options for self-hosted debug and the Performance Monitors Extension.

Configuration
AArch64 System register MDCR_EL3 bits [31:0] can be mapped to AArch32 System register SDCR[31:0], but this is
not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to MDCR_EL3 are UNDEFINED.

Attributes
MDCR_EL3 is a 64-bit register.

Field descriptions
The MDCR_EL3 bit assignments are:

636261 60 59 585756 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 EnPMSNMPMXMCCDRES0

RES0 MTPMETDCC RES0 SCCDRES0EPMADEDADTTRFSTESPMESDDSPD32NSPBRES0TDOSATDARES0TPM RES0
313029 28 27 262524 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:37]

Reserved, RES0.

EnPMSN, bit [36]

When FEAT_SPEv1p2 is implemented:

Trap accesses to PMSNEVFR_EL1. Controls access to Statistical Profiling PMSNEVFR_EL1 System register from EL2
and EL1.

EnPMSN Meaning
0b0 Accesses to PMSNEVFR_EL1 at EL2 and EL1 generate a

Trap exception to EL3.
0b1 Do not trap PMSNEVFR_EL1 to EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 560

MPMX, bit [35]

When FEAT_PMUv3p7 is implemented:

Monitor Performance Monitors Extended control. In conjunction with MDCR_EL3.SPME, controls when event counters
are enableddisabled at EL3 and in other Secure Exception levels.

MPMX Meaning
0b0 Event counting andis not affected by this bit. PMCCNTR_EL0

are not affected by this mechanism.
0b1 Event counting by some or all event counters is prohibited at

EL3. If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled at EL3.
Otherwise, PMCCNTR_EL0 is not affected by this mechanism.

If EL2 is implemented, MDCR_EL3.SPME == 1, and MDCR_EL2.HPMN is less than PMCR_EL0.N then all the
following are true:

If EL2 is implemented, MDCR_EL3.SPME == 0b1, and MDCR_EL2.HPMN is less than PMCR_EL0.N then all the
following are true:

• This fieldbit affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)] at EL3, and if)].
PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 at EL3.

• This fieldbit does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..
(PMCR_EL0.N-1)].

• This applies even when EL2 is disabled in Secure state.

If EL2 is not implemented, MDCR_EL3.SPME == 0, or MDCR_EL2.HPMN is equal to PMCR_EL0.N then this field
affects the operation of all event counters at EL3, and if PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 at EL3.

If EL2 is not implemented, MDCR_EL3.SPME == 0b0, or MDCR_EL2.HPMN is equal to PMCR_EL0.N then this bit
affects the operation of all event counters.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MCCD, bit [34]

When FEAT_PMUv3p7 is implemented:

Monitor Cycle Counter Disable. Prohibits the Cycle Counter, PMCCNTR_EL0, from counting at EL3.

MCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.bit.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited at EL3.

This fieldbit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [33:29]

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 561

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

MTPME, bit [28]

When FEAT_MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>_EL0.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>_EL0.MT is zero.
0b1 PMEVTYPER<n>_EL0.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

On a Cold reset, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL2, EL1, and EL0 to EL3.

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 Accesses to the DCC registers at EL2, EL1, and EL0 generate a

Trap exception to EL3, unless the access also generates a
higher priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

AArch64: OSDTRRX_EL1, OSDTRTX_EL1, MDCCSR_EL0, MDCCINT_EL1, and, when the PE is in Non-debug state,
DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped AArch32 MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped AArch32 LDC to DBGDTRTXint and STC from DBGDTRRXint.
• 0x18 for trapped AArch64 MRS and MSR accesses.

When the PE is in Debug state, MDCR_EL3.TDCC does not trap any accesses to:

AArch64: DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0.

AArch32: DBGDTRRXint and DBGDTRTXint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 562

AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html

When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR_EL0 from counting in Secure state.

SCCD Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this

mechanism.bit.
0b1 Cycle counting by PMCCNTR_EL0 is prohibited in Secure state.

This fieldbit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

External Performance Monitors Non-secure Access Disable. Controls Non-secure access to Performance Monitor
registers by an external debugger.

EPMAD Meaning
0b0 Non-secure access to Performance Monitor registers from

external debugger is permitted.
0b1 Non-secure access to Performance Monitor registers from

external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit
is 0b1.

On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

External Performance Monitors Access Disable. Controls access to Performance Monitor registers by an external
debugger.

EPMAD Meaning
0b0 Access to Performance Monitor registers from external

debugger is permitted.
0b1 Access to Performance Monitor registers from external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit
is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 563

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:

External Debug Non-secure Access Disable. Controls Non-secure access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

EDAD Meaning
0b0 Non-secure access to debug registers from external debugger is

permitted.
0b1 Non-secure access to breakpoint and watchpoint registers, and

OSLAR_EL1 from external debugger is not permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External Debug Access Disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external
debugger.

EDAD Meaning
0b0 Access to debug registers, and to OSLAR_EL1 from external

debugger is permitted.
0b1 Access to breakpoint and watchpoint registers, and to

OSLAR_EL1 from external debugger is not permitted, unless
overridden by the IMPLEMENTATION DEFINED authentication
interface.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

External Debug Access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by an
external debugger.

EDAD Meaning
0b0 Access to debug registers from external debugger is permitted.
0b1 Access to breakpoint and watchpoint registers from an external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.
It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1
register from an external debugger is permitted or not
permitted.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, this field resets to 0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Trap Trace Filter controls. Traps use of the Trace Filter control registers at EL2 and EL1 to EL3.

The Trace Filter registers trapped by this control are:

• TRFCR_EL2, TRFCR_EL12, TRFCR_EL1, reported using EC syndrome value 0x18.

• HTRFCR and TRFCR, reported using EC syndrome value 0x03.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 564

ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
ext-oslar_el1.html
AArch64-trfcr_el2.html
AArch64-trfcr_el1.html
AArch32-htrfcr.html
AArch32-trfcr.html

TTRF Meaning
0b0 Accesses to Trace Filter registers at EL2 and EL1 are not

affected by this bit.
0b1 Accesses to Trace Filter registers at EL2 and EL1 generate a

Trap exception to EL3, unless the access generates a higher
priority exception.

Otherwise:

Reserved, RES0.

STE, bit [18]

When FEAT_TRF is implemented:

Secure Trace enable. Enables tracing in Secure state.

STE Meaning
0b0 Trace prohibited in Secure state unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See
'Register controls to enable self-hosted trace'.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the Effective value of this bit is 0b1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3 is implemented and FEAT_PMUv3p7 is implemented:

Controls event counting in Secure state and EL3.

When MDCR_EL3.MPMX == 0b1, this bit affects the operation of event counters at EL3 only. See MDCR_EL3.MPMX
for more information.

Secure Performance Monitors Enable. Controls event counting in Secure state and EL3.

SPME Meaning
0b0 When MDCR_EL3.MPMX == 0: Event counting is prohibited in

Secure state. If PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled
in Secure state. Otherwise, PMCCNTR_EL0 is not affected by
this mechanism.
When MDCR_EL3.MPMX == 0b0: Event counting prohibited in
Secure state.

0b1 When MDCR_EL3.MPMX == 0: Event counting and
PMCCNTR_EL0 are not affected by this mechanism.
When MDCR_EL3.MPMX == 0b0: Event counting in Secure
state not affected by this bit.

When MDCR_EL3.MPMX is 0, this field affects the operation of all event counters in Secure state, and if
PMCR_EL0.DP is 1, the operation of PMCCNTR_EL0 in Secure state.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

When MDCR_EL3.MPMX is 1, this field affects the operation of event counters at EL3 only, and if PMCR_EL0.DP is 1,
the operation of PMCCNTR_EL0 at EL3 only. See MDCR_EL3.MPMX for more information.

When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 565

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented and FEAT_Debugv8p2 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

SPME Meaning
0b0 Event counting is prohibited in Secure state. If PMCR_EL0.DP is

1, PMCCNTR_EL0 is disabled in Secure state. Otherwise,
PMCCNTR_EL0 is not affected by this mechanism.

0b1 Event counting andin Secure state not affected by this bit.
PMCCNTR_EL0 are not affected by this mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR_EL0.DP is 1, the operation of
PMCCNTR_EL0 in Secure state. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

On a Warm reset, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable. Controls event counting in Secure state.

SPME Meaning
0b0 IfEvent ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting is prohibited in Secure state, andunless
ifExternalSecureNoninvasiveDebugEnabled() is TRUE.
PMCR_EL0.DP is 1, PMCCNTR_EL0 is disabled in Secure state.

0b1 Event counting andin Secure state not affected by this bit.
PMCCNTR_EL0 are not affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, the event counters and PMCCNTR_EL0 are not affected by
this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this bit is 0b1.

Otherwise, this field affects the operation of all event counters in Secure state, and if PMCR_EL0.DP is 1, the
operation of PMCCNTR_EL0 in Secure state. When PMCR_EL0.DP is 0, PMCCNTR_EL0 is not affected by this field.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0, then the Effective value of this field is 1.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

SDD, bit [16]

AArch64 Secure Self-hosted invasive debug disable. Disables Software debug exceptions in Secure state, other than
Breakpoint Instruction exceptions.

SDD Meaning
0b0 Debug exceptions in Secure state are not affected by this bit.
0b1 Debug exceptions, other than Breakpoint Instruction exceptions,

are disabled from all Exception levels in Secure state.

The SDD bit is ignored unless both of the following are true:

• The PE is in Secure state.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 566

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

• The Effective value of SCR_EL3.RW is 0b1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPD32, bits [15:14]

When EL1 is capable of using AArch32:

AArch32 Secure self-hosted privileged debug. Enables or disables debug exceptions from Secure EL1 using AArch32,
other than Breakpoint Instruction exceptions.

SPD32 Meaning
0b00 Legacy mode. Debug exceptions from Secure EL1 are enabled

by the IMPLEMENTATION DEFINED authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from

Secure EL1 are disabled.
0b11 Secure privileged debug enabled. Debug exceptions from

Secure EL1 are enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior
as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision
of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored unlessif both of the followingPE areis trueeither:

• TheIn PE is in SecureNon-secure state.
• TheIn EffectiveSecure valuestate ofand Secure EL1 is using AArch64. SCR_EL3.RW is 0b0.

If Secure EL1 is using AArch32 then:

• If debug exceptions from Secure EL1 are enabled, then debug exceptions from Secure EL0 are also enabled.
• Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER32_EL3.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, then the Effective value of this field is 0b11.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSPB, bits [13:12]

When FEAT_SPE is implemented:

Non-secure Profiling Buffer. Controls the owning translation regime and accesses to Statistical Profiling and Profiling
Buffer control registers.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 567

AArch64-sder32_el3.html

NSPB Meaning
0b00 Profiling Buffer uses Secure Virtual Addresses. Statistical

Profiling enabled in Secure state and disabled in Non-secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in both Security states
generate Trap exceptions to EL3.

0b01 Profiling Buffer uses Secure Virtual Addresses. Statistical
Profiling enabled in Secure state and disabled in Non-secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Non-secure state generate
Trap exceptions to EL3.

0b10 Profiling Buffer uses Non-secure Virtual Addresses. Statistical
Profiling enabled in Non-secure state and disabled in Secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in both Security states
generate Trap exceptions to EL3.

0b11 Profiling Buffer uses Non-secure Virtual Addresses. Statistical
Profiling enabled in Non-secure state and disabled in Secure
state. Accesses to Statistical Profiling and Profiling Buffer
control registers at EL2 and EL1 in Secure state generate Trap
exceptions to EL3.

The Statistical Profiling and Profiling Buffer control registers trapped by this control are:

• PMBLIMITR_EL1, PMBPTR_EL1, PMBSR_EL1, PMSCR_EL1, PMSCR_EL2, PMSCR_EL12, PMSEVFR_EL1,
PMSFCR_EL1, PMSICR_EL1, PMSIDR_EL1, PMSIRR_EL1, and PMSLATFR_EL1.

• If FEAT_SPEv1p2 is implemented, PMSNEVFR_EL1.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b1, the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of SCR_EL3.NS is 0b0, the Effective value of this field is 0b01.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [11]

Reserved, RES0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug
registers to EL3.

Accesses to the registers are trapped as follows:

• Accesses from AArch64 state, OSLAR_EL1, OSLSR_EL1, OSDLR_EL1, DBGPRCR_EL1 and any IMPLEMENTATION
DEFINED register with similar functionality that the implementation specifies as trapped by this bit, are trapped
to EL3 and reported using EC syndrome value 0x18.

• Accesses using MCR or MRC to DBGOSLAR, DBGOSLSR, DBGOSDLR, and DBGPRCR, are trapped to EL3 and
reported using EC syndrome value 0x05.

• Accesses to any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies
as trapped by this bit.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown

debug registers are trapped to EL3, unless it is trapped by
HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 568

AArch64-pmblimitr_el1.html
AArch64-pmbptr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmscr_el1.html
AArch64-pmscr_el2.html
AArch64-pmsfcr_el1.html
AArch64-pmsicr_el1.html
AArch64-pmsidr_el1.html
AArch64-pmsirr_el1.html
AArch64-pmslatfr_el1.html
AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-osdlr_el1.html
AArch64-dbgprcr_el1.html
AArch32-dbgoslar.html
AArch32-dbgoslsr.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html

The powerdown debug registers are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Trap debug OS-related register access. Traps EL2 and EL1 System register accesses to the powerdown debug
registers to EL3.

The following registers are affected by this trap:

• AArch64: OSLAR_EL1, OSLSR_EL1, and DBGPRCR_EL1.
• AArch32: DBGOSLAR, DBGOSLSR, and DBGPRCR.
• AArch64 and AArch32: Any IMPLEMENTATION DEFINED register with similar functionality that the

implementation specifies as trapped by this bit.
• It is IMPLEMENTATION DEFINED whether accesses to OSDLR_EL1 and DBGOSDLR are trapped.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2 and EL1 System register accesses to the powerdown

debug registers are trapped to EL3, unless it is trapped by
HDCR.TDOSA or MDCR_EL2.TDOSA.

Note

The powerdown debug registers are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDA, bit [9]

Trap Debug Access. Traps EL2, EL1, and EL0 System register accesses to those debug System registers that cannot
be trapped using the MDCR_EL3.TDOSA field.

Accesses to the debug registers are trapped as follows:

• In AArch64 state, the following registers are trapped to EL3 and reported using EC syndrome value 0x18:
◦ DBGBVR<n>_EL1, DBGBCR<n>_EL1, DBGWVR<n>_EL1, DBGWCR<n>_EL1, DBGCLAIMSET_EL1,

DBGCLAIMCLR_EL1, DBGAUTHSTATUS_EL1, DBGVCR32_EL2.
◦ AArch64: MDCR_EL2, MDRAR_EL1, MDCCSR_EL0, MDCCINT_EL1, MDSCR_EL1, OSDTRRX_EL1,

OSDTRTX_EL1, OSECCR_EL1.
• In AArch32 state, SDER is trapped to EL3 and reported using EC syndrome value 0x03.
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome

value 0x05, accesses using MCRR or MRRC are reported using EC syndrome value 0x0C:
◦ HDCR, DBGDRAR, DBGDSAR, DBGDIDR, DBGDCCINT, DBGWFAR, DBGVCR, DBGBVR<n>,

DBGBCR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.
◦ DBGCLAIMSET, DBGCLAIMCLR, DBGAUTHSTATUS, DBGDEVID, DBGDEVID1, DBGDEVID2,

DBGOSECCR.
• In AArch32 state, STC accesses to DBGDTRRXint and LDC accesses to DBGDTRTXint are reported using EC

syndrome value 0x06.
• When not in Debug state, the following registers are also trapped to EL3:

◦ AArch64 accesses to DBGDTR_EL0, DBGDTRRX_EL0, and DBGDTRTX_EL0, reported using EC
syndrome value 0x18.

◦ AArch32 accesses using MCR or MRC to DBGDTRRXint and DBGDTRTXint, reported using EC
syndrome value 0x05.

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0, EL1, and EL2 accesses to the debug registers, other than

the registers that can be trapped by MDCR_EL3.TDOSA, are
trapped to EL3, from both Security states and both Execution
states, unless it is trapped by DBGDSCRext.UDCCdis,
MDSCR_EL1.TDCC, HDCR.TDA or MDCR_EL2.TDA.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 569

AArch64-oslar_el1.html
AArch64-oslsr_el1.html
AArch64-dbgprcr_el1.html
AArch32-dbgoslar.html
AArch32-dbgoslsr.html
AArch32-dbgprcr.html
AArch64-osdlr_el1.html
AArch32-dbgosdlr.html
AArch64-dbgbcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch64-dbgauthstatus_el1.html
AArch64-dbgvcr32_el2.html
AArch64-mdrar_el1.html
AArch32-sder.html
AArch32-dbgwfar.html
AArch32-dbgvcr.html
AArch32-dbgbvrn.html
AArch32-dbgbcrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html
AArch32-dbgauthstatus.html
AArch32-dbgdevid.html
AArch32-dbgdevid1.html
AArch32-dbgdevid2.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
AArch64-dbgdtrtx_el0.html

Bits [8:7]

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap Performance Monitor register accesses. Accesses to all Performance Monitor registers from EL0, EL1 and EL2 to
EL3, from both Security states and both Execution states are trapped as follows:

• In AArch64 state, accesses to the following registers are trapped to EL3 and are reported using EC syndrome
value 0x18:

◦ PMCR_EL0, PMCNTENSET_EL0, PMCNTENCLR_EL0, PMOVSCLR_EL0, PMSWINC_EL0,
PMSELR_EL0, PMCEID0_EL0, PMCEID1_EL0, PMCCNTR_EL0, PMXEVTYPER_EL0,
PMXEVCNTR_EL0, PMUSERENR_EL0, PMINTENSET_EL1, PMINTENCLR_EL1, PMOVSSET_EL0,
PMEVCNTR<n>_EL0, PMEVTYPER<n>_EL0, PMCCFILTR_EL0.

◦ If FEAT_PMUv3p4 is implemented, PMMIR_EL1
• In AArch32 state, accesses using MCR or MRC to the following registers are reported using EC syndrome

value 0x03, accesses using MCRR or MRRC are reported using EC syndrome value 0x04:
◦ PMCR, PMCNTENSET, PMCNTENCLR, PMOVSR, PMSWINC, PMSELR, PMCEID0, PMCEID1,

PMCCNTR, PMXEVTYPER, PMXEVCNTR, PMUSERENR, PMINTENSET, PMINTENCLR, PMOVSSET,
PMEVCNTR<n>, PMEVTYPER<n>, PMCCFILTR.

◦ If FEAT_PMUv3p1 is implemented, PMCEID2, and PMCEID3.
◦ If FEAT_PMUv3p4 is implemented, PMMIR.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL2, EL1, and EL0 System register accesses to all Performance

Monitor registers are trapped to EL3, unless it is trapped by
HDCR.TPM or MDCR_EL2.TPM.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:0]

Reserved, RES0.

Accessing the MDCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, MDCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MDCR_EL3;

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 570

AArch64-pmcntenset_el0.html
AArch64-pmcntenclr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmswinc_el0.html
AArch64-pmceid0_el0.html
AArch64-pmceid1_el0.html
AArch64-pmccntr_el0.html
AArch64-pmuserenr_el0.html
AArch64-pmintenset_el1.html
AArch64-pmintenclr_el1.html
AArch64-pmovsset_el0.html
AArch64-pmccfiltr_el0.html
AArch64-pmmir_el1.html
AArch32-pmcntenset.html
AArch32-pmcntenclr.html
AArch32-pmovsr.html
AArch32-pmswinc.html
AArch32-pmceid0.html
AArch32-pmceid1.html
AArch32-pmccntr.html
AArch32-pmuserenr.html
AArch32-pmintenset.html
AArch32-pmintenclr.html
AArch32-pmovsset.html
AArch32-pmccfiltr.html
AArch32-pmceid2.html
AArch32-pmceid3.html
AArch32-pmmir.html

MSR MDCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
MDCR_EL3 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDCR_EL3, Monitor Debug Configuration Register (EL3)

Page 571

(old) htmldiff from- (new)

MDSCR_EL1, Monitor Debug System Control Register
The MDSCR_EL1 characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
AArch64 System register MDSCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDSCRext[31:0].

AArch64 System register MDSCR_EL1 bit [15] is architecturally mapped to AArch32 System register
DBGDSCRint[15].

AArch64 System register MDSCR_EL1 bit [12] is architecturally mapped to AArch32 System register
DBGDSCRint[12].

AArch64 System register MDSCR_EL1 bits [5:2] are architecturally mapped to AArch32 System register
DBGDSCRint[5:2].

Attributes
MDSCR_EL1 is a 64-bit register.

Field descriptions
The MDSCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 504948 47 46 45 44 4342414039 38 3736353433 32
RES0

TFORXfullTXfullRES0RXOTXURES0INTdisTDARES0SC2 RAZ/
WI MDEHDEKDETDCC RES0 ERR RES0 SS

31 30 29 28 27 26 25 24 23 22 21 20 19 181716 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this bit are indirect
accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

MDSCR_EL1, Monitor Debug System Control Register

Page 572

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

Otherwise:

Reserved, RES0.

RXfull, bit [30]

Used for save/restore of EDSCR.RXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this bit are indirect
accesses to EDSCR.RXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXfull, bit [29]

Used for save/restore of EDSCR.TXfull.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect
accesses to EDSCR.TXfull.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect
accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect
accesses to EDSCR.TXU.

MDSCR_EL1, Monitor Debug System Control Register

Page 573

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When OSLSR_EL1.OSLK == 0, and software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this field holds the value of EDSCR.INTdis. Reads and writes of this field are indirect
accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect
accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect
accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

MDSCR_EL1, Monitor Debug System Control Register

Page 574

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

Otherwise:

Reserved, RES0.

Bits [18:16]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a
read-modify-write sequence to write to the register.

MDE, bit [15]

Monitor debug events. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDE Meaning
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect
accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

KDE, bit [13]

Local (kernel) debug enable. If ELD is using AArch64, enable debug exceptions within ELD. Permitted values are:

KDE Meaning
0b0 Debug exceptions, other than Breakpoint Instruction exceptions,

disabled within ELD.
0b1 All debug exceptions enabled within ELD.

RES0 if ELD is using AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TDCC, bit [12]

Traps EL0 accesses to the Debug Communication Channel (DCC) registers to EL1, or to EL2 when it is implemented
and enabled for the current Security state and HCR_EL2.TGE is 1, from both Execution states, as follows:

• In AArch64 state, MRS or MSR accesses to the following DCC registers are trapped, reported using EC
syndrome value 0x18:

◦ MDCCSR_EL0.
◦ If not in Debug state, DBGDTR_EL0, DBGDTRTX_EL0, and DBGDTRRX_EL0.

• In AArch32 state, MRC or MCR accesses to the following registers are trapped, reported using EC syndrome
value 0x05.

◦ DBGDSCRint, DBGDIDR, DBGDSAR, DBGDRAR.
◦ If not in Debug state, DBGDTRRXint, and DBGDTRTXint.

MDSCR_EL1, Monitor Debug System Control Register

Page 575

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-dbgdtr_el0.html
AArch64-dbgdtrtx_el0.html
AArch64-dbgdtrrx_el0.html

• In AArch32 state, LDC access to DBGDTRRXint and STC access to DBGDTRTXint are trapped, reported using
EC syndrome value 0x06.

• In AArch32 state, MRRC accesses to DBGDSAR and DBGDRAR are trapped, reported using EC syndrome
value 0x0C.

TDCC Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 using AArch64: EL0 accesses to the AArch64 DCC registers

are trapped.
EL0 using AArch32: EL0 accesses to the AArch32 DCC registers
are trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

When OSLSR_EL1.OSLK == 0, software must treat this bit as UNK/SBZP.

When OSLSR_EL1.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect
accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When OSLSR_EL1.OSLK == 1, access to this field is RW.
• When OSLSR_EL1.OSLK == 0, access to this field is RO.

Bits [5:1]

Reserved, RES0.

SS, bit [0]

Software step control bit. If ELD is using AArch64, enable Software step. Permitted values are:

SS Meaning
0b0 Software step disabled
0b1 Software step enabled.

RES0 if ELD is using AArch32.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MDSCR_EL1
Individual fields within this register might have restricted accessibility when OSLSR_EL1.OSLK == 0 (the OS lock is
unlocked). See the field descriptions for more detail.

Accesses to this register use the following encodings:

MRS <Xt>, MDSCR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010

MDSCR_EL1, Monitor Debug System Control Register

Page 576

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-oslsr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.MDSCR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x158];

else
return MDSCR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return MDSCR_EL1;
elsif PSTATE.EL == EL3 then

return MDSCR_EL1;

MSR MDSCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0010 0b010

MDSCR_EL1, Monitor Debug System Control Register

Page 577

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.MDSCR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x158] = X[t];

else
MDSCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

MDSCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

MDSCR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MDSCR_EL1, Monitor Debug System Control Register

Page 578

(old) htmldiff from- (new)

MPIDR_EL1, Multiprocessor Affinity Register
The MPIDR_EL1 characteristics are:

Purpose
In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configuration
AArch64 System register MPIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MPIDR[31:0].

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes
MPIDR_EL1 is a 64-bit register.

Field descriptions
The MPIDR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

RES1 U RES0 MT Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3. See the description of Aff0 for more information.

Aff3 is not supported in AArch32 state.

Bit [31]

Reserved, RES1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MPIDR_EL1, Multiprocessor Affinity Register

Page 579

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type
approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

MT Meaning
0b0 Performance of PEs at the lowest affinity level, or PEs with

MPIDR_EL1.MT set to 1, different affinity level 0 values, and the
same values for affinity level 1 and higher, is largely independent.

0b1 Performance of PEs at the lowest affinity level, or PEs with
MPIDR_EL1.MT set to 1, different affinity level 0 values, and the
same values for affinity level 1 and higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are
increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

Accessing the MPIDR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, MPIDR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
if IsFeatureImplemented(FEAT_IDST) then

if EL2Enabled() && HCR_EL2.TGE == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
AArch64.SystemAccessTrap(EL1, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MPIDR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() then

return VMPIDR_EL2;
else

return MPIDR_EL1;
elsif PSTATE.EL == EL2 then

return MPIDR_EL1;
elsif PSTATE.EL == EL3 then

return MPIDR_EL1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

MPIDR_EL1, Multiprocessor Affinity Register

Page 580

(old) htmldiff from- (new)

MPIDR_EL1, Multiprocessor Affinity Register

Page 581

(old) htmldiff from- (new)

OSDTRRX_EL1, OS Lock Data Transfer Register,
Receive

The OSDTRRX_EL1 characteristics are:

Purpose
Used for save and /restore of DBGDTRRX_EL0. It is a component of the Debug Communications Channel.

Configuration
AArch64 System register OSDTRRX_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRRXext[31:0].

Attributes
OSDTRRX_EL1 is a 64-bit register.

Field descriptions
The OSDTRRX_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Update DTRRX without side-effect
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register'.

Accessing the OSDTRRX_EL1
Arm deprecates reads and writes of OSDTRRX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings:

MRS <Xt>, OSDTRRX_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0000 0b010

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 582

AArch64-dbgdtrrx_el0.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return OSDTRRX_EL1;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSDTRRX_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return OSDTRRX_EL1;

elsif PSTATE.EL == EL3 then
return OSDTRRX_EL1;

MSR OSDTRRX_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0000 0b010

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 583

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
OSDTRRX_EL1 = X[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSDTRRX_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
OSDTRRX_EL1 = X[t];

elsif PSTATE.EL == EL3 then
OSDTRRX_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

OSDTRRX_EL1, OS Lock Data Transfer Register, Receive

Page 584

(old) htmldiff from- (new)

OSDTRTX_EL1, OS Lock Data Transfer Register,
Transmit

The OSDTRTX_EL1 characteristics are:

Purpose
Used for save/restore of DBGDTRTX_EL0. It is a component of the Debug Communications Channel.

Configuration
AArch64 System register OSDTRTX_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGDTRTXext[31:0].

Attributes
OSDTRTX_EL1 is a 64-bit register.

Field descriptions
The OSDTRTX_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Return DTRTX without side-effect
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register'.

Accessing the OSDTRTX_EL1
Arm deprecates reads and writes of OSDTRTX_EL1 when the OS Lock is unlocked.

Accesses to this register use the following encodings:

MRS <Xt>, OSDTRTX_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0011 0b010

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 585

AArch64-dbgdtrtx_el0.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return OSDTRTX_EL1;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return OSDTRTX_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return OSDTRTX_EL1;

elsif PSTATE.EL == EL3 then
return OSDTRTX_EL1;

MSR OSDTRTX_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0011 0b010

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 586

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
OSDTRTX_EL1 = X[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif EL2Enabled() && MDCR_EL2.TDCC == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

OSDTRTX_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
OSDTRTX_EL1 = X[t];

elsif PSTATE.EL == EL3 then
OSDTRTX_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit

Page 587

(old) htmldiff from- (new)

OSECCR_EL1, OS Lock Exception Catch Control
Register

The OSECCR_EL1 characteristics are:

Purpose
Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to
software, so it can save/restore the contents of EDECCR over powerdown on behalf of the external debugger.

Configuration
AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGOSECCR[31:0].

AArch64 System register OSECCR_EL1 bits [31:0] are architecturally mapped to External register EDECCR[31:0].

If OSLSR_EL1.OSLK == 0, then OSECCR_EL1 returns an UNKNOWN value on reads and ignores writes.

Attributes
OSECCR_EL1 is a 64-bit register.

Field descriptions
The OSECCR_EL1 bit assignments are:

When OSLSR_EL1.OSLK == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

EDECCR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the OSECCR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, OSECCR_EL1

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0110 0b010

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 588

ext-edeccr.html
ext-edeccr.html
ext-edeccr.html
AArch64-oslsr_el1.html
ext-edeccr.html
ext-edeccr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.OSECCR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif OSLSR_EL1.OSLK == '0' then
return bits(64) UNKNOWN;

else
return OSECCR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' then

return bits(64) UNKNOWN;
else

return OSECCR_EL1;
elsif PSTATE.EL == EL3 then

if OSLSR_EL1.OSLK == '0' then
return bits(64) UNKNOWN;

else
return OSECCR_EL1;

MSR OSECCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b10 0b000 0b0000 0b0110 0b010

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 589

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.OSECCR_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif OSLSR_EL1.OSLK == '0' then
//no operation

else
OSECCR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif HaveEL(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif OSLSR_EL1.OSLK == '0' then

//no operation
else

OSECCR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

if OSLSR_EL1.OSLK == '0' then
//no operation

else
OSECCR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

OSECCR_EL1, OS Lock Exception Catch Control Register

Page 590

(old) htmldiff from- (new)

PAR_EL1, Physical Address Register
The PAR_EL1 characteristics are:

Purpose
Returns the output address (OA) from an Address translation instruction that executed successfully, or fault
information if the instruction did not execute successfully.

Configuration
AArch64 System register PAR_EL1 bits [63:0] are architecturally mapped to AArch32 System register PAR[63:0].

Attributes
PAR_EL1 is a 64-bit register.

Field descriptions
The PAR_EL1 bit assignments are:

When PAR_EL1.F == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ATTR RES0 PA[51:48] PA[47:12]

PA[47:12] RES1IMPLEMENTATION
DEFINED NS SH RES0 F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by the successful execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

On a successful conversion, the PAR_EL1 can return a value that indicates the resulting attributes, rather than the
values that appear in the translation table descriptors. More precisely:

• The PAR_EL1.{ATTR, SH} fields are permitted to report the resulting attributes, as determined by any
permitted implementation choices and any applicable configuration bits, instead of reporting the values that
appear in the translation table descriptors.

• See the PAR_EL1.NS bit description for constraints on the value it returns.

ATTR, bits [63:56]

Memory attributes for the returned output address. This field uses the same encoding as the Attr<n> fields in
MAIR_EL1, MAIR_EL2, and MAIR_EL3.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

Note

The attributes presented are consistent with the stages of translation applied
in the address translation instruction. If the instruction performed a stage 1
translation only, the attributes are from the stage 1 translation. If the
instruction performed a stage 1 and stage 2 translation, the attributes are
from the combined stage 1 and stage 2 translation.

PAR_EL1, Physical Address Register

Page 591

AArch32-par.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [55:52]

Reserved, RES0.

PA[51:48], bits [51:48]

When FEAT_LPA is implemented:

Extension to PA[47:12]. ForSee more information, see PA[47:12].] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PA[47:12], bits [47:12]

Output address. The output address (OA) corresponding to the supplied input address. This field returns address
bits[47:12].

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, the PA[51:48]
formsbits form the upper part of the address value. Otherwise, whenthe 52-bit addresses are not in use, PA[51:48]
isbits are RES0.

For implementations with fewer than 48 physical address bits, the corresponding upper bits in this field are RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES1.

IMPLEMENTATION DEFINED, bit [10]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [9]

Non-secure. The NS attribute for a translation table entry from a Secure translation regime.

For a result from a Secure translation regime, when SCR_EL3.EEL2 is 1, this bit reflects the Security state of the
intermediate physical address space of the translation for the instructions:

• In AArch64 state: AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP, AT S1E0R, and AT S1E0W.
• In AArch32 state: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP, ATS1CUR, and ATS1CUW.

Otherwise, this bit reflects the Security state of the physical address space of the translation. This means it reflects the
effect of the NSTable bits of earlier levels of the translation table walk if those NSTable bits have an effect on the
translation.

For a result from a Non-secure translation regime, this bit is UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH, bits [8:7]

Shareability attribute, for the returned output address. Permitted values are:

PAR_EL1, Physical Address Register

Page 592

AArch64-at-s1e1r.html
AArch64-at-s1e1w.html
AArch64-at-s1e1rp.html
AArch64-at-s1e1wp.html
AArch64-at-s1e0r.html
AArch64-at-s1e0w.html
AArch32-ats1cpr.html
AArch32-ats1cpw.html
AArch32-ats1cprp.html
AArch32-ats1cpwp.html
AArch32-ats1cur.html
AArch32-ats1cuw.html

SH Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

The value 0b01 is reserved.

Note

This field returns the value 0b10 for:

• Any type of Device memory.
• Normal memory with both Inner Non-cacheable and Outer Non-

cacheable attributes.

The value returned in this field can be the resulting attribute, as determined by any permitted implementation choices
and any applicable configuration bits, instead of the value that appears in the translation table descriptor.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:1]

Reserved, RES0.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b0 Address translation completed successfully.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When PAR_EL1.F == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED
IMPLEMENTATION

DEFINED RES0
RES0 RES1RES0 S PTWRES0 FST F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This section describes the register value returned by a fault on the execution of an Address translation instruction.
Software might subsequently write a different value to the register, and that write does not affect the operation of the
PE.

IMPLEMENTATION DEFINED, bits [63:56]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [55:52]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IMPLEMENTATION DEFINED, bits [51:48]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PAR_EL1, Physical Address Register

Page 593

Bits [47:12]

Reserved, RES0.

Bit [11]

Reserved, RES1.

Bit [10]

Reserved, RES0.

S, bit [9]

Indicates the translation stage at which the translation aborted:

S Meaning
0b0 Translation aborted because of a fault in the stage 1 translation.
0b1 Translation aborted because of a fault in the stage 2 translation.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PTW, bit [8]

If this bit is set to 1, it indicates the translation aborted because of a stage 2 fault during a stage 1 translation table
walk.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [7]

Reserved, RES0.

FST, bits [6:1]

Fault status code, as shown in the Data Abort ESR encoding.

PAR_EL1, Physical Address Register

Page 594

FST Meaning Applies when
0b000000 Address size fault, level 0 of

translation or translation table base
register.

0b000001 Address size fault, level 1.
0b000010 Address size fault, level 2.
0b000011 Address size fault, level 3.
0b000100 Translation fault, level 0.
0b000101 Translation fault, level 1.
0b000110 Translation fault, level 2.
0b000111 Translation fault, level 3.
0b001001 Access flag fault, level 1.
0b001010 Access flag fault, level 2.
0b001011 Access flag fault, level 3.
0b001000 Access flag fault, level 0. When FEAT_LPA2

is implemented
0b001100 Permission fault, level 0. When FEAT_LPA2

is implemented
0b001101 Permission fault, level 1.
0b001110 Permission fault, level 2.
0b001111 Permission fault, level 3.
0b010011 Synchronous External abort on

translation table walk or hardware
update of translation table, level -1.

When FEAT_LPA2
is implemented

0b010100 Synchronous External abort on
translation table walk or hardware
update of translation table, level 0.

0b010101 Synchronous External abort on
translation table walk or hardware
update of translation table, level 1.

0b010110 Synchronous External abort on
translation table walk or hardware
update of translation table, level 2.

0b010111 Synchronous External abort on
translation table walk or hardware
update of translation table, level 3.

0b011011 Synchronous parity or ECC error on
memory access on translation table
walk or hardware update of
translation table, level -1.

When FEAT_LPA2
is implemented and
FEAT_RAS is not
implemented

0b011100 Synchronous parity or ECC error on
memory access on translation table
walk or hardware update of
translation table, level 0.

When FEAT_RAS is
not implemented

0b011101 Synchronous parity or ECC error on
memory access on translation table
walk or hardware update of
translation table, level 1.

When FEAT_RAS is
not implemented

0b011110 Synchronous parity or ECC error on
memory access on translation table
walk or hardware update of
translation table, level 2.

When FEAT_RAS is
not implemented

0b011111 Synchronous parity or ECC error on
memory access on translation table
walk or hardware update of
translation table, level 3.

When FEAT_RAS is
not implemented

0b101001 Address size fault, level -1. When FEAT_LPA2
is implemented

0b101011 Translation fault, level -1. When FEAT_LPA2
is implemented

0b110000 TLB conflict abort.
0b110001 Unsupported atomic hardware

update fault.
When
FEAT_HAFDBS is
implemented

0b111101 Section Domain fault, from an
AArch32 stage 1 EL1&0 translation
regime using Short-descriptor
translation table format.

When EL1 is
capable of using
AArch32

PAR_EL1, Physical Address Register

Page 595

0b111110 Page Domain fault, from an AArch32
stage 1 EL1&0 translation regime
using Short-descriptor translation
table format.

When EL1 is
capable of using
AArch32

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [0]

Indicates whether the instruction performed a successful address translation.

F Meaning
0b1 Address translation aborted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PAR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.PAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

return PAR_EL1;
elsif PSTATE.EL == EL2 then

return PAR_EL1;
elsif PSTATE.EL == EL3 then

return PAR_EL1;

MSR PAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0111 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.PAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

PAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

PAR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PAR_EL1 = X[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PAR_EL1, Physical Address Register

Page 596

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch64 System register PMCR_EL0 bits [31:0] are architecturally mapped to AArch32 System register PMCR[31:0].

AArch64 System register PMCR_EL0 bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMCR_EL0 are
UNDEFINED.

Attributes
PMCR_EL0 is a 64-bit register.

Field descriptions
The PMCR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 FZS

IMP IDCODE N RES0FZORES0 LP LC DP X D C P E
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:33]

Reserved, RES0.

FZS, bit [32]

When FEAT_SPEv1p2 is implemented:

Freeze-on-SPE event. Stop counters when PMBLIMITR_EL1.{PMFZ,E} == {1,1} and PMBSR_EL1.S == 0b1.

FZS Meaning
0b0 Do not freeze on Statistical Profiling Buffer Management event.
0b1 Event counters do not count following a Statistical Profiling Buffer

Management event.

If EL2 is implemented, then:

• This bit affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].
• If MDCR_EL2.HPMN is less than PMCR_EL0.N:

◦ This bit does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..
(PMCR_EL0.N-1)].

• This applies even when EL2 is disabled in the current Security state.

This bit does not affect the operation of PMCCNTR_EL0.

On a Warm reset, when AArch32 is supported at any Exception level, this field resets to 0.

PMCR_EL0, Performance Monitors Control Register

Page 597

AArch64-pmblimitr_el1.html
AArch64-pmbsr_el1.html
AArch64-pmccntr_el0.html

On a Warm reset, when the implementation only supports execution in AArch64 state, this field resets to an
architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMP, bits [31:24]

When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR_EL0.IDCODE is RES0 and software must use MIDR_EL1 to identify the PE.

Otherwise, this field and PMCR_EL0.IDCODE identify the PMU implementation to software. The implementer codes
are allocated by Arm. A non-zero value has the same interpretation as MIDR_EL1.Implementer.

Use of this field is deprecated.

This field reads as an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]

When PMCR_EL0.IMP != 0x00:

Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED value.

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b11111. If the value is
0b00000 then only PMCCNTR_EL0 is implemented. If the value is 0b11111 PMCCNTR_EL0 and 31 event counters are
implemented.

When EL2 is implemented and enabled for the current Security state, reads of this field from EL1 and EL0 return the
value of MDCR_EL2.HPMN.

Access to this field is RO.

Bit [10]

Reserved, RES0.

PMCR_EL0, Performance Monitors Control Register

Page 598

AArch64-midr_el1.html
AArch64-midr_el1.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when PMOVSCLR_EL0[(N-1):0] is

nonzero, where N is the value of MDCR_EL2.HPMN if EL2 is
implemented, and PMCR_EL0.N otherwise.

If EL2 is implemented, then:

• This bit affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].
• If MDCR_EL2.HPMN is less than PMCR_EL0.N:

◦ This bit does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..
(PMCR_EL0.N-1)].

◦ The operation of this bit ignores the values of
PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN].

• This applies even when EL2 is disabled in the current Security state.

This bit does not affect the operation of PMCCNTR_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an eventa counter overflow bit.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN or HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the
operation of event counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)] or [MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMCR_EL0, Performance Monitors Control Register

Page 599

AArch64-pmovsclr_el0.html
AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html

LC, bit [6]

When AArch32 is supported at any Exception level:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

Arm deprecates use of PMCR_EL0.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 When event counting for counters in the range

[0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by
PMCCNTR_EL0 is disabled.

For more information see 'Prohibiting event counting'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device,
for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-
trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

PMCR_EL0, Performance Monitors Control Register

Page 600

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

D, bit [3]

When AArch32 is supported at any Exception level:

Clock divider.

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

Note

The value of PMCR_EL0.LC is ignored, and bits [63:0] of all affected event
counters are reset.

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and
bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters accessible in the current Exception level,

not including PMCCNTR_EL0, to zero.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and MDCR_EL2.HPMN is less than
PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[MDCR_EL2.HPMN..(PMCR_EL0.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, or MDCR_EL2.HPMN equals
PMCR_EL0.N, a write of 1 to this bit resets all the event counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

If FEAT_PMUv3p5 is implemented, the values of MDCR_EL2.HLP and
PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are
reset.

PMCR_EL0, Performance Monitors Control Register

Page 601

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html

Resetting the event counters does not change the event counter overflow bits.
If FEAT_PMUv3p5 is implemented, the values of MDCR_EL2.HLP and
PMCR_EL0.LP are ignored, and bits [63:0] of all affected event counters are
reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are enabled by PMCNTENSET_EL0.

If EL2 is implemented, then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMCR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

PMCR_EL0, Performance Monitors Control Register

Page 602

AArch64-pmccntr_el0.html
AArch64-pmccntr_el0.html
AArch64-pmcntenset_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCR_EL0;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMCR_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMCR_EL0;

elsif PSTATE.EL == EL3 then
return PMCR_EL0;

MSR PMCR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b000

PMCR_EL0, Performance Monitors Control Register

Page 603

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMCR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMCR == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMCR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMCR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMCR_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register

Page 604

(old) htmldiff from- (new)

PMEVCNTR<n>_EL0, Performance Monitors Event
Count Registers, n = 0 - 30

The PMEVCNTR<n>_EL0 characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVCNTR<n>[31:0].

AArch64 System register PMEVCNTR<n>_EL0 bits [31:0] are architecturally mapped to External register
PMEVCNTR<n>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVCNTR<n>_EL0
are UNDEFINED.

Attributes
PMEVCNTR<n>_EL0 is a 64-bit register.

Field descriptions
The PMEVCNTR<n>_EL0 bit assignments are:

When FEAT_PMUv3p5 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Event counter n
Event counter n

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Event counter n
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 605

ext-pmevcntrn_el0.html

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<n>_EL0
PMEVCNTR<n>_EL0 can also be accessed by using PMXEVCNTR_EL0 with PMSELR_EL0.SEL set to the value of
<n>.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMEVCNTR<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 606

AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)];

MSR PMEVCNTR<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 607

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
PMEVCNTR_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30

Page 608

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVTYPER<n>[31:0].

AArch64 System register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to External register
PMEVTYPER<n>_EL0[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMEVTYPER<n>_EL0
are UNDEFINED.

Attributes
PMEVTYPER<n>_EL0 is a 64-bit register.

Field descriptions
The PMEVTYPER<n>_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

P U NSKNSUNSH M MT SH RES0 evtCount[15:10] evtCount[9:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU bit.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 609

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If Secure EL2 is implemented, and EL3 is implemented, counting in Secure EL2 is further controlled by the
PMEVTYPER<n>_EL0.SH bit.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 610

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.

Otherwise, events in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0b0.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU extension is implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted, meaning if FEAT_MTPMU
is not implemented, this bit is RES0. See ID_AA64DFR0_EL1.MTPMU.

This bit is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and Disabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are
counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 611

AArch64-id_aa64dfr0_el1.html

Bits [23:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. ForSee more information, see evtCount[9:0].] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space'.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value
written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of
the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned
by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the
value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_EL0
PMEVTYPER<n>_EL0 can also be accessed by using PMXEVTYPER_EL0 with PMSELR_EL0.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n>_EL0 is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n>_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 612

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMEVTYPER<n>_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b11:n[4:3] n[2:0]

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)];

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 613

AArch64-pmuserenr_el0.html

MSR PMEVTYPER<n>_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1110 0b11:n[4:3] n[2:0]

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

elsif PSTATE.EL == EL3 then
PMEVTYPER_EL0[UInt(CRm<1:0>:op2<2:0>)] = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 614

(old) htmldiff from- (new)

PMSELR_EL0, Performance Monitors Event Counter
Selection Register

The PMSELR_EL0 characteristics are:

Purpose
Selects the current event counter PMEVCNTR<n>_EL0 or the cycle counter, CCNT.

PMSELR_EL0 is used in conjunction with PMXEVTYPER_EL0 to determine the event that increments a selected event
counter, and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR_EL0, to determine the value of a selected event counter.

Configuration
AArch64 System register PMSELR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMSELR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMSELR_EL0 are
UNDEFINED.

Attributes
PMSELR_EL0 is a 64-bit register.

Field descriptions
The PMSELR_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 SEL
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>_EL0, where n is the value held in this field. This value identifies which event
counter is accessed when a subsequent access to PMXEVTYPER_EL0 or PMXEVCNTR_EL0 occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR_EL0.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER_EL0 returns the value of PMCCFILTR_EL0.
• A write of the PMXEVTYPER_EL0 writes to PMCCFILTR_EL0.
• A read or write of PMXEVCNTR_EL0 has CONSTRAINED UNPREDICTABLE effects. For more information, seeSee

PMXEVCNTR_EL0.for more details.

For moredetails information aboutof the results of accesses to the event counters, see PMXEVTYPER_EL0 and
PMXEVCNTR_EL0.

For more information about the number of counters accessible at each Exception level, see MDCR_EL2.HPMN.

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 615

AArch64-pmccfiltr_el0.html
AArch64-pmccfiltr_el0.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMSELR_EL0
Accesses to this register use the following encodings:

MRS <Xt>, PMSELR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b101

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMSELR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSELR_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSELR_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMSELR_EL0;

elsif PSTATE.EL == EL3 then
return PMSELR_EL0;

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 616

MSR PMSELR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1100 0b101

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMSELR_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSELR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMSELR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMSELR_EL0 = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMSELR_EL0, Performance Monitors Event Counter Selection Register

Page 617

(old) htmldiff from- (new)

PMSEVFR_EL1, Sampling Event Filter Register
The PMSEVFR_EL1 characteristics are:

Purpose
Controls sample filtering by events. The overall filter is the logical AND of these filters. For example, if E[3] and E[5]
are both set to 1, only samples that have both event 3 (Level 1 unified or data cache refill) and event 5 set (TLB walk)
are recorded.

Configuration
This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSEVFR_EL1 are
UNDEFINED.

Attributes
PMSEVFR_EL1 is a 64-bit register.

Field descriptions
The PMSEVFR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 424140 39 38 37 36 35 34 33 32
E[63]E[62]E[61]E[60]E[59]E[58]E[57]E[56]E[55]E[54]E[53]E[52]E[51]E[50]E[49]E[48] RAZ/WI
E[31]E[30]E[29]E[28]E[27]E[26]E[25]E[24] RAZ/WI E[18]E[17] RAZ/

WI E[15]E[14]E[13]E[12]E[11] RAZ/
WI E[7]E[6]E[5]RAZ/

WI E[3]RAZ/
WI E[1]RAZ/

WI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E[<x>], bit [x], for x = 63 to 48, 31 to 24, 15 to 12

E[<x>] is the event filter for event <x>. If event <x> is not implemented, or filtering on event <x> is not supported,
the corresponding bit is RAZ/WI.

E[<x>] Meaning
0b0 Event <x> is ignored.
0b1 Do not record samples that have event <x> == 0.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, if the corresponding bits of
PMSEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This field is ignored by the PE when PMSFCR_EL1.FE == 0

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [47:32]

Reserved, RAZ/WI.

Bits [23:19]

Reserved, RAZ/WI.

PMSEVFR_EL1, Sampling Event Filter Register

Page 618

AArch64-pmsfcr_el1.html

E[18], bit [18]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

Empty predicate.

E[18] Meaning
0b0 Empty predicate event is ignored.
0b1 Do not record samples that have the Empty predicate event ==

0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT_SPEv1p1 is implemented and FEAT_SVE is implemented:

Partial predicate.

E[17] Meaning
0b0 Partial predicate event is ignored.
0b1 Do not record samples that have the Partial predicate event ==

0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [16]

Reserved, RAZ/WI.

E[11], bit [11]

When FEAT_SPEv1p1 is implemented:

Alignment.

E[11] Meaning
0b0 Alignment event is ignored.
0b1 Do not record samples that have the Alignment event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

PMSEVFR_EL1, Sampling Event Filter Register

Page 619

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

Bits [10:8]

Reserved, RAZ/WI.

E[7], bit [7]

Mispredicted.

E[7] Meaning
0b0 Mispredicted event is ignored.
0b1 Do not record samples that have the Mispredicted event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[6], bit [6]

When FEAT_SPEv1p2 is implemented:

Not taken.

E[6] Meaning
0b0 Not taken event is ignored.
0b1 Do not record samples that have the Not taken event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[5], bit [5]

TLB walk.

E[5] Meaning
0b0 TLB walk event is ignored.
0b1 Do not record samples that have the TLB walk event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache refill.

E[3] Meaning
0b0 Level 1 data or unified cache refill event is ignored.
0b1 Do not record samples that have the Level 1 data or unified cache

refill event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSEVFR_EL1, Sampling Event Filter Register

Page 620

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

Bit [2]

Reserved, RAZ/WI.

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Architecturally executed.retired.

When the PE supports sampling of speculative instructions:

E[1] Meaning
0b0 Architecturally executedretired event is ignored.
0b1 Do not record samples that have the Architecturally

executedretired event == 0.

This bit is ignored by the PE when PMSFCR_EL1.FE == 0.

If the PE does not support the sampling of speculative instructions, or always discards the sample record for
speculative instructions, this bit reads as an UNKNOWN value and the PE ignores its value.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, UNKNOWN.

Bit [0]

Reserved, RAZ/WI.

Accessing the PMSEVFR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSEVFR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b101

PMSEVFR_EL1, Sampling Event Filter Register

Page 621

AArch64-pmsfcr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSEVFR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x830];

else
return PMSEVFR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSEVFR_EL1;
elsif PSTATE.EL == EL3 then

return PMSEVFR_EL1;

MSR PMSEVFR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b101

PMSEVFR_EL1, Sampling Event Filter Register

Page 622

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSEVFR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x830] = X[t];

else
PMSEVFR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSEVFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSEVFR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMSEVFR_EL1, Sampling Event Filter Register

Page 623

(old) htmldiff from- (new)

PMSNEVFR_EL1, Sampling Inverted Event Filter
Register

The PMSNEVFR_EL1 characteristics are:

Purpose
Controls sample filtering by events. The overall filter is the logical AND of these filters. For example, if E[3] and E[5]
are both set to 0b1, only samples that have both event 3 (Level 1 unified or data cache refill) and event 5 (TLB walk)
clear are recorded.

Configuration
This register is present only when FEAT_SPEv1p2 is implemented. Otherwise, direct accesses to PMSNEVFR_EL1 are
UNDEFINED.

Attributes
PMSNEVFR_EL1 is a 64-bit register.

Field descriptions
The PMSNEVFR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 424140 39 38 37 36 35 34 33 32
E[63]E[62]E[61]E[60]E[59]E[58]E[57]E[56]E[55]E[54]E[53]E[52]E[51]E[50]E[49]E[48] RAZ/WI
E[31]E[30]E[29]E[28]E[27]E[26]E[25]E[24] RAZ/WI E[18]E[17] RAZ/

WI E[15]E[14]E[13]E[12]E[11] RAZ/
WI E[7]E[6]E[5]RAZ/

WI E[3]RAZ/
WI E[1]RAZ/

WI
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E[<x>], bit [x], for x = 63 to 48, 31 to 24, 15 to 12

E[<x>] is the event filter for IMPLEMENTATION DEFINED event <x>.

E[<x>] Meaning
0b0 Event <x> is ignored.
0b1 Do not record samples that have event <x> == 1.

An IMPLEMENTATION DEFINED event might be recorded as a multi-bit field. In this case, the corresponding bits of
PMSNEVFR_EL1 define an IMPLEMENTATION DEFINED filter for the event.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When event <x> is not implemented, or filtering on event <x> is not supported, access to this field is RAZ/WI.

Bits [47:32]

Reserved, RAZ/WI.

Bits [23:19]

Reserved, RAZ/WI.

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 624

AArch64-pmsfcr_el1.html

E[18], bit [18]

When FEAT_SVE is implemented and FEAT_SPEv1p1 is implemented:

Not empty predicate.

E[18] Meaning
0b0 Empty predicate event is ignored.
0b1 Do not record samples that have the Empty predicate event ==

1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

E[17], bit [17]

When FEAT_SVE is implemented and FEAT_SPEv1p1 is implemented:

Not partial predicate.

E[17] Meaning
0b0 Partial predicate event is ignored.
0b1 Do not record samples that have the Partial predicate event ==

1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [16]

Reserved, RAZ/WI.

E[11], bit [11]

When FEAT_SPEv1p1 is implemented:

Aligned.

E[11] Meaning
0b0 Misalignment event is ignored.
0b1 Do not record samples that have the Misalignment event == 1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 625

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

Bits [10:8]

Reserved, RAZ/WI.

E[7], bit [7]

Correctly predicted.

E[7] Meaning
0b0 Mispredicted event is ignored.
0b1 Do not record samples that have the Mispredicted event == 1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[6], bit [6]

Taken.

E[6] Meaning
0b0 Not taken event is ignored.
0b1 Do not record samples that have the Not taken event == 1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E[5], bit [5]

TLB hit.

E[5] Meaning
0b0 TLB walk event is ignored.
0b1 Do not record samples that have the TLB walk event == 1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [4]

Reserved, RAZ/WI.

E[3], bit [3]

Level 1 data or unified cache hit.

E[3] Meaning
0b0 Level 1 data or unified cache refill event is ignored.
0b1 Do not record samples that have the Level 1 data or unified cache

refill event == 1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [2]

Reserved, RAZ/WI.

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 626

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

E[1], bit [1]

When the PE supports sampling of speculative instructions:

Speculative.

E[1] Meaning
0b0 Architecturally executedretired event is ignored.
0b1 Do not record samples that have the Architecturally

executedretired event == 1.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0.

This bit is ignored by the PE when PMSFCR_EL1.FnE == 0b0. This bit is RES0 if the PE does not support sampling of
speculative instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAZ/WI.

Bit [0]

Reserved, RAZ/WI.

Accessing the PMSNEVFR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, PMSNEVFR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b001

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 627

AArch64-pmsfcr_el1.html
AArch64-pmsfcr_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
UNDEFINED;

elsif EL2Enabled() && (!((HaveEL(EL3) ||&& SCR_EL3.FGTEn == '10') &&||
HDFGRTR_EL2.nPMSNEVFR_EL1 == '0'') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
return NVMem[0x850];

else
return PMSNEVFR_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMSNEVFR_EL1;
elsif PSTATE.EL == EL3 then

return PMSNEVFR_EL1;

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 628

MSR PMSNEVFR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1001 0b1001 0b001

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 629

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
UNDEFINED;

elsif EL2Enabled() && (!((HaveEL(EL3) ||&& SCR_EL3.FGTEn == '10') &&||
HDFGWTR_EL2.nPMSNEVFR_EL1 == '0'') then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '1x1' then
NVMem[0x850] = X[t];

else
PMSNEVFR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.EnPMSN == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.NS == '0' && MDCR_EL3.NSPB != '01' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HaveEL(EL3) && SCR_EL3.NS == '1' && MDCR_EL3.NSPB != '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.EnPMSN == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMSNEVFR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

PMSNEVFR_EL1 = X[t];

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 630

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMSNEVFR_EL1, Sampling Inverted Event Filter Register

Page 631

(old) htmldiff from- (new)

PMXEVCNTR_EL0, Performance Monitors Selected
Event Count Register

The PMXEVCNTR_EL0 characteristics are:

Purpose
Reads or writes the value of the selected event counter, PMEVCNTR<n>_EL0. PMSELR_EL0.SEL determines which
event counter is selected.

Configuration
AArch64 System register PMXEVCNTR_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMXEVCNTR[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMXEVCNTR_EL0 are
UNDEFINED.

Attributes
PMXEVCNTR_EL0 is a 64-bit register.

Field descriptions
The PMXEVCNTR_EL0 bit assignments are:

When FEAT_PMUv3p5 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PMEVCNTR<n>
PMEVCNTR<n>

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PMEVCNTR<n>, bits [63:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in PMSELR_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

PMEVCNTR<n>
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>_EL0, where n is the value stored in PMSELR_EL0.SEL.

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 632

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMXEVCNTR_EL0
If FEAT_FGT is implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible event
counters, then the behavior of permitted reads and writes of PMXEVCNTR_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented and PMSELR_EL0.SEL is greater than or equal to the number of accessible event
counters, then reads and writes of PMXEVCNTR_EL0 are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of

counters accessible at the current Exception level and Security state.
• If EL2 is implemented and enabled in the current Security state, and PMSELR_EL0.SEL is less than the

number of implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to
EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMXEVCNTR_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b010

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 633

AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVCNTR_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMXEVCNTR_EL0;

elsif PSTATE.EL == EL3 then
return PMXEVCNTR_EL0;

MSR PMXEVCNTR_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b010

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 634

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVCNTR_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMXEVCNTR_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMXEVCNTR_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register

Page 635

(old) htmldiff from- (new)

PMXEVTYPER_EL0, Performance Monitors Selected
Event Type Register

The PMXEVTYPER_EL0 characteristics are:

Purpose
When PMSELR_EL0.SEL selects an event counter, this accesses a PMEVTYPER<n>_EL0 register. When
PMSELR_EL0.SEL selects the cycle counter, this accesses PMCCFILTR_EL0.

Configuration
AArch64 System register PMXEVTYPER_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMXEVTYPER[31:0].

This register is present only when FEAT_PMUv3 is implemented. Otherwise, direct accesses to PMXEVTYPER_EL0 are
UNDEFINED.

Attributes
PMXEVTYPER_EL0 is a 64-bit register.

Field descriptions
The PMXEVTYPER_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

Event type register or PMCCFILTR_EL0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

Bits [31:0]

When PMSELR_EL0.SEL == 31, this register accesses PMCCFILTR_EL0.

Otherwise, this register accesses PMEVTYPER<n>_EL0 where n is the value in PMSELR_EL0.SEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMXEVTYPER_EL0
If FEAT_FGT is implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of accessible
event counters, then the behavior of permitted reads and writes of PMXEVTYPER_EL0 is as follows:

• If PMSELR_EL0.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR_EL0.SEL is not 31 and is greater than or equal to the number of
accessible event counters, then reads and writes of PMXEVTYPER_EL0 are CONSTRAINED UNPREDICTABLE, and the
following behaviors are permitted:

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 636

AArch64-pmccfiltr_el0.html
AArch64-pmccfiltr_el0.html

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• Accesses to the register behave as if PMSELR_EL0.SEL has an UNKNOWN value less than the number of event

counters accessible at the current Exception level and Security state.
• Accesses to the register behave as if PMSELR_EL0.SEL is 31.
• If EL2 is implemented and enabled in the current Security state, PMSELR_EL0 is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, in EL1 and
EL0, MDCR_EL2.HPMN identifies the number of accessible event counters.
Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRS <Xt>, PMXEVTYPER_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b001

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 637

AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return PMXEVTYPER_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return PMXEVTYPER_EL0;

elsif PSTATE.EL == EL3 then
return PMXEVTYPER_EL0;

MSR PMXEVTYPER_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1001 0b1101 0b001

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 638

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && MDCR_EL2.TPM == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

PMXEVTYPER_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
PMXEVTYPER_EL0 = X[t];

elsif PSTATE.EL == EL3 then
PMXEVTYPER_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register

Page 639

(old) htmldiff from- (new)

RNDR, Random Number
The RNDR characteristics are:

Purpose
Random Number. Returns a 64-bit random number which is reseeded from the True Random Number source at an
IMPLEMENTATION DEFINED rate.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to
0b0100 and the data value returned is 0.

RNDR is a read-only register.

Configuration
This register is present only when FEAT_RNG is implemented. Otherwise, direct accesses to RNDR are UNDEFINED.

Attributes
RNDR is a 64-bit register.

Field descriptions
The RNDR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RNDR
RNDR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDR, bits [63:0]

Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number source at an
IMPLEMENTATION DEFINED rate.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the RNDR
Accesses to this register use the following encodings:

MRS <Xt>, RNDR

op0 op1 CRn CRm op2
0b11 0b011 0b0010 0b0100 0b000

RNDR, Random Number

Page 640

if PSTATE.EL == EL0 then
if !IsFeatureImplemented(FEAT_RNG) then

UNDEFINED;
else

return RNDR;
elsif PSTATE.EL == EL1 then

if !IsFeatureImplemented(FEAT_RNG) then
UNDEFINED;

else
return RNDR;

elsif PSTATE.EL == EL2 then
if !IsFeatureImplemented(FEAT_RNG) then

UNDEFINED;
else

return RNDR;
elsif PSTATE.EL == EL3 then

if !IsFeatureImplemented(FEAT_RNG) then
UNDEFINED;

else
return RNDR;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

RNDR, Random Number

Page 641

(old) htmldiff from- (new)

RNDRRS, Reseeded Random Number
The RNDRRS characteristics are:

Purpose
Reseeded Random Number. Returns a 64-bit random number which is reseeded from the True Random Number
source immediately before the read of the random number.

If the hardware returns a genuine random number, PSTATE.NZCV is set to 0b0000.

If the instruction cannot return a genuine random number in a reasonable period of time, PSTATE.NZCV is set to
0b0100 and the data value returned is 0.

RNDRRS is a read-only register.

Configuration
This register is present only when FEAT_RNG is implemented. Otherwise, direct accesses to RNDRRS are UNDEFINED.

Attributes
RNDRRS is a 64-bit register.

Field descriptions
The RNDRRS bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RNDRRS
RNDRRS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDRRS, bits [63:0]

Reseeded Random Number. Returns a 64-bit Random Number which is reseeded from the True Random Number
source immediately before this read.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the RNDRRS
Accesses to this register use the following encodings:

MRS <Xt>, RNDRRS

op0 op1 CRn CRm op2
0b11 0b011 0b0010 0b0100 0b001

RNDRRS, Reseeded Random Number

Page 642

if PSTATE.EL == EL0 then
if !IsFeatureImplemented(FEAT_RNG) then

UNDEFINED;
else

return RNDRRS;
elsif PSTATE.EL == EL1 then

if !IsFeatureImplemented(FEAT_RNG) then
UNDEFINED;

else
return RNDRRS;

elsif PSTATE.EL == EL2 then
if !IsFeatureImplemented(FEAT_RNG) then

UNDEFINED;
else

return RNDRRS;
elsif PSTATE.EL == EL3 then

if !IsFeatureImplemented(FEAT_RNG) then
UNDEFINED;

else
return RNDRRS;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

RNDRRS, Reseeded Random Number

Page 643

(old) htmldiff from- (new)

SCR_EL3, Secure Configuration Register
The SCR_EL3 characteristics are:

Purpose
Defines the configuration of the current Security state. It specifies:

• The Security state of EL0, EL1, and EL2. The Security state is either Secure or Non-secure.
• The Execution state at lower Exception levels.
• Whether IRQ, FIQ, SError interrupts, and External abort exceptions are taken to EL3.
• Whether various operations are trapped to EL3.

Configuration
AArch64 System register SCR_EL3 bits [31:0] can be mapped to AArch32 System register SCR[31:0], but this is not
architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SCR_EL3 are UNDEFINED.

Attributes
SCR_EL3 is a 64-bit register.

Field descriptions
The SCR_EL3 bit assignments are:

63 62 61 60 59 58 57 565554 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 HXEnADEnEnAS0AMVOFFENRES0TWEDEL

TWEDELTWEDEnECVEnFGTEnATAEnSCXT RES0 FIENNMEAEASEEEL2APIAPKTERRTLORTWETWISTRWSIFHCESMDRES0 RES1 EA FIQ IRQ NS
31 30 29 28 27 26 25 242322 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:39]

Reserved, RES0.

HXEn, bit [38]

When FEAT_HCX is implemented:

Enables access to the HCRX_EL2 register at EL2 from EL3.

HXEn Meaning
0b0 EL2 accesses to HCRX_EL2 are trapped to EL3. Indirect reads

of HCRX_EL2 return 0.
0b1 This control does not cause any instructions to be trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ADEn, bit [37]

SCR_EL3, Secure Configuration Register

Page 644

AArch32-scr.html

When FEAT_LS64 is implemented:

Enables access to the ACCDATA_EL1 register at EL1 and EL2.

ADEn Meaning
0b0 Accesses to ACCDATA_EL1 at EL1 and EL2 are trapped to EL3,

unless the accesses are trapped to EL2 by the EL2 fine-grained
trap.

0b1 This control does not cause accesses to ACCDATA_EL1 to be
trapped.

If the HFGWTR_EL2.nACCDATA_EL1 or HFGRTR_EL2.nACCDATA_EL1 traps are enabled, they take priority over this
trap.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [36]

When FEAT_LS64 is implemented:

Traps execution of an ST64BV0 instruction at EL0, EL1, or EL2 to EL3.

EnAS0 Meaning
0b0 EL0 execution of an ST64BV0 instruction is trapped to EL3,

unless it is trapped to EL1 by SCTLR_EL1.EnAS0, or to EL2 by
either HCRX_EL2.EnAS0 or SCTLR_EL2.EnAS0.
EL1 execution of an ST64BV0 instruction is trapped to EL3,
unless it is trapped to EL2 by HCRX_EL2.EnAS0.
EL2 execution of an ST64BV0 instruction is trapped to EL3.

0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

AMVOFFEN, bit [35]

When FEAT_AMUv1p1 is implemented:

Activity Monitors Virtual Offsets Enable.

AMVOFFEN Meaning
0b0 Accesses to AMEVCNTVOFF0<n>_EL2 and

AMEVCNTVOFF1<n>_EL2 at EL2 are trapped to EL3.
Indirect reads of the virtual offset registers are zero.

0b1 Accesses to AMEVCNTVOFF0<n>_EL2 and
AMEVCNTVOFF1<n>_EL2 are not affected by this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 645

AArch64-amevcntvoff0n_el2.html
AArch64-amevcntvoff1n_el2.html
AArch64-amevcntvoff0n_el2.html
AArch64-amevcntvoff1n_el2.html

Bit [34]

Reserved, RES0.

TWEDEL, bits [33:30]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCR_EL3.TWEDEn is 1, encodes the minimum delay in taking a trap
of WFE* caused by SCR_EL3.TWE as 2(TWEDEL + 8) cycles.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [29]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCR_EL3.TWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of cycles

defined in SCR_EL3.TWEDEL.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ECVEn, bit [28]

When FEAT_ECV is implemented:

ECV Enable. Enables access to the CNTPOFF_EL2 register.

ECVEn Meaning
0b0 EL2 accesses to CNTPOFF_EL2 are trapped to EL3, and the

value of CNTPOFF_EL2 is treated as 0 for all purposes other
than direct reads or writes to the register from EL3.

0b1 EL2 accesses to CNTPOFF_EL2 are not trapped to EL3 by this
mechanism.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

FGTEn, bit [27]

When FEAT_FGT is implemented:

Fine-Grained Traps Enable. When EL2 is implemented, enables theaccess traps to EL2 controlled by HAFGRTR_EL2,
HDFGRTR_EL2, HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2, and HFGWTR_EL2, and controls access to those
registers..

SCR_EL3, Secure Configuration Register

Page 646

AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html
AArch64-cntpoff_el2.html

Note

If EL2 is not implemented but EL3 is implemented, FEAT_FGT implements the
MDCR_EL3.TDCC traps.

FGTEn Meaning
0b0 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,

HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are trapped to EL3, and thethose
trapsregisters tobehave EL2as controlledif byall thosebits
registers are disabled.set to 0.

0b1 EL2 accesses to HAFGRTR_EL2, HDFGRTR_EL2,
HDFGWTR_EL2, HFGRTR_EL2, HFGITR_EL2 and
HFGWTR_EL2 registers are not trapped to EL3 by this
mechanism.

Traps caused by accesses to the fine-grained trap registers are reported using an ESR_ELx.EC value of 0x18 and its
associated ISS.

Otherwise:

Reserved, RES0.

ATA, bit [26]

When FEAT_MTE2 is implemented:

Allocation Tag Access. Controls access at EL2, EL1 and EL0 to Allocation Tags.

When access is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

• MRS and MSR instructions at EL1 and EL2 using GCR_EL1, RGSR_EL1, TFSR_EL1, TFSR_EL2 or
TFSRE0_EL1 that are not UNDEFINED or trapped to a lower Exception level are trapped to EL3.

• MRS and MSR instructions at EL2 using TFSR_EL12 that are not UNDEFINED are trapped to EL3.

ATA Meaning
0b0 Access is prevented. Accesses at EL1 and EL2 to GCR_EL1,

RGSR_EL1, TFSR_EL1, TFSR_EL2 or TFSRE0_EL1 that are not
UNDEFINED or trapped to a lower Exception level are trapped to
EL3. Accesses at EL2 to TFSR_EL12 that are not UNDEFINED are
trapped to EL3.

0b1 Access is not prevented.

This field is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCR_EL3, Secure Configuration Register

Page 647

AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsre0_el1.html
AArch64-gcr_el1.html
AArch64-rgsr_el1.html
AArch64-tfsre0_el1.html

EnSCXT, bit [25]

When FEAT_CSV2 is implemented:

Enable access to the SCXTNUM_EL2, SCXTNUM_EL1, and SCXTNUM_EL0 registers. The defined values are:

EnSCXT Meaning
0b0 EL2, EL1 and EL0 access to SCXTNUM_EL0, EL2 and EL1

access to SCXTNUM_EL1, EL2 access to SCXTNUM_EL2
registers are disabled by this mechanism, causing an
exception to EL3, and the values of these registers to be
treated as 0.

0b1 This control does not cause accesses to SCXTNUM_EL0,
SCXTNUM_EL1, SCXTNUM_EL2 to be trapped.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:22]

Reserved, RES0.

FIEN, bit [21]

When FEAT_RASv1p1 is implemented:

Fault Injection enable. Trap accesses to the registers ERXPFGCDN_EL1, ERXPFGCTL_EL1, and ERXPFGF_EL1 from
EL1 and EL2 to EL3, reported using an ESR_ELx.EC value of 0x18.

FIEN Meaning
0b0 Accesses to the specified registers from EL1 and EL2 generate a

Trap exception to EL3.
0b1 This control does not cause any instructions to be trapped.

If EL3 is not implemented, the Effective value of SCR_EL3.FIEN is 0b1.

If ERRIDR_EL1.NUM is zero, meaning no error records are implemented, or no error record accessible using System
registers is owned by a node that implements the RAS Common Fault Injection Model Extension, then this bit might be
RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NMEA, bit [20]

When FEAT_DoubleFault is implemented:

Non-maskable External Aborts. When SCR_EL3.EA == 1, controls whether PSTATE.A masks SError interrupts at EL3.

NMEA Meaning
0b0 If SCR_EL3.EA == 1, asserted SError interrupts are not taken

at EL3 if PSTATE.A == 1.
0b1 If SCR_EL3.EA == 1, asserted SError interrupts are taken at

EL3 regardless of the value of PSTATE.A.

When SCR_EL3.EA == 0:

• Asserted SError interrupts are not taken at EL3 regardless of the value of PSTATE.A and this field.

SCR_EL3, Secure Configuration Register

Page 648

AArch64-erxpfgcdn_el1.html
AArch64-erxpfgctl_el1.html
AArch64-erxpfgf_el1.html
AArch64-erridr_el1.html

• This field is ignored and its Effective value is 0.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EASE, bit [19]

When FEAT_DoubleFault is implemented:

External aborts to SError interrupt vector.

EASE Meaning
0b0 Synchronous External abort exceptions taken to EL3 are taken

to the appropriate synchronous exception vector offset from
VBAR_EL3.

0b1 Synchronous External abort exceptions taken to EL3 are taken
to the appropriate SError interrupt vector offset from
VBAR_EL3.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

EEL2, bit [18]

When FEAT_SEL2 is implemented:

Secure EL2 Enable.

EEL2 Meaning
0b0 All behaviors associated with Secure EL2 are disabled. All

registers, including timer registers, defined by FEAT_SEL2 are
UNDEFINED, and those timers are disabled.

0b1 All behaviors associated with Secure EL2 are enabled.

When the value of this bit is 1, then:

• When SCR_EL3.NS == 0, the SCR_EL3.RW bit is treated as 1 for all purposes other than reading or writing
the register.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2, using the EC value of ESR_EL2.EC== 0x3 :

◦ A read or write of the SCR.
◦ A read or write of the NSACR.
◦ A read or write of the MVBAR.
◦ A read or write of the SDCR.
◦ Execution of an ATS12NSO** instruction.

• If Secure EL1 is using AArch32, then any of the following operations, executed in Secure EL1, is trapped to
Secure EL2 using the EC value of ESR_EL2.EC== 0x0 :

◦ Execution of an SRS instruction that uses R13_mon.
◦ Execution of an MRS (Banked register) or MSR (Banked register) instruction that would access

SPSR_mon, R13_mon, or R14_mon.

Note

If the Effective value of SCR_EL3.EEL2 is 0, then these operations executed in
Secure EL1 using AArch32 are trapped to EL3.

SCR_EL3, Secure Configuration Register

Page 649

AArch64-vbar_el3.html
AArch64-vbar_el3.html
AArch32-scr.html
AArch32-nsacr.html

A Secure only implementation that does not implement EL3 but implements EL2, behaves as if SCR_EL3.EEL2 == 1.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

API, bit [17]

When FEAT_SEL2 is implemented and FEAT_PAuth is implemented:

Controls the use of the following instructions related to Pointer Authentication. Traps are reported using an
ESR_ELx.EC value of 0x09:

• PACGA, which is always enabled.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB,
PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZB, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ,
BRABZ, BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M> == 1.

◦ In EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

API Meaning
0b0 The use of any instruction related to pointer authentication in any

Exception level except EL3 when the instructions are enabled are
trapped to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

An instruction is trapped only if Pointer Authentication is enabled for that instruction, for more information, see
'System register control of pointer authentication'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_SEL2 is not implemented and FEAT_PAuth is implemented:

Controls the use of instructions related to Pointer Authentication:

• PACGA.
• AUTDA, AUTDB, AUTDZA, AUTDZB, AUTIA, AUTIA1716, AUTIASP, AUTIAZ, AUTIB, AUTIB1716, AUTIBSP,

AUTIBZ, AUTIZA, AUTIZB, PACDA, PACDB, PACDZA, PACDZB, PACIA, PACIA1716, PACIASP, PACIAZ, PACIB,
PACIB1716, PACIBSP, PACIBZ, PACIZA, PACIZ, RETAA, RETAB, BRAA, BRAB, BLRAA, BLRAB, BRAAZ, BRABZ,
BLRAAZ, BLRABZ, ERETAA, ERETAB, LDRAA and LDRAB when:

◦ In Non-secure EL0, when HCR_EL2.TGE == 0 or HCR_EL2.E2H == 0, and the associated
SCTLR_EL1.En<N><M>== 1.

◦ In Non-secure EL0, when HCR_EL2.TGE == 1 and HCR_EL2.E2H == 1, and the associated
SCTLR_EL2.En<N><M> == 1.

◦ In Secure EL0, when the associated SCTLR_EL2.En<N><M> == 1.
◦ In Secure or Non-secure EL1, when the associated SCTLR_EL1.En<N><M> == 1.
◦ In EL2, when the associated SCTLR_EL2.En<N><M> == 1.

SCR_EL3, Secure Configuration Register

Page 650

API Meaning
0b0 The use of any instruction related to pointer authentication in any

Exception level except EL3 when the instructions are enabled are
trapped to EL3 unless they are trapped to EL2 as a result of the
HCR_EL2.API bit.

0b1 This control does not cause any instructions to be trapped.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

APK, bit [16]

When FEAT_PAuth is implemented:

Trap registers holding "key" values for Pointer Authentication. Traps accesses to the following registers, using an
ESR_ELx.EC value of 0x18, from EL1 or EL2 to EL3 unless they are trapped to EL2 as a result of the HCR_EL2.APK bit
or other traps:

• APIAKeyLo_EL1, APIAKeyHi_EL1, APIBKeyLo_EL1, APIBKeyHi_EL1.

• APDAKeyLo_EL1, APDAKeyHi_EL1, APDBKeyLo_EL1, APDBKeyHi_EL1.

• APGAKeyLo_EL1, and APGAKeyHi_EL1.

APK Meaning
0b0 Access to the registers holding "key" values for pointer

authentication from EL1 or EL2 are trapped to EL3 unless they
are trapped to EL2 as a result of the HCR_EL2.APK bit or other
traps.

0b1 This control does not cause any instructions to be trapped.

For more information, see 'System register control of pointer authentication'.

Note

If FEAT_PAuth is implemented but EL3 is not implemented, the system
behaves as if this bit is 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TERR, bit [15]

When FEAT_RAS is implemented:

Trap Error record accesses. Accesses to the RAS ERR* and RAS ERX* registers from EL1 and EL2 to EL3 are trapped
as follows:

• Accesses from EL1 and EL2 using AArch64 to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x18:

◦ ERRIDR_EL1, ERRSELR_EL1, ERXADDR_EL1, ERXCTLR_EL1, ERXFR_EL1, ERXMISC0_EL1,
ERXMISC1_EL1, and ERXSTATUS_EL1.

SCR_EL3, Secure Configuration Register

Page 651

AArch64-apiakeylo_el1.html
AArch64-apiakeyhi_el1.html
AArch64-apibkeylo_el1.html
AArch64-apibkeyhi_el1.html
AArch64-apdakeylo_el1.html
AArch64-apdakeyhi_el1.html
AArch64-apdbkeylo_el1.html
AArch64-apdbkeyhi_el1.html
AArch64-apgakeylo_el1.html
AArch64-apgakeyhi_el1.html
AArch64-erridr_el1.html
AArch64-errselr_el1.html
AArch64-erxaddr_el1.html
AArch64-erxctlr_el1.html
AArch64-erxfr_el1.html
AArch64-erxmisc0_el1.html
AArch64-erxmisc1_el1.html
AArch64-erxstatus_el1.html

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch64 to ERXMISC2_EL1, and
ERXMISC3_EL1, are trapped and reported using an ESR_ELx.EC value of 0x18.

• Accesses from EL1 and EL2 using AArch32, to the following registers are trapped and reported using an
ESR_ELx.EC value of 0x03:

◦ ERRIDR, ERRSELR, ERXADDR, ERXADDR2, ERXCTLR, ERXCTLR2, ERXFR, ERXFR2, ERXMISC0,
ERXMISC1, ERXMISC2, ERXMISC3, and ERXSTATUS.

• If FEAT_RASv1p1 is implemented, accesses from EL1 and EL2 using AArch32 to the following registers are
trapped and reported using an ESR_ELx.EC value of 0x03:

◦ ERXMISC4, ERXMISC5, ERXMISC6, and ERXMISC7.
TERR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Accesses to the specified registers from EL1 and EL2 generate a

Trap exception to EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TLOR, bit [14]

When FEAT_LOR is implemented:

Trap LOR registers. Traps accesses to the LORSA_EL1, LOREA_EL1, LORN_EL1, LORC_EL1, and LORID_EL1
registers from EL1 and EL2 to EL3, unless the access has been trapped to EL2.

TLOR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL1 and EL2 accesses to the LOR registers that are not

UNDEFINED are trapped to EL3, unless it is trapped
HCR_EL2.TLOR.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWE, bit [13]

Traps EL2, EL1, and EL0 execution of WFE instructions to EL3, from both Security states and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

TWE Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFE instruction at any Exception level

lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and it is
not trapped by SCTLR.nTWE, HCR.TWE, SCTLR_EL1.nTWE,
SCTLR_EL2.nTWE, or HCR_EL2.TWE.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

SCR_EL3, Secure Configuration Register

Page 652

AArch64-erxmisc2_el1.html
AArch64-erxmisc3_el1.html
AArch32-erridr.html
AArch32-errselr.html
AArch32-erxaddr.html
AArch32-erxaddr2.html
AArch32-erxctlr.html
AArch32-erxctlr2.html
AArch32-erxfr.html
AArch32-erxfr2.html
AArch32-erxmisc0.html
AArch32-erxmisc1.html
AArch32-erxmisc2.html
AArch32-erxmisc3.html
AArch32-erxstatus.html
AArch32-erxmisc4.html
AArch32-erxmisc5.html
AArch32-erxmisc6.html
AArch32-erxmisc7.html
AArch64-lorn_el1.html
AArch64-lorc_el1.html
AArch64-lorid_el1.html
AArch32-hcr.html

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

For more information about when WFE instructions can cause the PE to enter a low-power state, see 'Wait for Event
mechanism and Send event'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TWI, bit [12]

Traps EL2, EL1, and EL0 execution of WFI instructions to EL3, from both Security states and both Execution states,
reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

TWI Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Any attempt to execute a WFI instruction at any Exception level

lower than EL3 is trapped to EL3, if the instruction would
otherwise have caused the PE to enter a low-power state and it is
not trapped by SCTLR.nTWI, HCR.TWI, SCTLR_EL1.nTWI,
SCTLR_EL2.nTWI, or HCR_EL2.TWI.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

For more information about when WFI instructions can cause the PE to enter a low-power state, see 'Wait for
Interrupt'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ST, bit [11]

Traps Secure EL1 accesses to the Counter-timer Physical Secure timer registers to EL3, from AArch64 state only,
reported using an ESR_ELx.EC value of 0x18.

ST Meaning
0b0 Secure EL1 using AArch64 accesses to the CNTPS_TVAL_EL1,

CNTPS_CTL_EL1, and CNTPS_CVAL_EL1 are trapped to EL3 when
Secure EL2 is disabled. If Secure EL2 is enabled, the behavior is as
if the value of this field was 0b1.

0b1 This control does not cause any instructions to be trapped.

Note

Accesses to the Counter-timer Physical Secure timer registers are always
enabled at EL3. These registers are not accessible at EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SCR_EL3, Secure Configuration Register

Page 653

AArch32-hcr.html
AArch64-cntps_tval_el1.html
AArch64-cntps_cval_el1.html

RW, bit [10]

When AArch32 is supported at any Exception level:

Execution state control for lower Exception levels.

RW Meaning
0b0 Lower levels are all AArch32.
0b1 The next lower level is AArch64.

If EL2 is present:
• EL2 is AArch64.
• EL2 controls EL1 and EL0 behaviors.

If EL2 is not present:
• EL1 is AArch64.
• EL0 is determined by the Execution state described in the

current process state when executing at EL0.

If AArch32 state is not supported by the implementation at EL2 and AArch32 state is not supported by the
implementation at EL1, then this bit is RAO/WI.

If AArch32 state is supported by the implementation at EL1, SCR_EL3.NS == 1 and AArch32 state is not supported by
the implementation at EL2, the Effective value of this bit is 1.

If AArch32 state is supported by the implementation at EL1, FEAT_SEL2 is implemented and SCR_EL3.{EEL2, NS}
== {1, 0}, the Effective value of this bit is 1.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RAO/WI.

SIF, bit [9]

When FEAT_SEL2 is implemented:

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from memory marked in the
first stage of translation as being Non-secure. The possible values for this bit are:

SIF Meaning
0b0 Secure state instruction fetches from memory marked in the first

stage of translation as being Non-secure are permitted.
0b1 Secure state instruction fetches from memory marked in the first

stage of translation as being Non-secure are not permitted.

When FEAT_PAN3 is implemented, it is IMPLEMENTATION DEFINED whether SCR_EL3.SIF is also used to determine
instruction access permission for the purpose of PAN.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Secure instruction fetch. When the PE is in Secure state, this bit disables instruction fetch from Non-secure memory.

SIF Meaning
0b0 Secure state instruction fetches from Non-secure memory are

permitted.
0b1 Secure state instruction fetches from Non-secure memory are not

permitted.

This bit is permitted to be cached in a TLB.

SCR_EL3, Secure Configuration Register

Page 654

On a Warm reset, this field resets to an architecturally UNKNOWN value.

HCE, bit [8]

Hypervisor Call instruction enable. Enables HVC instructions at EL3 and, if EL2 is enabled in the current Security
state, at EL2 and EL1, in both Execution states, reported using an ESR_ELx.EC value of 0x00.

HCE Meaning
0b0 HVC instructions are UNDEFINED.
0b1 HVC instructions are enabled at EL3, EL2, and EL1.

Note

HVC instructions are always UNDEFINED at EL0 and, if Secure EL2 is disabled,
at Secure EL1. Any resulting exception is taken from the current Exception
level to the current Exception level.

If EL2 is not implemented, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SMD, bit [7]

Secure Monitor Call disable. Disables SMC instructions at EL1 and above, from both Security states and both Execution
states, reported using an ESR_ELx.EC value of 0x00.

SMD Meaning
0b0 SMC instructions are enabled at EL3, EL2 and EL1.
0b1 SMC instructions are UNDEFINED.

Note

SMC instructions are always UNDEFINED at EL0. Any resulting exception is
taken from the current Exception level to the current Exception level.

If HCR_EL2.TSC or HCR.TSC traps attempted EL1 execution of SMC
instructions to EL2, that trap has priority over this disable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

EA, bit [3]

External Abort and SError interrupt routing.

EA Meaning
0b0 When executing at Exception levels below EL3, External aborts

and SError interrupts are not taken to EL3.
In addition, when executing at EL3:

• SError interrupts are not taken.
• External aborts are taken to EL3.

0b1 When executing at any Exception level, External aborts and SError
interrupts are taken to EL3.

For more information, see 'Asynchronous exception routing'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SCR_EL3, Secure Configuration Register

Page 655

AArch32-hcr.html

FIQ, bit [2]

Physical FIQ Routing.

FIQ Meaning
0b0 When executing at Exception levels below EL3, physical FIQ

interrupts are not taken to EL3.
When executing at EL3, physical FIQ interrupts are not taken.

0b1 When executing at any Exception level, physical FIQ interrupts are
taken to EL3.

For more information, see 'Asynchronous exception routing'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRQ, bit [1]

Physical IRQ Routing.

IRQ Meaning
0b0 When executing at Exception levels below EL3, physical IRQ

interrupts are not taken to EL3.
When executing at EL3, physical IRQ interrupts are not taken.

0b1 When executing at any Exception level, physical IRQ interrupts
are taken to EL3.

For more information, see 'Asynchronous exception routing'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS, bit [0]

Non-secure bit.

NS Meaning
0b0 Indicates that EL0 and EL1 are in Secure state.
0b1 Indicates that Exception levels lower than EL3 are in Non-secure

state, so memory accesses from those Exception levels cannot
access Secure memory.

When SCR_EL3.{EEL2, NS} == {1, 0}, then EL2 is using AArch64 and in Secure state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCR_EL3;

SCR_EL3, Secure Configuration Register

Page 656

MSR SCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCR_EL3, Secure Configuration Register

Page 657

(old) htmldiff from- (new)

SCTLR_EL1, System Control Register (EL1)
The SCTLR_EL1 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL1 and EL0.

Configuration
AArch64 System register SCTLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register SCTLR[31:0].

Attributes
SCTLR_EL1 is a 64-bit register.

Field descriptions
The SCTLR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 EPANEnALSEnAS0EnASR RES0 TWEDEL TWEDEnDSSBS ATA ATA0 TCF TCF0 ITFSB BT1BT0 RES0

EnIAEnIBLSMAOEnTLSMDEnDAUCI EE E0E SPAN EIS IESBTSCXTWXNnTWERES0nTWIUCTDZE EnDB I EOSEnRCTXUMASEDITDnAACP15BENSA0 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:58]

Reserved, RES0.

EPAN, bit [57]

When FEAT_PAN3 is implemented:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL1 data access to a page with
stage 1 EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never
mechanism.

EPAN Meaning
0b0 No additional Permission faults are generated by this

mechanism.
0b1 An EL1 data access to a page with stage 1 EL0 data access

permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a Permission
fault if the accesses were not speculative will not cause an
allocation into a cache.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 658

EnALS, bit [56]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an LD64B or ST64B instruction at EL0 to EL1.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped

to EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV0 instruction at EL0 to EL1.

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnASR, bit [54]

When FEAT_LS64 is implemented:

When HCR_EL2.{E2H, TGE} != {1, 1}, traps execution of an ST64BV instruction at EL0 to EL1.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to EL1.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [53:50]

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 659

TWEDEL, bits [49:46]

When FEAT_TWED is implemented:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL1.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE* caused by SCTLR_EL1.nTWE as 2(TWEDEL + 8) cycles.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When FEAT_TWED is implemented:

TWE Delay Enable. Enables a configurable delayed trap of the WFE* instruction caused by SCTLR_EL1.nTWE.

TWEDEn Meaning
0b0 The delay for taking the trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking the trap is at least the number of cycles

defined in SCTLR_EL1.TWEDEL.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL1.
0b1 PSTATE.SSBS is set to 1 on an exception to EL1.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL1. When SCR_EL3.ATA=1 and HCR_EL2.ATA=1, controls EL1 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

SCTLR_EL1, System Control Register (EL1)

Page 660

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL0. When SCR_EL3.ATA=1, HCR_EL2.ATA=1, and HCR_EL2.{E2H, TGE} != {1, 1}, controls
EL0 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This field is permitted to be cached in a TLB.

Note

Software may change this control bit on a context switch.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL1. Controls the effect of Tag Check Faults due to Loads and Stores in EL1.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

SCTLR_EL1, System Control Register (EL1)

Page 661

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL0. When HCR_EL2.{E2H,TGE} != {1,1}, controls the effect of Tag Check Faults due to Loads
and Stores in EL0.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception
entry into EL1, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1 and TFSR_EL1 registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL1.
0b1 Tag Check Faults are synchronized on entry to EL1.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 662

AArch64-tfsre0_el1.html

Otherwise:

Reserved, RES0.

BT1, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL1.

BT1 Meaning
0b0 When the PE is executing at EL1, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL1, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL0.

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

When HCR_EL2.E2H == 1 && HCR_EL2.TGE == 1, the value of the SCTLR_EL1.BT0 has no effect on execution at
EL0

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

SCTLR_EL1, System Control Register (EL1)

Page 663

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load Multiple

and Store Multiple can have an interrupt taken during the
sequence memory accesses, and the memory accesses are
not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 664

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are trapped
and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 665

UCI, bit [26]

Traps EL0 execution of cache maintenance instructions, to EL1, or to EL2 when it is implemented and enabled for the
current Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

This applies to DC CVAU, DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTEFEAT_MTE2 is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC
CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTEFEAT_MTE2 are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning
0b0 Execution of the specified instructions at EL0 using AArch64 is

trapped.
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be
trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EE, bit [25]

Endianness of data accesses at EL1, and stage 1 translation table walks in the EL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0b0 Explicit data accesses at EL1, and stage 1 translation table walks

in the EL1&0 translation regime are little-endian.
0b1 Explicit data accesses at EL1, and stage 1 translation table walks

in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levelsLevels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levelsLevels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

Endianness of data accesses at EL0.

The possible values of this bit are:

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

SCTLR_EL1, System Control Register (EL1)

Page 666

AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-dc-cigdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when
SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL1.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing. The defined values are:

EIS Meaning
0b0 The taking of an exception to EL1 is not a context synchronizing

event.
0b1 The taking of an exception to EL1 is a context synchronizing event.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

If SCTLR_EL1.EIS is set to 0b0:

• Indirect writes to ESR_EL1, FAR_EL1, SPSR_EL1, ELR_EL1 are synchronized on exception entry to EL1, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EIS:

• Changes to the PSTATE information on entry to EL1.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Exit from Debug state.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 667

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable. Possible values are:

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL1.
• Before the operational pseudocode of each ERET instruction

executed at EL1.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL1 and before each DRPS instruction executed at EL1, in addition
to the other cases where it is added.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When FEAT_CSV2 is implemented:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64. The defined values are:

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL1, or to EL2 when it is implemented and
enabled for the current Security state and HCR_EL2.TGE is 1.
The value of SCXTNUM_EL0 is treated as 0.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL1&0 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL1&0 translation regime is

forced to XN for accesses from software executing at EL1 or
EL0.

This bit applies only when SCTLR_EL1.M bit is set.

SCTLR_EL1, System Control Register (EL1)

Page 668

The WXN bit is permitted to be cached in a TLB.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFET instruction.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped, if

the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from both Execution states, reported using an ESR_ELx.EC value of 0x01.

When FEAT_WFxT is implemented, this trap also applies to the WFIT instruction.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped, if

the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

SCTLR_EL1, System Control Register (EL1)

Page 669

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Traps EL0 accesses to the CTR_EL0 to EL1, or to EL2 when it is implemented and enabled for the current Security
state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped.
0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Traps EL0 execution of DC ZVA instructions to EL1, or to EL2 when it is implemented and enabled for the current
Security state and HCR_EL2.TGE is 1, from AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

If FEAT_MTEFEAT_MTE2 is implemented, this trap also applies to DC GVA and DC GZVA.

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to at

EL0 using AArch64 is trapped.
Reading DCZID_EL0.DZP from EL0 returns 1, indicating that the
instructions this trap applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL1&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL1, System Control Register (EL1)

Page 670

AArch64-dc-zva.html
AArch64-dc-gzva.html
AArch64-dczid_el0.html

I, bit [12]

Stage 1 instruction access Cacheability control, for accesses at EL0 and EL1:

I Meaning
0b0 All instruction access to Stage 1 Normal memory from EL0 and

EL1 are Stage 1 Non-cacheable.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage
1 of the EL1&0 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Stage 1 Cacheability of instruction
access to Stage 1 Normal memory from EL0 and EL1.
If the value of SCTLR_EL1.M is 0, instruction accesses from stage
1 of the EL1&0 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

When the value of the HCR_EL2.DC bit is 1, then instruction access to Normal memory from EL0 and EL1 are
Cacheable regardless of the value of the SCTLR_EL1.I bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing. The defined values are:

EOS Meaning
0b0 An exception return from EL1 is not a context synchronizing

event
0b1 An exception return from EL1 is a context synchronizing event

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

If SCTLR_EL1.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL1.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL1 and ELR_EL1 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

SCTLR_EL1, System Control Register (EL1)

Page 671

The defined values are:

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1, or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1.

0b1 EL0 access to these instructions is enabled.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1,1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UMA, bit [9]

User Mask Access. Traps EL0 execution of MSR and MRS instructions that access the PSTATE.{D, A, I, F} masks to
EL1, or to EL2 when it is implemented and enabled for the current Security state and HCR_EL2.TGE is 1, from
AArch64 state only, reported using an ESR_ELx.EC value of 0x18.

UMA Meaning
0b0 Any attempt at EL0 using AArch64 to execute an MRS,

MSR(REGISTER), or MSR(IMMEDIATE) instruction that accesses the
DAIF is trapped.

0b1 This control does not cause any instructions to be trapped.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SED, bit [8]

When EL0 is capable of using AArch32:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32 and

any attempt at EL0 to access a SETEND instruction generates an
exception to EL1, or to EL2 when it is implemented and enabled
for the current Security state and HCR_EL2.TGE is 1, reported
using an ESR_ELx.EC value of 0x00.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

ITD, bit [7]

When EL0 is capable of using AArch32:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL1, System Control Register (EL1)

Page 672

AArch64-daif.html

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the following

is UNDEFINED and generates an exception, reported using an
ESR_ELx.EC value of 0x00, to EL1 or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and

the 16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 0b1011xxxxxxxxxxxx: All instructions in

'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for
Armv8-A architecture profile, section F3.2.5.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers
unpredictable cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not
implemented then this bit is RAZ/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL1 and EL0 under certain conditions.

SCTLR_EL1, System Control Register (EL1)

Page 673

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED and
generates an exception to EL1, or to EL2 when it is
implemented and enabled for the current Security state and
HCR_EL2.TGE is 1. The exception is reported using an
ESR_ELx.EC value of 0x00.

0b1 EL0 using AArch32: EL0 execution of the CP15DMB,
CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it
is not implemented then this bit is RAO/WI.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SA0, bit [4]

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

SCTLR_EL1, System Control Register (EL1)

Page 674

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL1 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking'.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Stage 1 Cacheability control, for data accesses.

C Meaning
0b0 All data access to Stage 1 Normal memory from EL0 and EL1, and

all Normal memory accesses from unified cache to the EL1&0
Stage 1 translation tables, are treated as Stage 1 Non-cacheable.

0b1 This control has no effect on the Stage 1 Cacheability of:
• Data access to Normal memory from EL0 and EL1.
• Normal memory accesses to the EL1&0 Stage 1 translation

tables.

When the value of the HCR_EL2.DC bit is 1, the PE ignores SCTLR.C. This means that Non-secure EL0 and Non-secure
EL1 data accesses to Normal memory are Cacheable.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL1 and EL0 .

A Meaning
0b0 Alignment fault checking disabled when executing at EL1 or EL0.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL1 or EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on execution
at EL0.

On a Warm reset, in a system where the PE resets into EL1, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL1&0 stage 1 address translation.

M Meaning
0b0 EL1&0 stage 1 address translation disabled.

See the SCTLR_EL1.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL1&0 stage 1 address translation enabled.

If the value of HCR_EL2.{DC, TGE} is not {0, 0} then in Non-secure state the PE behaves as if the value of the
SCTLR_EL1.M field is 0 for all purposes other than returning the value of a direct read of the field.

SCTLR_EL1, System Control Register (EL1)

Page 675

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, this bit has no effect on the PE.

On a Warm reset, in a system where the PE resets into EL1, this field resets to 0.

Accessing the SCTLR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SCTLR_EL1 or
SCTLR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x110];

else
return SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return SCTLR_EL2;
else

return SCTLR_EL1;
elsif PSTATE.EL == EL3 then

return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t];

else
SCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t];
else

SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t];

SCTLR_EL1, System Control Register (EL1)

Page 676

MRS <Xt>, SCTLR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x110];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SCTLR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return SCTLR_EL1;
else

UNDEFINED;

MSR SCTLR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x110] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SCTLR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SCTLR_EL1 = X[t];
else

UNDEFINED;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL1, System Control Register (EL1)

Page 677

(old) htmldiff from- (new)

SCTLR_EL2, System Control Register (EL2)
The SCTLR_EL2 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL2.

When FEAT_VHE is implemented, and the value of HCR_EL2.{E2H, TGE} is {1, 1}, these controls apply also to
execution at EL0.

Configuration
AArch64 System register SCTLR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
HSCTLR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SCTLR_EL2 is a 64-bit register.

Field descriptions
The SCTLR_EL2 bit assignments are:

When HCR_EL2.E2H != 1 or HCR_EL2.TGE != 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 EPANDSSBSEnALSATAEnAS0RES0EnASRTCF RES0 TWEDELITFSB TWEDEnBTDSSBSRES0 ATA ATA0 TCF TCF0 ITFSB BT BT0 RES0

EnIAEnIBLSMAOERES1nTLSMDEnDAEnDARES0UCIEE EERES0 E0ERES1 SPANEIS EISIESB IESBRES0TSCXTWXNWXNRES1nTWERES0RES0RES1nTWIRES0UCTEnDBDZEI EnDBEOS IRES0 EOSnAAEnRCTXRES1RES0SASEDCITDAnAAMCP15BENSA0 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies in all Armv8.0 implementations, and from Armv8.1 when the Effective value of HCR_EL2.{E2H,
TGE} != {1, 1}.

Bits [63:45]

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

SCTLR_EL2, System Control Register (EL2)

Page 678

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL2. When SCR_EL3.ATA is 1, controls EL2 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

TCF Meaning
0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous exception.
0b10 Tag Check Faults are asynchronously accumulated.
0b11 Tag Check Faults cause a synchronous exception on reads, and

are asynchronously accumulated on writes.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 679

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception
entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1 and TFSR_EL2 registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL2.
0b1 Tag Check Faults are synchronized on entry to EL2.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

BT Meaning
0b0 When the PE is executing at EL2, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL2, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

SCTLR_EL2, System Control Register (EL2)

Page 680

AArch64-tfsre0_el1.html

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 681

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage
2 translation table walks in the EL1&0 translation regime.

EE Meaning
0b0 Explicit data accesses at EL2, stage 1 translation table walks in the

EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL1&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in the
EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL1&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception Levels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception Levels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

EIS Meaning
0b0 The taking of an exception to EL2 is not a context synchronization

event.
0b1 The taking of an exception to EL2 is a context synchronization

event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on exception
entry to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused
by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and

data processing instructions.
• Exit from Debug state.

SCTLR_EL2, System Control Register (EL2)

Page 682

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction

executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition
to the other cases where it is added.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN.

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 or EL2&0 translation

regime is forced to XN for accesses from software executing at
EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 683

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0b0 All instruction accesses to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL2.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0 or EL3 translation regimes.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

SCTLR_EL2, System Control Register (EL2)

Page 684

EOS Meaning
0b0 An exception return from EL2 is not a context synchronization

event.
0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and
data processing instructions.

• Exit from Debug state.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL2 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking'.

SCTLR_EL2, System Control Register (EL2)

Page 685

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data accesses to Normal memory from EL2, and all Normal

memory accesses to the EL2 translation tables, are Non-cacheable
for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL2.
• Normal memory accesses to the EL2 translation tables.

This bit has no effect on the EL1&0 or EL3 translation regimes.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 stage 1 address translation.

M Meaning
0b0 EL2 stage 1 address translation disabled.

See the SCTLR_EL2.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL2 stage 1 address translation enabled.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 EPANEnALSEnAS0EnASR RES0 TWEDEL TWEDEnDSSBS ATA ATA0 TCF TCF0 ITFSB BT1BT0 RES0

EnIAEnIBLSMAOEnTLSMDEnDAUCI EE E0E SPAN EIS IESBTSCXTWXNnTWERES0nTWIUCTDZE EnDB I EOSEnRCTXRES0SEDITDnAACP15BENSA0 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This format applies only from Armv8.1 when EL2 is enabled in the current Security state and HCR_EL2.{E2H, TGE}
== {1, 1}.

Bits [63:58]

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 686

EPAN, bit [57]

When FEAT_PAN3 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enhanced Privileged Access Never. When PSTATE.PAN is 1, determines whether an EL2 data access to a page with
EL0 instruction access permission generates a Permission fault as a result of the Privileged Access Never mechanism.

EPAN Meaning
0b0 No additional Permission faults are generated by this

mechanism.
0b1 An EL2EL1 data access to a page with stage 1 EL0 data access

permission or stage 1 EL0 instruction access permission
generates a Permission fault.
Any speculative data accesses that would generate a Permission
fault if the accesses were not speculative will not cause an
allocation into a cache.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnALS, bit [56]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an LD64B or ST64B instruction at EL0 to EL2.

EnALS Meaning
0b0 Execution of an LD64B or ST64B instruction at EL0 is trapped

to EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an LD64B or ST64B instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of
0x0000002.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnAS0, bit [55]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV0 instruction at EL0 to EL2.

EnAS0 Meaning
0b0 Execution of an ST64BV0 instruction at EL0 is trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV0 instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000001.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 687

EnASR, bit [54]

When FEAT_LS64 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of an ST64BV instruction at EL0 to EL2.

EnASR Meaning
0b0 Execution of an ST64BV instruction at EL0 is trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

A trap of an ST64BV instruction is reported using an ESR_ELx.EC value of 0x0A, with an ISS code of 0x0000000.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [53:50]

Reserved, RES0.

TWEDEL, bits [49:46]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay. A 4-bit unsigned number that, when SCTLR_EL2.TWEDEn is 1, encodes the minimum delay in taking a
trap of WFE caused by SCTLR_EL2.nTWE as 2(TWEDEL + 8) cycles.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TWEDEn, bit [45]

When FEAT_TWED is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

TWE Delay Enable. Enables a configurable delayed trap of the WFE instruction caused by SCTLR_EL2.nTWE.

TWEDEn Meaning
0b0 The delay for taking a WFE trap is IMPLEMENTATION DEFINED.
0b1 The delay for taking a WFE trap is at least the number of

cycles defined in SCTLR_EL2.TWEDEL.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL2.
0b1 PSTATE.SSBS is set to 1 on an exception to EL2.

SCTLR_EL2, System Control Register (EL2)

Page 688

On a Warm reset, in a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL2. When SCR_EL3.ATA is 1, controls EL2 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ATA0, bit [42]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Allocation Tag Access in EL0. When SCR_EL3.ATA is 1, controls EL0 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA0 Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This field is permitted to be cached in a TLB.

Note

Software may change this control bit on a context switch.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SCTLR_EL2, System Control Register (EL2)

Page 689

Otherwise:

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL2. Controls the effect of Tag Check Faults due to Loads and Stores in EL2.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCF0, bits [39:38]

When FEAT_MTE2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Tag Check Fault in EL0. Controls the effect of Tag Check Faults due to Loads and Stores in EL0.

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

Note

Software may change this control bit on a context switch.

SCTLR_EL2, System Control Register (EL2)

Page 690

TCF0 Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception
entry into EL2, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1, TFSR_EL1 and TFSR_EL2 registers.

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL2.
0b1 Tag Check Faults are synchronized on entry to EL2.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTBT1, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL2.

When HCR_EL2.{E2H, TGE} == {1, 1}, this bit is named BT1.

BTBT1 Meaning
0b0 When the PE is executing at EL2, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL2, PACIASP and PACIBSP are

not compatible with PSTATE.BTYPE == 0b11.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT0, bit [35]

When FEAT_BTI is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

PAC Branch Type compatibility at EL0.

SCTLR_EL2, System Control Register (EL2)

Page 691

AArch64-tfsre0_el1.html

BT0 Meaning
0b0 When the PE is executing at EL0, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL0, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [34:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL2 or EL2&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL2 or EL2&0
translation regime.

For more information, see 'System register control of pointer authentication'.

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

Note

SCTLR_EL2, System Control Register (EL2)

Page 692

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

LSMAOE, bit [29]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL0, A32 and T32 Load Multiple

and Store Multiple can have an interrupt taken during the
sequence memory accesses, and the memory accesses are
not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL0 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

nTLSMD, bit [28]

When FEAT_LSMAOC is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are trapped
and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL0 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 693

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UCI, bit [26]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of cache maintenance instructions at EL0 to EL2, from AArch64 state only. This applies to DC CVAU,
DC CIVAC, DC CVAC, DC CVAP, and IC IVAU.

If FEAT_DPB2 is implemented, this trap also applies to DC CVADP.

If FEAT_MTEFEAT_MTE2 is implemented, this trap also applies to DC CIGVAC, DC CIGDVAC, DC CGVAC, DC
CGDVAC, DC CGVAP, and DC CGDVAP.

If FEAT_DPB2 and FEAT_MTEFEAT_MTE2 are implemented, this trap also applies to DC CGVADP and DC CGDVADP.

UCI Meaning
0b0 Any attempt to execute an instruction that this trap applies to at

EL0 using AArch64 is trapped to EL2.
0b1 This control does not cause any instructions to be trapped.

If the Point of Coherency is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean, or clean and invalidate instruction that operates by VA to the point of coherency can be
trapped when the value of this control is 1.

If the Point of Unification is before any level of data cache, it is IMPLEMENTATION DEFINED whether the execution of any
data or unified cache clean by VA to the Point of Unification instruction can be trapped when the value of this control
is 1.

If the Point of Unification is before any level of instruction cache, it is IMPLEMENTATION DEFINED whether the execution
of any instruction cache invalidate by VA to the Point of Unification instruction can be trapped when the value of this
control is 1.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SCTLR_EL2, System Control Register (EL2)

Page 694

AArch64-dc-cvau.html
AArch64-ic-ivau.html
AArch64-dc-cigdvac.html
AArch64-dc-cgvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgdvac.html
AArch64-dc-cgvap.html
AArch64-dc-cgdvap.html
AArch64-dc-cgvadp.html
AArch64-dc-cgdvadp.html

EE, bit [25]

Endianness of data accesses at EL2, stage 1 translation table walks in the EL2 or EL2&0 translation regime, and stage
2 translation table walks in the EL1EL2&0 translation regime.

EE Meaning
0b0 Explicit data accesses at EL2, stage 1 translation table walks in the

EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL1EL2&0 translation regime are little-endian.

0b1 Explicit data accesses at EL2, stage 1 translation table walks in the
EL2 or EL2&0 translation regime, and stage 2 translation table
walks in the EL1EL2&0 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levelsLevels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levelsLevels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

E0E, bit [24]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Endianness of data accesses at EL0.

E0E Meaning
0b0 Explicit data accesses at EL0 are little-endian.
0b1 Explicit data accesses at EL0 are big-endian.

If an implementation only supports Little-endian accesses at EL0 then this bit is RES0. This option is not permitted
when SCTLR_EL1.EE is RES1.

If an implementation only supports Big-endian accesses at EL0 then this bit is RES1. This option is not permitted when
SCTLR_EL1.EE is RES0.

This bit has no effect on the endianness of LDTR, LDTRH, LDTRSH, LDTRSW, STTR, and STTRH instructions executed at EL1.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

SPAN, bit [23]

Otherwise:

Reserved, RES0.

SPAN, bit [23]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Set Privileged Access Never, on taking an exception to EL2.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 on taking an exception to EL2.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL2.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EIS, bit [22]

SCTLR_EL2, System Control Register (EL2)

Page 695

When FEAT_ExS is implemented:

Exception entry is a context synchronization event.

EIS Meaning
0b0 The taking of an exception to EL2 is not a context synchronization

event.
0b1 The taking of an exception to EL2 is a context synchronization

event.

If SCTLR_EL2.EIS is set to 0b0:

• Indirect writes to ESR_EL2, FAR_EL2, SPSR_EL2, ELR_EL2, and HPFAR_EL2 are synchronized on exception
entry to EL2, so that a direct read of the register after exception entry sees the indirectly written value caused
by the exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EIS:

• Changes to the PSTATE information on entry to EL2.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and

data processing instructions.
• Exit from Debug state.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL2.
• Before the operational pseudocode of each ERET instruction

executed at EL2.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL2 and before each DRPS instruction executed at EL2, in addition
to the other cases where it is added.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TSCXT, bit [20]

When FEAT_CSV2 is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Trap EL0 Access to the SCXTNUM_EL0 register, when EL0 is using AArch64.

SCTLR_EL2, System Control Register (EL2)

Page 696

TSCXT Meaning
0b0 EL0 access to SCXTNUM_EL0 is not disabled by this

mechanism.
0b1 EL0 access to SCXTNUM_EL0 is disabled, causing an

exception to EL2, and the SCXTNUM_EL0 value is treated at 0.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0RES1.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 or EL2&0 translation regime, this bit can force all memory
regions that are writable to be treated as XN.

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 or EL2&0 translation

regime is forced to XN for accesses from software executing at
EL2.

This bit applies only when SCTLR_EL2.M bit is set.

The WXN bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

nTWE, bit [18]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFE instructions at EL0 to EL2, from both Execution states.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped to

EL2, if the instruction would otherwise have caused the PE to
enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFE instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 697

Bit [17]

Reserved, RES0.

nTWI, bit [16]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of WFI instructions at EL0 to EL2, from both Execution states.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped EL2,

if the instruction would otherwise have caused the PE to enter a
low-power state.

0b1 This control does not cause any instructions to be trapped.

In AArch32 state, the attempted execution of a conditional WFI instruction is only trapped if the instruction passes its
condition code check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

UCT, bit [15]

Otherwise:

Reserved, RES1.

UCT, bit [15]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps EL0 accesses to the CTR_EL0 to EL2, from AArch64 state only.

UCT Meaning
0b0 Accesses to the CTR_EL0 from EL0 using AArch64 are trapped to

EL2.
0b1 This control does not cause any instructions to be trapped.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

DZE, bit [14]

Otherwise:

Reserved, RES0.

DZE, bit [14]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Traps execution of DC ZVA instructions at EL0 to EL2, from AArch64 state only.

If FEAT_MTEFEAT_MTE2 is implemented, this trap also applies to DC GVA and DC GZVA.

SCTLR_EL2, System Control Register (EL2)

Page 698

AArch64-dc-zva.html
AArch64-dc-gzva.html

DZE Meaning
0b0 Any attempt to execute an instruction that this trap applies to at

EL0 using AArch64 is trapped to EL2. Reading DCZID_EL0.DZP
from EL0 returns 1, indicating that the instructions that this trap
applies to are not supported.

0b1 This control does not cause any instructions to be trapped.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL2 or
EL2&0 translation regime.

For more information, see 'System register control of pointer authentication'.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2 and, when EL2 is enabled in the current Security state
andEL0: HCR_EL2.{E2H,TGE} == {1,1}, EL0

SCTLR_EL2, System Control Register (EL2)

Page 699

AArch64-dczid_el0.html

I Meaning
0b0 All instruction accessesaccess to Normal memory from EL2 and

EL0 are Non-cacheable for all levels of instruction and unified
cache.
WhenIf EL2the value of SCTLR_EL2.M is enabled0, ininstruction
accesses from stage 1 of the currentEL2&0 Securitytranslation
stateregime andare to Normal, Outer Shareable, Inner Non-
cacheable, Outer Non-cacheable memory. HCR_EL2.{E2H, TGE}
== {1, 1}, all instruction accesses to Normal memory from EL0
are Non-cacheable for all levels of instruction and unified cache.
If SCTLR_EL2.M is 0, instruction accesses from stage 1 of the EL2
or EL2&0 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL2 and, when EL2 is enabled in the
current Security state andEL0. HCR_EL2.{E2H, TGE} == {1, 1},
instruction access to Normal memory from EL0.
If the value of SCTLR_EL2.M is 0, instruction accesses from stage
1 of the EL2 or EL2&0 translation regime are to Normal, Outer
Shareable, Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL3 translation regime.regimes.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H,TGE} != {1,1}, this bit has no effect on the
EL1&0 translation regime.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception exit is a context synchronization event.

EOS Meaning
0b0 An exception return from EL2 is not a context synchronization

event.
0b1 An exception return from EL2 is a context synchronization event.

If SCTLR_EL2.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL2.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL2 and ELR_EL2 on exception return is
synchronized.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores, and
data processing instructions.

• Exit from Debug state.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_SPECRES is implemented, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Enable EL0 Access to the following instructions:

• AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions.

SCTLR_EL2, System Control Register (EL2)

Page 700

• AArch64 CFP RCTX, DVP RCT and CPP RCTX instructions.

The defined values are:

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SETEND instruction disable. Disables SETEND instructions at EL0 using AArch32.

SED Meaning
0b0 SETEND instruction execution is enabled at EL0 using AArch32.
0b1 SETEND instructions are UNDEFINED at EL0 using AArch32.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0RES1.

ITD, bit [7]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

IT Disable. Disables some uses of IT instructions at EL0 using AArch32.

SCTLR_EL2, System Control Register (EL2)

Page 701

ITD Meaning
0b0 All IT instruction functionality is enabled at EL0 using AArch32.
0b1 Any attempt at EL0 using AArch32 to execute any of the following

is UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 0b11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 0b1011xxxxxxxxxxxx: All instructions in

'Miscellaneous 16-bit instructions' in the Arm®
Architecture Reference Manual, Armv8, for Armv8-A
architecture profile, section F3.2.5.

◦ 0b10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 0b01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0b0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC;

MOV Rd, PC; BX PC; BLX PC.
◦ 0b010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm;

MOV PC, Rm. This pattern also covers UNPREDICTABLE
cases with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not
implemented then this bit is RAZ/WI.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES1.

Otherwise:

Reserved, RES0RES1.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults under certain conditions at EL2, and, whenEL0
EL2under iscertain enabled in the current Security state andconditions. HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

SCTLR_EL2, System Control Register (EL2)

Page 702

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CP15BEN, bit [5]

When EL0 is capable of using AArch32, HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL0:

CP15BEN Meaning
0b0 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is UNDEFINED.
0b1 EL0 using AArch32: EL0 execution of the CP15DMB,

CP15DSB, and CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it
is not implemented then this bit is RAO/WI.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

Reserved, RES0.

Otherwise:

Reserved, RES1RES0.

SA0, bit [4]

When HCR_EL2.E2H == 1 and HCR_EL2.TGE == 1:

SP Alignment check enable for EL0. When set to 1, if a load or store instruction executed at EL0 uses the SP as the
base address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For
more information, see 'SP alignment checking'.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

SCTLR_EL2, System Control Register (EL2)

Page 703

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL2 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking'.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Data access Cacheability control, for accessesdata at EL2 and, when EL2 is enabled in the current Security state
andaccesses. HCR_EL2.{E2H, TGE} == {1, 1}, EL0

C Meaning
0b0 TheAll followingdata access to Normal memory from EL2 and EL0,

and all Normal memory accesses to the EL2&0 translation tables,
are Non-cacheable for all levels of data and unified cache:cache.

• Data accesses to Normal memory from EL2.
• When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory

accesses to the EL2 translation tables.
• When EL2 is enabled in the current Security state and

HCR_EL2.{E2H, TGE} == {1, 1}:
◦ Data accesses to Normal memory from EL0.
◦ Normal memory accesses to the EL2&0 translation

tables.
0b1 This control has no effect on the Cacheability of:

• Data access to Normal memory from EL2 and EL0.
Data access to Normal memory from EL2.

• Normal memory accesses to the EL2&0 translation tables.
When HCR_EL2.{E2H, TGE} != {1, 1}, Normal memory
accesses to the EL2 translation tables.

• When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}:

◦ Data accesses to Normal memory from EL0.
◦ Normal memory accesses to the EL2&0 translation

tables.

This bit has no effect on the EL3 translation regime.regimes.

When EL2 is disabled in the current Security state or HCR_EL2.{E2H, TGE} != {1, 1}, this bit has no effect on the
EL1&0 translation regime.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2 and, when EL2 is enabled in the
current Security state andEL0. HCR_EL2.{E2H, TGE} == {1, 1}, EL0.

SCTLR_EL2, System Control Register (EL2)

Page 704

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.EL2 and

EL0.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault checking
disabled when executing at EL0.
Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL2.EL2 and
EL0.
When EL2 is enabled in the current Security state and
HCR_EL2.{E2H, TGE} == {1, 1}, alignment fault checking
enabled when executing at EL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 or EL2&0 stage 1 address translation.

M Meaning
0b0 WhenEL2&0 stage 1 address translation disabled. HCR_EL2.{E2H,

TGE} != {1, 1}, EL2 stage 1 address translation disabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address
translation disabled.
See the SCTLR_EL2.I field for the behavior of instruction accesses
to Normal memory.

0b1 WhenEL2&0 stage 1 address translation enabled. HCR_EL2.{E2H,
TGE} != {1, 1}, EL2 stage 1 address translation enabled.
When HCR_EL2.{E2H, TGE} == {1, 1}, EL2&0 stage 1 address
translation enabled.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the SCTLR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCTLR_EL2 or
SCTLR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SCTLR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

SCTLR_EL2, System Control Register (EL2)

Page 705

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SCTLR_EL2;
elsif PSTATE.EL == EL3 then

return SCTLR_EL2;

MSR SCTLR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SCTLR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL2 = X[t];

MRS <Xt>, SCTLR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x110];

else
return SCTLR_EL1;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

return SCTLR_EL2;
else

return SCTLR_EL1;
elsif PSTATE.EL == EL3 then

return SCTLR_EL1;

MSR SCTLR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0000 0b000

SCTLR_EL2, System Control Register (EL2)

Page 706

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCTLR_EL1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x110] = X[t];

else
SCTLR_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '1' then

SCTLR_EL2 = X[t];
else

SCTLR_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCTLR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL2, System Control Register (EL2)

Page 707

(old) htmldiff from- (new)

SCTLR_EL3, System Control Register (EL3)
The SCTLR_EL3 characteristics are:

Purpose
Provides top level control of the system, including its memory system, at EL3.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to SCTLR_EL3 are UNDEFINED.

Attributes
SCTLR_EL3 is a 64-bit register.

Field descriptions
The SCTLR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 4140 39 38 37 36 35 343332
RES0 DSSBS ATA RES0 TCF RES0 ITFSBBT RES0

EnIAEnIBRES1EnDARES0EERES0RES1EISIESBRES0WXNRES1RES0RES1RES0EnDB I EOS RES0 nAA RES1 SA C A M
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:45]

Reserved, RES0.

DSSBS, bit [44]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry.

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to EL3.
0b1 PSTATE.SSBS is set to 1 on an exception to EL3.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

ATA, bit [43]

When FEAT_MTE2 is implemented:

Allocation Tag Access in EL3. Controls EL3 access to Allocation Tags.

When access to Allocation Tags is prevented:

• Instructions which Load or Store data are Unchecked.

SCTLR_EL3, System Control Register (EL3)

Page 708

• Instructions which Load or Store Allocation Tags treat the Allocation Tag as RAZ/WI.

• Instructions which insert Logical Address Tags into addresses treat the Allocation Tag used to generate the
Logical Address Tag as 0.

• Cache maintenance instructions which invalidate Allocation Tags from caches behave as the equivalent
Clean and Invalidate operation on Allocation Tags.

ATA Meaning
0b0 Access to Allocation Tags is prevented.
0b1 Access to Allocation Tags is not prevented.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [42]

Reserved, RES0.

TCF, bits [41:40]

When FEAT_MTE2 is implemented:

Tag Check Fault in EL3. Controls the effect of Tag Check Faults due to Loads and Stores in EL3.

If FEAT_MTE3 is not implemented, the value 0b11 is reserved.

TCF Meaning Applies
when

0b00 Tag Check Faults have no effect on the PE.
0b01 Tag Check Faults cause a synchronous

exception.
0b10 Tag Check Faults are asynchronously

accumulated.
0b11 Tag Check Faults cause a synchronous

exception on reads, and are asynchronously
accumulated on writes.

When
FEAT_MTE3
is
implemented

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [39:38]

Reserved, RES0.

ITFSB, bit [37]

When FEAT_MTE2 is implemented:

When synchronous exceptions are not being generated by Tag Check Faults, this field controls whether on exception
entry into EL3, all Tag Check Faults due to instructions executed before exception entry, that are reported
asynchronously, are synchronized into TFSRE0_EL1 and TFSR_ELx registers.

SCTLR_EL3, System Control Register (EL3)

Page 709

AArch64-tfsre0_el1.html

ITFSB Meaning
0b0 Tag Check Faults are not synchronized on entry to EL3.
0b1 Tag Check Faults are synchronized on entry to EL3.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BT, bit [36]

When FEAT_BTI is implemented:

PAC Branch Type compatibility at EL3.

BT Meaning
0b0 When the PE is executing at EL3, PACIASP and PACIBSP are

compatible with PSTATE.BTYPE == 0b11.
0b1 When the PE is executing at EL3, PACIASP and PACIBSP are not

compatible with PSTATE.BTYPE == 0b11.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [35:32]

Reserved, RES0.

EnIA, bit [31]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIAKey_EL1 key) of instruction addresses in the EL3
translation regime.

Possible values of this bit are:

EnIA Meaning
0b0 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIAKey_EL1 key) of

instruction addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACIA and AuthIA pseudocode
functions. Specifically, when the field is 1, AddPACIA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

SCTLR_EL3, System Control Register (EL3)

Page 710

Otherwise:

Reserved, RES0.

EnIB, bit [30]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APIBKey_EL1 key) of instruction addresses in the EL3
translation regime.

Possible values of this bit are:

EnIB Meaning
0b0 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is not enabled.
0b1 Pointer authentication (using the APIBKey_EL1 key) of

instruction addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACIB and AuthIB pseudocode
functions. Specifically, when the field is 1, AddPACIB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthIB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [29:28]

Reserved, RES1.

EnDA, bit [27]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDAKey_EL1 key) of instruction addresses in the EL3
translation regime.

EnDA Meaning
0b0 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDAKey_EL1 key) of data

addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACDA and AuthDA pseudocode
functions. Specifically, when the field is 1, AddPACDA returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDA
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

SCTLR_EL3, System Control Register (EL3)

Page 711

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

EE, bit [25]

Endianness of data accesses at EL3, and stage 1 translation table walks in the EL3 translation regime.

EE Meaning
0b0 Explicit data accesses at EL3, and stage 1 translation table walks

in the EL3 translation regime are little-endian.
0b1 Explicit data accesses at EL3, and stage 1 translation table walks

in the EL3 translation regime are big-endian.

If an implementation does not provide Big-endian support at Exception levelsLevels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levelsLevels higher than EL0, this bit is RES1.

The EE bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bit [23]

Reserved, RES1.

EIS, bit [22]

When FEAT_ExS is implemented:

Exception Entry is Context Synchronizing.

EIS Meaning
0b0 The taking of an exception to EL3 is not a context synchronizing

event.
0b1 The taking of an exception to EL3 is a context synchronizing event.

If SCTLR_EL3.EIS is set to 0b0:

• Indirect writes to ESR_EL3, FAR_EL3, SPSR_EL3, ELR_EL3 are synchronized on exception entry to EL3, so
that a direct read of the register after exception entry sees the indirectly written value caused by the
exception entry.

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EIS:

• Changes to the PSTATE information on entry to EL3.
• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and

data processing instructions.
• Debug state exit.

SCTLR_EL3, System Control Register (EL3)

Page 712

AArch64-elr_el3.html

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

IESB, bit [21]

When FEAT_IESB is implemented:

Implicit Error Synchronization event enable.

IESB Meaning
0b0 Disabled.
0b1 An implicit error synchronization event is added:

• At each exception taken to EL3.
• Before the operational pseudocode of each ERET

instruction executed at EL3.

When the PE is in Debug state, the effect of this field is CONSTRAINED UNPREDICTABLE, and its Effective value might be 0
or 1 regardless of the value of the field. If the Effective value of the field is 1, then an implicit error synchronization
event is added after each DCPSX instruction taken to EL3 and before each DRPS instruction executed at EL3, in addition
to the other cases where it is added.

When FEAT_DoubleFault is implemented, and the Effective value of SCR_EL3.NMEA is 1, this field is ignored and its
Effective value is 1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL3 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL3 translation regime is

forced to XN for accesses from software executing at EL3.

This bit applies only when SCTLR_EL3.M bit is set.

The WXN bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

Bit [17]

Reserved, RES0.

SCTLR_EL3, System Control Register (EL3)

Page 713

Bit [16]

Reserved, RES1.

Bits [15:14]

Reserved, RES0.

EnDB, bit [13]

When FEAT_PAuth is implemented:

Controls enabling of pointer authentication (using the APDBKey_EL1 key) of instruction addresses in the EL3
translation regime.

EnDB Meaning
0b0 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is not enabled.
0b1 Pointer authentication (using the APDBKey_EL1 key) of data

addresses is enabled.

For more information, see 'System register control of pointer authentication'.

Note

This field controls the behavior of the AddPACDB and AuthDB pseudocode
functions. Specifically, when the field is 1, AddPACDB returns a copy of a
pointer to which a pointer authentication code has been added, and AuthDB
returns an authenticated copy of a pointer. When the field is 0, both of these
functions are NOP.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL3:

I Meaning
0b0 All instruction access to Normal memory from EL3 are Non-

cacheable for all levels of instruction and unified cache.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage
1 of the EL3 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 This control has no effect on the Cacheability of instruction access
to Normal memory from EL3.
If the value of SCTLR_EL3.M is 0, instruction accesses from stage
1 of the EL3 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

EOS, bit [11]

When FEAT_ExS is implemented:

Exception Exit is Context Synchronizing.

SCTLR_EL3, System Control Register (EL3)

Page 714

EOS Meaning
0b0 An exception return from EL3 is not a context synchronizing

event
0b1 An exception return from EL3 is a context synchronizing event

If SCTLR_EL3.EOS is set to 0b0:

• Memory transactions, including instruction fetches, from an Exception level always use the translation
resources associated with that translation regime.

• Exception Catch debug events are synchronous debug events.
• DCPS* and DRPS instructions are context synchronization events.

The following are not affected by the value of SCTLR_EL3.EOS:

• The indirect write of the PSTATE and PC values from SPSR_EL3 and ELR_EL3 on exception return is
synchronized.

• If the PE enters Debug state before the first instruction after an Exception return from EL3 to Non-secure
state, any pending Halting debug event completes execution.

• The GIC behavior that allocates interrupts to FIQ or IRQ changes simultaneously with leaving the EL3
Exception level.

• Behavior of accessing the banked copies of the stack pointer using the SP register name for loads, stores and
data processing instructions.

• Exit from Debug state.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bits [10:7]

Reserved, RES0.

nAA, bit [6]

When FEAT_LSE2 is implemented:

Non-aligned access. This bit controls generation of Alignment faults at EL3 under certain conditions.

nAA Meaning
0b0 LDAPR, LDAPRH, LDAPUR, LDAPURH, LDAPURSH, LDAPURSW,

LDAR, LDARH, LDLAR, LDLARH, STLLR, STLLRH, STLR, STLRH,
STLUR, and STLURH generate an Alignment fault if all bytes
being accessed are not within a single 16-byte quantity, aligned to
16 bytes for accesses.

0b1 This control bit does not cause LDAPR, LDAPRH, LDAPUR,
LDAPURH, LDAPURSH, LDAPURSW, LDAR, LDARH, LDLAR,
LDLARH, STLLR, STLLRH, STLR, STLRH, STLUR, or STLURH to
generate an Alignment fault if all bytes being accessed are not
within a single 16-byte quantity, aligned to 16 bytes.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [5:4]

Reserved, RES1.

SCTLR_EL3, System Control Register (EL3)

Page 715

AArch64-elr_el3.html

SA, bit [3]

SP Alignment check enable. When set to 1, if a load or store instruction executed at EL3 uses the SP as the base
address and the SP is not aligned to a 16-byte boundary, then a SP alignment fault exception is generated. For more
information, see 'SP alignment checking'.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

C, bit [2]

Cacheability control, for data accesses.

C Meaning
0b0 All data access to Normal memory from EL3, and all Normal

memory accesses to the EL3 translation tables, are Non-cacheable
for all levels of data and unified cache.

0b1 This control has no effect on the Cacheability of:
• Data access to Normal memory from EL3.
• Normal memory accesses to the EL3 translation tables.

This bit has no effect on the EL1&0, EL2, or EL2&0 translation regimes.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL3.

A Meaning
0b0 Alignment fault checking disabled when executing at EL3.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at EL3.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL3 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL3 stage 1 address translation disabled.

See the SCTLR_EL3.I field for the behavior of instruction accesses
to Normal memory.

0b1 EL3 stage 1 address translation enabled.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Accessing the SCTLR_EL3
Accesses to this register use the following encodings:

SCTLR_EL3, System Control Register (EL3)

Page 716

MRS <Xt>, SCTLR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCTLR_EL3;

MSR SCTLR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCTLR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR_EL3, System Control Register (EL3)

Page 717

(old) htmldiff from- (new)

SCXTNUM_EL0, EL0 Read/Write Software Context
Number

The SCXTNUM_EL0 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL0 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2FEAT_CSV2 is implemented.
Otherwise, direct accesses to SCXTNUM_EL0 are UNDEFINED.

Attributes
SCXTNUM_EL0 is a 64-bit register.

Field descriptions
The SCXTNUM_EL0 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL0 exception level.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL0
Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL0

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b111

SCXTNUM_EL0, EL0 Read/Write Software Context Number

Page 718

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT == '1' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGRTR_EL2.SCXTNUM_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SCXTNUM_EL0;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SCXTNUM_EL0;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SCXTNUM_EL0;

elsif PSTATE.EL == EL3 then
return SCXTNUM_EL0;

MSR SCXTNUM_EL0, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b1101 0b0000 0b111

SCXTNUM_EL0, EL0 Read/Write Software Context Number

Page 719

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && SCTLR_EL1.TSCXT == '1' then
if EL2Enabled() && HCR_EL2.TGE == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

AArch64.SystemAccessTrap(EL1, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') &&

HFGWTR_EL2.SCXTNUM_EL0 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.<E2H,TGE> == '11' && SCTLR_EL2.TSCXT == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL0 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

SCXTNUM_EL0 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
SCXTNUM_EL0 = X[t];

elsif PSTATE.EL == EL3 then
SCXTNUM_EL0 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCXTNUM_EL0, EL0 Read/Write Software Context Number

Page 720

(old) htmldiff from- (new)

SCXTNUM_EL1, EL1 Read/Write Software Context
Number

The SCXTNUM_EL1 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL1 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2FEAT_CSV2 is implemented.
Otherwise, direct accesses to SCXTNUM_EL1 are UNDEFINED.

Attributes
SCXTNUM_EL1 is a 64-bit register.

Field descriptions
The SCXTNUM_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL1 exception level.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL1
Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 721

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x188];

else
return SCXTNUM_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return SCXTNUM_EL2;
else

return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then

return SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 722

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x188] = X[t];

else
SCXTNUM_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

SCXTNUM_EL2 = X[t];
else

SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCXTNUM_EL1 = X[t];

MRS <Xt>, SCXTNUM_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1101 0b0000 0b111

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 723

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x188];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return SCXTNUM_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return SCXTNUM_EL1;

else
UNDEFINED;

MSR SCXTNUM_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x188] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

SCXTNUM_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
SCXTNUM_EL1 = X[t];

else
UNDEFINED;

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 724

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCXTNUM_EL1, EL1 Read/Write Software Context Number

Page 725

(old) htmldiff from- (new)

SCXTNUM_EL2, EL2 Read/Write Software Context
Number

The SCXTNUM_EL2 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL2 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when FEAT_CSV2_2 is implemented or FEAT_CSV2_1p2FEAT_CSV2 is implemented.
Otherwise, direct accesses to SCXTNUM_EL2 are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
SCXTNUM_EL2 is a 64-bit register.

Field descriptions
The SCXTNUM_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL2 exception level.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SCXTNUM_EL2 or
SCXTNUM_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b111

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 726

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return SCXTNUM_EL2;

elsif PSTATE.EL == EL3 then
return SCXTNUM_EL2;

MSR SCXTNUM_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
SCXTNUM_EL2 = X[t];

elsif PSTATE.EL == EL3 then
SCXTNUM_EL2 = X[t];

MRS <Xt>, SCXTNUM_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 727

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.SCXTNUM_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
return NVMem[0x188];

else
return SCXTNUM_EL1;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

return SCXTNUM_EL2;
else

return SCXTNUM_EL1;
elsif PSTATE.EL == EL3 then

return SCXTNUM_EL1;

MSR SCXTNUM_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1101 0b0000 0b111

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 728

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '011' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.EnSCXT == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.SCXTNUM_EL1 == '1'
then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then
NVMem[0x188] = X[t];

else
SCXTNUM_EL1 = X[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.EnSCXT == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.EnSCXT == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif HCR_EL2.E2H == '1' then

SCXTNUM_EL2 = X[t];
else

SCXTNUM_EL1 = X[t];
elsif PSTATE.EL == EL3 then

SCXTNUM_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCXTNUM_EL2, EL2 Read/Write Software Context Number

Page 729

(old) htmldiff from- (new)

SCXTNUM_EL3, EL3 Read/Write Software Context
Number

The SCXTNUM_EL3 characteristics are:

Purpose
Provides a number that can be used to separate out different context numbers with the EL3 exception level, for the
purpose of protecting against side-channels using branch prediction and similar resources.

Configuration
This register is present only when EL3 is implemented and (FEAT_CSV2_2FEAT_CSV2 is implemented or
FEAT_CSV2_1p2 is implemented).implemented. Otherwise, direct accesses to SCXTNUM_EL3 are UNDEFINED.

Attributes
SCXTNUM_EL3 is a 64-bit register.

Field descriptions
The SCXTNUM_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Software Context Number
Software Context Number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:0]

Software Context Number. A number to identify the context within the EL3 exception level.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SCXTNUM_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SCXTNUM_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SCXTNUM_EL3;

SCXTNUM_EL3, EL3 Read/Write Software Context Number

Page 730

MSR SCXTNUM_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b1101 0b0000 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SCXTNUM_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCXTNUM_EL3, EL3 Read/Write Software Context Number

Page 731

(old) htmldiff from- (new)

SPSR_abt, Saved Program Status Register (Abort
mode)

The SPSR_abt characteristics are:

Purpose
Holds the saved process state when an exception is taken to Abort mode.

Configuration
AArch64 System register SPSR_abt bits [31:0] are architecturally mapped to AArch32 System register SPSR_abt[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_abt is a 64-bit register.

Field descriptions
The SPSR_abt bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to PSTATE.N
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 732

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to PSTATE.V
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to
PSTATE.Q on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Abort mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Abort mode.

On executing an exception return operation in Abort mode SPSR_abt.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].
• IT[7:2] is SPSR_abt[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to
PSTATE.SSBS on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to
PSTATE.PAN on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 733

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to
PSTATE.DIT on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to PSTATE.IL
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to
PSTATE.GE on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Abort mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to PSTATE.E on executing
an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the implementation does not
support little-endian operation, SPSR_abt.E is RES1. On executing an exception return operation in Abort mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_abt.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_abt.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and copied to PSTATE.A on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied to PSTATE.I on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 734

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied to PSTATE.F on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and copied to PSTATE.T
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Abort mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Abort mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_abt
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_abt

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_abt;
elsif PSTATE.EL == EL3 then

return SPSR_abt;

MSR SPSR_abt, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b001

SPSR_abt, Saved Program Status Register (Abort mode)

Page 735

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_abt = X[t];
elsif PSTATE.EL == EL3 then

SPSR_abt = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_abt, Saved Program Status Register (Abort mode)

Page 736

(old) htmldiff from- (new)

SPSR_EL1, Saved Program Status Register (EL1)
The SPSR_EL1 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL1.

Configuration
AArch64 System register SPSR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
SPSR_svc[31:0].

Attributes
SPSR_EL1 is a 64-bit register.

Field descriptions
The SPSR_EL1 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on executing
an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

SPSR_EL1, Saved Program Status Register (EL1)

Page 737

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL1, and copied to PSTATE.Q on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL1, and copied to PSTATE.IT[1:0] on executing
an exception return operation in EL1.

On executing an exception return operation in EL1 SPSR_EL1.IT must contain a value that is valid for the instruction
being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL1[26:25].
• IT[7:2] is SPSR_EL1[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to PSTATE.DIT on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on
executing an exception return operation in EL1.

SPSR_EL1, Saved Program Status Register (EL1)

Page 738

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL1, and copied to PSTATE.GE
on executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL1, and copied to PSTATE.IT[7:2] on executing
an exception return operation in EL1.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL1, and copied to PSTATE.E on executing an
exception return operation in EL1.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL1, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on executing
an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 739

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on executing
an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL1, and copied to PSTATE.T on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL1 from AArch32 state, and copied
to PSTATE.nRW on executing an exception return operation in EL1.

M[4] Meaning
0b1 AArch32 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL1, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL1.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in 'Illegal return events
from AArch64 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL1 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL1, and copied to PSTATE.N on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 740

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL1, and copied to PSTATE.Z on executing
an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL1, and copied to PSTATE.C on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL1, and copied to PSTATE.V on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL1, and copied to PSTATE.TCO on
executing an exception return operation in EL1.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL1, and copied to PSTATE.DIT on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL1, and copied to PSTATE.UAO on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 741

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL1, and copied to PSTATE.PAN on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL1, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL1, and copied to PSTATE.IL on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL1, and copied to
PSTATE.SSBS on executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL1, and copied to PSTATE.BTYPE
on executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL1, Saved Program Status Register (EL1)

Page 742

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL1, and copied to PSTATE.D on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL1, and copied to PSTATE.A on
executing an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL1, and copied to PSTATE.I on executing
an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL1, and copied to PSTATE.F on executing
an exception return operation in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL1 from AArch64 state, and copied
to PSTATE.nRW on executing an exception return operation in EL1.

M[4] Meaning
0b0 AArch64 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL1 is an illegal return event, as described in 'Illegal return events
from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL1 and copied to PSTATE.EL on executing
an exception return operation in EL1.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL1 and copied to PSTATE.SP on executing an

exception return operation in EL1

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL1, Saved Program Status Register (EL1)

Page 743

Accessing the SPSR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic SPSR_EL1 or
SPSR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x160];
else

return SPSR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL2;

else
return SPSR_EL1;

elsif PSTATE.EL == EL3 then
return SPSR_EL1;

MSR SPSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x160] = X[t];
else

SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL2 = X[t];

else
SPSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
SPSR_EL1 = X[t];

MRS <Xt>, SPSR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b000

SPSR_EL1, Saved Program Status Register (EL1)

Page 744

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x160];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return SPSR_EL1;
else

UNDEFINED;

MSR SPSR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x160] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

SPSR_EL1 = X[t];
else

UNDEFINED;

MRS <Xt>, SPSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return SPSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_EL2;
elsif PSTATE.EL == EL3 then

return SPSR_EL2;

SPSR_EL1, Saved Program Status Register (EL1)

Page 745

MSR SPSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

SPSR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SPSR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_EL1, Saved Program Status Register (EL1)

Page 746

(old) htmldiff from- (new)

SPSR_EL2, Saved Program Status Register (EL2)
The SPSR_EL2 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL2.

Configuration
AArch64 System register SPSR_EL2 bits [31:0] are architecturally mapped to AArch32 System register
SPSR_hyp[31:0].

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
SPSR_EL2 is a 64-bit register.

Field descriptions
The SPSR_EL2 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on executing
an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 747

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL2, and copied to PSTATE.Q on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL2, and copied to PSTATE.IT[1:0] on executing
an exception return operation in EL2.

On executing an exception return operation in EL2 SPSR_EL2.IT must contain a value that is valid for the instruction
being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL2[26:25].
• IT[7:2] is SPSR_EL2[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to PSTATE.DIT on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 748

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to PSTATE.PAN on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL2, and copied to PSTATE.GE
on executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL2, and copied to PSTATE.IT[7:2] on executing
an exception return operation in EL2.

SPSR_EL2.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL2, and copied to PSTATE.E on executing an
exception return operation in EL2.

If the implementation does not support big-endian operation, SPSR_EL2.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL2.E is RES1. On executing an exception return operation in EL2, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL2.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL2.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL2, Saved Program Status Register (EL2)

Page 749

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on executing
an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on executing
an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL2, and copied to PSTATE.T on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL2 from AArch32 state, and copied
to PSTATE.nRW on executing an exception return operation in EL2.

M[4] Meaning
0b1 AArch32 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL2, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL2.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in 'Illegal return events
from AArch64 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL2 using AArch64 makes SPSR_EL2 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 750

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL2, and copied to PSTATE.N on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL2, and copied to PSTATE.Z on executing
an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL2, and copied to PSTATE.C on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL2, and copied to PSTATE.V on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL2, and copied to PSTATE.TCO on
executing an exception return operation in EL2.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL2, and copied to PSTATE.DIT on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 751

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL2, and copied to PSTATE.UAO on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL2, and copied to PSTATE.PAN on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL2, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL2, and copied to PSTATE.IL on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL2, and copied to
PSTATE.SSBS on executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL2, Saved Program Status Register (EL2)

Page 752

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL2, and copied to PSTATE.BTYPE
on executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL2, and copied to PSTATE.D on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL2, and copied to PSTATE.A on
executing an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL2, and copied to PSTATE.I on executing
an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL2, and copied to PSTATE.F on executing
an exception return operation in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL2 from AArch64 state, and copied
to PSTATE.nRW on executing an exception return operation in EL2.

M[4] Meaning
0b0 AArch64 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

SPSR_EL2, Saved Program Status Register (EL2)

Page 753

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.

Other values are reserved. If SPSR_EL2.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL2 is an illegal return event, as described in 'Illegal return events
from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL2 and copied to PSTATE.EL on executing
an exception return operation in EL2.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL2 and copied to PSTATE.SP on executing an

exception return operation in EL2

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic SPSR_EL2 or
SPSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, SPSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return SPSR_EL1;
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_EL2;
elsif PSTATE.EL == EL3 then

return SPSR_EL2;

MSR SPSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0000 0b000

SPSR_EL2, Saved Program Status Register (EL2)

Page 754

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

SPSR_EL1 = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

SPSR_EL2 = X[t];

MRS <Xt>, SPSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x160];
else

return SPSR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return SPSR_EL2;

else
return SPSR_EL1;

elsif PSTATE.EL == EL3 then
return SPSR_EL1;

MSR SPSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x160] = X[t];
else

SPSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
SPSR_EL2 = X[t];

else
SPSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
SPSR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

SPSR_EL2, Saved Program Status Register (EL2)

Page 755

(old) htmldiff from- (new)

SPSR_EL2, Saved Program Status Register (EL2)

Page 756

(old) htmldiff from- (new)

SPSR_EL3, Saved Program Status Register (EL3)
The SPSR_EL3 characteristics are:

Purpose
Holds the saved process state when an exception is taken to EL3.

Configuration
AArch64 System register SPSR_EL3 bits [31:0] can be mapped to AArch32 System register SPSR_mon[31:0], but this
is not architecturally mandated.

This register is present only when EL3 is implemented. Otherwise, direct accesses to SPSR_EL3 are UNDEFINED.

Attributes
SPSR_EL3 is a 64-bit register.

Field descriptions
The SPSR_EL3 bit assignments are:

When AArch32 is supported at any Exception level and exception taken from
AArch32 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on executing
an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 757

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to EL3, and copied to PSTATE.Q on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to EL3, and copied to PSTATE.IT[1:0] on executing
an exception return operation in EL3.

On executing an exception return operation in EL3 SPSR_EL1.IT must contain a value that is valid for the instruction
being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_EL3[26:25].
• IT[7:2] is SPSR_EL3[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to PSTATE.DIT on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL3, Saved Program Status Register (EL3)

Page 758

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to EL3, and copied to PSTATE.GE
on executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to EL3, and copied to PSTATE.IT[7:2] on executing
an exception return operation in EL3.

SPSR_EL1.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to EL3, and copied to PSTATE.E on executing an
exception return operation in EL3.

If the implementation does not support big-endian operation, SPSR_EL1.E is RES0. If the implementation does not
support little-endian operation, SPSR_EL1.E is RES1. On executing an exception return operation in EL3, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_EL1.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_EL1.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 759

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on executing
an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on executing
an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to EL3, and copied to PSTATE.T on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4], bit [4]

Execution state. Set to 0b1, the value of PSTATE.nRW, on taking an exception to EL3 from AArch32 state, and copied
to PSTATE.nRW on executing an exception return operation in EL3.

M[4] Meaning
0b1 AArch32 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch32 Mode. Set to the value of PSTATE.M[3:0] on taking an exception to EL3, and copied to PSTATE.M[3:0] on
executing an exception return operation in EL3.

M[3:0] Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in 'Illegal return events
from AArch64 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When exception taken from AArch64 state:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V RES0 TCODITUAOPANSS IL RES0 SSBSBTYPE D A I F RES0M[4] M[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

An exception return from EL3 using AArch64 makes SPSR_EL1 become UNKNOWN.

SPSR_EL3, Saved Program Status Register (EL3)

Page 760

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to EL3, and copied to PSTATE.N on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to EL3, and copied to PSTATE.Z on executing
an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to EL3, and copied to PSTATE.C on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to EL3, and copied to PSTATE.V on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [27:26]

Reserved, RES0.

TCO, bit [25]

When FEAT_MTE is implemented:

Tag Check Override. Set to the value of PSTATE.TCO on taking an exception to EL3, and copied to PSTATE.TCO on
executing an exception return operation in EL3.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this field is RES0 or behaves as if
FEAT_MTE is implemented.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to EL3, and copied to PSTATE.DIT on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_EL3, Saved Program Status Register (EL3)

Page 761

Otherwise:

Reserved, RES0.

UAO, bit [23]

When FEAT_UAO is implemented:

User Access Override. Set to the value of PSTATE.UAO on taking an exception to EL3, and copied to PSTATE.UAO on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to EL3, and copied to PSTATE.PAN on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on taking an exception to EL3, and conditionally copied to PSTATE.SS on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to EL3, and copied to PSTATE.IL on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [19:13]

Reserved, RES0.

SSBS, bit [12]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to EL3, and copied to
PSTATE.SSBS on executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_EL3, Saved Program Status Register (EL3)

Page 762

BTYPE, bits [11:10]

When FEAT_BTI is implemented:

Branch Type Indicator. Set to the value of PSTATE.BTYPE on taking an exception to EL3, and copied to PSTATE.BTYPE
on executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

D, bit [9]

Debug exception mask. Set to the value of PSTATE.D on taking an exception to EL3, and copied to PSTATE.D on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to EL3, and copied to PSTATE.A on
executing an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to EL3, and copied to PSTATE.I on executing
an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to EL3, and copied to PSTATE.F on executing
an exception return operation in EL3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [5]

Reserved, RES0.

M[4], bit [4]

Execution state. Set to 0b0, the value of PSTATE.nRW, on taking an exception to EL3 from AArch64 state, and copied
to PSTATE.nRW on executing an exception return operation in EL3.

M[4] Meaning
0b0 AArch64 execution state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[3:0], bits [3:0]

AArch64 Exception level and selected Stack Pointer.

SPSR_EL3, Saved Program Status Register (EL3)

Page 763

M[3:0] Meaning
0b0000 EL0t.
0b0100 EL1t.
0b0101 EL1h.
0b1000 EL2t.
0b1001 EL2h.
0b1100 EL3t.
0b1101 EL3h.

Other values are reserved. If SPSR_EL1.M[3:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in EL3 is an illegal return event, as described in 'Illegal return events
from AArch64 state'.

The bits in this field are interpreted as follows:

• M[3:2] is set to the value of PSTATE.EL on taking an exception to EL3 and copied to PSTATE.EL on executing
an exception return operation in EL3.

• M[1] is unused and is 0 for all non-reserved values.
• M[0] is set to the value of PSTATE.SP on taking an exception to EL3 and copied to PSTATE.SP on executing an

exception return operation in EL3

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return SPSR_EL3;

MSR SPSR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
SPSR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_EL3, Saved Program Status Register (EL3)

Page 764

(old) htmldiff from- (new)

SPSR_fiq, Saved Program Status Register (FIQ mode)
The SPSR_fiq characteristics are:

Purpose
Holds the saved process state when an exception is taken to FIQ mode.

Configuration
AArch64 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch32 System register SPSR_fiq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_fiq is a 64-bit register.

Field descriptions
The SPSR_fiq bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to PSTATE.N on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 765

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to PSTATE.V on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to PSTATE.Q
on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to FIQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in FIQ mode.

On executing an exception return operation in FIQ mode SPSR_fiq.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].
• IT[7:2] is SPSR_fiq[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and copied to
PSTATE.PAN on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 766

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode, and copied to
PSTATE.DIT on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and copied to PSTATE.IL on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode, and copied to
PSTATE.GE on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to FIQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on executing
an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not
support little-endian operation, SPSR_fiq.E is RES1. On executing an exception return operation in FIQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_fiq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E
is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 767

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to PSTATE.T
on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in FIQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in FIQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_fiq
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_fiq

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_fiq;
elsif PSTATE.EL == EL3 then

return SPSR_fiq;

MSR SPSR_fiq, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b011

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 768

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_fiq = X[t];
elsif PSTATE.EL == EL3 then

SPSR_fiq = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 769

(old) htmldiff from- (new)

SPSR_irq, Saved Program Status Register (IRQ mode)
The SPSR_irq characteristics are:

Purpose
Holds the saved process state when an exception is taken to IRQ mode.

Configuration
AArch64 System register SPSR_irq bits [31:0] are architecturally mapped to AArch32 System register SPSR_irq[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_irq is a 64-bit register.

Field descriptions
The SPSR_irq bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to PSTATE.N
on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 770

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to PSTATE.V on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to
PSTATE.Q on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to IRQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in IRQ mode.

On executing an exception return operation in IRQ mode SPSR_irq.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].
• IT[7:2] is SPSR_irq[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and copied to
PSTATE.PAN on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 771

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode, and copied to
PSTATE.DIT on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and copied to PSTATE.IL on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode, and copied to
PSTATE.GE on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to IRQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on executing
an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not
support little-endian operation, SPSR_irq.E is RES1. On executing an exception return operation in IRQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_irq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_irq.E
is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 772

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to PSTATE.T
on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in IRQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in IRQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_irq
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_irq

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_irq;
elsif PSTATE.EL == EL3 then

return SPSR_irq;

MSR SPSR_irq, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b000

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 773

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_irq = X[t];
elsif PSTATE.EL == EL3 then

SPSR_irq = X[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 774

(old) htmldiff from- (new)

SPSR_und, Saved Program Status Register (Undefined
mode)

The SPSR_und characteristics are:

Purpose
Holds the saved process state when an exception is taken to Undefined mode.

Configuration
AArch64 System register SPSR_und bits [31:0] are architecturally mapped to AArch32 System register
SPSR_und[31:0].

If EL1 only supports execution in AArch64 state, this register is RES0 from EL2 and EL3.

Attributes
SPSR_und is a 64-bit register.

Field descriptions
The SPSR_und bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to
PSTATE.N on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to PSTATE.Z
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to PSTATE.C
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 775

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to
PSTATE.V on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to
PSTATE.Q on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Undefined mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in Undefined mode.

On executing an exception return operation in Undefined mode SPSR_und.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].
• IT[7:2] is SPSR_und[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied to
PSTATE.SSBS on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to
PSTATE.PAN on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 776

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied to
PSTATE.DIT on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to
PSTATE.IL on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied to
PSTATE.GE on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Undefined mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on
executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not
support little-endian operation, SPSR_und.E is RES1. On executing an exception return operation in Undefined mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_und.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_und.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to
PSTATE.A on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to PSTATE.I
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 777

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to PSTATE.F
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to
PSTATE.T on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Undefined mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Undefined mode is an illegal return event, as described in 'Illegal return
events from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_und
Accesses to this register use the following encodings:

MRS <Xt>, SPSR_und

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return SPSR_und;
elsif PSTATE.EL == EL3 then

return SPSR_und;

MSR SPSR_und, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0100 0b0011 0b010

SPSR_und, Saved Program Status Register (Undefined mode)

Page 778

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

SPSR_und = X[t];
elsif PSTATE.EL == EL3 then

SPSR_und = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_und, Saved Program Status Register (Undefined mode)

Page 779

(old) htmldiff from- (new)

TCO, Tag Check Override
The TCO characteristics are:

Purpose
When FEAT_MTE is implemented, this register allows tag checks to be disabled globally.

When FEAT_MTE2 is not implemented, it is CONSTRAINED UNPREDICTABLE whether this register is RES0 or behaves as if
FEAT_MTE is implemented.

Configuration
This register is present only when FEAT_MTE is implemented. Otherwise, direct accesses to TCO are UNDEFINED.

Attributes
TCO is a 64-bit register.

Field descriptions
The TCO bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TCO RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:26]

Reserved, RES0.

TCO, bit [25]

Allows memory tag checks to be globally disabled.

TCO Meaning
0b0 Loads and Stores are not affected by this control.
0b1 Loads and Stores are unchecked.

Bits [24:0]

Reserved, RES0.

Accessing the TCO
For informationdetails abouton the operation of the MSR (immediate) accessor, see MSR (immediate).

Accesses to this register use the following encodings:

MRS <Xt>, TCO

op0 op1 CRn CRm op2

TCO, Tag Check Override

Page 780

0b11 0b011 0b0100 0b0010 0b111

if PSTATE.EL == EL0 then
return Zeros(38):PSTATE.TCO:Zeros(25);

elsif PSTATE.EL == EL1 then
return Zeros(38):PSTATE.TCO:Zeros(25);

elsif PSTATE.EL == EL2 then
return Zeros(38):PSTATE.TCO:Zeros(25);

elsif PSTATE.EL == EL3 then
return Zeros(38):PSTATE.TCO:Zeros(25);

MSR TCO, <Xt>

op0 op1 CRn CRm op2
0b11 0b011 0b0100 0b0010 0b111

if PSTATE.EL == EL0 then
PSTATE.TCO = X[t]<25>;

elsif PSTATE.EL == EL1 then
PSTATE.TCO = X[t]<25>;

elsif PSTATE.EL == EL2 then
PSTATE.TCO = X[t]<25>;

elsif PSTATE.EL == EL3 then
PSTATE.TCO = X[t]<25>;

MSR TCO, #<imm>

op0 op1 CRn op2
0b00 0b011 0b0100 0b100

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TCO, Tag Check Override

Page 781

(old) htmldiff from- (new)

TCR_EL1, Translation Control Register (EL1)
The TCR_EL1 characteristics are:

Purpose
The control register for stage 1 of the EL1&0 translation regime.

Configuration
AArch64 System register TCR_EL1 bits [31:0] are architecturally mapped to AArch32 System register TTBCR[31:0].

AArch64 System register TCR_EL1 bits [63:32] are architecturally mapped to AArch32 System register TTBCR2[31:0].

Attributes
TCR_EL1 is a 64-bit register.

Field descriptions
The TCR_EL1 bit assignments are:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 DS TCMA1TCMA0E0PD1E0PD0NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1 TBI0ASRES0 IPS

TG1SH1 ORGN1 IRGN1 EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0RES0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL1, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be
cached in a TLB.

Bits [63:60]

Reserved, RES0.

DS, bit [59]

When FEAT_LPA2 is implemented:

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage 1 of the EL1&0
translation regime.

TCR_EL1, Translation Control Register (EL1)

Page 782

AArch32-ttbcr.html
AArch32-ttbcr2.html

DS Meaning
0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability
information in the SH[1:0] field. Bits[9:8] in table descriptors are
ignored by hardware.
The minimum value of the TCR_EL1.{T0SZ, T1SZ} fields is 16. Any
memory access using a smaller value generates a stage 1 level 0
translation table fault.
Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].
Bits[9:8] of translation table descriptors hold output
address[51:50].
The shareability information of block and page descriptors for
cacheable locations is determined by:

• TCR_EL1.SH0 if the VA is translated using tables pointed to
by TTBR0_EL1.

• TCR_EL1.SH1 if the VA is translated using tables pointed to
by TTBR1_EL1.

The minimum value of the TCR_EL1.{T0SZ, T1SZ} fields is 12. Any
memory access using a smaller value generates a stage 1 level 0
translation table fault.
All calculations of the stage 1 base address are modified for tables
of fewer than 8 entries so that the table is aligned to 64 bytes.
Bits[5:2] of TTBR0_EL1 or TTBR1_EL1 are used to hold bits[51:48]
of the output address in all cases.

Note
As FEAT_LVA must be implemented if
TCR_EL1.DS == 1, the minimum value of
the TCR_EL1.{T0SZ, T1SZ} fields is 12,
as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the
argument is changed so that bits[36:0] hold BaseADDR[52:16]. For
the 4KB translation granule, bits[15:12] of BaseADDR are treated
as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used
by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA1, bit [58]

When FEAT_MTE2FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL1, and at EL0 if HCR_EL2.{E2H,TGE}!={1,1}, when
address[59:55] = 0b11111.

TCMA1 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL1 or EL0.
0b1 All accesses at EL1 and EL0 are Unchecked.

Note

Software may change this control bit on a context switch.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL1, Translation Control Register (EL1)

Page 783

AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

Otherwise:

Reserved, RES0.

TCMA0, bit [57]

When FEAT_MTE2FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL1, and at EL0 if HCR_EL2.{E2H,TGE}!={1,1}, when
address[59:55] = 0b00000.

TCMA0 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL1 or EL0.
0b1 All accesses at EL1 and EL0 are Unchecked.

Note

Software may change this control bit on a context switch.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD1, bit [56]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR1_EL1.

E0PD1 Meaning
0b0 Unprivileged access to any address translated by TTBR1_EL1

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR1_EL1

will generate a level 0 translation fault.

Level 0 translation faults generated as a result of this field are not counted as TLB misses for performance monitoring.
The fault should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks
that use fault timing.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR0_EL1.

E0PD0 Meaning
0b0 Unprivileged access to any address translated by TTBR0_EL1

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR0_EL1

will generate a level 0 translation fault.

Level 0 translation faults generated as a result of this field are not counted as TLB misses for performance monitoring.
The fault should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks
that use fault timing.

TCR_EL1, Translation Control Register (EL1)

Page 784

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD1, bit [54]

When FEAT_SVE is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for
a virtual address that is translated using TTBR1_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see 'The Scalable Vector Extension (SVE)'.

NFD1 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR1_EL1.
0b1 A TLB miss on a virtual address that is translated using

TTBR1_EL1 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When FEAT_SVE is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL1.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for
a virtual address that is translated using TTBR0_EL1.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see 'The Scalable Vector Extension (SVE)'.

NFD0 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR0_EL1.
0b1 A TLB miss on a virtual address that is translated using

TTBR0_EL1 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL1, Translation Control Register (EL1)

Page 785

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

TBID1 Meaning
0b0 TCR_EL1.TBI1 applies to Instruction and Data accesses.
0b1 TCR_EL1.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

TBID0 Meaning
0b0 TCR_EL1.TBI0 applies to Instruction and Data accesses.
0b1 TCR_EL1.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 786

AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

HWU162 Meaning
0b0 For translations using TTBR1_EL1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU161 Meaning
0b0 For translations using TTBR1_EL1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [48]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU160 Meaning
0b0 For translations using TTBR1_EL1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL1, Translation Control Register (EL1)

Page 787

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

HWU159, bit [47]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL1.

HWU159 Meaning
0b0 For translations using TTBR1_EL1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU062 Meaning
0b0 For translations using TTBR0_EL1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU061 Meaning
0b0 For translations using TTBR0_EL1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

TCR_EL1, Translation Control Register (EL1)

Page 788

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU060, bit [44]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU060 Meaning
0b0 For translations using TTBR0_EL1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU059 Meaning
0b0 For translations using TTBR0_EL1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL1.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL1.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [42]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR1_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 789

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

HPD1 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL1.

HPD0 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL0 and EL1.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL0 and EL1.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL1, Translation Control Register (EL1)

Page 790

AArch64-ttbr0_el1.html

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the TTBR1_EL1 region,
or ignored and used for tagged addresses.

TBI1 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables
pointed to by TTBR1_EL1. It has an effect whether the EL1&0 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID1 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of
that target address are also set to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TBI0, bit [37]

Top Byte ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL1 region,
or ignored and used for tagged addresses.

TBI0 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL1 using AArch64 where the address would be translated by tables
pointed to by TTBR0_EL1. It has an effect whether the EL1&0 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL1.TBID0 is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of
that target address are also set to 0 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size.

AS Meaning
0b0 8 bit - the upper 8 bits of TTBR0_EL1 and TTBR1_EL1 are ignored

by hardware for every purpose except reading back the register,
and are treated as if they are all zeros for when used for allocation
and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL1 and TTBR1_EL1 are used
for allocation and matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL1, Translation Control Register (EL1)

Page 791

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html

Bit [35]

Reserved, RES0.

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the
value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL1 are 0b0000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL1.

TG1 Meaning
0b01 16KB.
0b10 4KB.
0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL1.

SH1 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL1, Translation Control Register (EL1)

Page 792

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

ORGN1 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL1.

IRGN1 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL1. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR1_EL1. The encoding of this bit is:

EPD1 Meaning
0b0 Perform translation table walks using TTBR1_EL1.
0b1 A TLB miss on an address that is translated using TTBR1_EL1

generates a Translation fault. No translation table walk is
performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL1 or TTBR1_EL1 defines the ASID. The encoding of this bit is:

A1 Meaning
0b0 TTBR0_EL1.ASID defines the ASID.
0b1 TTBR1_EL1.ASID defines the ASID.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL1. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is
less than 16, the translation table walk begins with a level -1 initial lookup.

TCR_EL1, Translation Control Register (EL1)

Page 793

AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el1.html
AArch64-ttbr1_el1.html

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 17, the translation table walk begins with a level 0 initial lookup.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL1.

TG0 Meaning
0b00 4KB
0b01 64KB
0b10 16KB

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL1.

SH0 Meaning
0b00 Non-shareable
0b10 Outer Shareable
0b11 Inner Shareable

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL1.

TCR_EL1, Translation Control Register (EL1)

Page 794

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL1. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR0_EL1. The encoding of this bit is:

EPD0 Meaning
0b0 Perform translation table walks using TTBR0_EL1.
0b1 A TLB miss on an address that is translated using TTBR0_EL1

generates a Translation fault. No translation table walk is
performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL1. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is
less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 17, the translation table walk begins with a level 0 initial lookup.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic TCR_EL1 or
TCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

TCR_EL1, Translation Control Register (EL1)

Page 795

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x120];
else

return TCR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TCR_EL2;

else
return TCR_EL1;

elsif PSTATE.EL == EL3 then
return TCR_EL1;

MSR TCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x120] = X[t];
else

TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TCR_EL2 = X[t];

else
TCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TCR_EL1 = X[t];

MRS <Xt>, TCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b010

TCR_EL1, Translation Control Register (EL1)

Page 796

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x120];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TCR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return TCR_EL1;
else

UNDEFINED;

MSR TCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x120] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TCR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

TCR_EL1 = X[t];
else

UNDEFINED;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TCR_EL1, Translation Control Register (EL1)

Page 797

(old) htmldiff from- (new)

TCR_EL2, Translation Control Register (EL2)
The TCR_EL2 characteristics are:

Purpose
The control register for stage 1 of the EL2, or EL2&0, translation regime:

• When the Effective value of HCR_EL2.E2H is 0, this register controls stage 1 of the EL2 translation regime,
that supports a single VA range, translated using TTBR0_EL2.

• When the value of HCR_EL2.E2H is 1, this register controls stage 1 of the EL2&0 translation regime, that
supports both:

◦ A lower VA range, translated using TTBR0_EL2.
◦ A higher VA range, translated using TTBR1_EL2.

Configuration
AArch64 System register TCR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HTCR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
TCR_EL2 is a 64-bit register.

Field descriptions
The TCR_EL2 bit assignments are:

When HCR_EL2.E2H == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50494847464544 43 42 41 40 39 38 3736353433 32
RES0 DS

RES1TCMATBIDHWU62HWU61HWU60HWU59HPDRES1HDHATBIRES0 PS TG0SH0ORGN0IRGN0RES0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL2, other than the A1 bit and the EPDx bits when they have the value 1, are permitted to be
cached in a TLB.

Bits [63:33]

Reserved, RES0.

DS, bit [32]

When FEAT_LPA2 is implemented:

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage 1 of the EL2
translation regime.

TCR_EL2, Translation Control Register (EL2)

Page 798

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch32-htcr.html

DS Meaning
0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability
information in the SH[1:0] field. Bits[9:8] in table descriptors are
ignored by hardware.
The minimum value of TCR_EL2.T0SZ is 16. Any memory access
using a smaller value generates a stage 1 level 0 translation table
fault.
Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].
Bits[9:8] of translation table descriptors hold output
address[51:50].
The shareability information of block and page descriptors for
cacheable locations is determined by TCR_EL2.SH0.
The minimum value of TCR_EL2.T0SZ is 12. Any memory access
using a smaller value generates a stage 1 level 0 translation table
fault.
All calculations of the stage 1 base address are modified for tables
of fewer than 8 entries so that the table is aligned to 64 bytes.
Bits[5:2] of TTBR0_EL2 are used to hold bits[51:48] of the output
address in all cases.

Note
As FEAT_LVA must be implemented if
TCR_EL2.DS == 1, the minimum value of
the TCR_EL2.T0SZ field is 12, as
determined by that extension.

For the TLBI Range instructions affecting VA, the format of the
argument is changed so that bits[36:0] hold BaseADDR[52:16]. For
the 4KB translation granule, bits[15:12] of BaseADDR are treated
as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used
by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When FEAT_MTE2FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL2 when address [59:56] = 0b0000.

TCMA Meaning
0b0 This control has no effect on the generation of Unchecked

accesses.
0b1 All accesses are Unchecked.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 799

AArch64-ttbr0_el2.html

Otherwise:

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

TBID Meaning
0b0 TCR_EL2.TBI applies to Instruction and Data accesses.
0b1 TCR_EL2.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry.

HWU62 Meaning
0b0 Bit[62] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

TCR_EL2, Translation Control Register (EL2)

Page 800

AArch64-ttbr0_el2.html

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL2.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 801

AArch64-ttbr0_el2.html

HPD Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

Note
In this case, bit[61] (APTable[0]) and
bit[59] (PXNTable) of the next level
descriptor attributes are required to be
ignored by the PE and are no longer
reserved, allowing them to be used by
software.

When disabled, the permissions are treated as if the bits are zero.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL2.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region,
or ignored and used for tagged addresses.

TCR_EL2, Translation Control Register (EL2)

Page 802

AArch64-ttbr0_el2.html

For more information, see 'Address tagging in AArch64 state'.

TBI Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL2 using AArch64 where the address would be translated by tables pointed to by
TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID is 1, then this field only applies to Data accesses.

If the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored in the PC,
in the following cases:

• A branch or procedure return within EL2.
• An exception taken to EL2.
• An exception return to EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the
value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are 0b0000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

TCR_EL2, Translation Control Register (EL2)

Page 803

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is
less than 16, the translation table walk begins with a level -1 initial lookup.

TCR_EL2, Translation Control Register (EL2)

Page 804

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 17, the translation table walk begins with a level 0 initial lookup.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When FEAT_VHE is implemented and HCR_EL2.E2H == 1:

63626160 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 343332
RES0 DS TCMA1TCMA0E0PD1E0PD0NFD1NFD0TBID1TBID0HWU162HWU161HWU160HWU159HWU062HWU061HWU060HWU059HPD1HPD0HD HA TBI1 TBI0ASRES0 IPS

TG1SH1 ORGN1 IRGN1 EPD1 A1 T1SZ TG0 SH0 ORGN0 IRGN0 EPD0RES0 T0SZ
31302928 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

This view of the register is only valid from Armv8.1 when HCR_EL2.E2H is 1.

Any of the bits in TCR_EL2 are permitted to be cached in a TLB.

Bits [63:60]

Reserved, RES0.

DS, bit [59]

When FEAT_LPA2 is implemented:

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage 1 of the EL2&0
translation regime.

TCR_EL2, Translation Control Register (EL2)

Page 805

DS Meaning
0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability
information in the SH[1:0] field. Bits[9:8] in table descriptors are
ignored by hardware.
The minimum value of the TCR_EL2.{T0SZ, T1SZ} fields is 16. Any
memory access using a smaller value generates a stage 1 level 0
translation table fault.
Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].
Bits[9:8] of translation table descriptors hold output
address[51:50].
The shareability information of block and page descriptors for
cacheable locations is determined by:

• TCR_EL2.SH0 if the VA is an address that is translated
using tables pointed to by TTBR0_EL2.

• TCR_EL2.SH1 if the VA is an address that is translated
using tables pointed to by TTBR1_EL2.

The minimum value of the TCR_EL2.{T0SZ, T1SZ} fields is 12. Any
memory access using a smaller value generates a stage 1 level 0
translation table fault.
All calculations of the stage 1 base address are modified for tables
of fewer than 16 entries so that the table is aligned to 64 bytes.
Bits[5:2] of TTBR0_EL2 or TTBR1_EL2 are used to hold bits[51:48]
of the output address in all cases.

Note
As FEAT_LVA must be implemented if
TCR_EL2.DS == 1, the minimum value of
the TCR_EL2.{T0SZ, T1SZ} fields is 12,
as determined by that extension.

For the TLBI Range instructions affecting VA, the format of the
argument is changed so that bits[36:0] hold BaseADDR[52:16]. For
the 4KB translation granule, bits[15:12] of BaseADDR are treated
as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used
by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCMA1, bit [58]

When FEAT_MTE2FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when address[59:55] =
0b11111.

TCMA1 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL2 or EL0.
0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 806

AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html

Otherwise:

Reserved, RES0.

TCMA0, bit [57]

When FEAT_MTE2FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL2, and at EL0 if HCR_EL2.TGE=1, when address[59:55] =
0b00000.

TCMA0 Meaning
0b0 This control has no effect on the generation of Unchecked

accesses at EL2 or EL0.
0b1 All accesses are Unchecked.

Note

Software may change this control bit on a context switch.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD1, bit [56]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR1_EL2.

E0PD1 Meaning
0b0 Unprivileged access to any address translated by TTBR1_EL2

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR1_EL2

will generate a level 0 translation fault.

Level 0 translation faults generated as a result of this field are not counted as TLB misses for performance monitoring.
The fault should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks
that use fault timing.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E0PD0, bit [55]

When FEAT_E0PD is implemented:

Faulting control for Unprivileged access to any address translated by TTBR0_EL2.

E0PD0 Meaning
0b0 Unprivileged access to any address translated by TTBR0_EL2

will not generate a fault by this mechanism.
0b1 Unprivileged access to any address translated by TTBR0_EL2

will generate a level 0 translation fault.

Level 0 translation faults generated as a result of this field are not counted as TLB misses for performance monitoring.
The fault should take the same time to generate, whether the address is present in the TLB or not, to mitigate attacks
that use fault timing.

TCR_EL2, Translation Control Register (EL2)

Page 807

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD1, bit [54]

When FEAT_SVE is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR1_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for
a virtual address that is translated using TTBR1_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see 'The Scalable Vector Extension (SVE)'.

NFD1 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR1_EL2.
0b1 A TLB miss on a virtual address that is translated using

TTBR1_EL2 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NFD0, bit [53]

When FEAT_SVE is implemented:

Non-fault translation table walk disable for stage 1 translations using TTBR0_EL2.

This bit controls whether to perform a stage 1 translation table walk in response to a non-fault unprivileged access for
a virtual address that is translated using TTBR0_EL2.

If SVE is implemented, the affected access types include:

• All accesses due to an SVE non-fault contiguous load instruction.
• Accesses due to an SVE first-fault gather load instruction that are not for the First active element. Accesses

due to an SVE first-fault contiguous load instruction are not affected.
• Accesses due to prefetch instructions might be affected, but the effect is not architecturally visible.

For more information, see 'The Scalable Vector Extension (SVE)'.

NFD0 Meaning
0b0 Does not disable stage 1 translation table walks using

TTBR0_EL2.
0b1 A TLB miss on a virtual address that is translated using

TTBR0_EL2 due to the specified access types causes the access
to fail without taking an exception. No stage 1 translation table
walk is performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 808

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

Otherwise:

Reserved, RES0.

TBID1, bit [52]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

For more information, see 'Address tagging in AArch64 state'.

TBID1 Meaning
0b0 TCR_EL2.TBI1 applies to Instruction and Data accesses.
0b1 TCR_EL2.TBI1 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR1_EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBID0, bit [51]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

For more information, see 'Address tagging in AArch64 state'.

TBID0 Meaning
0b0 TCR_EL2.TBI0 applies to Instruction and Data accesses.
0b1 TCR_EL2.TBI0 applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU162, bit [50]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

HWU162 Meaning
0b0 For translations using TTBR1_EL2, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

TCR_EL2, Translation Control Register (EL2)

Page 809

AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU161, bit [49]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

HWU161 Meaning
0b0 For translations using TTBR1_EL2, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU160, bit [48]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

HWU160 Meaning
0b0 For translations using TTBR1_EL2, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU159, bit [47]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR1_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 810

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

HWU159 Meaning
0b0 For translations using TTBR1_EL2, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR1_EL2, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD1 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD1 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU062, bit [46]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU062 Meaning
0b0 For translations using TTBR0_EL1, bit[62] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[62] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU061, bit [45]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU061 Meaning
0b0 For translations using TTBR0_EL1, bit[61] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[61] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 811

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html

HWU060, bit [44]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU060 Meaning
0b0 For translations using TTBR0_EL1, bit[60] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[60] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU059, bit [43]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry for translations using TTBR0_EL1.

HWU059 Meaning
0b0 For translations using TTBR0_EL1, bit[59] of each stage 1

translation table Block or Page entry cannot be used by
hardware for an IMPLEMENTATION DEFINED purpose.

0b1 For translations using TTBR0_EL1, bit[59] of each stage 1
translation table Block or Page entry can be used by
hardware for an IMPLEMENTATION DEFINED purpose if the
value of TCR_EL2.HPD0 is 1.

The Effective value of this field is 0 if the value of TCR_EL2.HPD0 is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD1, bit [42]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR1_EL2.

HPD1 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 812

AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr0_el1.html
AArch64-ttbr1_el2.html

Otherwise:

Reserved, RES0.

HPD0, bit [41]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL2.

HPD0 Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

When disabled, the permissions are treated as if the bits are zero.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HD, bit [40]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL2.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [39]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL2.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI1, bit [38]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR1_EL2 region,
or ignored and used for tagged addresses.

TCR_EL2, Translation Control Register (EL2)

Page 813

AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html

For more information, see 'Address tagging in AArch64 state'.

TBI1 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables
pointed to by TTBR1_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID1 is 1, then this field only applies to Data accesses.

If the value of TBI1 is 1 and bit [55] of the target address to be stored to the PC is 1, then bits[63:56] of that target
address are also set to 1 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TBI0, bit [37]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL2 region,
or ignored and used for tagged addresses.

For more information, see 'Address tagging in AArch64 state'.

TBI0 Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL0 and EL2 using AArch64 where the address would be translated by tables
pointed to by TTBR0_EL2. It has an effect whether the EL2, or EL2&0, translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL2.TBID0 is 1, then this field only applies to Data accesses.

If the value of TBI0 is 1 and bit [55] of the target address to be stored to the PC is 0, then bits[63:56] of that target
address are also set to 0 before the address is stored in the PC, in the following cases:

• A branch or procedure return within EL0 or EL1.
• An exception taken to EL1.
• An exception return to EL0 or EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AS, bit [36]

ASID Size.

AS Meaning
0b0 8 bit - the upper 8 bits of TTBR0_EL2 and TTBR1_EL2 are ignored

by hardware for every purpose except reading back the register,
and are treated as if they are all zeros for when used for allocation
and matching entries in the TLB.

0b1 16 bit - the upper 16 bits of TTBR0_EL2 and TTBR1_EL2 are used
for allocation and matching in the TLB.

If the implementation has only 8 bits of ASID, this field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [35]

Reserved, RES0.

TCR_EL2, Translation Control Register (EL2)

Page 814

AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html

IPS, bits [34:32]

Intermediate Physical Address Size.

IPS Meaning Applies when
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB. When FEAT_LPA is implemented

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the
value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL2 are 0b0000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG1, bits [31:30]

Granule size for the TTBR1_EL2.

TG1 Meaning
0b01 16KB.
0b10 4KB.
0b11 64KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH1, bits [29:28]

Shareability attribute for memory associated with translation table walks using TTBR1_EL2.

SH1 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN1, bits [27:26]

Outer cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

TCR_EL2, Translation Control Register (EL2)

Page 815

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

ORGN1 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN1, bits [25:24]

Inner cacheability attribute for memory associated with translation table walks using TTBR1_EL2.

IRGN1 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EPD1, bit [23]

Translation table walk disable for translations using TTBR1_EL2. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR1_EL2. The encoding of this bit is:

EPD1 Meaning
0b0 Perform translation table walks using TTBR1_EL2.
0b1 A TLB miss on an address that is translated using TTBR1_EL2

generates a Translation fault. No translation table walk is
performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A1, bit [22]

Selects whether TTBR0_EL2 or TTBR1_EL2 defines the ASID. The encoding of this bit is:

A1 Meaning
0b0 TTBR0_EL2.ASID defines the ASID.
0b1 TTBR1_EL2.ASID defines the ASID.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

T1SZ, bits [21:16]

The size offset of the memory region addressed by TTBR1_EL2. The region size is 2(64-T1SZ) bytes.

The maximum and minimum possible values for T1SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is
less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 17, the translation table walk begins with a level 0 initial lookup.

TCR_EL2, Translation Control Register (EL2)

Page 816

AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr1_el2.html
AArch64-ttbr1_el2.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL2.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

Other values are reserved.

If the value is programmed to either a reserved value, or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL2.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL2.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL2, Translation Control Register (EL2)

Page 817

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

EPD0, bit [7]

Translation table walk disable for translations using TTBR0_EL2. This bit controls whether a translation table walk is
performed on a TLB miss, for an address that is translated using TTBR0_EL2. The encoding of this bit is:

EPD0 Meaning
0b0 Perform translation table walks using TTBR0_EL2.
0b1 A TLB miss on an address that is translated using TTBR0_EL2

generates a Translation fault. No translation table walk is
performed.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL2. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is
less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 17, the translation table walk begins with a level 0 initial lookup.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TCR_EL2 or
TCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, TCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return TCR_EL2;
elsif PSTATE.EL == EL3 then

return TCR_EL2;

TCR_EL2, Translation Control Register (EL2)

Page 818

AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html
AArch64-ttbr0_el2.html

MSR TCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TCR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TCR_EL2 = X[t];

MRS <Xt>, TCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TRVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.TCR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x120];
else

return TCR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return TCR_EL2;

else
return TCR_EL1;

elsif PSTATE.EL == EL3 then
return TCR_EL1;

MSR TCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0010 0b0000 0b010

TCR_EL2, Translation Control Register (EL2)

Page 819

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TVM == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.TCR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x120] = X[t];
else

TCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TCR_EL2 = X[t];

else
TCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TCR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TCR_EL2, Translation Control Register (EL2)

Page 820

(old) htmldiff from- (new)

TCR_EL3, Translation Control Register (EL3)
The TCR_EL3 characteristics are:

Purpose
The control register for stage 1 of the EL3 translation regime.

Configuration
This register is present only when EL3 is implemented. Otherwise, direct accesses to TCR_EL3 are UNDEFINED.

Attributes
TCR_EL3 is a 64-bit register.

Field descriptions
The TCR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50494847464544 43 42 41 40 39 38 3736353433 32
RES0 DS

RES1TCMATBIDHWU62HWU61HWU60HWU59HPDRES1HDHATBIRES0 PS TG0SH0ORGN0IRGN0RES0 T0SZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18171615141312 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in TCR_EL3 are permitted to be cached in a TLB.

Bits [63:33]

Reserved, RES0.

DS, bit [32]

When FEAT_LPA2 is implemented:

This field affects 52-bit output addressing when using 4KB and 16KB translation granules in stage 1 of the EL3
translation regime.

TCR_EL3, Translation Control Register (EL3)

Page 821

DS Meaning
0b0 Bits[49:48] of translation descriptors are RES0.

Bits[9:8] in block and page descriptors encode shareability
information in the SH[1:0] field. Bits[9:8] in table descriptors are
ignored by hardware.
The minimum value of TCR_EL3.T0SZ is 16. Any memory access
using a smaller value generates a stage 1 level 0 translation table
fault.
Output address[51:48] is 0b0000.

0b1 Bits[49:48] of translation descriptors hold output address[49:48].
Bits[9:8] of table translation descriptors hold output
address[51:50].
The shareability information of block and page descriptors for
cacheable locations is determined by TCR_EL3.SH0.
The minimum value of TCR_EL3.T0SZ is 12. Any memory access
using a smaller value generates a stage 1 level 0 translation table
fault.
All calculations of the stage 1 base address are modified for tables
of fewer than 8 entries so that the table is aligned to 64 bytes.
Bits[5:2] of TTBR0_EL3 are used to hold bits[51:48] of the output
address in all cases.

Note
As FEAT_LVA must be implemented if
TCR_EL3.DS == 1, the minimum value of
the TCR_EL3.T0SZ field is 12, as
determined by that extension.

For the TLBI Range instructions affecting VA, the format of the
argument is changed so that bits[36:0] hold BaseADDR[52:16]. For
the 4KB translation granule, bits[15:12] of BaseADDR are treated
as 0b0000. For the 16KB translation granule, bits[15:14] of
BaseADDR are treated as 0b00.

Note
This forces alignment of the ranges used
by the TLBI range instructions.

This field is RES0 for a 64KB translation granule.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [31]

Reserved, RES1.

TCMA, bit [30]

When FEAT_MTE2FEAT_MTE is implemented:

Controls the generation of Unchecked accesses at EL3 when address [59:56] = 0b0000.

TCMA Meaning
0b0 This control has no effect on the generation of Unchecked

accesses.
0b1 All accesses are Unchecked.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TCR_EL3, Translation Control Register (EL3)

Page 822

AArch64-ttbr0_el3.html

Otherwise:

Reserved, RES0.

TBID, bit [29]

When FEAT_PAuth is implemented:

Controls the use of the top byte of instruction addresses for address matching.

TBID Meaning
0b0 TCR_EL3.TBI applies to Instruction and Data accesses.
0b1 TCR_EL3.TBI applies to Data accesses only.

This affects addresses where the address would be translated by tables pointed to by TTBR0_EL3.

For the purpose of this field, all cache maintenance and address translation instructions that perform address
translation are treated as data accesses.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU62, bit [28]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[62] of the stage 1 translation table Block or
Page entry.

HWU62 Meaning
0b0 Bit[62] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[62] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU61, bit [27]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[61] of the stage 1 translation table Block or
Page entry.

HWU61 Meaning
0b0 Bit[61] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[61] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

TCR_EL3, Translation Control Register (EL3)

Page 823

AArch64-ttbr0_el3.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU60, bit [26]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[60] of the stage 1 translation table Block or
Page entry.

HWU60 Meaning
0b0 Bit[60] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[60] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HWU59, bit [25]

When FEAT_HPDS2 is implemented:

Hardware Use. Indicates IMPLEMENTATION DEFINED hardware use of bit[59] of the stage 1 translation table Block or
Page entry.

HWU59 Meaning
0b0 Bit[59] of each stage 1 translation table Block or Page entry

cannot be used by hardware for an IMPLEMENTATION DEFINED
purpose.

0b1 Bit[59] of each stage 1 translation table Block or Page entry
can be used by hardware for an IMPLEMENTATION DEFINED
purpose if the value of TCR_EL3.HPD is 1.

The Effective value of this field is 0 if the value of TCR_EL3.HPD is 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HPD, bit [24]

When FEAT_HPDS is implemented:

Hierarchical Permission Disables. This affects the hierarchical control bits, APTable, PXNTable, and UXNTable, except
NSTable, in the translation tables pointed to by TTBR0_EL3.

TCR_EL3, Translation Control Register (EL3)

Page 824

AArch64-ttbr0_el3.html

HPD Meaning
0b0 Hierarchical permissions are enabled.
0b1 Hierarchical permissions are disabled.

Note
In this case, bit[61] (APTable[0]) and
bit[59] (PXNTable) of the next level
descriptor attributes are required to be
ignored by the PE, and are no longer
reserved, allowing them to be used by
software.

When disabled, the permissions are treated as if the bits are zero.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [23]

Reserved, RES1.

HD, bit [22]

When FEAT_HAFDBS is implemented:

Hardware management of dirty state in stage 1 translations from EL3.

HD Meaning
0b0 Stage 1 hardware management of dirty state disabled.
0b1 Stage 1 hardware management of dirty state enabled, only if the

HA bit is also set to 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HA, bit [21]

When FEAT_HAFDBS is implemented:

Hardware Access flag update in stage 1 translations from EL3.

HA Meaning
0b0 Stage 1 Access flag update disabled.
0b1 Stage 1 Access flag update enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

TBI, bit [20]

Top Byte Ignored. Indicates whether the top byte of an address is used for address match for the TTBR0_EL3 region,
or ignored and used for tagged addresses.

TCR_EL3, Translation Control Register (EL3)

Page 825

AArch64-ttbr0_el3.html

TBI Meaning
0b0 Top Byte used in the address calculation.
0b1 Top Byte ignored in the address calculation.

This affects addresses generated in EL3 using AArch64 where the address would be translated by tables pointed to by
TTBR0_EL3. It has an effect whether the EL3 translation regime is enabled or not.

If FEAT_PAuth is implemented and TCR_EL3.TBID is 1, then this field only applies to Data accesses.

Otherwise, if the value of TBI is 1, then bits[63:56] of that target address are also set to 0 before the address is stored
in the PC, in the following cases:

• A branch or procedure return within EL3.
• A exception taken to EL3.
• An exception return to EL3.

For more information, see 'Address tagging in AArch64 state'.

Note

This control detrmines the scope of address tagging. It never causes an
exception to be generated.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [19]

Reserved, RES0.

PS, bits [18:16]

Physical Address Size.

PS Meaning
0b000 32 bits, 4GB.
0b001 36 bits, 64GB.
0b010 40 bits, 1TB.
0b011 42 bits, 4TB.
0b100 44 bits, 16TB.
0b101 48 bits, 256TB.
0b110 52 bits, 4PB.

All other values are reserved.

The reserved values behave in the same way as the 0b101 or 0b110 encoding, but software must not rely on this
property as the behavior of the reserved values might change in a future revision of the architecture.

If the translation granule is not 64KB and FEAT_LPA2 is not implemented, the value 0b110 is treated as reserved.

It is IMPLEMENTATION DEFINED whether an implementation that does not implement FEAT_LPA supports setting the
value of 0b110 for the 64KB translation granule size or whether setting this value behaves as the 0b101 encoding.

In an implementation that supports 52-bit PAs, if the value of this field is not 0b110 or a value treated as 0b110, then
bits[51:48] of every translation table base address for the stage of translation controlled by TCR_EL3 are 0b0000.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TG0, bits [15:14]

Granule size for the TTBR0_EL3.

TG0 Meaning
0b00 4KB.
0b01 64KB.
0b10 16KB.

TCR_EL3, Translation Control Register (EL3)

Page 826

AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html

Other values are reserved.

If the value is programmed to either a reserved value or a size that has not been implemented, then the hardware will
treat the field as if it has been programmed to an IMPLEMENTATION DEFINED choice of the sizes that has been
implemented for all purposes other than the value read back from this register.

It is IMPLEMENTATION DEFINED whether the value read back is the value programmed or the value that corresponds to
the size chosen.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SH0, bits [13:12]

Shareability attribute for memory associated with translation table walks using TTBR0_EL3.

SH0 Meaning
0b00 Non-shareable.
0b10 Outer Shareable.
0b11 Inner Shareable.

Other values are reserved. The effect of programming this field to a Reserved value is that behavior is CONSTRAINED
UNPREDICTABLE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ORGN0, bits [11:10]

Outer cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

ORGN0 Meaning
0b00 Normal memory, Outer Non-cacheable.
0b01 Normal memory, Outer Write-Back Read-Allocate Write-

Allocate Cacheable.
0b10 Normal memory, Outer Write-Through Read-Allocate No

Write-Allocate Cacheable.
0b11 Normal memory, Outer Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IRGN0, bits [9:8]

Inner cacheability attribute for memory associated with translation table walks using TTBR0_EL3.

IRGN0 Meaning
0b00 Normal memory, Inner Non-cacheable.
0b01 Normal memory, Inner Write-Back Read-Allocate Write-Allocate

Cacheable.
0b10 Normal memory, Inner Write-Through Read-Allocate No Write-

Allocate Cacheable.
0b11 Normal memory, Inner Write-Back Read-Allocate No Write-

Allocate Cacheable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [7:6]

Reserved, RES0.

T0SZ, bits [5:0]

The size offset of the memory region addressed by TTBR0_EL3. The region size is 2(64-T0SZ) bytes.

The maximum and minimum possible values for T0SZ depend on the level of translation table and the memory
translation granule size, as described in the AArch64 Virtual Memory System Architecture chapter.

TCR_EL3, Translation Control Register (EL3)

Page 827

AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html
AArch64-ttbr0_el3.html

Note

For the 4KB translation granule, if FEAT_LPA2 is implemented and this field is
less than 16, the translation table walk begins with a level -1 initial lookup.

For the 16KB translation granule, if FEAT_LPA2 is implemented and this field
is less than 17, the translation table walk begins with a level 0 initial lookup.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the TCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, TCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
return TCR_EL3;

MSR TCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0010 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TCR_EL3 = X[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TCR_EL3, Translation Control Register (EL3)

Page 828

(old) htmldiff from- (new)

TFSR_EL1, Tag Fault Status Register (EL1)
The TFSR_EL1 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL1 that are not taken precisely.

Configuration
This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to TFSR_EL1 are
UNDEFINED.

Attributes
TFSR_EL1 is a 64-bit register.

Field descriptions
The TFSR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TF1TF0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL1
Accesses to this register use the following encodings:

MRS <Xt>, TFSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 829

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x190];
else

return TFSR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return TFSR_EL2;

else
return TFSR_EL1;

elsif PSTATE.EL == EL3 then
return TFSR_EL1;

MSR TFSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 830

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x190] = X[t];
else

TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
TFSR_EL2 = X[t];

else
TFSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TFSR_EL1 = X[t];

MRS <Xt>, TFSR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 831

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x190];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
return TFSR_EL1;

else
UNDEFINED;

MSR TFSR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x190] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
TFSR_EL1 = X[t];

else
UNDEFINED;

TFSR_EL1, Tag Fault Status Register (EL1)

Page 832

MRS <Xt>, TFSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TFSR_EL1;

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSR_EL2;
elsif PSTATE.EL == EL3 then

return TFSR_EL2;

MSR TFSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

TFSR_EL1, Tag Fault Status Register (EL1)

Page 833

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
TFSR_EL1 = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TFSR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TFSR_EL1, Tag Fault Status Register (EL1)

Page 834

(old) htmldiff from- (new)

TFSR_EL2, Tag Fault Status Register (EL2)
The TFSR_EL2 characteristics are:

Purpose
Holds accumulated Tag Check Faults occurring in EL2 that are not taken precisely.

Configuration
This register is present only when FEAT_MTE2 is implemented. Otherwise, direct accesses to TFSR_EL2 are
UNDEFINED.

Attributes
TFSR_EL2 is a 64-bit register.

Field descriptions
The TFSR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 TF1TF0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

TF1, bit [1]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b1 occurs.

When HCR_EL2.E2H==0b0, this field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

TF0, bit [0]

Tag Check Fault. Asynchronously set to 1 when a Tag Check Fault using a virtual address with bit[55] == 0b0 occurs.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the TFSR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic TFSR_EL2 or
TFSR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

TFSR_EL2, Tag Fault Status Register (EL2)

Page 835

MRS <Xt>, TFSR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
return TFSR_EL1;

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

return TFSR_EL2;
elsif PSTATE.EL == EL3 then

return TFSR_EL2;

MSR TFSR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0110 0b000

TFSR_EL2, Tag Fault Status Register (EL2)

Page 836

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.ATA == '0' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

else
TFSR_EL1 = X[t];

elsif EL2Enabled() && HCR_EL2.NV == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
UNDEFINED;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
else

TFSR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

TFSR_EL2 = X[t];

MRS <Xt>, TFSR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

TFSR_EL2, Tag Fault Status Register (EL2)

Page 837

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x190];
else

return TFSR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
return TFSR_EL2;

else
return TFSR_EL1;

elsif PSTATE.EL == EL3 then
return TFSR_EL1;

MSR TFSR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0101 0b0110 0b000

TFSR_EL2, Tag Fault Status Register (EL2)

Page 838

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && SCR_EL3.ATA == '0' then
UNDEFINED;

elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.ATA == '0' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x190] = X[t];
else

TFSR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && SCR_EL3.ATA == '0' then

UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.ATA == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x18);

elsif HCR_EL2.E2H == '1' then
TFSR_EL2 = X[t];

else
TFSR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
TFSR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TFSR_EL2, Tag Fault Status Register (EL2)

Page 839

(old) htmldiff from- (new)

TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1
The TLBI ALLE1, TLBI ALLE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0
translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0
translation regime.

The invalidation applies to entries with any VMID.

The invalidation only applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE1, TLBI ALLE1NXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE1, TLBI ALLE1NXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1

Page 840

TLBI ALLE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSHShareability_None, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSHShareability_None, TLBI_AllAttr);

TLBI ALLE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0111 0b100

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSHShareability_None,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_NSHShareability_None,
TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1

Page 841

(old) htmldiff from- (new)

TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All,
EL1, Inner Shareable

The TLBI ALLE1IS, TLBI ALLE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0
translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0
translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE1IS, TLBI ALLE1ISNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE1IS, TLBI ALLE1ISNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable

Page 842

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISHShareability_Inner,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISHShareability_Inner,
TLBI_AllAttr);

TLBI ALLE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0011 0b100

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISHShareability_Inner,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_ISHShareability_Inner,
TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable

Page 843

(old) htmldiff from- (new)

TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All,
EL1, Outer Shareable

The TLBI ALLE1OS, TLBI ALLE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL1&0
translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL1&0
translation regime.

The invalidation applies to entries with any VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE1OS,
TLBI ALLE1OSNXS are UNDEFINED.

Attributes
TLBI ALLE1OS, TLBI ALLE1OSNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE1OS, TLBI ALLE1OSNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable

Page 844

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSHShareability_Outer,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSHShareability_Outer,
TLBI_AllAttr);

TLBI ALLE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0001 0b100

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSHShareability_Outer,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

TLBI_ALL(SecurityStateAtEL(EL1), Regime_EL10, Shareability_OSHShareability_Outer,
TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable

Page 845

(old) htmldiff from- (new)

TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2
The TLBI ALLE2, TLBI ALLE2NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure
EL2&0 translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or
Non-secure EL2&0 translation regime.

The invalidation only applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE2, TLBI ALLE2NXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2, TLBI ALLE2NXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b000

TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

Page 846

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSHShareability_None,

TLBI_AllAttr);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSHShareability_None,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSHShareability_None,

TLBI_AllAttr);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSHShareability_None,
TLBI_AllAttr);

TLBI ALLE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0111 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSHShareability_None,

TLBI_ExcludeXS);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSHShareability_None,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_NSHShareability_None,

TLBI_ExcludeXS);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_NSHShareability_None,
TLBI_ExcludeXS);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2

Page 847

(old) htmldiff from- (new)

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All,
EL2, Inner Shareable

The TLBI ALLE2IS, TLBI ALLE2ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure
EL2&0 translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or
Non-secure EL2&0 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE2IS, TLBI ALLE2ISNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2IS, TLBI ALLE2ISNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

Page 848

TLBI ALLE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISHShareability_Inner,

TLBI_AllAttr);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISHShareability_Inner,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISHShareability_Inner,

TLBI_AllAttr);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISHShareability_Inner,
TLBI_AllAttr);

TLBI ALLE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0011 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISHShareability_Inner,

TLBI_ExcludeXS);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISHShareability_Inner,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_ISHShareability_Inner,

TLBI_ExcludeXS);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_ISHShareability_Inner,
TLBI_ExcludeXS);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

Page 849

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable

Page 850

(old) htmldiff from- (new)

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All,
EL2, Outer Shareable

The TLBI ALLE2OS, TLBI ALLE2OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0 and the entry would be required to translate an address using the Secure EL2 or Secure
EL2&0 translation regime.

• If SCR_EL3.NS is 1 and the entry would be required to translate an address using the Non-secure EL2 or
Non-secure EL2&0 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE2OS,
TLBI ALLE2OSNXS are UNDEFINED.

Attributes
TLBI ALLE2OS, TLBI ALLE2OSNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE2OS, TLBI ALLE2OSNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

Page 851

TLBI ALLE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSHShareability_Outer,

TLBI_AllAttr);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSHShareability_Outer,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSHShareability_Outer,

TLBI_AllAttr);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSHShareability_Outer,
TLBI_AllAttr);

TLBI ALLE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0001 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSHShareability_Outer,

TLBI_ExcludeXS);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSHShareability_Outer,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL20, Shareability_OSHShareability_Outer,

TLBI_ExcludeXS);
else

TLBI_ALL(SecurityStateAtEL(EL2), Regime_EL2, Shareability_OSHShareability_Outer,
TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

Page 852

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable

Page 853

(old) htmldiff from- (new)

TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3
The TLBI ALLE3, TLBI ALLE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE3, TLBI ALLE3NXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE3, TLBI ALLE3NXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0111 0b000

TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3

Page 854

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_NSHShareability_None, TLBI_AllAttr);

TLBI ALLE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0111 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_NSHShareability_None,

TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3

Page 855

(old) htmldiff from- (new)

TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All,
EL3, Inner Shareable

The TLBI ALLE3IS, TLBI ALLE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ALLE3IS, TLBI ALLE3ISNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE3IS, TLBI ALLE3ISNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0011 0b000

TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable

Page 856

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_ISHShareability_Inner, TLBI_AllAttr);

TLBI ALLE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0011 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_ISHShareability_Inner,

TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable

Page 857

(old) htmldiff from- (new)

TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All,
EL3, Outer Shareable

The TLBI ALLE3OS, TLBI ALLE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be required to translate an address using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ALLE3OS,
TLBI ALLE3OSNXS are UNDEFINED.

Attributes
TLBI ALLE3OS, TLBI ALLE3OSNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI ALLE3OS, TLBI ALLE3OSNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI ALLE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0001 0b000

TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable

Page 858

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_OSHShareability_Outer, TLBI_AllAttr);

TLBI ALLE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0001 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_ALL(SecurityStateAtEL(EL3), Regime_EL3, Shareability_OSHShareability_Outer,

TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable

Page 859

(old) htmldiff from- (new)

TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID,
EL1

The TLBI ASIDE1, TLBI ASIDE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.

◦ Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate an address using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate an address using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ASIDE1, TLBI ASIDE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI ASIDE1, TLBI ASIDE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID RES0

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1

Page 860

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System
instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1, TLBI ASIDE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI ASIDE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_AllAttr, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_AllAttr, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_AllAttr, X[t]);

TLBI ASIDE1NXS{, <Xt>}

op0 op1 CRn CRm op2

TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1

Page 861

0b01 0b000 0b1001 0b0111 0b010

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIASIDE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1

Page 862

(old) htmldiff from- (new)

TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by
ASID, EL1, Inner Shareable

The TLBI ASIDE1IS, TLBI ASIDE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.

◦ Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate an address using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate an address using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI ASIDE1IS, TLBI ASIDE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI ASIDE1IS, TLBI ASIDE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID RES0

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 863

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System
instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1IS, TLBI ASIDE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI ASIDE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_AllAttr, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_AllAttr, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBI_AllAttr, X[t]);

TLBI ASIDE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0011 0b010

TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 864

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIASIDE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable

Page 865

(old) htmldiff from- (new)

TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by
ASID, EL1, Outer Shareable

The TLBI ASIDE1OS, TLBI ASIDE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used for the specified ASID, and either:

◦ Is from a level of lookup above the final level.

◦ Is a non-global entry from the final level of lookup.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate an address using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate an address using the
EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate an address using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI ASIDE1OS,
TLBI ASIDE1OSNXS are UNDEFINED.

Attributes
TLBI ASIDE1OS, TLBI ASIDE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI ASIDE1OS, TLBI ASIDE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID RES0

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable

Page 866

ASID, bits [63:48]

ASID value to match. Any appropriate TLB entries that match the ASID values will be affected by this System
instruction.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Bits [47:0]

Reserved, RES0.

Executing the TLBI ASIDE1OS, TLBI ASIDE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI ASIDE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIASIDE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_AllAttr, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_AllAttr, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBI_AllAttr, X[t]);

TLBI ASIDE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0001 0b010

TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable

Page 867

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIASIDE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_ASID(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_ExcludeXS, X[t]);
else

TLBI_ASID(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable

Page 868

(old) htmldiff from- (new)

TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by
Intermediate Physical Address, Stage 2, EL1

The TLBI IPAS2E1, TLBI IPAS2E1NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2E1, TLBI IPAS2E1NXS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2E1, TLBI IPAS2E1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 869

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 870

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. ForSee more information, see IPA[47:12].] for more details.

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the
upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1, TLBI IPAS2E1NXS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2E1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI IPAS2E1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b001

TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 871

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 872

(old) htmldiff from- (new)

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by
Intermediate Physical Address, Stage 2, EL1, Inner

Shareable
The TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 873

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 874

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. ForSee more information, see IPA[47:12].] for more details.

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the
upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2E1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI IPAS2E1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0000 0b001

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 875

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable

Page 876

(old) htmldiff from- (new)

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate
by Intermediate Physical Address, Stage 2, EL1, Outer

Shareable
The TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI IPAS2E1OS,
TLBI IPAS2E1OSNXS are UNDEFINED.

Attributes
TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 877

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 878

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. ForSee more information, see IPA[47:12].] for more details.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the
upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2E1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI IPAS2E1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b000

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 879

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 880

(old) htmldiff from- (new)

TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by
Intermediate Physical Address, Stage 2, Last level,

EL1
The TLBI IPAS2LE1, TLBI IPAS2LE1NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2LE1, TLBI IPAS2LE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2LE1, TLBI IPAS2LE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 881

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

Bits [43:40]

Reserved, RES0.

TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 882

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. ForSee more information, see IPA[47:12].] for more details.

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the
upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1, TLBI IPAS2LE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2LE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI IPAS2LE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b101

TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 883

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1

Page 884

(old) htmldiff from- (new)

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate
by Intermediate Physical Address, Stage 2, Last level,

EL1, Inner Shareable
The TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

Page 885

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

Page 886

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

When FEAT_LPA is implemented:

Extension to IPA[47:12]. ForSee more information, see IPA[47:12].] for more details.

Otherwise:

Reserved, RES0.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the
upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2LE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI IPAS2LE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0000 0b101

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

Page 887

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Inner Shareable

Page 888

(old) htmldiff from- (new)

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1, Outer Shareable
The TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI IPAS2LE1OS,
TLBI IPAS2LE1OSNXS are UNDEFINED.

Attributes
TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TTL RES0 IPA[51:48] IPA[47:12]

IPA[47:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

Page 889

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

Page 890

Bits [43:40]

Reserved, RES0.

IPA[51:48], bits [39:36]

Extension to IPA[47:12]. ForSee more information, see IPA[47:12].] for more details.

IPA[47:12], bits [35:0]

Bits[47:12] of the intermediate physical address to match. For implementations with fewer than 48 bits, the upper bits
of this field are RES0.

When FEAT_LPA is implemented, and 52-bit addresses and a 64KB translation granule are in use, IPA[51:48] form the
upper part of the address value. Otherwise, IPA[51:48] are RES0.

Executing the TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI IPAS2LE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI IPAS2LE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b100

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

Page 891

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_IPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1,
Outer Shareable

Page 892

(old) htmldiff from- (new)

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

EL1
The TLBI RIPAS2E1, TLBI RIPAS2E1NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 893

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2E1, TLBI RIPAS2E1NXS are UNDEFINED.

Attributes
TLBI RIPAS2E1, TLBI RIPAS2E1NXS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2E1, TLBI RIPAS2E1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 894

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1, TLBI RIPAS2E1NXS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2E1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b010

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 895

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RIPAS2E1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b010

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1

Page 896

(old) htmldiff from- (new)

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

EL1, Inner Shareable
The TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 897

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2E1IS, TLBI RIPAS2E1ISNXS are UNDEFINED.

Attributes
TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 898

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2E1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b010

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 899

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RIPAS2E1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0000 0b010

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner
Shareable

Page 900

(old) htmldiff from- (new)

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

EL1, Outer Shareable
The TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from any level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 901

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS are UNDEFINED.

Attributes
TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 902

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2E1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b011

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 903

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RIPAS2E1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b011

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer
Shareable

Page 904

(old) htmldiff from- (new)

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1
The TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation only applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 905

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2LE1, TLBI RIPAS2LE1NXS are UNDEFINED.

Attributes
TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 906

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2LE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b110

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 907

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RIPAS2LE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b110

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

Page 908

(old) htmldiff from- (new)

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1, Inner Shareable
The TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 909

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS are UNDEFINED.

Attributes
TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 910

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2LE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0000 0b110

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 911

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RIPAS2LE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0000 0b110

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

Page 912

(old) htmldiff from- (new)

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range
Invalidate by Intermediate Physical Address, Stage 2,

Last level, EL1, Outer Shareable
The TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS characteristics are:

Purpose
If EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table entries
from TLBs that meet all the following requirements:

• The entry is a stage 2 only translation table entry, from the final level of the translation table walk.

• One of the following applies:

◦ SCR_EL3.NS is 0 and the entry would be required to translate the specified IPA using the Secure
EL1&0 translation regime.

◦ SCR_EL3.NS is 1 and the entry would be required to translate the specified IPA using the Non-
secure EL1&0 translation regime.

• The entry would be used with the current VMID.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The invalidation is not required to apply to caching structures that combine stage 1 and stage 2 translation table
entries.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 913

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS are UNDEFINED.

Attributes
TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

When FEAT_SEL2 is implemented:

Not Secure. Specifies the IPA space.

NS Meaning
0b0 IPA is in the Secure IPA space.
0b1 IPA is in the Non-secure IPA space.

When the instruction is executed in Non-secure state, this field is RES0, and the instruction applies only to the Non-
secure IPA space.

When FEAT_SEL2 is not implemented, or if EL2 is disabled in the current Security state, this field is RES0.

Otherwise:

Reserved, RES0.

Bits [62:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 914

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RIPAS2LE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0100 0b111

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 915

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RIPAS2LE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0100 0b111

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
//no operation

else
TLBI_RIPAS2(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

Page 916

(old) htmldiff from- (new)

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate
by VA, All ASID, EL1

The TLBI RVAAE1, TLBI RVAAE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 917

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAAE1,
TLBI RVAAE1NXS are UNDEFINED.

Attributes
TLBI RVAAE1, TLBI RVAAE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAAE1, TLBI RVAAE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 918

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1, TLBI RVAAE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b011

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 919

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAAE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b011

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 920

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1

Page 921

(old) htmldiff from- (new)

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range
Invalidate by VA, All ASID, EL1, Inner Shareable

The TLBI RVAAE1IS, TLBI RVAAE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 922

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVAAE1IS, TLBI RVAAE1ISNXS are UNDEFINED.

Attributes
TLBI RVAAE1IS, TLBI RVAAE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAAE1IS, TLBI RVAAE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 923

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1IS, TLBI RVAAE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b011

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 924

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAAE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b011

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 925

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

Page 926

(old) htmldiff from- (new)

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range
Invalidate by VA, All ASID, EL1, Outer Shareable

The TLBI RVAAE1OS, TLBI RVAAE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 927

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAAE1OS, TLBI RVAAE1OSNXS are UNDEFINED.

Attributes
TLBI RVAAE1OS, TLBI RVAAE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAAE1OS, TLBI RVAAE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 928

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAAE1OS, TLBI RVAAE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b011

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 929

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAAE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAAE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b011

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 930

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

Page 931

(old) htmldiff from- (new)

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range
Invalidate by VA, All ASID, Last level, EL1

The TLBI RVAALE1, TLBI RVAALE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 932

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAALE1,
TLBI RVAALE1NXS are UNDEFINED.

Attributes
TLBI RVAALE1, TLBI RVAALE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAALE1, TLBI RVAALE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 933

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1, TLBI RVAALE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b111

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 934

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVAALE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b111

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 935

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1

Page 936

(old) htmldiff from- (new)

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range
Invalidate by VA, All ASID, Last Level, EL1, Inner

Shareable
The TLBI RVAALE1IS, TLBI RVAALE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 937

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVAALE1IS, TLBI RVAALE1ISNXS are UNDEFINED.

Attributes
TLBI RVAALE1IS, TLBI RVAALE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAALE1IS, TLBI RVAALE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 938

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1IS, TLBI RVAALE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b111

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 939

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1IS ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVAALE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b111

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 940

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 941

(old) htmldiff from- (new)

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range
Invalidate by VA, All ASID, Last Level, EL1, Outer

Shareable
The TLBI RVAALE1OS, TLBI RVAALE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 942

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAALE1OS, TLBI RVAALE1OSNXS are UNDEFINED.

Attributes
TLBI RVAALE1OS, TLBI RVAALE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAALE1OS, TLBI RVAALE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 943

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAALE1OS, TLBI RVAALE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b111

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 944

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAALE1OS ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVAALE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b111

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 945

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 946

(old) htmldiff from- (new)

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by
VA, EL1

The TLBI RVAE1, TLBI RVAE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE1,
TLBI RVAE1NXS are UNDEFINED.

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 947

Attributes
TLBI RVAE1, TLBI RVAE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE1, TLBI RVAE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 948

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1, TLBI RVAE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b001

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 949

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b001

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 950

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1

Page 951

(old) htmldiff from- (new)

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate
by VA, EL1, Inner Shareable

The TLBI RVAE1IS, TLBI RVAE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 952

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE1IS,
TLBI RVAE1ISNXS are UNDEFINED.

Attributes
TLBI RVAE1IS, TLBI RVAE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE1IS, TLBI RVAE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 953

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1IS, TLBI RVAE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b001

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 954

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b001

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 955

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable

Page 956

(old) htmldiff from- (new)

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range
Invalidate by VA, EL1, Outer Shareable

The TLBI RVAE1OS, TLBI RVAE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 957

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAE1OS, TLBI RVAE1OSNXS are UNDEFINED.

Attributes
TLBI RVAE1OS, TLBI RVAE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE1OS, TLBI RVAE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 958

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE1OS, TLBI RVAE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b001

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 959

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVAE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b001

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 960

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable

Page 961

(old) htmldiff from- (new)

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by
VA, EL2

The TLBI RVAE2, TLBI RVAE2NXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)], using the EL2 or
EL2&0 translation regime for the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE2,
TLBI RVAE2NXS are UNDEFINED.

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 962

Attributes
TLBI RVAE2, TLBI RVAE2NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE2, TLBI RVAE2NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 963

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2, TLBI RVAE2NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 964

TLBI RVAE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0110 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2

Page 965

(old) htmldiff from- (new)

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate
by VA, EL2, Inner Shareable

The TLBI RVAE2IS, TLBI RVAE2ISNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)], using the EL2 or
EL2&0 translation regime for the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE2IS,
TLBI RVAE2ISNXS are UNDEFINED.

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 966

Attributes
TLBI RVAE2IS, TLBI RVAE2ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE2IS, TLBI RVAE2ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 967

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2IS, TLBI RVAE2ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 968

TLBI RVAE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0010 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable

Page 969

(old) htmldiff from- (new)

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range
Invalidate by VA, EL2, Outer Shareable

The TLBI RVAE2OS, TLBI RVAE2OSNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)], using the EL2 or
EL2&0 translation regime for the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAE2OS, TLBI RVAE2OSNXS are UNDEFINED.

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 970

Attributes
TLBI RVAE2OS, TLBI RVAE2OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE2OS, TLBI RVAE2OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 971

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE2OS, TLBI RVAE2OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 972

TLBI RVAE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0101 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable

Page 973

(old) htmldiff from- (new)

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by
VA, EL3

The TLBI RVAE3, TLBI RVAE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE3,
TLBI RVAE3NXS are UNDEFINED.

Attributes
TLBI RVAE3, TLBI RVAE3NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE3, TLBI RVAE3NXS input value bit assignments are:

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

Page 974

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

Page 975

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3, TLBI RVAE3NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0110 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0110 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3

Page 976

(old) htmldiff from- (new)

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate
by VA, EL3, Inner Shareable

The TLBI RVAE3IS, TLBI RVAE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVAE3IS,
TLBI RVAE3ISNXS are UNDEFINED.

Attributes
TLBI RVAE3IS, TLBI RVAE3ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE3IS, TLBI RVAE3ISNXS input value bit assignments are:

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 977

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 978

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3IS, TLBI RVAE3ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0010 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable

Page 979

(old) htmldiff from- (new)

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range
Invalidate by VA, EL3, Outer Shareable

The TLBI RVAE3OS, TLBI RVAE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVAE3OS, TLBI RVAE3OSNXS are UNDEFINED.

Attributes
TLBI RVAE3OS, TLBI RVAE3OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVAE3OS, TLBI RVAE3OSNXS input value bit assignments are:

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 980

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 981

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVAE3OS, TLBI RVAE3OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVAE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0101 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI RVAE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0101 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable

Page 982

(old) htmldiff from- (new)

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate
by VA, Last level, EL1

The TLBI RVALE1, TLBI RVALE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

For more information about the architectural requirements for this System instruction, see 'Invalidation of TLB entries
from stage 2 translations'.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 983

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE1,
TLBI RVALE1NXS are UNDEFINED.

Attributes
TLBI RVALE1, TLBI RVALE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE1, TLBI RVALE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 984

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1, TLBI RVALE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0110 0b101

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 985

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0110 0b101

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 986

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1

Page 987

(old) htmldiff from- (new)

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range
Invalidate by VA, Last level, EL1, Inner Shareable

The TLBI RVALE1IS, TLBI RVALE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 988

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVALE1IS, TLBI RVALE1ISNXS are UNDEFINED.

Attributes
TLBI RVALE1IS, TLBI RVALE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE1IS, TLBI RVALE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 989

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1IS, TLBI RVALE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0010 0b101

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 990

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0010 0b101

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 991

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

Page 992

(old) htmldiff from- (new)

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range
Invalidate by VA, Last level, EL1, Outer Shareable

The TLBI RVALE1OS, TLBI RVALE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 993

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVALE1OS, TLBI RVALE1OSNXS are UNDEFINED.

Attributes
TLBI RVALE1OS, TLBI RVALE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE1OS, TLBI RVALE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 994

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL1.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE1OS, TLBI RVALE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0101 0b101

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 995

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIRVALE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0101 0b101

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 996

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIRVALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

Page 997

(old) htmldiff from- (new)

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate
by VA, Last level, EL2

The TLBI RVALE2, TLBI RVALE2NXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime for the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE2,
TLBI RVALE2NXS are UNDEFINED.

Attributes
TLBI RVALE2, TLBI RVALE2NXS is a 64-bit System instruction.

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 998

Field descriptions
The TLBI RVALE2, TLBI RVALE2NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 999

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2, TLBI RVALE2NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0110 0b101

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 1000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2

Page 1001

(old) htmldiff from- (new)

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range
Invalidate by VA, Last level, EL2, Inner Shareable

The TLBI RVALE2IS, TLBI RVALE2ISNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime for the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVALE2IS, TLBI RVALE2ISNXS are UNDEFINED.

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1002

Attributes
TLBI RVALE2IS, TLBI RVALE2ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE2IS, TLBI RVALE2ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1003

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2IS, TLBI RVALE2ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1004

TLBI RVALE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0010 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

Page 1005

(old) htmldiff from- (new)

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range
Invalidate by VA, Last level, EL2, Outer Shareable

The TLBI RVALE2OS, TLBI RVALE2OSNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA in the specified range determined by the formula
[BaseADDR <= VA < BaseADDR + ((NUM +1)*2(5*SCALE +1) * Translation_Granule_Size)] using the EL2 or
EL2&0 translation regime for the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVALE2OS, TLBI RVALE2OSNXS are UNDEFINED.

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1006

Attributes
TLBI RVALE2OS, TLBI RVALE2OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE2OS, TLBI RVALE2OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1007

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL2.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE2OS, TLBI RVALE2OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1008

TLBI RVALE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0101 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_RVA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

Page 1009

(old) htmldiff from- (new)

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate
by VA, Last level, EL3

The TLBI RVALE3, TLBI RVALE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to the PE that executes this System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI RVALE3,
TLBI RVALE3NXS are UNDEFINED.

Attributes
TLBI RVALE3, TLBI RVALE3NXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE3, TLBI RVALE3NXS input value bit assignments are:

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

Page 1010

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

Page 1011

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3, TLBI RVALE3NXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0110 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0110 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3

Page 1012

(old) htmldiff from- (new)

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range
Invalidate by VA, Last level, EL3, Inner Shareable

The TLBI RVALE3IS, TLBI RVALE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented. Otherwise, direct accesses to TLBI
RVALE3IS, TLBI RVALE3ISNXS are UNDEFINED.

Attributes
TLBI RVALE3IS, TLBI RVALE3ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE3IS, TLBI RVALE3ISNXS input value bit assignments are:

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 1013

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 1014

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3IS, TLBI RVALE3ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0010 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0010 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

Page 1015

(old) htmldiff from- (new)

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range
Invalidate by VA, Last level, EL3, Outer Shareable

The TLBI RVALE3OS, TLBI RVALE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

• The entry is within the address range determined by the formula [BaseADDR <= VA < BaseADDR + ((NUM
+1)*2(5*SCALE +1) * Translation_Granule_Size)].

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

The range of addresses invalidated is UNPREDICTABLE when:

• For the 4K translation granule:

◦ If TTL==01 and BaseADDR[29:12] is not equal to 000000000000000000.

◦ If TTL==10 and BaseADDR[20:12] is not equal to 000000000.

• For the 16K translation granule:

◦ If TTL==10 and BaseADDR[24:14] is not equal to 00000000000.

• For the 64K translation granule:

◦ If TTL==01 and BaseADDR[41:16] is not equal to 00000000000000000000000000.

◦ If TTL==10 and BaseADDR[28:16] is not equal to 0000000000000.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIRANGE is implemented and FEAT_TLBIOS is implemented.
Otherwise, direct accesses to TLBI RVALE3OS, TLBI RVALE3OSNXS are UNDEFINED.

Attributes
TLBI RVALE3OS, TLBI RVALE3OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI RVALE3OS, TLBI RVALE3OSNXS input value bit assignments are:

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 1016

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TG SCALE NUM TTL BaseADDR

BaseADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TG, bits [47:46]

Translation granule size.

TG Meaning
0b00 Reserved.
0b01 4K translation granule.
0b10 16K translation granule.
0b11 64K translation granule.

The instruction takes a translation granule size for the translations that are being invalidated. If the translations used
a different translation granule size than the one being specified, then the architecture does not require that the
instruction invalidates any entries.

SCALE, bits [45:44]

The exponent element of the calculation that is used to produce the upper range.

NUM, bits [43:39]

The base element of the calculation that is used to produce the upper range.

TTL, bits [38:37]

TTL Level hint. The TTL hint is only guaranteed to invalidate entries in the range that match the level described by the
TTL hint.

TTL Meaning
0b00 The entries in the range can be using any level for the translation

table entries.
0b01 All entries to invalidate are Level 1 translation table entries.

If FEAT_LPA2 is not implemented, when using a 16KB translation
granule, this value is reserved and hardware should treat this
field as 0b00.

0b10 All entries to invalidate are Level 2 translation table entries.
0b11 All entries to invalidate are Level 3 translation table entries.

BaseADDR, bits [36:0]

When FEAT_LPA2 is implemented and TCR_EL3.DS == 1:

The starting address for the range of the maintenance instructions. This field is BaseADDR[52:16] for all translation
granules.

When using a 4KB translation granule, BaseADDR[15:12] is treated as 0b0000.

When using a 16KB translation granule, BaseADDR[15:14] is treated as 0b00.

Otherwise:

The starting address for the range of the maintenance instruction.

When using a 4KB translation granule, this field is BaseADDR[48:12].

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 1017

When using a 16KB translation granule, this field is BaseADDR[50:14].

When using a 64KB translation granule, this field is BaseADDR[52:16].

Executing the TLBI RVALE3OS, TLBI RVALE3OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI RVALE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0101 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI RVALE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0101 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_RVA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

Page 1018

(old) htmldiff from- (new)

TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All
ASID, EL1

The TLBI VAAE1, TLBI VAAE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAAE1, TLBI VAAE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI VAAE1, TLBI VAAE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

Page 1019

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1, TLBI VAAE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

Page 1020

TLBI VAAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAAE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAAE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0111 0b011

TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

Page 1021

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1

Page 1022

(old) htmldiff from- (new)

TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by
VA, All ASID, EL1, Inner Shareable

The TLBI VAAE1IS, TLBI VAAE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1023

Attributes
TLBI VAAE1IS, TLBI VAAE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAAE1IS, TLBI VAAE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1024

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1IS, TLBI VAAE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAAE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAAE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0011 0b011

TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1025

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable

Page 1026

(old) htmldiff from- (new)

TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by
VA, All ASID, EL1, Outer Shareable

The TLBI VAAE1OS, TLBI VAAE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1027

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAAE1OS,
TLBI VAAE1OSNXS are UNDEFINED.

Attributes
TLBI VAAE1OS, TLBI VAAE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAAE1OS, TLBI VAAE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1028

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAAE1OS, TLBI VAAE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAAE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAAE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0001 0b011

TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1029

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable

Page 1030

(old) htmldiff from- (new)

TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA,
All ASID, Last level, EL1

The TLBI VAALE1, TLBI VAALE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAALE1, TLBI VAALE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI VAALE1, TLBI VAALE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1031

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1, TLBI VAALE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1032

TLBI VAALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VAALE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0111 0b111

TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1033

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1

Page 1034

(old) htmldiff from- (new)

TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by
VA, All ASID, Last Level, EL1, Inner Shareable

The TLBI VAALE1IS, TLBI VAALE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1035

Attributes
TLBI VAALE1IS, TLBI VAALE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAALE1IS, TLBI VAALE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1036

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1IS, TLBI VAALE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VAALE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0011 0b111

TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1037

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

Page 1038

(old) htmldiff from- (new)

TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate
by VA, All ASID, Last Level, EL1, Outer Shareable

The TLBI VAALE1OS, TLBI VAALE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 and EL2&0 translation regimes, the invalidation applies to
both global entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1039

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAALE1OS,
TLBI VAALE1OSNXS are UNDEFINED.

Attributes
TLBI VAALE1OS, TLBI VAALE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAALE1OS, TLBI VAALE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1040

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the VA will be affected by this
System instruction, regardless of the ASID.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAALE1OS, TLBI VAALE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b111

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAALE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VAALE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0001 0b111

TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1041

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VAA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VAA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

Page 1042

(old) htmldiff from- (new)

TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1
The TLBI VAE1, TLBI VAE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAE1, TLBI VAE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE1, TLBI VAE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

Page 1043

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

Page 1044

Executing the TLBI VAE1, TLBI VAE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.FB == '1' then

if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()
&& HCRX_EL2.FnXS == '1' then

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

else
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()
&& HCRX_EL2.FnXS == '1' then

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Any, TLBI_ExcludeXS, X[t]);

else
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0111 0b001

TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

Page 1045

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1

Page 1046

(old) htmldiff from- (new)

TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA,
EL1, Inner Shareable

The TLBI VAE1IS, TLBI VAE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1047

Configuration
There are no configuration notes.

Attributes
TLBI VAE1IS, TLBI VAE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE1IS, TLBI VAE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1048

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1IS, TLBI VAE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1049

TLBI VAE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0011 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable

Page 1050

(old) htmldiff from- (new)

TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA,
EL1, Outer Shareable

The TLBI VAE1OS, TLBI VAE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is from a level of lookup above the final level and matches the specified ASID.

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1051

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAE1OS, TLBI
VAE1OSNXS are UNDEFINED.

Attributes
TLBI VAE1OS, TLBI VAE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE1OS, TLBI VAE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1052

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE1OS, TLBI VAE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVAE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1053

TLBI VAE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0001 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVAE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable

Page 1054

(old) htmldiff from- (new)

TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2
The TLBI VAE2, TLBI VAE2NXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime for
the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAE2, TLBI VAE2NXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE2, TLBI VAE2NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

Page 1055

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2, TLBI VAE2NXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

Page 1056

TLBI VAE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0111 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

Page 1057

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2

Page 1058

(old) htmldiff from- (new)

TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA,
EL2, Inner Shareable

The TLBI VAE2IS, TLBI VAE2ISNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime for
the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAE2IS, TLBI VAE2ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE2IS, TLBI VAE2ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1059

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1060

Executing the TLBI VAE2IS, TLBI VAE2ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0011 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1061

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable

Page 1062

(old) htmldiff from- (new)

TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA,
EL2, Outer Shareable

The TLBI VAE2OS, TLBI VAE2OSNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be required to translate the specified VA using the EL2 or the EL2&0 translation regime for
the Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from any level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is from a level of the translation table walk above the final level and matches the
specified ASID.

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk and matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAE2OS, TLBI
VAE2OSNXS are UNDEFINED.

Attributes
TLBI VAE2OS, TLBI VAE2OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE2OS, TLBI VAE2OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1063

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1064

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE2OS, TLBI VAE2OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0001 0b001

TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1065

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Any, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable

Page 1066

(old) htmldiff from- (new)

TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3
The TLBI VAE3, TLBI VAE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAE3, TLBI VAE3NXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE3, TLBI VAE3NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3

Page 1067

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3, TLBI VAE3NXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0111 0b001

TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3

Page 1068

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0111 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3

Page 1069

(old) htmldiff from- (new)

TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA,
EL3, Inner Shareable

The TLBI VAE3IS, TLBI VAE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VAE3IS, TLBI VAE3ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE3IS, TLBI VAE3ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1070

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3IS, TLBI VAE3ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0011 0b001

TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1071

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0011 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable

Page 1072

(old) htmldiff from- (new)

TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA,
EL3, Outer Shareable

The TLBI VAE3OS, TLBI VAE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VAE3OS, TLBI
VAE3OSNXS are UNDEFINED.

Attributes
TLBI VAE3OS, TLBI VAE3OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VAE3OS, TLBI VAE3OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable

Page 1073

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VAE3OS, TLBI VAE3OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VAE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0001 0b001

TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable

Page 1074

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_AllAttr, X[t]);

TLBI VAE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0001 0b001

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Any, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable

Page 1075

(old) htmldiff from- (new)

TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA,
Last level, EL1

The TLBI VALE1, TLBI VALE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VALE1, TLBI VALE1NXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE1, TLBI VALE1NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

Page 1076

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

Page 1077

Executing the TLBI VALE1, TLBI VALE1NXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0111 0b101

TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

Page 1078

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVALE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1

Page 1079

(old) htmldiff from- (new)

TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA,
Last level, EL1, Inner Shareable

The TLBI VALE1IS, TLBI VALE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1080

Attributes
TLBI VALE1IS, TLBI VALE1ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE1IS, TLBI VALE1ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1081

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1IS, TLBI VALE1ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1IS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0011 0b101

TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1082

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVALE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable

Page 1083

(old) htmldiff from- (new)

TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by
VA, Last level, EL1, Outer Shareable

The TLBI VALE1OS, TLBI VALE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA, and one of the following applies:

◦ The entry is a global entry from the final level of lookup.

◦ The entry is a non-global entry from the final level of lookup that matches the specified ASID.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1084

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VALE1OS,
TLBI VALE1OSNXS are UNDEFINED.

Attributes
TLBI VALE1OS, TLBI VALE1OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE1OS, TLBI VALE1OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1085

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE1OS, TLBI VALE1OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVALE1OS == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1086

TLBI VALE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0001 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVALE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable

Page 1087

(old) htmldiff from- (new)

TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA,
Last level, EL2

The TLBI VALE2, TLBI VALE2NXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime for the
Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VALE2, TLBI VALE2NXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE2, TLBI VALE2NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

Page 1088

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

Page 1089

Executing the TLBI VALE2, TLBI VALE2NXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE2{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE2NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0111 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE, Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_NSHShareability_None,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

Page 1090

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2

Page 1091

(old) htmldiff from- (new)

TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA,
Last level, EL2, Inner Shareable

The TLBI VALE2IS, TLBI VALE2ISNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime for the
Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VALE2IS, TLBI VALE2ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE2IS, TLBI VALE2ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ASID, bits [63:48]

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1092

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2IS, TLBI VALE2ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1093

TLBI VALE2IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE2ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0011 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_ISHShareability_Inner,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1094

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable

Page 1095

(old) htmldiff from- (new)

TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by
VA, Last level, EL2, Outer Shareable

The TLBI VALE2OS, TLBI VALE2OSNXS characteristics are:

Purpose
When EL2 is implemented and enabled in the current Security state, invalidates cached copies of translation table
entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry.

• The entry would be used to translate the specified VA using the EL2 or EL2&0 translation regime for the
Security state indicated by the current value ofregime. SCR_EL3.NS.

• If HCR_EL2.E2H == 0, the entry is from the final level of the translation table walk.

• If HCR_EL2.E2H == 1, one of the following applies:

◦ The entry is a global entry from the final level of the translation table walk.

◦ The entry is a non-global entry from the final level of the translation table walk that matches the
specified ASID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VALE2OS,
TLBI VALE2OSNXS are UNDEFINED.

Attributes
TLBI VALE2OS, TLBI VALE2OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE2OS, TLBI VALE2OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ASID TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1096

ASID, bits [63:48]

When HCR_EL2.E2H == 1:

ASID value to match. Any TLB entries that match the ASID value and VA value will be affected by this System
instruction.

Global TLB entries that match the VA value will be affected by this System instruction, regardless of the value of the
ASID field.

If the implementation supports 16 bits of ASID, then the upper 8 bits of the ASID must be written to 0 by software
when the context being invalidated only uses 8 bits.

Otherwise:

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1097

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE2OS, TLBI VALE2OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE2OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_AllAttr, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE2OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0001 0b101

TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1098

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
UNDEFINED;

elsif HCR_EL2.E2H == '1' then
TLBI_VA(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBILevel_Last, TLBI_ExcludeXS, X[t]);
else

TLBI_VA(SecurityStateAtEL(EL2), Regime_EL2, VMID[], Shareability_OSHShareability_Outer,
TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable

Page 1099

(old) htmldiff from- (new)

TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA,
Last level, EL3

The TLBI VALE3, TLBI VALE3NXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to the PE that executes this System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VALE3, TLBI VALE3NXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE3, TLBI VALE3NXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3

Page 1100

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3, TLBI VALE3NXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE3{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0111 0b101

TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3

Page 1101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE3NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0111 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_NSHShareability_None,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3

Page 1102

(old) htmldiff from- (new)

TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA,
Last level, EL3, Inner Shareable

The TLBI VALE3IS, TLBI VALE3ISNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VALE3IS, TLBI VALE3ISNXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE3IS, TLBI VALE3ISNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1103

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3IS, TLBI VALE3ISNXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE3IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0011 0b101

TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1104

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE3ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0011 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_ISHShareability_Inner,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable

Page 1105

(old) htmldiff from- (new)

TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by
VA, Last level, EL3, Outer Shareable

The TLBI VALE3OS, TLBI VALE3OSNXS characteristics are:

Purpose
If EL3 is implemented, invalidates cached copies of translation table entries from TLBs that meet all the following
requirements:

• The entry is a stage 1 translation table entry, from the final level of the translation table walk.

• The entry would be used to translate the specified VA using the EL3 translation regime.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VALE3OS,
TLBI VALE3OSNXS are UNDEFINED.

Attributes
TLBI VALE3OS, TLBI VALE3OSNXS is a 64-bit System instruction.

Field descriptions
The TLBI VALE3OS, TLBI VALE3OSNXS input value bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 TTL VA[55:12]

VA[55:12]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

TTL, bits [47:44]

When FEAT_TTL is implemented:

Translation Table Level. Indicates the level of the page table walk that holds the leaf entry for the address being
invalidated.

TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

Page 1106

TTL Meaning
0b00xx No information supplied as to the translation table level.

Hardware must assume that the entry can be from any level. In
this case, TTL<1:0> is RES0.

0b01xx The entry comes from a 4KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : If FEAT_LPA2 is implemented, level 0. Otherwise, treat
as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

0b10xx The entry comes from a 16KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : If FEAT_LPA2 is implemented, level 1. Otherwise, treat
as if TTL<3:2> is 0b00.
0b10 : Level 2.
0b11 : Level 3.

0b11xx The entry comes from a 64KB translation granule. The level of
walk for the leaf level 0bxx is encoded as:
0b00 : Reserved. Treat as if TTL<3:2> is 0b00.
0b01 : Level 1.
0b10 : Level 2.
0b11 : Level 3.

If an incorrect value of the TTL field is specified for the entry being invalidated by the instruction, then no entries are
required by the architecture to be invalidated from the TLB.

Otherwise:

Reserved, RES0.

VA[55:12], bits [43:0]

Bits[55:12] of the virtual address to match. Any appropriate TLB entries that match the ASID value (if appropriate)
and VA will be affected by this System instruction.

If the TLB maintenance instructions are targeting a translation regime that is using AArch32, and so has a VA of only
32 bits, then the software must treat bits[55:32] as RES0.

The treatment of the low-order bits of this field depends on the translation granule size, as follows:

• Where a 4KB translation granule is being used, all bits are valid and used for the invalidation.

• Where a 16KB translation granule is being used, bits [1:0] of this field are RES0 and ignored when the
instruction is executed, because VA[13:12] have no effect on the operation of the instruction.

• Where a 64KB translation granule is being used, bits [3:0] of this field are RES0 and ignored when the
instruction is executed, because VA[15:12] have no effect on the operation of the instruction.

Executing the TLBI VALE3OS, TLBI VALE3OSNXS instruction
Accesses to this instruction use the following encodings:

TLBI VALE3OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1000 0b0001 0b101

TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

Page 1107

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_AllAttr, X[t]);

TLBI VALE3OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b110 0b1001 0b0001 0b101

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
TLBI_VA(SecurityStateAtEL(EL3), Regime_EL3, VMID[], Shareability_OSHShareability_Outer,

TLBILevel_Last, TLBI_ExcludeXS, X[t]);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable

Page 1108

(old) htmldiff from- (new)

TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by
VMID, All at stage 1, EL1

The TLBI VMALLE1, TLBI VMALLE1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VMALLE1, TLBI VMALLE1NXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1

Page 1109

Executing the TLBI VMALLE1, TLBI VMALLE1NXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI VMALLE1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0111 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1 == '1'

then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_NSHShareability_None, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_AllAttr);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_AllAttr);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_AllAttr);

TLBI VMALLE1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0111 0b000

TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1

Page 1110

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVMALLE1 == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

elsif EL2Enabled() && HCR_EL2.FB == '1' then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_NSHShareability_None, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1

Page 1111

(old) htmldiff from- (new)

TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate
by VMID, All at stage 1, EL1, Inner Shareable

The TLBI VMALLE1IS, TLBI VMALLE1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1112

Attributes
TLBI VMALLE1IS, TLBI VMALLE1ISNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLE1IS, TLBI VMALLE1ISNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI VMALLE1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0011 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1IS ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_AllAttr);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_AllAttr);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr);

TLBI VMALLE1ISNXS{, <Xt>}

op0 op1 CRn CRm op2

TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1113

0b01 0b000 0b1001 0b0011 0b000

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBIS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVMALLE1IS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_ExcludeXS);

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

Page 1114

(old) htmldiff from- (new)

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB
Invalidate by VMID, All at stage 1, EL1, Outer

Shareable
The TLBI VMALLE1OS, TLBI VMALLE1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 translation table entry, from any level of the translation table walk.

• When EL2 is implemented and enabled in the Security state described by the current value of SCR_EL3.NS:

◦ If HCR_EL2.{E2H, TGE} is not {1, 1}, the entry would be used with the current VMID, and would
be required to translate the specified VA using the EL1&0 translation regime for the Security state
indicated by the current value ofregime. SCR_EL3.NS.

◦ If HCR_EL2.{E2H, TGE} is {1, 1}, the entry would be required to translate the specified VA using
the EL2&0 translation regime for the Security state indicated by the current value ofregime.
SCR_EL3.NS.

• When EL2 is not implemented or is disabled in the current Security state, the entry would be required to
translate the specified VA using the EL1&0 translation regime for the Security state indicated by the current
value ofregime. SCR_EL3.NS.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

Page 1115

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI VMALLE1OS,
TLBI VMALLE1OSNXS are UNDEFINED.

Attributes
TLBI VMALLE1OS, TLBI VMALLE1OSNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLE1OS, TLBI VMALLE1OSNXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI VMALLE1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1000 0b0001 0b000

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

Page 1116

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGITR_EL2.TLBIVMALLE1OS ==

'1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
if IsFeatureImplemented(FEAT_XS) && IsFeatureImplemented(FEAT_HCX) && IsHCRXEL2Enabled()

&& HCRX_EL2.FnXS == '1' then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_AllAttr);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_AllAttr);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_AllAttr);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_AllAttr);

TLBI VMALLE1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b000 0b1001 0b0001 0b000

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

Page 1117

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.TTLB == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.TTLBOS == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && IsFeatureImplemented(FEAT_HCX)

&& (!IsHCRXEL2Enabled() || HCRX_EL2.FGTnXS == '0')' && HFGITR_EL2.TLBIVMALLE1OS == '1' then
AArch64.SystemAccessTrap(EL2, 0x18);

else
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBI_ExcludeXS);
elsif PSTATE.EL == EL2 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if HCR_EL2.<E2H,TGE> == '11' then
TLBI_VMALL(SecurityStateAtEL(EL2), Regime_EL20, VMID_NONE,

Shareability_OSHShareability_Outer, TLBI_ExcludeXS);
else

TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

Page 1118

(old) htmldiff from- (new)

TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB
Invalidate by VMID, All at Stage 1 and 2, EL1

The TLBI VMALLS12E1, TLBI VMALLS12E1NXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0, then:

◦ The entry would be required to translate an address using the Secure EL1&0 translation regime.

◦ If FEAT_SEL2 is implemented and enabled, the entry would be used with the current VMID.

• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to the PE that executes this System instruction.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

Configuration
There are no configuration notes.

Attributes
TLBI VMALLS12E1, TLBI VMALLS12E1NXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1119

Executing the TLBI VMALLS12E1, TLBI VMALLS12E1NXS instruction
When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI VMALLS12E1{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0111 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,

TLBI_AllAttr);
else

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBI_AllAttr);

TLBI VMALLS12E1NXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0111 0b110

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_NSHShareability_None,

TLBI_ExcludeXS);
else

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_NSHShareability_None, TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1120

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1

Page 1121

(old) htmldiff from- (new)

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB
Invalidate by VMID, All at Stage 1 and 2, EL1, Inner

Shareable
The TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0, then:

◦ The entry would be required to translate an address using the Secure EL1&0 translation regime.

◦ If FEAT_SEL2 is implemented and enabled, the entry would be used with the current VMID.

• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Inner Shareable shareability domain as the PE that executes this
System instruction.

Note

From Armv8.4, when a TLB maintenance instruction is generated to the
Secure EL1&0 translation regime and is defined to pass a VMID argument, or
would be defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1122

Configuration
There are no configuration notes.

Attributes
TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS
instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI VMALLS12E1IS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_AllAttr);
else

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_AllAttr);

TLBI VMALLS12E1ISNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0011 0b110

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1123

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_ISHShareability_Inner,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_ISHShareability_Inner, TLBI_ExcludeXS);
else

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_ISHShareability_Inner, TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable

Page 1124

(old) htmldiff from- (new)

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB
Invalidate by VMID, All at Stage 1 and 2, EL1, Outer

Shareable
The TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS characteristics are:

Purpose
Invalidates cached copies of translation table entries from TLBs that meet all the following requirements:

• The entry is a stage 1 or stage 2 translation table entry, from any level of the translation table walk.

• If SCR_EL3.NS is 0, then:

◦ The entry would be required to translate an address using the Secure EL1&0 translation regime.

◦ If FEAT_SEL2 is implemented and enabled, the entry would be used with the current VMID.

• If SCR_EL3.NS is 1, then:

◦ The entry would be required to translate an address using the Non-secure EL1&0 translation
regime.

◦ If Non-secure EL2 is implemented, the entry would be used with the current VMID.

The invalidation applies to all PEs in the same Outer Shareable shareability domain as the PE that executes this
System instruction.

Note

When a TLB maintenance instruction is generated to the Secure EL1&0
translation regime and is defined to pass a VMID argument, or would be
defined to pass a VMID argument if SCR_EL3.EEL2==1, then:

• A PE with SCR_EL3.EEL2==1 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==0.

• A PE with SCR_EL3.EEL2==0 is not architecturally required to
invalidate any entries in the Secure EL1&0 translation of a PE in the
same required shareability domain with SCR_EL3.EEL2==1.

• A PE is architecturally required to invalidate all relevant entries in the
Secure EL1&0 translation of a System MMU in the same required
shareability domain with a VMID of 0.

Note

For the EL1&0 translation regimes, the invalidation applies to both global
entries and non-global entries with any ASID.

If FEAT_XS is implemented, the nXS variant of this System instruction is defined.

Both variants perform the same invalidation, but the TLBI System instruction without the nXS qualifier waits for all
memory accesses using in-scope old translation information to complete before it is considered complete.

The TLBI System instruction with the nXS qualifier is considered complete when the subset of these memory accesses
with XS attribute set to 0 are complete.

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

Page 1125

Configuration
This instruction is present only when FEAT_TLBIOS is implemented. Otherwise, direct accesses to TLBI
VMALLS12E1OS, TLBI VMALLS12E1OSNXS are UNDEFINED.

Attributes
TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS is a 64-bit System instruction.

Field descriptions
This instruction has no applicable fields.

The value in the register specified by <Xt> is ignored.

Executing the TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS
instruction

When executing this instruction Xt should be encoded as 0b11111. If the Xt field is not set to 0b11111, it is
CONSTRAINED UNPREDICTABLE whether:

• The instruction is UNDEFINED.

• The instruction behaves as if the Xt field is set to 0b11111.

Accesses to this instruction use the following encodings:

TLBI VMALLS12E1OS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1000 0b0001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBI_AllAttr);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBI_AllAttr);
else

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_AllAttr);

TLBI VMALLS12E1OSNXS{, <Xt>}

op0 op1 CRn CRm op2
0b01 0b100 0b1001 0b0001 0b110

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

Page 1126

if !IsFeatureImplemented(FEAT_XS) then
UNDEFINED;

elsif PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[], Shareability_OSHShareability_Outer,
TLBI_ExcludeXS);
elsif PSTATE.EL == EL3 then

if !EL2Enabled() then
TLBI_VMALL(SecurityStateAtEL(EL1), Regime_EL10, VMID[],

Shareability_OSHShareability_Outer, TLBI_ExcludeXS);
else

TLBI_VMALLS12(SecurityStateAtEL(EL1), Regime_EL10, VMID[],
Shareability_OSHShareability_Outer, TLBI_ExcludeXS);

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable

Page 1127

(old) htmldiff from- (new)

UAO, User Access Override
The UAO characteristics are:

Purpose
Allows access to the User Access Override bit.

Configuration
This register is present only when FEAT_UAO is implemented. Otherwise, direct accesses to UAO are UNDEFINED.

Attributes
UAO is a 64-bit register.

Field descriptions
The UAO bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 UAO RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:24]

Reserved, RES0.

UAO, bit [23]

User Access Override.

UAO Meaning
0b0 The behavior of LDTR* and STTR* instructions is as defined in

the base Armv8 architecture.
0b1 When executed at EL1, or at EL2 with HCR_EL2.{E2H, TGE} ==

{1, 1}, LDTR* and STTR* instructions behave as the equivalent
LDR* and STR* instructions.

When executed at EL3, or at EL2 with HCR_EL2.E2H == 0 or HCR_EL2.TGE == 0, the LDTR* and STTR* instructions
behave as the equivalent LDR* and STR* instructions, regardless of the setting of the PSTATE.UAO bit.

Bits [22:0]

Reserved, RES0.

Accessing the UAO
For moredetails information abouton the operation of the MSR (immediate) accessor, see 'MSR (immediate)'.

Accesses to this register use the following encodings:

UAO, User Access Override

Page 1128

MRS <Xt>, UAO

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
return Zeros(40):PSTATE.UAO:Zeros(23);

elsif PSTATE.EL == EL2 then
return Zeros(40):PSTATE.UAO:Zeros(23);

elsif PSTATE.EL == EL3 then
return Zeros(40):PSTATE.UAO:Zeros(23);

MSR UAO, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0100 0b0010 0b100

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
PSTATE.UAO = X[t]<23>;

elsif PSTATE.EL == EL2 then
PSTATE.UAO = X[t]<23>;

elsif PSTATE.EL == EL3 then
PSTATE.UAO = X[t]<23>;

MSR UAO, #<imm>

op0 op1 CRn op2
0b00 0b000 0b0100 0b011

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

UAO, User Access Override

Page 1129

(old) htmldiff from- (new)

VBAR_EL1, Vector Base Address Register (EL1)
The VBAR_EL1 characteristics are:

Purpose
Holds the vector base address for any exception that is taken to EL1.

Configuration
AArch64 System register VBAR_EL1 bits [31:0] are architecturally mapped to AArch32 System register VBAR[31:0].

Attributes
VBAR_EL1 is a 64-bit register.

Field descriptions
The VBAR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Vector Base Address

Vector Base Address RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL1.

Note

If the implementation does not support FEAT_LVA, then:

• If tagged addresses are being used, bits [55:48] of VBAR_EL1 must be
the same or else the use of the vector address will result in a recursive
exception.

• If tagged addresses are not being used, bits [63:48] of VBAR_EL1 must
be the same or else the use of the vector address will result in a
recursive exception.

If the implementation supports FEAT_LVA, then:

• If tagged addresses are being used, bits [55:52] of VBAR_EL1 must be
the same or else the use of the vector address will result in a recursive
exception.

• If tagged addresses are not being used, bits [63:52] of VBAR_EL1 must
be the same or else the use of the vector address will result in a
recursive exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

VBAR_EL1, Vector Base Address Register (EL1)

Page 1130

AArch32-vbar.html

Accessing the VBAR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic VBAR_EL1 or
VBAR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, VBAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.VBAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x250];
else

return VBAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return VBAR_EL2;

else
return VBAR_EL1;

elsif PSTATE.EL == EL3 then
return VBAR_EL1;

MSR VBAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.VBAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x250] = X[t];
else

VBAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
VBAR_EL2 = X[t];

else
VBAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
VBAR_EL1 = X[t];

MRS <Xt>, VBAR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b1100 0b0000 0b000

VBAR_EL1, Vector Base Address Register (EL1)

Page 1131

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x250];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return VBAR_EL1;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

return VBAR_EL1;
else

UNDEFINED;

MSR VBAR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x250] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
VBAR_EL1 = X[t];

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then

VBAR_EL1 = X[t];
else

UNDEFINED;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VBAR_EL1, Vector Base Address Register (EL1)

Page 1132

(old) htmldiff from- (new)

VBAR_EL2, Vector Base Address Register (EL2)
The VBAR_EL2 characteristics are:

Purpose
Holds the vector base address for any exception that is taken to EL2.

Configuration
AArch64 System register VBAR_EL2 bits [31:0] are architecturally mapped to AArch32 System register HVBAR[31:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VBAR_EL2 is a 64-bit register.

Field descriptions
The VBAR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
Vector Base Address

Vector Base Address RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:11]

Vector Base Address. Base address of the exception vectors for exceptions taken to EL2.

Note

If FEAT_LVA is implemented:

• If HCR_EL2.E2H == 0b1:
◦ If tagged addresses are being used, bits [55:52] of VBAR_EL2

must be the same or else the use of the vector address will result
in a recursive exception.

◦ If tagged addresses are not being used, bits [63:52] of
VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If HCR_EL2.E2H == 0b0:
◦ If tagged addresses are being used, bits [55:52] of VBAR_EL2

must be 0 or else the use of the vector address will result in a
recursive exception.

◦ If tagged addresses are not being used, bits [63:52] of
VBAR_EL2 must be 0 or else the use of the vector address will
result in a recursive exception.

If FEAT_LVA is not implemented:

• If HCR_EL2.E2H == 0b1:
◦ If tagged addresses are being used, bits [55:48] of VBAR_EL2

must be the same or else the use of the vector address will result
in a recursive exception.

VBAR_EL2, Vector Base Address Register (EL2)

Page 1133

AArch32-hvbar.html

◦ If tagged addresses are not being used, bits [63:48] of
VBAR_EL2 must be the same or else the use of the vector
address will result in a recursive exception.

• If HCR_EL2.E2H == 0b0:
◦ If tagged addresses are being used, bits [55:48] of VBAR_EL2

must be 0 or else the use of the vector address will result in a
recursive exception.

◦ If tagged addresses are not being used, bits [63:48] of
VBAR_EL2 must be 0 or else the use of the vector address will
result in a recursive exception.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [10:0]

Reserved, RES0.

Accessing the VBAR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic VBAR_EL2 or
VBAR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, VBAR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VBAR_EL2;
elsif PSTATE.EL == EL3 then

return VBAR_EL2;

MSR VBAR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VBAR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VBAR_EL2 = X[t];

VBAR_EL2, Vector Base Address Register (EL2)

Page 1134

MRS <Xt>, VBAR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGRTR_EL2.VBAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x250];
else

return VBAR_EL1;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
return VBAR_EL2;

else
return VBAR_EL1;

elsif PSTATE.EL == EL3 then
return VBAR_EL1;

MSR VBAR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '01101' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && (!HaveEL(EL3) || SCR_EL3.FGTEn == '1') && HFGWTR_EL2.VBAR_EL1 == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x250] = X[t];
else

VBAR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
VBAR_EL2 = X[t];

else
VBAR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
VBAR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VBAR_EL2, Vector Base Address Register (EL2)

Page 1135

(old) htmldiff from- (new)

VDISR_EL2, Virtual Deferred Interrupt Status Register
The VDISR_EL2 characteristics are:

Purpose
Records that a virtual SError interrupt has been consumed by an ESB instruction executed at EL1.

An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation for
the value written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after the ESB
instruction.

Configuration
AArch64 System register VDISR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VDISR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VDISR_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VDISR_EL2 is a 64-bit register.

Field descriptions
The VDISR_EL2 bit assignments are:

When EL1 is using AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 IDS ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:25]

Reserved, RES0.

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1136

IDS, bit [24]

The value copied from VSESR_EL2.IDS.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

The value copied from VSESR_EL2.ISS.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 AET RES0ExTRES0FS[4]LPAE RES0 FS[3:0]
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt.

FS Meaning
0b10110 Asynchronous SError interrupt.

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1137

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR_EL2[10].
• FS[3:0] is VDISR_EL2[3:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b0 Using the Short-descriptor translation table format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

When EL1 is using AArch32 and VDISR_EL2.LPAE == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

A RES0 AET RES0ExT RES0 LPAE RES0 STATUS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VSESR_EL2.AET.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VSESR_EL2.ExT.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1138

AArch32-ttbcr.html

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b1 Using the Long-descriptor translation table format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

STATUS Meaning
0b010001 Asynchronous SError interrupt.

All other values are reserved.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the VDISR_EL2
An indirect write to VDISR_EL2 made by an ESB instruction does not require an explicit synchronization operation for
the value that is written to be observed by a direct read of DISR_EL1 or DISR occurring in program order after the ESB
instruction.

Accesses to this register use the following encodings:

MRS <Xt>, VDISR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x500];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VDISR_EL2;
elsif PSTATE.EL == EL3 then

return VDISR_EL2;

MSR VDISR_EL2, <Xt>

op0 op1 CRn CRm op2

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1139

AArch32-ttbcr.html

0b11 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x500] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VDISR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VDISR_EL2 = X[t];

MRS <Xt>, DISR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AMO == '1' then

return VDISR_EL2;
elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then

return Zeros();
else

return DISR_EL1;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
return Zeros();

else
return DISR_EL1;

elsif PSTATE.EL == EL3 then
return DISR_EL1;

MSR DISR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.AMO == '1' then

VDISR_EL2 = X[t];
elsif HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then

//no operation
else

DISR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !Halted() && SCR_EL3.EA == '1' then
//no operation

else
DISR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
DISR_EL1 = X[t];

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1140

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VDISR_EL2, Virtual Deferred Interrupt Status Register

Page 1141

(old) htmldiff from- (new)

VSESR_EL2, Virtual SError Exception Syndrome
Register

The VSESR_EL2 characteristics are:

Purpose
Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on
executing an ESB instruction at EL1.

When the virtual SError interrupt injectedis taken to EL1 using AArch64, then the syndrome value is reported in
HCR_EL2.VSE is taken to EL1 using AArch64, then the syndrome value is reported in ESR_EL1.

When the virtual SError interrupt injectedis taken to EL1 using AArch32, then the syndrome value is reported in
HCR_EL2.VSE is taken to EL1 using AArch32, then the syndrome value is reported in DFSR.{AET, ExT} and the
remainder of DFSR is set as defined by VMSAv8-32. For more information, see The AArch32 Virtual Memory System
Architecture.

When the virtual SError interrupt injectedis usingdeferred by an HCR_EL2.VSE is deferred by an ESB instruction, then
the syndrome value is written to VDISR_EL2.

Configuration
AArch64 System register VSESR_EL2 bits [31:0] are architecturally mapped to AArch32 System register VDFSR[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VSESR_EL2 are
UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSESR_EL2 is a 64-bit register.

Field descriptions
The VSESR_EL2 bit assignments are:

When EL1 is using AArch32:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 AET RES0ExT RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VSESR_EL2.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[15:4] is set to VSESR_EL2.AET.

VSESR_EL2, Virtual SError Exception Syndrome Register

Page 1142

AArch32-dfsr.html
AArch32-dfsr.html
AArch32-dfsr.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VSESR_EL2.ExT.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[12] is set to VSESR_EL2.ExT.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

When EL1 is using AArch64:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 IDS ISS
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:25]

Reserved, RES0.

IDS, bit [24]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[24] is set to VSESR_EL2.IDS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[24] is set to VSESR_EL2.IDS.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ISS, bits [23:0]

When a virtual SError interrupt is taken to EL1 using AArch64, ESR_EL1[23:0] is set to VSESR_EL2.ISS.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR_EL2[23:0] is set to VSESR_EL2.ISS.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the VSESR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VSESR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b011

VSESR_EL2, Virtual SError Exception Syndrome Register

Page 1143

AArch32-dfsr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x508];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VSESR_EL2;
elsif PSTATE.EL == EL3 then

return VSESR_EL2;

MSR VSESR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x508] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VSESR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VSESR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VSESR_EL2, Virtual SError Exception Syndrome Register

Page 1144

(old) htmldiff from- (new)

VSTTBR_EL2, Virtualization Secure Translation Table
Base Register

The VSTTBR_EL2 characteristics are:

Purpose
The base register for stage 2 of the Secure EL1&0 translation regime. Holds the base address of the translation table
for the initial lookup for stage 2 of an address translation in the Secure EL1&0 translation regime, and other
information for this translation stage.

Configuration
This register is present only when FEAT_SEL2 is implemented. Otherwise, direct accesses to VSTTBR_EL2 are
UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VSTTBR_EL2 is a 64-bit register.

Field descriptions
The VSTTBR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Any of the bits in VSTTBR_EL2 are permitted to be cached in a TLB.

Bits [63:48]

Reserved, RES0.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes FEAT_LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

A translation table must be aligned to the size of the table, except that when
using a translation table base address larger than 48 bits the minimum
alignment of a table containing fewer than eight entries is 64 bytes.

If the value of VTCR_EL2.PS is 0b110, then:

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1145

AArch64-vtcr_el2.html

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.

Note

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52-bit52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the Effective
value of VTCR_EL2.PS is 0b110 and the value of register bits[5:2] is nonzero,
an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110, then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.
• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses

used in this stage of translation are 0b0000.

If any VSTTBR_EL2[47:1] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
VSTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VSTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

Common not Private, for stage 2 of the Secure EL1&0 translation regime. In an implementation that includes
FEAT_TTCNP, indicates whether each entry that is pointed to by VSTTBR_EL2 is a member of a common set that can
be used by every PE in the Inner Shareable domain for which the value of VSTTBR_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VSTTBR_EL2 are

permitted to differ from the entries for VSTTBR_EL2 for other PEs
in the Inner Shareable domain. This is not affected by the value of
the current VMID.

0b1 The translation table entries pointed to by VSTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of VSTTBR_EL2.CnP
is 1 and the VMID is the same as the current VMID.

This field is permitted to be cached in a TLB.

Note

If the value of VSTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VSTTBR_EL2s do not point to the same
translation table entries when using the current VMID, then the results of
translations using VSTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see
'CONSTRAINED UNPREDICTABLE behaviors due to caching of control or
data values'.

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1146

AArch64-id_aa64mmfr0_el1.html
AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch64-vstcr_el2.html

When this register has an architecturally-defined reset value, this field resets to a value that is architecturally
UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the VSTTBR_EL2
Accesses to this register use the following encodings:

MRS <Xt>, VSTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x030];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
return VSTTBR_EL2;

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

return VSTTBR_EL2;

MSR VSTTBR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0110 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if HaveEL(EL3) && SCR_EL3.NS == '1' then

UNDEFINED;
elsif EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x030] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && SCR_EL3.NS == '1' then
UNDEFINED;

else
VSTTBR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.EEL2 == '0' then

UNDEFINED;
else

VSTTBR_EL2 = X[t];

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1147

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VSTTBR_EL2, Virtualization Secure Translation Table Base Register

Page 1148

(old) htmldiff from- (new)

VTTBR_EL2, Virtualization Translation Table Base
Register

The VTTBR_EL2 characteristics are:

Purpose
Holds the base address of the translation table for the initial lookup for stage 2 of an address translation in the EL1&0
translation regime, and other information for this translation regime.

Configuration
AArch64 System register VTTBR_EL2 bits [63:0] are architecturally mapped to AArch32 System register VTTBR[63:0].

If EL2 is not implemented, this register is RES0 from EL3.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
VTTBR_EL2 is a 64-bit register.

Field descriptions
The VTTBR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
VMID BADDR

BADDR CnP
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VMID, bits [63:48]

VMID encoding when FEAT_VMID16 is implemented or (VTCR_EL2.VS == 1
or AArch32 is supported at any Exception level)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VMID

VMID, bits [15:0]

The VMID for the translation table.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VMID encoding when FEAT_VMID16 is not implemented or (VTCR_EL2.VS ==
0 or the implementation only supports execution in AArch64 state)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1149

AArch32-vttbr.html

Bits [15:8]

Reserved, RES0.

VMID, bits [7:0]

The VMID for the translation table.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• The VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

BADDR, bits [47:1]

Translation table base address, A[47:x] or A[51:x], bits[47:1].

Note
• Translation table base addresses of 52 bits, A[51:x], are supported only

in an implementation that includes FEAT_LPA and is using the 64KB
translation granule.

• A translation table must be aligned to the size of the table, except that
when using a translation table base address larger than 48 bits the
minimum alignment of a table containing fewer than eight entries is 64
bytes.

A translation table must be aligned to the size of the table, except that when
using a translation table base address larger than 48 bits the minimum
alignment of a table containing fewer than eight entries is 64 bytes.

In an implementation that includes FEAT_LPA, if the value of VTCR_EL2.PS is 0b110, then:

• Register bits[47:z] hold bits[47:z] of the stage 1 translation table base address, where z is determined as
follows:

◦ If x >= 6 then z=x.
◦ Otherwise, z=6.

• Register bits[5:2] hold bits[51:48] of the stage 1 translation table base address.
• When z>x register bits[(z-1):x] are RES0, and bits[(z-1):x] of the translation table base address are zero.
• When x>6 register bits[(x-1):6] are RES0.
• Register bit[1] is RES0.
• Bits[5:2] of the stage 1 translation table base address are zero.
• In an implementation that includes FEAT_TTCNP, bit[0] of the stage 1 translation table base address is zero.

Note
• In an implementation that includes FEAT_LPA a VTCR_EL2.PS value of

0b110, that selects a PA size of 52 bits, is permitted only when using the
64KB translation granule.

• When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table
lookup uses this register with the 64KB translation granule when the
Effective value of VTCR_EL2.PS is 0b110 and the value of register
bits[5:2] is nonzero, an Address size fault is generated.

When the value of ID_AA64MMFR0_EL1.PARange indicates that the
implementation does not support a 52 bit PA size, if a translation table lookup
uses this register when the Effective value of VTCR_EL2.PS is 0b110 and the
value of register bits[5:2] is nonzero, an Address size fault is generated.

If the Effective value of VTCR_EL2.PS is not 0b110 then:

• Register bits[47:x] hold bits[47:x] of the stage 1 translation table base address.
• Register bits[(x-1):1] are RES0.

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1150

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch64-id_aa64mmfr0_el1.html
AArch64-vtcr_el2.html
AArch64-id_aa64mmfr0_el1.html
AArch64-vtcr_el2.html
AArch64-vtcr_el2.html

• If the implementation supports 52-bit PAs and IPAs then bits[51:48] of the translation table base addresses
used in this stage of translation are 0b0000.

Note

This definition applies:

• To an implementation that includes FEAT_LPA and is using a translation
granule smaller than 64KB.

• To any implementation that does not include FEAT_LPA.

If any VTTBR_EL2[47:0] bit that is defined as RES0 has the value 1 when a translation table walk is performed using
VTTBR_EL2, then the translation table base address might be misaligned, with effects that are CONSTRAINED
UNPREDICTABLE, and must be one of the following:

• Bits[x-1:0] of the translation table base address are treated as if all the bits are zero. The value read back from
the corresponding register bits is either the value written to the register or zero.

• The result of the calculation of an address for a translation table walk using this register can be corrupted in
those bits that are nonzero.

The AArch64 Virtual Memory System Architecture chapter describes how x is calculated based on the value of
VTCR_EL2.T0SZ, the stage of translation, and the translation granule size.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CnP, bit [0]

When FEAT_TTCNP is implemented:

Common not Private. This bit indicates whether each entry that is pointed to by VTTBR_EL2 is a member of a common
set that can be used by every PE in the Inner Shareable domain for which the value of VTTBR_EL2.CnP is 1.

CnP Meaning
0b0 The translation table entries pointed to by VTTBR_EL2 are

permitted to differ from the entries for VTTBR_EL2 for other PEs
in the Inner Shareable domain. This is not affected by the value of
the current VMID.

0b1 The translation table entries pointed to by VTTBR_EL2 are the
same as the translation table entries for every other PE in the
Inner Shareable domain for which the value of VTTBR_EL2.CnP is
1 and the VMID is the same as the current VMID.

This field is permitted to be cached in a TLB.

Note

If the value of VTTBR_EL2.CnP bit is 1 on multiple PEs in the same Inner
Shareable domain and those VTTBR_EL2s do not point to the same translation
table entries when using the current VMID then the results of translations
using VTTBR_EL2 are CONSTRAINED UNPREDICTABLE, see 'CONSTRAINED
UNPREDICTABLE behaviors due to caching of control or data values'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the VTTBR_EL2
Accesses to this register use the following encodings:

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1151

AArch64-vtcr_el2.html

MRS <Xt>, VTTBR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

return NVMem[0x020];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VTTBR_EL2;
elsif PSTATE.EL == EL3 then

return VTTBR_EL2;

MSR VTTBR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0010 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then

NVMem[0x020] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VTTBR_EL2 = X[t];
elsif PSTATE.EL == EL3 then

VTTBR_EL2 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VTTBR_EL2, Virtualization Translation Table Base Register

Page 1152

(old) htmldiff from- (new)

ZCR_EL1, SVE Control Register (for EL1)
The ZCR_EL1 characteristics are:

Purpose
ThisThe registerSVE controlsControl Register for EL1 is used to control aspects of SVE visible at Exception levels EL1
and EL0.

Configuration
This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to ZCR_EL1 are UNDEFINED.

When HCR_EL2.{E2H, TGE} == {1, 1} and EL2 is enabled in the current Security state, the fields in this register
hashave no effect on execution at EL0.EL0

Attributes
ZCR_EL1 is a 64-bit register.

Field descriptions
The ZCR_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ/WI LEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective SVEScalable Vector Length (VL).Length.

Constrains the effective scalable vector register length for EL1 and EL0 to (LEN+1)x128 bits.

For all purposes other than returning the result of a direct read of ZCR_EL1, this field selectsbehaves the effective
vector length as followsif:

• IfIt is set to the requestedminimum lengthof isthe largerstored thanvalue and the effectiveconstrained vector
length atinherited thefrom next more privileged Exception levellevels in the current Security state, if any,
then the effective vector length at the more privileged Exception level is used.state.

• IfIt the requested length is not implemented, then the requested length rounded down to the nearest
implemented scalable vector length is used.length.

• Otherwise, the requested length is used.

An indirect read of ZCR_EL1.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

ZCR_EL1, SVE Control Register (for EL1)

Page 1153

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the ZCR_EL1
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL3 using the mnemonic ZCR_EL1 or
ZCR_EL12 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ZCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H ==!= '01' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1E0];
else

return ZCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
return ZCR_EL2;

else
return ZCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;

MSR ZCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL1, SVE Control Register (for EL1)

Page 1154

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H ==!= '01' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1E0] = X[t];
else

ZCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
ZCR_EL2 = X[t];

else
ZCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];

MRS <Xt>, ZCR_EL12

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b000

ZCR_EL1, SVE Control Register (for EL1)

Page 1155

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

return NVMem[0x1E0];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;
else

UNDEFINED;

MSR ZCR_EL12, <Xt>

op0 op1 CRn CRm op2
0b11 0b101 0b0001 0b0010 0b000

ZCR_EL1, SVE Control Register (for EL1)

Page 1156

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '101' then

NVMem[0x1E0] = X[t];
elsif EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if HCR_EL2.E2H == '1' then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];
else

UNDEFINED;
elsif PSTATE.EL == EL3 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];
else

UNDEFINED;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ZCR_EL1, SVE Control Register (for EL1)

Page 1157

(old) htmldiff from- (new)

ZCR_EL2, SVE Control Register (for EL2)
The ZCR_EL2 characteristics are:

Purpose
ThisThe registerSVE controlsControl Register for EL2 is used to control aspects of SVE visible at Exception levels EL2,
EL1, and EL0.EL0, when EL2 is enabled in the current Security state.

Configuration
This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to ZCR_EL2 are UNDEFINED.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes
ZCR_EL2 is a 64-bit register.

Field descriptions
The ZCR_EL2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ/WI LEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective SVEScalable Vector Length (VL).Length.

Constrains the effective scalable vector register length for EL2, EL1, and EL0 to (LEN+1)x128 bits, when EL2 is
enabled in the current Security state.

For all purposes other than returning the result of a direct read of ZCR_EL2, this field selectsbehaves the effective
vector length as followsif:

• IfIt is set to the requestedminimum lengthof isthe largerstored thanvalue and the effectiveconstrained vector
length atinherited thefrom next more privileged Exception levellevels in the current Security state, if any,
then the effective vector length at the more privileged Exception level is used.state.

• IfIt the requested length is not implemented, then the requested length rounded down to the nearest
implemented scalable vector length is used.length.

• Otherwise, the requested length is used.

An indirect read of ZCR_EL2.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

ZCR_EL2, SVE Control Register (for EL2)

Page 1158

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the ZCR_EL2
When HCR_EL2.E2H is 1, without explicit synchronization, access from EL2 using the mnemonic ZCR_EL2 or
ZCR_EL1 are not guaranteed to be ordered with respect to accesses using the other mnemonic.

Accesses to this register use the following encodings:

MRS <Xt>, ZCR_EL2

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

else
return ZCR_EL2;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL2;

MSR ZCR_EL2, <Xt>

op0 op1 CRn CRm op2
0b11 0b100 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register (for EL2)

Page 1159

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && HCR_EL2.NV == '1' then

AArch64.SystemAccessTrap(EL2, 0x18);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

else
ZCR_EL2 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL2 = X[t];

MRS <Xt>, ZCR_EL1

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register (for EL2)

Page 1160

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H ==!= '01' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

return NVMem[0x1E0];
else

return ZCR_EL1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
return ZCR_EL2;

else
return ZCR_EL1;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL1;

MSR ZCR_EL1, <Xt>

op0 op1 CRn CRm op2
0b11 0b000 0b0001 0b0010 0b000

ZCR_EL2, SVE Control Register (for EL2)

Page 1161

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && CPTR_EL3.EZ == '0' then
UNDEFINED;

elsif CPACR_EL1.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL1, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H ==!= '01' && CPTR_EL2.TZ == '1' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif EL2Enabled() && HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then
AArch64.SystemAccessTrap(EL2, 0x19);

elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.SystemAccessTrap(EL3, 0x19);
elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> == '111' then

NVMem[0x1E0] = X[t];
else

ZCR_EL1 = X[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && CPTR_EL3.EZ == '0' then

UNDEFINED;
elsif HCR_EL2.E2H == '0' && CPTR_EL2.TZ == '1' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.ZEN == 'x0' then

AArch64.SystemAccessTrap(EL2, 0x19);
elsif HaveEL(EL3) && CPTR_EL3.EZ == '0' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.SystemAccessTrap(EL3, 0x19);

elsif HCR_EL2.E2H == '1' then
ZCR_EL2 = X[t];

else
ZCR_EL1 = X[t];

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL1 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ZCR_EL2, SVE Control Register (for EL2)

Page 1162

(old) htmldiff from- (new)

ZCR_EL3, SVE Control Register (for EL3)
The ZCR_EL3 characteristics are:

Purpose
ThisThe registerSVE controlsControl Register for EL3 is used to control aspects of SVE visible at all Exception levels.

Configuration
This register is present only when FEAT_SVE is implemented. Otherwise, direct accesses to ZCR_EL3 are UNDEFINED.

Attributes
ZCR_EL3 is a 64-bit register.

Field descriptions
The ZCR_EL3 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ/WI LEN
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:9]

Reserved, RES0.

Bits [8:4]

Reserved, RAZ/WI.

LEN, bits [3:0]

Effective SVEScalable Vector Length (VL).Length.

Constrains the effective scalable vector register length for all Exception levels to (LEN+1)x128 bits.

For all purposes other than returning the result of a direct read of ZCR_EL3, this field selectsbehaves the effective
vector length as followsif:

• It is rounded down to the nearest implemented vector length.

If the requested length is not implemented, then the requested length rounded down to the nearest
implemented scalable vector length is used.

• Otherwise, the requested length is used.

An indirect read of ZCR_EL3.LEN appears to occur in program order relative to a direct write of the same register,
without the need for explicit synchronization.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ZCR_EL3, SVE Control Register (for EL3)

Page 1163

Accessing the ZCR_EL3
Accesses to this register use the following encodings:

MRS <Xt>, ZCR_EL3

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

return ZCR_EL3;

MSR ZCR_EL3, <Xt>

op0 op1 CRn CRm op2
0b11 0b110 0b0001 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
UNDEFINED;

elsif PSTATE.EL == EL3 then
if CPTR_EL3.EZ == '0' then

AArch64.SystemAccessTrap(EL3, 0x19);
else

ZCR_EL3 = X[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ZCR_EL3, SVE Control Register (for EL3)

Page 1164

(old) htmldiff from- (new)

AArch32 System Registers
ACTLR: Auxiliary Control Register

ACTLR2: Auxiliary Control Register 2

ADFSR: Auxiliary Data Fault Status Register

AIDR: Auxiliary ID Register

AIFSR: Auxiliary Instruction Fault Status Register

AMAIR0: Auxiliary Memory Attribute Indirection Register 0

AMAIR1: Auxiliary Memory Attribute Indirection Register 1

AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMUSERENR: Activity Monitors User Enable Register

APSR: Application Program Status Register

CCSIDR: Current Cache Size ID Register

CCSIDR2: Current Cache Size ID Register 2

CLIDR: Cache Level ID Register

CNTFRQ: Counter-timer Frequency register

CNTHCTL: Counter-timer Hyp Control register

CNTHPS_CTL: Counter-timer Secure Physical Timer Control Register (EL2)

CNTHPS_CVAL: Counter-timer Secure Physical Timer CompareValue Register (EL2)

CNTHPS_TVAL: Counter-timer Secure Physical Timer TimerValue Register (EL2)

CNTHP_CTL: Counter-timer Hyp Physical Timer Control register

CNTHP_CVAL: Counter-timer Hyp Physical CompareValue register

CNTHP_TVAL: Counter-timer Hyp Physical Timer TimerValue register

CNTHVS_CTL: Counter-timer Secure Virtual Timer Control Register (EL2)

CNTHVS_CVAL: Counter-timer Secure Virtual Timer CompareValue Register (EL2)

AArch32 System Registers

Page 1165

CNTHVS_TVAL: Counter-timer Secure Virtual Timer TimerValue Register (EL2)

CNTHV_CTL: Counter-timer Virtual Timer Control register (EL2)

CNTHV_CVAL: Counter-timer Virtual Timer CompareValue register (EL2)

CNTHV_TVAL: Counter-timer Virtual Timer TimerValue register (EL2)

CNTKCTL: Counter-timer Kernel Control register

CNTPCT: Counter-timer Physical Count register

CNTPCTSS: Counter-timer Self-Synchronized Physical Count register

CNTP_CTL: Counter-timer Physical Timer Control register

CNTP_CVAL: Counter-timer Physical Timer CompareValue register

CNTP_TVAL: Counter-timer Physical Timer TimerValue register

CNTVCT: Counter-timer Virtual Count register

CNTVCTSS: Counter-timer Self-Synchronized Virtual Count register

CNTVOFF: Counter-timer Virtual Offset register

CNTV_CTL: Counter-timer Virtual Timer Control register

CNTV_CVAL: Counter-timer Virtual Timer CompareValue register

CNTV_TVAL: Counter-timer Virtual Timer TimerValue register

CONTEXTIDR: Context ID Register

CPACR: Architectural Feature Access Control Register

CPSR: Current Program Status Register

CSSELR: Cache Size Selection Register

CTR: Cache Type Register

DACR: Domain Access Control Register

DBGAUTHSTATUS: Debug Authentication Status register

DBGBCR<n>: Debug Breakpoint Control Registers

DBGBVR<n>: Debug Breakpoint Value Registers

DBGBXVR<n>: Debug Breakpoint Extended Value Registers

DBGCLAIMCLR: Debug CLAIM Tag Clear register

DBGCLAIMSET: Debug CLAIM Tag Set register

DBGDCCINT: DCC Interrupt Enable Register

DBGDEVID: Debug Device ID register 0

DBGDEVID1: Debug Device ID register 1

DBGDEVID2: Debug Device ID register 2

DBGDIDR: Debug ID Register

DBGDRAR: Debug ROM Address Register

DBGDSAR: Debug Self Address Register

DBGDSCRext: Debug Status and Control Register, External View

AArch32 System Registers

Page 1166

DBGDSCRint: Debug Status and Control Register, Internal View

DBGDTRRXext: Debug OS Lock Data Transfer Register, Receive, External View

DBGDTRRXint: Debug Data Transfer Register, Receive

DBGDTRTXext: Debug OS Lock Data Transfer Register, Transmit

DBGDTRTXint: Debug Data Transfer Register, Transmit

DBGOSDLR: Debug OS Double Lock Register

DBGOSECCR: Debug OS Lock Exception Catch Control Register

DBGOSLAR: Debug OS Lock Access Register

DBGOSLSR: Debug OS Lock Status Register

DBGPRCR: Debug Power Control Register

DBGVCR: Debug Vector Catch Register

DBGWCR<n>: Debug Watchpoint Control Registers

DBGWFAR: Debug Watchpoint Fault Address Register

DBGWVR<n>: Debug Watchpoint Value Registers

DFAR: Data Fault Address Register

DFSR: Data Fault Status Register

DISR: Deferred Interrupt Status Register

DLR: Debug Link Register

DSPSR: Debug Saved Program Status Register

ELR_hyp: Exception Link Register (Hyp mode)

ERRIDR: Error Record ID Register

ERRSELR: Error Record Select Register

ERXADDR: Selected Error Record Address Register

ERXADDR2: Selected Error Record Address Register 2

ERXCTLR: Selected Error Record Control Register

ERXCTLR2: Selected Error Record Control Register 2

ERXFR: Selected Error Record Feature Register

ERXFR2: Selected Error Record Feature Register 2

ERXMISC0: Selected Error Record Miscellaneous Register 0

ERXMISC1: Selected Error Record Miscellaneous Register 1

ERXMISC2: Selected Error Record Miscellaneous Register 2

ERXMISC3: Selected Error Record Miscellaneous Register 3

ERXMISC4: Selected Error Record Miscellaneous Register 4

ERXMISC5: Selected Error Record Miscellaneous Register 5

ERXMISC6: Selected Error Record Miscellaneous Register 6

ERXMISC7: Selected Error Record Miscellaneous Register 7

AArch32 System Registers

Page 1167

ERXSTATUS: Selected Error Record Primary Status Register

FCSEIDR: FCSE Process ID register

FPEXC: Floating-Point Exception Control register

FPSCR: Floating-Point Status and Control Register

FPSID: Floating-Point System ID register

HACR: Hyp Auxiliary Configuration Register

HACTLR: Hyp Auxiliary Control Register

HACTLR2: Hyp Auxiliary Control Register 2

HADFSR: Hyp Auxiliary Data Fault Status Register

HAIFSR: Hyp Auxiliary Instruction Fault Status Register

HAMAIR0: Hyp Auxiliary Memory Attribute Indirection Register 0

HAMAIR1: Hyp Auxiliary Memory Attribute Indirection Register 1

HCPTR: Hyp Architectural Feature Trap Register

HCR: Hyp Configuration Register

HCR2: Hyp Configuration Register 2

HDCR: Hyp Debug Control Register

HDFAR: Hyp Data Fault Address Register

HIFAR: Hyp Instruction Fault Address Register

HMAIR0: Hyp Memory Attribute Indirection Register 0

HMAIR1: Hyp Memory Attribute Indirection Register 1

HPFAR: Hyp IPA Fault Address Register

HRMR: Hyp Reset Management Register

HSCTLR: Hyp System Control Register

HSR: Hyp Syndrome Register

HSTR: Hyp System Trap Register

HTCR: Hyp Translation Control Register

HTPIDR: Hyp Software Thread ID Register

HTRFCR: Hyp Trace Filter Control Register

HTTBR: Hyp Translation Table Base Register

HVBAR: Hyp Vector Base Address Register

ICC_AP0R<n>: Interrupt Controller Active Priorities Group 0 Registers

ICC_AP1R<n>: Interrupt Controller Active Priorities Group 1 Registers

ICC_ASGI1R: Interrupt Controller Alias Software Generated Interrupt Group 1 Register

ICC_BPR0: Interrupt Controller Binary Point Register 0

ICC_BPR1: Interrupt Controller Binary Point Register 1

ICC_CTLR: Interrupt Controller Control Register

AArch32 System Registers

Page 1168

ICC_DIR: Interrupt Controller Deactivate Interrupt Register

ICC_EOIR0: Interrupt Controller End Of Interrupt Register 0

ICC_EOIR1: Interrupt Controller End Of Interrupt Register 1

ICC_HPPIR0: Interrupt Controller Highest Priority Pending Interrupt Register 0

ICC_HPPIR1: Interrupt Controller Highest Priority Pending Interrupt Register 1

ICC_HSRE: Interrupt Controller Hyp System Register Enable register

ICC_IAR0: Interrupt Controller Interrupt Acknowledge Register 0

ICC_IAR1: Interrupt Controller Interrupt Acknowledge Register 1

ICC_IGRPEN0: Interrupt Controller Interrupt Group 0 Enable register

ICC_IGRPEN1: Interrupt Controller Interrupt Group 1 Enable register

ICC_MCTLR: Interrupt Controller Monitor Control Register

ICC_MGRPEN1: Interrupt Controller Monitor Interrupt Group 1 Enable register

ICC_MSRE: Interrupt Controller Monitor System Register Enable register

ICC_PMR: Interrupt Controller Interrupt Priority Mask Register

ICC_RPR: Interrupt Controller Running Priority Register

ICC_SGI0R: Interrupt Controller Software Generated Interrupt Group 0 Register

ICC_SGI1R: Interrupt Controller Software Generated Interrupt Group 1 Register

ICC_SRE: Interrupt Controller System Register Enable register

ICH_AP0R<n>: Interrupt Controller Hyp Active Priorities Group 0 Registers

ICH_AP1R<n>: Interrupt Controller Hyp Active Priorities Group 1 Registers

ICH_EISR: Interrupt Controller End of Interrupt Status Register

ICH_ELRSR: Interrupt Controller Empty List Register Status Register

ICH_HCR: Interrupt Controller Hyp Control Register

ICH_LR<n>: Interrupt Controller List Registers

ICH_LRC<n>: Interrupt Controller List Registers

ICH_MISR: Interrupt Controller Maintenance Interrupt State Register

ICH_VMCR: Interrupt Controller Virtual Machine Control Register

ICH_VTR: Interrupt Controller VGIC Type Register

ICV_AP0R<n>: Interrupt Controller Virtual Active Priorities Group 0 Registers

ICV_AP1R<n>: Interrupt Controller Virtual Active Priorities Group 1 Registers

ICV_BPR0: Interrupt Controller Virtual Binary Point Register 0

ICV_BPR1: Interrupt Controller Virtual Binary Point Register 1

ICV_CTLR: Interrupt Controller Virtual Control Register

ICV_DIR: Interrupt Controller Deactivate Virtual Interrupt Register

ICV_EOIR0: Interrupt Controller Virtual End Of Interrupt Register 0

ICV_EOIR1: Interrupt Controller Virtual End Of Interrupt Register 1

AArch32 System Registers

Page 1169

ICV_HPPIR0: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0

ICV_HPPIR1: Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1

ICV_IAR0: Interrupt Controller Virtual Interrupt Acknowledge Register 0

ICV_IAR1: Interrupt Controller Virtual Interrupt Acknowledge Register 1

ICV_IGRPEN0: Interrupt Controller Virtual Interrupt Group 0 Enable register

ICV_IGRPEN1: Interrupt Controller Virtual Interrupt Group 1 Enable register

ICV_PMR: Interrupt Controller Virtual Interrupt Priority Mask Register

ICV_RPR: Interrupt Controller Virtual Running Priority Register

ID_AFR0: Auxiliary Feature Register 0

ID_DFR0: Debug Feature Register 0

ID_DFR1: Debug Feature Register 1

ID_ISAR0: Instruction Set Attribute Register 0

ID_ISAR1: Instruction Set Attribute Register 1

ID_ISAR2: Instruction Set Attribute Register 2

ID_ISAR3: Instruction Set Attribute Register 3

ID_ISAR4: Instruction Set Attribute Register 4

ID_ISAR5: Instruction Set Attribute Register 5

ID_ISAR6: Instruction Set Attribute Register 6

ID_MMFR0: Memory Model Feature Register 0

ID_MMFR1: Memory Model Feature Register 1

ID_MMFR2: Memory Model Feature Register 2

ID_MMFR3: Memory Model Feature Register 3

ID_MMFR4: Memory Model Feature Register 4

ID_MMFR5: Memory Model Feature Register 5

ID_PFR0: Processor Feature Register 0

ID_PFR1: Processor Feature Register 1

ID_PFR2: Processor Feature Register 2

IFAR: Instruction Fault Address Register

IFSR: Instruction Fault Status Register

ISR: Interrupt Status Register

JIDR: Jazelle ID Register

JMCR: Jazelle Main Configuration Register

JOSCR: Jazelle OS Control Register

MAIR0: Memory Attribute Indirection Register 0

MAIR1: Memory Attribute Indirection Register 1

MIDR: Main ID Register

AArch32 System Registers

Page 1170

MPIDR: Multiprocessor Affinity Register

MVBAR: Monitor Vector Base Address Register

MVFR0: Media and VFP Feature Register 0

MVFR1: Media and VFP Feature Register 1

MVFR2: Media and VFP Feature Register 2

NMRR: Normal Memory Remap Register

NSACR: Non-Secure Access Control Register

PAR: Physical Address Register

PMCCFILTR: Performance Monitors Cycle Count Filter Register

PMCCNTR: Performance Monitors Cycle Count Register

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCNTENCLR: Performance Monitors Count Enable Clear register

PMCNTENSET: Performance Monitors Count Enable Set register

PMCR: Performance Monitors Control Register

PMEVCNTR<n>: Performance Monitors Event Count Registers

PMEVTYPER<n>: Performance Monitors Event Type Registers

PMINTENCLR: Performance Monitors Interrupt Enable Clear register

PMINTENSET: Performance Monitors Interrupt Enable Set register

PMMIR: Performance Monitors Machine Identification Register

PMOVSR: Performance Monitors Overflow Flag Status Register

PMOVSSET: Performance Monitors Overflow Flag Status Set register

PMSELR: Performance Monitors Event Counter Selection Register

PMSWINC: Performance Monitors Software Increment register

PMUSERENR: Performance Monitors User Enable Register

PMXEVCNTR: Performance Monitors Selected Event Count Register

PMXEVTYPER: Performance Monitors Selected Event Type Register

PRRR: Primary Region Remap Register

REVIDR: Revision ID Register

RMR: Reset Management Register

RVBAR: Reset Vector Base Address Register

SCR: Secure Configuration Register

SCTLR: System Control Register

SDCR: Secure Debug Control Register

AArch32 System Registers

Page 1171

SDER: Secure Debug Enable Register

SPSR: Saved Program Status Register

SPSR_abt: Saved Program Status Register (Abort mode)

SPSR_fiq: Saved Program Status Register (FIQ mode)

SPSR_hyp: Saved Program Status Register (Hyp mode)

SPSR_irq: Saved Program Status Register (IRQ mode)

SPSR_mon: Saved Program Status Register (Monitor mode)

SPSR_svc: Saved Program Status Register (Supervisor mode)

SPSR_und: Saved Program Status Register (Undefined mode)

TCMTR: TCM Type Register

TLBTR: TLB Type Register

TPIDRPRW: PL1 Software Thread ID Register

TPIDRURO: PL0 Read-Only Software Thread ID Register

TPIDRURW: PL0 Read/Write Software Thread ID Register

TRFCR: Trace Filter Control Register

TTBCR: Translation Table Base Control Register

TTBCR2: Translation Table Base Control Register 2

TTBR0: Translation Table Base Register 0

TTBR1: Translation Table Base Register 1

VBAR: Vector Base Address Register

VDFSR: Virtual SError Exception Syndrome Register

VDISR: Virtual Deferred Interrupt Status Register

VMPIDR: Virtualization Multiprocessor ID Register

VPIDR: Virtualization Processor ID Register

VTCR: Virtualization Translation Control Register

VTTBR: Virtualization Translation Table Base Register

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 System Registers

Page 1172

(old) htmldiff from- (new)

AArch32 System Instructions
ATS12NSOPR: Address Translate Stages 1 and 2 Non-secure Only PL1 Read

ATS12NSOPW: Address Translate Stages 1 and 2 Non-secure Only PL1 Write

ATS12NSOUR: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read

ATS12NSOUW: Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write

ATS1CPR: Address Translate Stage 1 Current state PL1 Read

ATS1CPRP: Address Translate Stage 1 Current state PL1 Read PAN

ATS1CPW: Address Translate Stage 1 Current state PL1 Write

ATS1CPWP: Address Translate Stage 1 Current state PL1 Write PAN

ATS1CUR: Address Translate Stage 1 Current state Unprivileged Read

ATS1CUW: Address Translate Stage 1 Current state Unprivileged Write

ATS1HR: Address Translate Stage 1 Hyp mode Read

ATS1HW: Address Translate Stage 1 Hyp mode Write

BPIALL: Branch Predictor Invalidate All

BPIALLIS: Branch Predictor Invalidate All, Inner Shareable

BPIMVA: Branch Predictor Invalidate by VA

CFPRCTX: Control Flow Prediction Restriction by Context

CP15DMB: Data Memory Barrier System instruction

CP15DSB: Data Synchronization Barrier System instruction

CP15ISB: Instruction Synchronization Barrier System instruction

CPPRCTX: Cache Prefetch Prediction Restriction by Context

DCCIMVAC: Data Cache line Clean and Invalidate by VA to PoC

DCCISW: Data Cache line Clean and Invalidate by Set/Way

DCCMVAC: Data Cache line Clean by VA to PoC

DCCMVAU: Data Cache line Clean by VA to PoU

DCCSW: Data Cache line Clean by Set/Way

DCIMVAC: Data Cache line Invalidate by VA to PoC

DCISW: Data Cache line Invalidate by Set/Way

DTLBIALL: Data TLB Invalidate All

DTLBIASID: Data TLB Invalidate by ASID match

DTLBIMVA: Data TLB Invalidate by VA

DVPRCTX: Data Value Prediction Restriction by Context

ICIALLU: Instruction Cache Invalidate All to PoU

ICIALLUIS: Instruction Cache Invalidate All to PoU, Inner Shareable

AArch32 System Instructions

Page 1173

ICIMVAU: Instruction Cache line Invalidate by VA to PoU

ITLBIALL: Instruction TLB Invalidate All

ITLBIASID: Instruction TLB Invalidate by ASID match

ITLBIMVA: Instruction TLB Invalidate by VA

TLBIALL: TLB Invalidate All

TLBIALLH: TLB Invalidate All, Hyp mode

TLBIALLHIS: TLB Invalidate All, Hyp mode, Inner Shareable

TLBIALLIS: TLB Invalidate All, Inner Shareable

TLBIALLNSNH: TLB Invalidate All, Non-Secure Non-Hyp

TLBIALLNSNHIS: TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable

TLBIASID: TLB Invalidate by ASID match

TLBIASIDIS: TLB Invalidate by ASID match, Inner Shareable

TLBIIPAS2: TLB Invalidate by Intermediate Physical Address, Stage 2

TLBIIPAS2IS: TLB Invalidate by Intermediate Physical Address, Stage 2, Inner Shareable

TLBIIPAS2L: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level

TLBIIPAS2LIS: TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, Inner Shareable

TLBIMVA: TLB Invalidate by VA

TLBIMVAA: TLB Invalidate by VA, All ASID

TLBIMVAAIS: TLB Invalidate by VA, All ASID, Inner Shareable

TLBIMVAAL: TLB Invalidate by VA, All ASID, Last level

TLBIMVAALIS: TLB Invalidate by VA, All ASID, Last level, Inner Shareable

TLBIMVAH: TLB Invalidate by VA, Hyp mode

TLBIMVAHIS: TLB Invalidate by VA, Hyp mode, Inner Shareable

TLBIMVAIS: TLB Invalidate by VA, Inner Shareable

TLBIMVAL: TLB Invalidate by VA, Last level

TLBIMVALH: TLB Invalidate by VA, Last level, Hyp mode

TLBIMVALHIS: TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable

TLBIMVALIS: TLB Invalidate by VA, Last level, Inner Shareable

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AArch32 System Instructions

Page 1174

(old) htmldiff from- (new)

CNTHP_CTL, Counter-timer Hyp Physical Timer Control
register

The CNTHP_CTL characteristics are:

Purpose
Control register for the Hyp mode physical timer.

Configuration
AArch32 System register CNTHP_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHP_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTHP_CTL are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
CNTHP_CTL is a 32-bit register.

Field descriptions
The CNTHP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 1175

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN
value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHP_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Accessing the CNTHP_CTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
return CNTHP_CTL;

elsif PSTATE.EL == EL3 then
return CNTHP_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
UNDEFINED;

elsif PSTATE.EL == EL2 then
CNTHP_CTL = R[t];

elsif PSTATE.EL == EL3 then
CNTHP_CTL = R[t];

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 1176

AArch32-cnthp_tval.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 1177

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHP_CTL, Counter-timer Hyp Physical Timer Control register

Page 1178

(old) htmldiff from- (new)

CNTHPS_CTL, Counter-timer Secure Physical Timer
Control Register (EL2)

The CNTHPS_CTL characteristics are:

Purpose
Provides AArch32 access from EL0 to the Secure EL2 physical timer.

Configuration
AArch32 System register CNTHPS_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHPS_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHPS_CTL are UNDEFINED.

Attributes
CNTHPS_CTL is a 32-bit register.

Field descriptions
The CNTHPS_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the CNTHPS_CTL.ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS
takes no account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the CNTHPS_CTL.ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 1179

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHPS_TVAL_EL2
continues to count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTHPS_CTL
This register is accessed using the encoding for CNTP_CTL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 1180

AArch64-cnthps_tval_el2.html

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 1181

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)

Page 1182

(old) htmldiff from- (new)

CNTHV_CTL, Counter-timer Virtual Timer Control
register (EL2)

The CNTHV_CTL characteristics are:

Purpose
Provides AArch32 access to the control register for the EL2 virtual timer.

Configuration
AArch32 System register CNTHV_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHV_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_VHE is implemented.
Otherwise, direct accesses to CNTHV_CTL are UNDEFINED.

Attributes
CNTHV_CTL is a 32-bit register.

Field descriptions
The CNTHV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 1183

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHV_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHV_CTL
This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 1184

AArch32-cnthv_tval.html

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CTL_EL2;

else
return CNTV_CTL;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

return CNTV_CTL;
elsif PSTATE.EL == EL2 then

return CNTV_CTL;
elsif PSTATE.EL == EL3 then

return CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 1185

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CTL_EL2 = R[t];

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then

CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)

Page 1186

(old) htmldiff from- (new)

CNTHVS_CTL, Counter-timer Secure Virtual Timer
Control Register (EL2)

The CNTHVS_CTL characteristics are:

Purpose
Provides AArch32 access from EL0 to the Secure EL2 virtual timer.

Configuration
AArch32 System register CNTHVS_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTHVS_CTL_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_SEL2 is implemented.
Otherwise, direct accesses to CNTHVS_CTL are UNDEFINED.

Attributes
CNTHVS_CTL is a 32-bit register.

Field descriptions
The CNTHVS_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 1187

For more information, see the description of the ISTATUS bit.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTHVS_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

Accessing the CNTHVS_CTL
This register is accessed using the encoding for CNTV_CTL.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 1188

AArch32-cnthvs_tval.html

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CTL_EL2;

else
return CNTV_CTL;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

return CNTV_CTL;
elsif PSTATE.EL == EL2 then

return CNTV_CTL;
elsif PSTATE.EL == EL3 then

return CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 1189

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CTL_EL2 = R[t];

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then

CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)

Page 1190

(old) htmldiff from- (new)

CNTP_CTL, Counter-timer Physical Timer Control
register

The CNTP_CTL characteristics are:

Purpose
Control register for the EL1 physical timer.

Configuration
AArch32 System register CNTP_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTP_CTL_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTP_CTL are UNDEFINED.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions
The CNTP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTP_CTL, Counter-timer Physical Timer Control register

Page 1191

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to 0.

Accessing the CNTP_CTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTP_CTL, Counter-timer Physical Timer Control register

Page 1192

AArch32-cntp_tval.html

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
return CNTHPS_CTL_EL2;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

return CNTHP_CTL_EL2;
else

return CNTP_CTL;
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
return CNTP_CTL_NS;

else
return CNTP_CTL;

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

return CNTP_CTL_NS;
else

return CNTP_CTL;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
return CNTP_CTL_S;

else
return CNTP_CTL_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0010 0b001

CNTP_CTL, Counter-timer Physical Timer Control register

Page 1193

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0PTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0PTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '10' && CNTHCTL_EL2.EL1PTEN

== '0' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0PTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'

&& IsFeatureImplemented(FEAT_SEL2) then
CNTHPS_CTL_EL2 = R[t];

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'
then

CNTHP_CTL_EL2 = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL1 then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '0' && CNTHCTL_EL2.EL1PCEN == '0'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CNTHCTL_EL2.EL1PTEN == '0'

then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && CNTHCTL.PL1PCEN == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) then
CNTP_CTL_NS = R[t];

else
CNTP_CTL = R[t];

elsif PSTATE.EL == EL2 then
if HaveEL(EL3) && ELUsingAArch32(EL3) then

CNTP_CTL_NS = R[t];
else

CNTP_CTL = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
CNTP_CTL_S = R[t];

else
CNTP_CTL_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTP_CTL, Counter-timer Physical Timer Control register

Page 1194

(old) htmldiff from- (new)

CNTV_CTL, Counter-timer Virtual Timer Control
register

The CNTV_CTL characteristics are:

Purpose
Control register for the virtual timer.

Configuration
AArch32 System register CNTV_CTL bits [31:0] are architecturally mapped to AArch64 System register
CNTV_CTL_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
CNTV_CTL are UNDEFINED.

Attributes
CNTV_CTL is a 32-bit register.

Field descriptions
The CNTV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 1195

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to 0.

Accessing the CNTV_CTL
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 1196

AArch32-cntv_tval.html

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

return CNTHVS_CTL_EL2;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
return CNTHV_CTL_EL2;

else
return CNTV_CTL;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

return CNTV_CTL;
elsif PSTATE.EL == EL2 then

return CNTV_CTL;
elsif PSTATE.EL == EL3 then

return CNTV_CTL;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b0011 0b001

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 1197

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CNTKCTL_EL1.EL0VTEN

== '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && CNTKCTL.PL0VTEN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CNTHCTL_EL2.EL0VTEN
== '0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && CNTHCTL_EL2.EL1TVT

== '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '0'
&& IsFeatureImplemented(FEAT_SEL2) then

CNTHVS_CTL_EL2 = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && SCR_EL3.NS == '1'

then
CNTHV_CTL_EL2 = R[t];

else
CNTV_CTL = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && CNTHCTL_EL2.EL1TVT == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

CNTV_CTL = R[t];
elsif PSTATE.EL == EL2 then

CNTV_CTL = R[t];
elsif PSTATE.EL == EL3 then

CNTV_CTL = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTV_CTL, Counter-timer Virtual Timer Control register

Page 1198

(old) htmldiff from- (new)

CPSR, Current Program Status Register
The CPSR characteristics are:

Purpose
Holds PE status and control information.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to CPSR
are UNDEFINED.

Attributes
CPSR is a 32-bit register.

Field descriptions
The CPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q RES0 SSBSPANDITRES0 GE RES0 E A I F RES0RES1 M

N, bit [31]

Negative condition flag. Set to bit[31] of the result of the last flag-setting instruction. If the result is regarded as a
two's complement signed integer, then N is set to 1 if the result was negative, and N is set to 0 if the result was
positive or zero.

Z, bit [30]

Zero condition flag. Set to 1 if the result of the last flag-setting instruction was zero, and to 0 otherwise. A result of
zero often indicates an equal result from a comparison.

C, bit [29]

Carry condition flag. Set to 1 if the last flag-setting instruction resulted in a carry condition, for example an unsigned
overflow on an addition.

V, bit [28]

Overflow condition flag. Set to 1 if the last flag-setting instruction resulted in an overflow condition, for example a
signed overflow on an addition.

Q, bit [27]

Cumulative saturation bit. Set to 1 to indicate that overflow or saturation occurred in some instructions.

Bits [26:24]

Reserved, RES0.

CPSR, Current Program Status Register

Page 1199

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass Safe.

Prohibits speculative loads or stores thatwhich might practically allow a cache timing side channel.

A cache timing side channel might be exploited where a load or store uses an address that is derived from a register
that is being loaded from memory using a load instruction speculatively read from a memory location. If PSTATE.SSBS
is enabled, the address derived from the load instruction might be from earlier in the coherence order than the latest
store to that memory location with the same virtual address.

SSBS Meaning
0b0 Hardware is not permitted to load or store speculatively in the

manner described.
0b1 Hardware is permitted to load or store speculatively in the

manner described.

The value of this bit is usually set to the value described by the SCTLR.DSSBS bit on exceptions to any mode except
Hyp mode, and the value described by HSCTLR.DSSBS on exceptions to Hyp mode.

On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never.

PAN Meaning
0b0 The translation system is the same as Armv8.0.
0b1 Disables privileged read and write accesses to addresses

accessible at EL0.

The value of this bit is usually preserved on taking an exception, except in the following situations:

• When the target of the exception is EL1, and the value of the SCTLR.SPAN bit for the current Security state is
0, this bit is set to 1.

• When the target of the exception is EL3, from Secure state, and the value of the Secure SCTLR.SPAN is 0, this
bit is set to 1.

• When the target of the exception is EL3, from Non-secure state, this bit is set to 0 regardless of the value of
the Secure SCTLR.SPAN bit.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing.

CPSR, Current Program Status Register

Page 1200

DIT Meaning
0b0 The architecture makes no statement about the timing properties

of any instructions.
0b1 The architecture requires that:

• The timing of every load and store instruction is insensitive
to the value of the data being loaded or stored.

• For certain data processing instructions, the instruction
takes a time thatwhich is independent of:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.
• For certain data processing instructions, the response of

the instruction to asynchronous exceptions does not vary
based on:

◦ The values of the data supplied in any of its
registers.

◦ The values of the NZCV flags.

The data processing instructions affected by this bit are:

• All cryptographic instructions. These instructions are:

◦ AESD, AESE, AESIMC, AESMC, SHA1C, SHA1H, SHA1M, SHA1P, SHA1SU0, SHA1SU1, SHA256H, SHA256H2,
SHA256SU0, and SHA256SU1.

• A subset of thethose instructions thatwhich use the general-purpose register file. For these instructions, the
effects of CPSR.DIT apply only if they do not use R15 as either their source or destination and pass their
condition execution check. TheseThe instructions are:

◦ BFI, BFC, CLZ, CMN, CMP, MLA, MLAS, MLS, MOVT, MUL, MULS, NOP, PKHBT, PKHTB, RBIT, REV, REV16, REVSH,
RRX, SADD16, SADD8, SASX, SBFX, SHADD16, SHADD8, SHASX, SHSAX, SHSUB16, SHSUB8, SMLAL**, SMLAW*,
SMLSD*, SMMLA*, SMMLS*, SMMUL*, SMUAD*, SMUL*, SSAX, SSUB16, SSUB8, SXTAB*, SXTAH, SXTB*, SXTH,
TEQ, TST, UADD*, UASX, UBFX, UHADD*, UHASX, UHSAX, UHSUB*, UMAAL, UMLAL, UMLALS, UMULL, UMULLS,
USADA8, USAX, USUB*, UXTAB*, UXTAH, UXTB*, UXTH, ADC (register-shifted register), ADCS (register-
shifted register), ADD (register-shifted register), ADDS (register-shifted register), AND (register-shifted
register), ANDS (register-shifted register), ASR (register-shifted register), ASRS (register-shifted
register), BIC (register-shifted register), BICS (register-shifted register), EOR (register-shifted
register), EORS (register-shifted register), LSL (register-shifted register), LSLS (register-shifted
register), LSR (register-shifted register), LSRS (register-shifted register), MOV (register-shifted
register), MOVS (register-shifted register), MVN (register-shifted register), MVNS (register-shifted
register), ORR (register-shifted register), ORRS (register-shifted register), ROR (register-shifted
register), RORS (register-shifted register), RSB (register-shifted register), RSBS (register-shifted
register), RSC (register-shifted register), RSCS (register-shifted register), SBC (register-shifted
register), SBCS (register-shifted register), SUB (register-shifted register), and SUBS (register-shifted
register).

• A subset of thethose instructions thatwhich use the general-purpose register file. For these instructions, the
effects of CPSR.DIT apply only if they do not use R15 as either their source or destination. The effects of
CPSR.DIT do not depend on these instructions passing their condition execution check. These instructions
are:

◦ ADC (immediate), ADC (register), ADCS (immediate), ADCS (register), ADD (immediate), ADD (register),
ADDS (immediate), ADDS (register), AND (immediate), AND (register), ANDS (immediate), ANDS (register),
ASR (immediate), ASR (register), ASRS (immediate), ASRS (register), BIC (immediate), BIC (register),
BICS (immediate), BICS (register), EOR (immediate), EOR (register), EORS (immediate), EORS (register),
LSL (immediate), LSL (register), LSLS (immediate), LSLS (register), LSR (immediate), LSR (register),
LSRS (immediate), LSRS (register), MOV (immediate), MOV (register), MOVS (immediate), MOVS (register),
MVN (immediate), MVN (register), MVNS (immediate), MVNS (register), ORR (immediate), ORR (register),
ORRS (immediate), ORRS (register), ROR (immediate), ROR (register), RORS (immediate), RORS (register),
RSB (immediate), RSB (register), RSBS (immediate), RSBS (register), RSC (immediate), RSC (register),
RSCS (immediate), RSCS (register), SBC (immediate), SBC (register), SBCS (immediate), SBCS (register),
SUB (immediate), SUB (register), SUBS (immediate), and SUBS (register).

• A subset of thethose instructions thatwhich use the SIMD&FP register file. For these instructions, the effects
of CPSR.DIT apply only if they pass their condition execution check. These instructions are:

◦ CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, CRC32CW, VABA*, VABD* (integer), VADD (integer), VADDHN,
VADDL, VADDW, VAND, VBIC, VBIF, VBIT, VBSL, VCLS, VCLZ, VCNT, VDUP, VEOR, VEXT, VHADD, VHSUB, VMAX
(integer), VMIN (integer), VMLA (integer), VMLAL, VMLS (integer), VMLSL, VMOV, VMOVL, VMOVN, VMUL
(integer and polynomial), VMULL (integer and polynomial), VMVN, VORN, VORR, VPADAL, VPADD (integer),

CPSR, Current Program Status Register

Page 1201

VPADDL, VPMAX (integer), VPMIN (integer), VRADDHN, VREV*, VRHADD, VRSHL, VRSHR, VRSHRN, VRSRA,
VRSUBHN, VSHL, VSHLL, VSHR, VSLI, VSRA, VSRI, VSUB (integer), VSUBHN, VSUBL, VSUBW, VSWP, VTBL,
VTBX, VTRN, VTST, VUZP, and VZIP.

◦ CRC32B, CRC32H, CRC32W, CRC32CB, CRC32CH, CRC32CW, VABA*, VABD*, VABS, VACGE, VACGT, VACLE,
VACLT, VADD (integer), VADDHN, VADDL, VADDW, VAND, VBIC, VBIF, VBIT, VBSL, VCGE, VCGT, VCLE, VCLS,
VCLT, VCLZ, VCMP, VCMPE, VCNT, VDUP, VEOR, VEXT, VHADD, VHSUB, VMAX (integer), VMIN (integer), VMLA
(integer), VMLAL, VMLS (integer), VMLSL, VMOV, VMOVL, VMOVN, VMUL (integer and polynomial), VMULL
(integer and polynomial), VMVN, VNEG, VORN, VORR, VPADAL, VPADD (integer), VPADDL, VPMAX (integer),
VPMIN (integer), VRADDHN, VREV*, VRHADD, VRSHL, VRSHR, VRSHRN, VRSRA, VRSUBHN, VSELEQ, VSELGE,
VSELGT, VSELVS, VSHL, VSHLL, VSHR, VSLI, VSRA, VSRI, VSUB (integer), VSUBHN, VSUBL, VSUBW, VSWP,
VTBL, VTBX, VTRN, VTST, VUZP, and VZIP

• Another subset of the instructions that use the SIMD&FP register file. For these instructions, the effects of
CPSR.DIT apply only if they pass their condition execution check and apply only when the instructions are
operating on integer vector elements. These instructions are:

◦ VABS, VCGE, VCGT, VCLE, VCLT, VMLA (by scalar), VMLS (by scalar), and VNEG.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [20]

Reserved, RES0.

GE, bits [19:16]

Greater than or Equal flags, for parallel addition and subtraction.

Bits [15:10]

Reserved, RES0.

E, bit [9]

Endianness state bit. Controls the load and store endianness for data accesses:

E Meaning
0b0 Little-endian operation
0b1 Big-endian operation.

Instruction fetches ignore this bit.

If an implementation does not provide Big-endian support, this bit is RES0. If it does not provide Little-endian support,
this bit is RES1.

If an implementation provides Big-endian support but only at EL0, this bit is RES0 for an exception return to any
Exception level other than EL0.

Likewise, if it provides Little-endian support only at EL0, this bit is RES1 for an exception return to any Exception level
other than EL0.

When the reset value of the SCTLR.EE bit is defined by a configuration input signal, that value also applies to the
CPSR.E bit on reset, and therefore applies to software execution from reset.

A, bit [8]

SError interrupt mask bit. The possible values of this bit are:

CPSR, Current Program Status Register

Page 1202

A Meaning
0b0 Exception not masked.
0b1 Exception masked.

I, bit [7]

IRQ mask bit. The possible values of this bit are:

I Meaning
0b0 Exception not masked.
0b1 Exception masked.

F, bit [6]

FIQ mask bit. The possible values of this bit are:

F Meaning
0b0 Exception not masked.
0b1 Exception masked.

Bit [5]

Reserved, RES0.

Bit [4]

Reserved, RES1.

M, bits [3:0]

Current PE mode. Possible values are:

M Meaning
0b0000 User.
0b0001 FIQ.
0b0010 IRQ.
0b0011 Supervisor.
0b0110 Monitor.
0b0111 Abort.
0b1010 Hyp.
0b1011 Undefined.
0b1111 System.

Accessing the CPSR
CPSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CPSR, Current Program Status Register

Page 1203

(old) htmldiff from- (new)

DBGBXVR<n>, Debug Breakpoint Extended Value
Registers, n = 0 - 15

The DBGBXVR<n> characteristics are:

Purpose
Holds a value for use in breakpoint matching, to support VMID matching. Used in conjunction with a control register
DBGBCR<n> and a value register DBGBVR<n>, where EL2 is implemented and breakpoint n supports Context
matching.

Configuration
AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[63:32].

AArch32 System register DBGBXVR<n> bits [31:0] are architecturally mapped to External register
DBGBVR<n>_EL1[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGBXVR<n> are UNDEFINED.

How this register is interpreted depends on the value of DBGBCR<n>.BT.

• When DBGBCR<n>.BT is 0b10xx, this register holds a VMID.
• When DBGBCR<n>.BT is 0b11xx, this register holds a Context ID.

For other values of DBGBCR<n>.BT, this register is RES0.

Accesses to this register are UNDEFINED in any of the following cases:

• Breakpoint n is not implemented.
• Breakpoint n does not support Context matching.
• EL2 is not implemented.

For more information, see the description of the DBGDIDR.CTX_CMPs field.

Attributes
DBGBXVR<n> is a 32-bit register.

Field descriptions
The DBGBXVR<n> bit assignments are:

When DBGBCR<n>.BT == 0b10xx and EL2 is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID[15:8] VMID[7:0]

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 1204

AArch32-dbgbcrn.html
AArch32-dbgbvrn.html
AArch32-dbgbcrn.html
AArch32-dbgbcrn.html
AArch32-dbgbcrn.html
AArch32-dbgbcrn.html

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. ForSee more information, see VMID[7:0].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [7:0]

VMID value for comparison. The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>.BT == 0b11xx and EL2 is implemented:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ContextID2

ContextID2, bits [31:0]

When FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented:

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Accessing the DBGBXVR<n>
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 n[3:0] 0b001

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 1205

AArch64-vtcr_el2.html
AArch64-contextidr_el2.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBXVR[UInt(CRm<3:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
return DBGBXVR[UInt(CRm<3:0>)];

elsif PSTATE.EL == EL3 then
if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

return DBGBXVR[UInt(CRm<3:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 n[3:0] 0b001

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 1206

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBXVR[UInt(CRm<3:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then
Halt(DebugHalt_SoftwareAccess);

else
DBGBXVR[UInt(CRm<3:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if DBGOSLSR.OSLK == '0' && HaltingAllowed() && EDSCR.TDA == '1' then

Halt(DebugHalt_SoftwareAccess);
else

DBGBXVR[UInt(CRm<3:0>)] = R[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15

Page 1207

(old) htmldiff from- (new)

DBGCLAIMCLR, Debug CLAIM Tag Clear register
The DBGCLAIMCLR characteristics are:

Purpose
Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMSET register.

Configuration
AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMCLR_EL1[31:0].

AArch32 System register DBGCLAIMCLR bits [31:0] are architecturally mapped to External register
DBGCLAIMCLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGCLAIMCLR are UNDEFINED.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMCLR is a 32-bit register.

Field descriptions
The DBGCLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WISBZ CLAIM

Bits [31:8]

Reserved, RAZ/WI.SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on
writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag
bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

DBGCLAIMCLR, Debug CLAIM Tag Clear register

Page 1208

Accessing the DBGCLAIMCLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1001 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGCLAIMCLR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGCLAIMCLR;

elsif PSTATE.EL == EL3 then
return DBGCLAIMCLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1001 0b110

DBGCLAIMCLR, Debug CLAIM Tag Clear register

Page 1209

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGCLAIMCLR = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGCLAIMCLR = R[t];

elsif PSTATE.EL == EL3 then
DBGCLAIMCLR = R[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGCLAIMCLR, Debug CLAIM Tag Clear register

Page 1210

(old) htmldiff from- (new)

DBGCLAIMSET, Debug CLAIM Tag Set register
The DBGCLAIMSET characteristics are:

Purpose
Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMCLR register.

Configuration
AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMSET_EL1[31:0].

AArch32 System register DBGCLAIMSET bits [31:0] are architecturally mapped to External register
DBGCLAIMSET_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGCLAIMSET are UNDEFINED.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMSET is a 32-bit register.

Field descriptions
The DBGCLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WISBZ CLAIM

Bits [31:8]

Reserved, RAZ/WI.SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on
writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag
bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

DBGCLAIMSET, Debug CLAIM Tag Set register

Page 1211

On a Cold reset, this field resets to 0.

Accessing the DBGCLAIMSET
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1000 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGCLAIMSET;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGCLAIMSET;

elsif PSTATE.EL == EL3 then
return DBGCLAIMSET;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0111 0b1000 0b110

DBGCLAIMSET, Debug CLAIM Tag Set register

Page 1212

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGCLAIMSET = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGCLAIMSET = R[t];

elsif PSTATE.EL == EL3 then
DBGCLAIMSET = R[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGCLAIMSET, Debug CLAIM Tag Set register

Page 1213

(old) htmldiff from- (new)

DBGDCCINT, DCC Interrupt Enable Register
The DBGDCCINT characteristics are:

Purpose
Enables interrupt requests to be signaled based on the DCC status flags.

Configuration
AArch32 System register DBGDCCINT bits [31:0] are architecturally mapped to AArch64 System register
MDCCINT_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDCCINT are UNDEFINED.

Attributes
DBGDCCINT is a 32-bit register.

Field descriptions
The DBGDCCINT bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0RX TX RES0

Bit [31]

Reserved, RES0.

RX, bit [30]

DCC interrupt request enable control for DTRRX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

RX Meaning
0b0 No interrupt request generated by DTRRX.
0b1 Interrupt request will be generated on RXfull == 1.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

TX, bit [29]

DCC interrupt request enable control for DTRTX. Enables a common COMMIRQ interrupt request to be signaled
based on the DCC status flags.

TX Meaning
0b0 No interrupt request generated by DTRTX.
0b1 Interrupt request will be generated on TXfull == 0.

If legacy COMMRX and COMMTX signals are implemented, then these are not affected by the value of this bit.

On a Warm reset, this field resets to 0.

DBGDCCINT, DCC Interrupt Enable Register

Page 1214

Bits [28:0]

Reserved, RES0.

Accessing the DBGDCCINT
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b000

DBGDCCINT, DCC Interrupt Enable Register

Page 1215

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDCCINT;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDCCINT;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDCCINT;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDCCINT, DCC Interrupt Enable Register

Page 1216

return DBGDCCINT;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b000

DBGDCCINT, DCC Interrupt Enable Register

Page 1217

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
DBGDCCINT = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDCCINT = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDCCINT = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDCCINT, DCC Interrupt Enable Register

Page 1218

DBGDCCINT = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDCCINT, DCC Interrupt Enable Register

Page 1219

(old) htmldiff from- (new)

DBGDIDR, Debug ID Register
The DBGDIDR characteristics are:

Purpose
Specifies which version of the Debug architecture is implemented, and some features of the debug implementation.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDIDR are UNDEFINED.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDIDR is a 32-bit register.

Field descriptions
The DBGDIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
WRPs BRPs CTX_CMPs Version RES1nSUHD_impRES0SE_imp RES0

WRPs, bits [31:28]

The number of watchpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented watchpoints, to 0b1111 for 16 implemented
watchpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.WRPs.

BRPs, bits [27:24]

The number of breakpoints implemented, minus 1.

Permitted values of this field are from 0b0001 for 2 implemented breakpoint, to 0b1111 for 16 implemented
breakpoints.

The value of 0b0000 is reserved.

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.BRPs.

CTX_CMPs, bits [23:20]

The number of breakpoints that can be used for Context matching, minus 1.

Permitted values of this field are from 0b0000 for 1 Context matching breakpoint, to 0b1111 for 16 Context matching
breakpoints.

The Context matching breakpoints must be the highest addressed breakpoints. For example, if six breakpoints are
implemented and two are Context matching breakpoints, they must be breakpoints 4 and 5.

DBGDIDR, Debug ID Register

Page 1220

AArch64-id_aa64dfr0_el1.html
AArch64-id_aa64dfr0_el1.html

If AArch64 is implemented, this field has the same value as ID_AA64DFR0_EL1.CTX_CMPs.

Version, bits [19:16]

The Debug architecture version. Defined values are:

Version Meaning
0b0001 Armv6, v6 Debug architecture.
0b0010 Armv6, v6.1 Debug architecture.
0b0011 Armv7, v7 Debug architecture, with baseline CP14 registers

implemented.
0b0100 Armv7, v7 Debug architecture, with all CP14 registers

implemented.
0b0101 Armv7, v7.1 Debug architecture.
0b0110 Armv8, v8 Debug architecture.
0b0111 Armv8.1, v8 Debug architecture, with Virtualization Host

Extensions.
0b1000 Armv8.2, v8.2 Debug architecture.
0b1001 Armv8.4, v8.4 Debug architecture.

All other values are reserved.

In any Armv8 implementation, the values 0b0001, 0b0010, 0b0011, 0b0100, and 0b0101 are not permitted.

• If FEAT_VHE is not implemented, the only permitted value is 0b0110.

• In an Armv8.0 implementation, the value 0b1000 or higher is not permitted.

Bit [15]

Reserved, RES1.

nSUHD_imp, bit [14]

In Armv7-A, was Secure User Halting Debug not implemented.

The value of this bit must match the value of the SE_imp bit.

Bit [13]

Reserved, RES0.

SE_imp, bit [12]

EL3 implemented. The meanings of the values of this bit are:

SE_imp Meaning
0b0 EL3 not implemented.
0b1 EL3 implemented.

The value of this bit must match the value of the nSUHD_imp bit.

Bits [11:0]

Reserved, RES0.

Accessing the DBGDIDR
Arm deprecates any access to this register from EL0.

Accesses to this register use the following encodings:

DBGDIDR, Debug ID Register

Page 1221

AArch64-id_aa64dfr0_el1.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b000

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDIDR;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDIDR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDIDR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDIDR;

elsif PSTATE.EL == EL3 then
return DBGDIDR;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

DBGDIDR, Debug ID Register

Page 1222

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDIDR, Debug ID Register

Page 1223

(old) htmldiff from- (new)

DBGDRAR, Debug ROM Address Register
The DBGDRAR characteristics are:

Purpose
Defines the base physical address of a 4KB-aligned memory-mapped debug component, usually a ROM table that
locates and describes the memory-mapped debug components in the system. Armv8 deprecates any use of this
register.

Configuration
AArch32 System register DBGDRAR bits [63:0] are architecturally mapped to AArch64 System register
MDRAR_EL1[63:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDRAR are UNDEFINED.

DBGDRAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits
[31:0] are read.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDRAR is a 64-bit register.

Field descriptions
The DBGDRAR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 ROMADDR[47:12]
ROMADDR[47:12] RES0 Valid

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

ROMADDR[47:12], bits [47:12]

Bits[47:12] of the ROM table physical address.

If the physical address size in bits (PAsize) is less than 48 then the register bits corresponding to ROMADDR
[47:PAsize] are RES0.

Bits [11:0] of the ROM table physical address are zero.

Arm strongly recommends that bits ROMADDR[(PAsize-1):32] are zero in any system that supports AArch32 at the
highest implemented Exception level.

In an implementation that includes EL3, ROMADDR is an address in Non-secure memory. It is IMPLEMENTATION DEFINED
whether the ROM table is also accessible in Secure memory.

If DBGDRAR.Valid == 0b00, then this field is UNKNOWN.

DBGDRAR, Debug ROM Address Register

Page 1224

AArch64-mdrar_el1.html

Bits [11:2]

Reserved, RES0.

Valid, bits [1:0]

This field indicates whether the ROM Table address is valid.

Valid Meaning
0b00 ROM Table address is not valid. Software must ignore

ROMADDR.
0b11 ROM Table address is valid.

Other values are reserved.

Accessing the DBGDRAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0001 0b0000 0b000

DBGDRAR, Debug ROM Address Register

Page 1225

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDRAR<31:0>;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDRAR<31:0>;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDRAR<31:0>;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDRAR<31:0>;

elsif PSTATE.EL == EL3 then
return DBGDRAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1110 0b0001 0b0000

DBGDRAR, Debug ROM Address Register

Page 1226

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDRAR;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then

AArch32.TakeHypTrapException(0x0C);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x0C);

else
return DBGDRAR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
AArch32.TakeHypTrapException(0x0C);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
else

return DBGDRAR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x0C);

else
return DBGDRAR;

elsif PSTATE.EL == EL3 then
return DBGDRAR;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDRAR, Debug ROM Address Register

Page 1227

(old) htmldiff from- (new)

DBGDSAR, Debug Self Address Register
The DBGDSAR characteristics are:

Purpose
In earlier versions of the Arm Architecture, this register defines the offset from the base address defined in DBGDRAR
of the physical base address of the debug registers for the PE. Armv8 deprecates any use of this register.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDSAR are UNDEFINED.

DBGDSAR is a 64-bit register that can also be accessed as a 32-bit value. If it is accessed as a 32-bit register, bits
[31:0] are read.

If EL1 cannot use AArch32 then the implementation of this register is OPTIONAL and deprecated.

Attributes
DBGDSAR is a 64-bit register.

Field descriptions
The DBGDSAR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 RAZ
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:2]

Reserved, RES0.

Bits [1:0]

Reserved, RAZ.

This field indicates whether the debug self address offset is valid. For ARMv8, this field is always 0b00, the offset is not
valid.

Accessing the DBGDSAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0010 0b0000 0b000

DBGDSAR, Debug Self Address Register

Page 1228

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDSAR<31:0>;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSAR<31:0>;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDSAR<31:0>;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSAR<31:0>;

elsif PSTATE.EL == EL3 then
return DBGDSAR<31:0>;

MRRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <Rt2>, <CRm>

coproc CRm opc1
0b1110 0b0010 0b0000

DBGDSAR, Debug Self Address Register

Page 1229

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDSAR;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x0C);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDRA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x0C);
elsif EL2Enabled() && ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDRA> != '00') then

AArch32.TakeHypTrapException(0x0C);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x0C);

else
return DBGDSAR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDRA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x0C);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDRA> != '00' then
AArch32.TakeHypTrapException(0x0C);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x0C);
else

return DBGDSAR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x0C);

else
return DBGDSAR;

elsif PSTATE.EL == EL3 then
return DBGDSAR;

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDSAR, Debug Self Address Register

Page 1230

(old) htmldiff from- (new)

DBGDSCRext, Debug Status and Control Register,
External View

The DBGDSCRext characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
AArch32 System register DBGDSCRext bits [31:0] are architecturally mapped to AArch64 System register
MDSCR_EL1[31:0].

AArch32 System register DBGDSCRext bitbits [15:2] are is architecturally mapped to AArch32 System register
DBGDSCRint[15:2].

AArch32 System register DBGDSCRext bit [12] is architecturally mapped to AArch32 System register
DBGDSCRint[12].

AArch32 System register DBGDSCRext bits [5:2] are architecturally mapped to AArch32 System register
DBGDSCRint[5:2].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDSCRext are UNDEFINED.

This register is required in all implementations.

Attributes
DBGDSCRext is a 32-bit register.

Field descriptions
The DBGDSCRext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110987 6 5432 1 0
TFORXfullTXfullRES0RXOTXURES0INTdisTDARES0SC2NSSPNIDdisSPIDdisMDBGenHDERES0UDCCdis RES0 ERRMOERES0

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter override. Used for save/restore of EDSCR.TFO.

When the OS Lock is unlocked, DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When the OS Lock is locked, DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TFO. Reads and writes of this
bit are indirect accesses to EDSCR.TFO.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

DBGDSCRext, Debug Status and Control Register, External View

Page 1231

AArch32-dbgoslsr.html
AArch32-dbgoslsr.html

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Used for save/restore of EDSCR.RXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXfull. Reads and writes of this bit are indirect
accesses to EDSCR.RXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRRX full status.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXfull, bit [29]

DTRTX full. Used for save/restore of EDSCR.TXfull.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXfull. Reads and writes of this bit are indirect
accesses to EDSCR.TXfull.

Arm deprecates use of this bit other than for save/restore. Use DBGDSCRint to access the DTRTX full status.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [28]

Reserved, RES0.

RXO, bit [27]

Used for save/restore of EDSCR.RXO.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.RXO. Reads and writes of this bit are indirect
accesses to EDSCR.RXO.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TXU, bit [26]

Used for save/restore of EDSCR.TXU.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

DBGDSCRext, Debug Status and Control Register, External View

Page 1232

AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TXU. Reads and writes of this bit are indirect
accesses to EDSCR.TXU.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bits [25:24]

Reserved, RES0.

INTdis, bits [23:22]

Used for save/restore of EDSCR.INTdis.

When DBGOSLSR.OSLK == 0, this field is RO, and software must treat it as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this field is RW and holds the value of EDSCR.INTdis. Reads and writes of this field are
indirect accesses to EDSCR.INTdis.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

TDA, bit [21]

Used for save/restore of EDSCR.TDA.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.TDA. Reads and writes of this bit are indirect
accesses to EDSCR.TDA.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [20]

Reserved, RES0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, FEAT_VHE is implemented and FEAT_PCSRv8p2 is not implemented:

Used for save/restore of EDSCR.SC2.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.SC2. Reads and writes of this bit are indirect
accesses to EDSCR.SC2.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

DBGDSCRext, Debug Status and Control Register, External View

Page 1233

AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status. Returns the inverse of IsSecure().

Arm deprecates use of this field.

NS Meaning
0b0 Secure state.
0b1 Non-secure state.

Access to this field is RO.

SPNIDdis, bit [17]

When EL3 is implemented:

Secure privileged profiling disabled status bit.

SPNIDdis Meaning
0b0 Profiling allowed in Secure privileged modes.
0b1 Profiling prohibited in Secure privileged modes.

This field reads as 0 if any of the following applies, and reads as 1 otherwise:

• FEAT_Debugv8p2 is not implemented and ExternalSecureNoninvasiveDebugEnabled() returns TRUE.
• EL3 is using AArch32 and the value of SDCR.SPME is 1.
• EL3 is using AArch64 and the value of MDCR_EL3.SPME is 1.

Arm deprecates use of this field.

Access to this field is RO.

Otherwise:

Reserved, RES0.

SPIDdis, bit [16]

When EL3 is implemented:

Secure privileged AArch32 invasive self-hosted debug disabled status bit. The value of this bit depends on the value of
SDCR.SPD and the pseudocode function AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled().

SPIDdis Meaning
0b0 Self-hosted debug enabled in Secure privileged AArch32

modes.
0b1 Self-hosted debug disabled in Secure privileged AArch32

modes.

This bit reads as 1 if any of the following is true and reads as 0 otherwise:

• EL3 is using AArch32 and SDCR.SPD has the value 0b10.
• EL3 is using AArch64 and MDCR_EL3.SPD32 has the value 0b10.
• EL3 is using AArch32, SDCR.SPD has the value 0b00, and

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.
• EL3 is using AArch64, MDCR_EL3.SPD32 has the value 0b00, and

AArch32.SelfHostedSecurePrivilegedInvasiveDebugEnabled() returns FALSE.

Arm deprecates use of this field.

Access to this field is RO.

DBGDSCRext, Debug Status and Control Register, External View

Page 1234

Otherwise:

Reserved, RES0.

MDBGen, bit [15]

Monitor debug events enable. Enable Breakpoint, Watchpoint, and Vector Catch exceptions.

MDBGen Meaning
0b0 Breakpoint, Watchpoint, and Vector Catch exceptions

disabled.
0b1 Breakpoint, Watchpoint, and Vector Catch exceptions

enabled.

On a Warm reset, this field resets to 0.

HDE, bit [14]

Used for save/restore of EDSCR.HDE.

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.HDE. Reads and writes of this bit are indirect
accesses to EDSCR.HDE.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

Bit [13]

Reserved, RES0.

UDCCdis, bit [12]

Traps EL0 accesses to the DCC registers to Undefined mode.

UDCCdis Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 EL0 accesses to the DBGDSCRint, DBGDTRRXint,

DBGDTRTXint, DBGDIDR, DBGDSAR, and DBGDRAR are
trapped to Undefined mode.

Note

All accesses to these registers are trapped, including LDC and STC accesses
to DBGDTRTXint and DBGDTRRXint, and MRRC accesses to DBGDSAR and
DBGDRAR.

Traps of EL0 accesses to the DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

On a Warm reset, this field resets to 0.

Bits [11:7]

Reserved, RES0.

ERR, bit [6]

Used for save/restore of EDSCR.ERR.

DBGDSCRext, Debug Status and Control Register, External View

Page 1235

AArch32-dbgoslsr.html
AArch32-dbgoslsr.html

When DBGOSLSR.OSLK == 0, software must treat this bit as UNK/SBZP.

When DBGOSLSR.OSLK == 1, this bit holds the value of EDSCR.ERR. Reads and writes of this bit are indirect
accesses to EDSCR.ERR.

The architected behavior of this field determines the value it returns after a reset.

Accessing this field has the following behavior:

• When DBGOSLSR.OSLK == 1, access to this field is RW.
• When DBGOSLSR.OSLK == 0, access to this field is RO.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field
is set to indicate the event that caused the exception:

MOE Meaning
0b0001 Breakpoint.
0b0011 Software breakpoint (BKPT) instruction.
0b0101 Vector catch.
0b1010 Watchpoint.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRext
Individual fields within this register might have restricted accessibility when the OS lock is unlocked,
DBGOSLSR.OSLK == 0. See the field descriptions for more detail.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b010

DBGDSCRext, Debug Status and Control Register, External View

Page 1236

AArch32-dbgoslsr.html
AArch32-dbgoslsr.html
AArch32-dbgoslsr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDSCRext;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRext;

elsif PSTATE.EL == EL3 then
return DBGDSCRext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0010 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDSCRext = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDSCRext = R[t];

elsif PSTATE.EL == EL3 then
DBGDSCRext = R[t];

DBGDSCRext, Debug Status and Control Register, External View

Page 1237

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDSCRext, Debug Status and Control Register, External View

Page 1238

(old) htmldiff from- (new)

DBGDSCRint, Debug Status and Control Register,
Internal View

The DBGDSCRint characteristics are:

Purpose
Main control register for the debug implementation. This is an internal, read-only view.

Configuration
AArch32 System register DBGDSCRint bits [30:29] are architecturally mapped to AArch64 System register
MDCCSR_EL0[30:29].

AArch32 System register DBGDSCRint bitbits [15:2] are is architecturally mapped to AArch64 AArch32 System
register MDSCR_EL1[15]DBGDSCRext[15:2] .

AArch32 System register DBGDSCRint bit [12] is architecturally mapped to AArch64 System register
MDSCR_EL1[12].

AArch32 System register DBGDSCRint bits [5:2] are architecturally mapped to AArch64 System register
MDSCR_EL1[5:2].

AArch32 System register DBGDSCRint bit [15] is architecturally mapped to AArch32 System register
DBGDSCRext[15].

AArch32 System register DBGDSCRint bit [12] is architecturally mapped to AArch32 System register
DBGDSCRext[12].

AArch32 System register DBGDSCRint bits [5:2] are architecturally mapped to AArch32 System register
DBGDSCRext[5:2].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDSCRint are UNDEFINED.

This register is required in all implementations.

DBGDSCRint.{NS, SPNIDdis, SPIDdis, MDBGen, UDCCdis, MOE} are UNKNOWN when the register is accessed at EL0.
However, although these values are not accessible at EL0 by instructions that are neither UNPREDICTABLE nor return
UNKNOWN values, it is permissible for an implementation to return the values of DBGDSCRext.{NS, SPNIDdis, SPIDdis,
MDBGen, UDCCdis, MOE} for these fields at EL0.

It is also permissible for an implementation to return the same values as defined for a read of DBGDSCRint at EL1 or
above. (This is the case even if the implementation does not support AArch32 at EL1 or above.)

Attributes
DBGDSCRint is a 32-bit register.

Field descriptions
The DBGDSCRint bit assignments are:

31 30 29 28272625242322212019 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0
RES0RXfullTXfull RES0 NSSPNIDdisSPIDdisMDBGenRES0UDCCdis RES0 MOE RES0

DBGDSCRint, Debug Status and Control Register, Internal View

Page 1239

Bit [31]

Reserved, RES0.

RXfull, bit [30]

DTRRX full. Read-only view of the equivalent bit in the EDSCR.

TXfull, bit [29]

DTRTX full. Read-only view of the equivalent bit in the EDSCR.

Bits [28:19]

Reserved, RES0.

NS, bit [18]

Non-secure status.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPNIDdis, bit [17]

Secure privileged non-invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

SPIDdis, bit [16]

Secure privileged invasive debug disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

MDBGen, bit [15]

Monitor debug events enable.

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [14:13]

Reserved, RES0.

UDCCdis, bit [12]

User mode access to Debug Communications Channel disable.

Read-only view of the equivalent bit in the DBGDSCRext. Arm deprecates use of this field.

Bits [11:6]

Reserved, RES0.

MOE, bits [5:2]

Method of Entry for debug exception. When a debug exception is taken to an Exception level using AArch32, this field
is set to indicate the event that caused the exception:

DBGDSCRint, Debug Status and Control Register, Internal View

Page 1240

MOE Meaning
0b0001 Breakpoint
0b0011 Software breakpoint (BKPT) instruction
0b0101 Vector catch
0b1010 Watchpoint

Read-only view of the equivalent bit in the DBGDSCRext.

Bits [1:0]

Reserved, RES0.

Accessing the DBGDSCRint
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0001 0b000

DBGDSCRint, Debug Status and Control Register, Internal View

Page 1241

if Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDSCRint;

elsif PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x05);
elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=
'00') then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRint;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

DBGDSCRint, Debug Status and Control Register, Internal View

Page 1242

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDSCRint;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDSCRint;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDSCRint;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDSCRint, Debug Status and Control Register, Internal View

Page 1243

(old) htmldiff from- (new)

DBGDTRRXext, Debug OS Lock Data Transfer Register,
Receive, External View

The DBGDTRRXext characteristics are:

Purpose
Used for save/restore of DBGDTRRXint. It is a component of the Debug Communications Channel.

Configuration
AArch32 System register DBGDTRRXext bits [31:0] are architecturally mapped to AArch64 System register
OSDTRRX_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRRXext are UNDEFINED.

Attributes
DBGDTRRXext is a 32-bit register.

Field descriptions
The DBGDTRRXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Update DTRRX without side-effect

Bits [31:0]

Update DTRRX without side-effect.

Writes to this register update the value in DTRRX and do not change RXfull.

Reads of this register return the last value written to DTRRX and do not change RXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRXext
Arm deprecates reads and writes of DBGDTRRXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b010

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 1244

AArch32-dbgoslsr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDTRRXext;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDTRRXext;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRRXext;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 1245

return DBGDTRRXext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0000 0b010

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 1246

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
DBGDTRRXext = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDTRRXext = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRRXext = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 1247

DBGDTRRXext = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View

Page 1248

(old) htmldiff from- (new)

DBGDTRRXint, Debug Data Transfer Register, Receive
The DBGDTRRXint characteristics are:

Purpose
Transfers data from an external debugger to the PE. For example, it is used by a debugger transferring commands and
data to a debug target. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug
Communications Channel.

Configuration
AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRRX_EL0[31:0].

AArch32 System register DBGDTRRXint bits [31:0] are architecturally mapped to External register
DBGDTRRX_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRRXint are UNDEFINED.

Attributes
DBGDTRRXint is a 32-bit register.

Field descriptions
The DBGDTRRXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Update DTRRX

Bits [31:0]

Update DTRRX.

Reads of this register:

• If RXfull is set to 1, return the last value written to DTRRX.

• If RXfull is set to 0, return an UNKNOWN value.

After the read, RXfull is cleared to 0.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRRXint
Data can be stored to memory from this register using STC.

Accesses to this register use the following encodings:

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 1249

AArch64-dbgdtr_el0.html
AArch64-dbgdtrrx_el0.html
ext-dbgdtrrx_el0.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0101 0b000

if Halted() then
return DBGDTRRXint;

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRRXint;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDTRRXint;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRRXint;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

return DBGDTRRXint;

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 1250

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDTRRXint, Debug Data Transfer Register, Receive

Page 1251

(old) htmldiff from- (new)

DBGDTRTXext, Debug OS Lock Data Transfer Register,
Transmit

The DBGDTRTXext characteristics are:

Purpose
Used for save/restore of DBGDTRTXint. It is a component of the Debug Communication Channel.

Configuration
AArch32 System register DBGDTRTXext bits [31:0] are architecturally mapped to AArch64 System register
OSDTRTX_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRTXext are UNDEFINED.

Attributes
DBGDTRTXext is a 32-bit register.

Field descriptions
The DBGDTRTXext bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Return DTRTX without side-effect

Bits [31:0]

Return DTRTX without side-effect.

Reads of this register return the value in DTRTX and do not change TXfull.

Writes of this register update the value in DTRTX and do not change TXfull.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRTXext
Arm deprecates reads and writes of DBGDTRTXext through the System register interface when the OS Lock is
unlocked, DBGOSLSR.OSLK == 0.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0011 0b010

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 1252

AArch32-dbgoslsr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
return DBGDTRTXext;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

return DBGDTRTXext;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
return DBGDTRTXext;

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 1253

return DBGDTRTXext;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0011 0b010

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 1254

if PSTATE.EL == EL0 then
UNDEFINED;

elsif Halted() && ConstrainUnpredictableBool(Unpredictable_IGNORETRAPINDEBUG) then
DBGDTRTXext = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then
AArch32.TakeHypTrapException(0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDTRTXext = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRTXext = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 1255

DBGDTRTXext = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit

Page 1256

(old) htmldiff from- (new)

DBGDTRTXint, Debug Data Transfer Register, Transmit
The DBGDTRTXint characteristics are:

Purpose
Transfers data from the PE to an external debugger. For example, it is used by a debug target to transfer data to the
debugger. See DBGDTR_EL0 for additional architectural mappings. It is a component of the Debug Communication
Channel.

Configuration
AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to AArch64 System register
DBGDTRTX_EL0[31:0].

AArch32 System register DBGDTRTXint bits [31:0] are architecturally mapped to External register
DBGDTRTX_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGDTRTXint are UNDEFINED.

Attributes
DBGDTRTXint is a 32-bit register.

Field descriptions
The DBGDTRTXint bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Return DTRTX

Bits [31:0]

Return DTRTX.

Writes to this register:

• If TXfull is set to 1, set DTRTX to UNKNOWN.

• If TXfull is set to 0, update the value in DTRTX.

After the write, TXfull is set to 1.

For the full behavior of the Debug Communications Channel, see 'The Debug Communication Channel and Instruction
Transfer Register'.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGDTRTXint
Data can be loaded from memory into this register using 'LDC (immediate)' and 'LDC (literal)'.

Accesses to this register use the following encodings:

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 1257

AArch64-dbgdtr_el0.html
AArch64-dbgdtrtx_el0.html
ext-dbgdtrtx_el0.html

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0101 0b000

if Halted() then
DBGDTRTXint = R[t];

elsif PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && MDSCR_EL1.TDCC == '1' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

else
AArch64.AArch32SystemAccessTrap(EL1, 0x05);

elsif ELUsingAArch32(EL1) && DBGDSCRext.UDCCdis == '1' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then

AArch32.TakeHypTrapException(0x00);
else

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR_EL2.TGE == '1' || MDCR_EL2.<TDE,TDA> !=

'00') then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && (HCR.TGE == '1' || HDCR.<TDE,TDA> != '00') then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRTXint = R[t];

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TDCC == '1' then

AArch32.TakeHypTrapException(0x05);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then

AArch64.AArch32SystemAccessTrap(EL2, 0x05);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then

AArch32.TakeHypTrapException(0x05);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
else

DBGDTRTXint = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDCC == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SDCR.TDCC == '1' then
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

else
DBGDTRTXint = R[t];

elsif PSTATE.EL == EL3 then
if PSTATE.M != M32_Monitor && SDCR.TDCC == '1' then

AArch32.TakeMonitorTrapException();
else

DBGDTRTXint = R[t];

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 1258

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGDTRTXint, Debug Data Transfer Register, Transmit

Page 1259

(old) htmldiff from- (new)

DBGOSECCR, Debug OS Lock Exception Catch Control
Register

The DBGOSECCR characteristics are:

Purpose
Provides a mechanism for an operating system to access the contents of EDECCR that are otherwise invisible to
software, so it can save/restore the contents of EDECCR over powerdown on behalf of the external debugger.

Configuration
AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to AArch64 System register
OSECCR_EL1[31:0].

AArch32 System register DBGOSECCR bits [31:0] are architecturally mapped to External register EDECCR[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
DBGOSECCR are UNDEFINED.

If DBGOSLSR.OSLK == 0 then DBGOSECCR returns an UNKNOWN value on reads and ignores writes.

Attributes
DBGOSECCR is a 32-bit register.

Field descriptions
The DBGOSECCR bit assignments are:

When DBGOSLSR.OSLK == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EDECCR

EDECCR, bits [31:0]

Used for save/restore to EDECCR over powerdown.

Reads or writes to this field are indirect accesses to EDECCR.

Accessing the DBGOSECCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0110 0b010

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 1260

ext-edeccr.html
ext-edeccr.html
ext-edeccr.html
AArch32-dbgoslsr.html
ext-edeccr.html
ext-edeccr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif DBGOSLSR.OSLK == '0' then

return bits(32) UNKNOWN;
else

return DBGOSECCR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif DBGOSLSR.OSLK == '0' then
return bits(32) UNKNOWN;

else
return DBGOSECCR;

elsif PSTATE.EL == EL3 then
if DBGOSLSR.OSLK == '0' then

return bits(32) UNKNOWN;
else

return DBGOSECCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1110 0b000 0b0000 0b0110 0b010

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 1261

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.<TDE,TDA> != '00' then
AArch64.AArch32SystemAccessTrap(EL2, 0x05);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.<TDE,TDA> != '00' then
AArch32.TakeHypTrapException(0x05);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x05);
elsif DBGOSLSR.OSLK == '0' then

//no operation
else

DBGOSECCR = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x05);

elsif DBGOSLSR.OSLK == '0' then
//no operation

else
DBGOSECCR = R[t];

elsif PSTATE.EL == EL3 then
if DBGOSLSR.OSLK == '0' then

//no operation
else

DBGOSECCR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGOSECCR, Debug OS Lock Exception Catch Control Register

Page 1262

(old) htmldiff from- (new)

DISR, Deferred Interrupt Status Register
The DISR characteristics are:

Purpose
Records that an SError interrupt has been consumed by an ESB instruction.

Configuration
AArch32 System register DISR bits [31:0] are architecturally mapped to AArch64 System register DISR_EL1[31:0]
when the highest implemented Exception level is using AArch64.

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to DISR are UNDEFINED.

Attributes
DISR is a 32-bit register.

Field descriptions
The DISR bit assignments are:

When the ESB instruction is executed at EL2:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET EA RES0 DFSC

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:12]

Reserved, RES0.

AET, bits [11:10]

Asynchronous Error Type. See the description of HSR.AET for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EA, bit [9]

External abort Type. See the description of HSR.EA for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

DISR, Deferred Interrupt Status Register

Page 1263

AArch32-hsr.html
AArch32-hsr.html

DFSC, bits [5:0]

Fault Status Code. See the description of HSR.DFSC for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExTRES0FS[4]LPAE RES0 FS[3:0]

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault Status Code. See the description of DFSR.FS for an SError interrupt.

The FS field is split as follows:

• FS[4] is DISR[10].
• FS[3:0] is DISR[3:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

LPAE Meaning
0b0 Using the Short-descriptor translation table format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DISR, Deferred Interrupt Status Register

Page 1264

AArch32-hsr.html
AArch32-dfsr.html
AArch32-dfsr.html
AArch32-dfsr.html

Bits [8:4]

Reserved, RES0.

When the ESB instruction is executed at EL0 or EL1 and where TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExT RES0 LPAE RES0 STATUS

A, bit [31]

Set to 1 when an ESB instruction defers an asynchronous SError interrupt. If the implementation does not include any
sources of SError interrupt that can be synchronized by an Error Synchronization Barrier, then this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

Asynchronous Error Type. See the description of DFSR.AET for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

External abort Type. See the description of DFSR.ExT for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

LPAE Meaning
0b1 Using the Long-descriptor translation table format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault Status Code. See the description of DFSR.FS for an SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DISR, Deferred Interrupt Status Register

Page 1265

AArch32-dfsr.html
AArch32-dfsr.html
AArch32-dfsr.html

Accessing the DISR
An indirect write to DISR made by an ESB instruction does not require an explicit synchronization operation for the
value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

DISR is RAZ/WI if EL3 is implemented, the PE is in Non-debug state, and any of the following apply:

• EL3 is using AArch64, SCR_EL3.EA == 1, and any of the following apply:
◦ The PE is executing at EL2.
◦ The PE is executing at EL1 and ((SCR_EL3.NS == 0 && SCR_EL3.EEL2 == 0) || HCR_EL2.AMO ==

0).
• EL3 is using AArch32, SCR.EA == 1, and any of the following apply:

◦ The PE is executing at EL2.
◦ The PE is executing at EL1 and (SCR.NS == 0 || HCR.AMO == 0).

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

return VDISR_EL2;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

return VDISR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then

return Zeros();
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then

return Zeros();
else

return DISR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
return Zeros();

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
return Zeros();

else
return DISR;

elsif PSTATE.EL == EL3 then
return DISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

DISR, Deferred Interrupt Status Register

Page 1266

AArch32-scr.html
AArch32-scr.html
AArch32-hcr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

VDISR_EL2 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

VDISR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then

//no operation
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then

//no operation
else

DISR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
//no operation

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
//no operation

else
DISR = R[t];

elsif PSTATE.EL == EL3 then
DISR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DISR, Deferred Interrupt Status Register

Page 1267

(old) htmldiff from- (new)

DSPSR, Debug Saved Program Status Register
The DSPSR characteristics are:

Purpose
Holds the saved process state for Debug state. On entering Debug state, PSTATE information is written to this
register. On exiting Debug state, values are copied from this register to PSTATE.

Configuration
AArch32 System register DSPSR bits [31:0] are architecturally mapped to AArch64 System register DSPSR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to DSPSR
are UNDEFINED.

Attributes
DSPSR is a 32-bit register.

Field descriptions
The DSPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0]DITSSBSPAN SS IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on entering Debug state, and copied to PSTATE.N on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on entering Debug state, and copied to PSTATE.Z on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on entering Debug state, and copied to PSTATE.C on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on entering Debug state, and copied to PSTATE.V on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR, Debug Saved Program Status Register

Page 1268

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on entering Debug state, and copied to PSTATE.Q on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on entering Debug state, and copied to PSTATE.IT[1:0] on exiting Debug
state.

On exiting Debug state DSPSR.IT must contain a value that is valid for the instruction being returned to.

The IT field is split as follows:

• IT[1:0] is DSPSR[26:25].
• IT[7:2] is DSPSR[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DIT, bit [24]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on entering Debug state, and copied to PSTATE.DIT on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on entering Debug state, and copied to PSTATE.SSBS on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on entering Debug state, and copied to PSTATE.PAN on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DSPSR, Debug Saved Program Status Register

Page 1269

SS, bit [21]

Software Step. Set to the value of PSTATE.SS on entering Debug state, and conditionally copied to PSTATE.SS on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on entering Debug state, and copied to PSTATE.IL on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on entering Debug state, and copied to PSTATE.GE on
exiting Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on entering Debug state, and copied to PSTATE.IT[7:2] on exiting Debug
state.

DSPSR.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on entering Debug state, and copied to PSTATE.E on exiting Debug state.

If the implementation does not support big-endian operation, DSPSR.E is RES0. If the implementation does not support
little-endian operation, DSPSR.E is RES1. On exiting Debug state, if the implementation does not support big-endian
operation at the Exception level being returned to, DSPSR.E is RES0, and if the implementation does not support little-
endian operation at the Exception level being returned to, DSPSR.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on entering Debug state, and copied to PSTATE.A on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on entering Debug state, and copied to PSTATE.I on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on entering Debug state, and copied to PSTATE.F on exiting Debug
state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DSPSR, Debug Saved Program Status Register

Page 1270

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on entering Debug state, and copied to PSTATE.T on exiting
Debug state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on entering Debug state, and copied to PSTATE.M[4:0] on exiting Debug
state.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 Monitor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If DSPSR.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
exiting Debug state is an illegal return event, as described in 'Illegal return events from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the DSPSR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
return DSPSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b011 0b0100 0b0101 0b000

if !Halted() then
UNDEFINED;

else
DSPSR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DSPSR, Debug Saved Program Status Register

Page 1271

(old) htmldiff from- (new)

FPEXC, Floating-Point Exception Control register
The FPEXC characteristics are:

Purpose
Provides a global enable for the implemented Advanced SIMD and floating-point functionality, and reports floating-
point status information.

Configuration
AArch32 System register FPEXC bits [31:0] are architecturally mapped to AArch64 System register
FPEXC32_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPEXC
are UNDEFINED.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPEXC is a 32-bit register.

Field descriptions
The FPEXC bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
EX ENDEXFP2VVVTFV RES0 VECITR IDF RES0 IXFUFFOFFDZFIOF

EX, bit [31]

Exception bit. From Armv8, this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EN, bit [30]

Enables access to the Advanced SIMD and floating-point functionality from all Exception levels, except that setting
this field to 0 does not disable the following:

• VMSR accesses to the FPEXC or FPSID.
• VMRS accesses from the FPEXC, FPSID, MVFR0, MVFR1, or MVFR2.

EN Meaning
0b0 Accesses to the FPSCR, and any of the SIMD and floating-point

registers Q0-Q15, including their views as D0-D31 registers or
S0-S31 registers, are UNDEFINED at all Exception levels.

0b1 This control permits access to the Advanced SIMD and floating-
point functionality at all Exception levels.

Execution of floating-point and Advanced SIMD instructions in AArch32 state can be disabled or trapped by the
following controls:

• CPACR.cp10, or, if executing at EL0, CPACR_EL1.FPEN.
• FPEXC.EN.
• If executing in Non-secure state:

◦ HCPTR.TCP10, or if EL2 is using AArch64, CPTR_EL2.TFP.

FPEXC, Floating-Point Exception Control register

Page 1272

AArch32-fpsid.html
AArch32-fpsid.html
AArch32-mvfr0.html
AArch32-mvfr1.html
AArch32-mvfr2.html
AArch32-cpacr.html
AArch32-hcptr.html

◦ NSACR.cp10, or if EL3 is using AArch64, CPTR_EL3.TFP.
• For Advanced SIMD instructions only:

◦ CPACR.ASEDIS.
◦ If executing in Non-secure state, HCPTR.TASE and NSACR.NSTRCDIS.

See the descriptions of the controls for more information.

Note

When executing at EL0 using AArch32:

• If EL1 is using AArch64 then behavior is as if the value of FPEXC.EN is
1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {1, 1}, then the behavior is as if the
value of FPEXC.EN is 1.

• If EL2 is using AArch64 and enabled in the current Security state, and
the value of HCR_EL2.{RW, TGE} is {0, 1}, then it is IMPLEMENTATION
DEFINED whether the behavior is:

◦ As if the value of FPEXC.EN is 1.
◦ Determined by the value of FPEXC.EN, as described in this field

description. However, Arm deprecates using the value of
FPEXC.EN to determine behavior.

On a Warm reset, this field resets to 0.

DEX, bit [29]

Defined synchronous exception on floating-point execution.

This field identifies whether a synchronous exception generated by the attempted execution of an instruction was
generated by an unallocated encoding. The instruction must be in the encoding space that is identified by the
pseudocode function ExecutingCP10or11Instr() returning TRUE. This field also indicates whether the FPEXC.TFV field
is valid.

The meaning of this bit is:

DEX Meaning
0b0 The exception was generated by the attempted execution of an

unallocated instruction in the encoding space that is identified by
the pseudocode function ExecutingCP10or11Instr(). If
FPEXC.TFV is RW then it is invalid and UNKNOWN. If FPEXC.{IDF,
IXF, UFF, OFF, DZF, IOF} are RW then they are invalid and
UNKNOWN.

0b1 The exception was generated during the execution of an
allocatedunallocated encoding. FPEXC.TFV is valid and indicates
the cause of the exception.

On an exception that sets this bit to 1 the exception-handling routine must clear this bit to 0.

On an implementation that both does not support trapping of floating-point exceptions and implements the
FPSCR.{Stride, Len} fields as RAZ, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FP2V, bit [28]

FPINST2 instruction valid bit. From Armv8, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VV, bit [27]

VECITR valid bit. From Armv8, this bit is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPEXC, Floating-Point Exception Control register

Page 1273

AArch32-nsacr.html
AArch32-hcptr.html
AArch32-nsacr.html

TFV, bit [26]

Trapped Fault Valid bit. Valid only when the value of FPEXC.DEX is 1. When valid, it indicates the cause of the
exception and therefore whether the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits are valid.

TFV Meaning
0b0 The exception was caused by the execution of a floating-point

VABS, VADD, VDIV, VFMA, VFMS, VFNMA, VFNMS, VMLA,
VMLS, VMOV, VMUL, VNEG, VNMLA, VNMLS, VNMUL, VSQRT,
or VSUB instruction when one or both of FPSCR.{Stride, Len}
was non-zero. If the FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} bits
are RW then they are invalid and UNKNOWN.

0b1 FPEXC.{IDF, IXF, UFF, OFF, DZF, IOF} indicate the presence of
trapped floating-point exceptions that had occurred at the time of
the exception. Bits are set for all trapped exceptions that had
occurred at the time of the exception.

This bit returns a status value and ignores writes.

When the value of FPEXC.DEX is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On an implementation that supports the trapping of floating-point exceptions and implements FPSCR.{Stride, Len} as
RAZ, this bit is RAO/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [25:11]

Reserved, RES0.

VECITR, bits [10:8]

Vector iteration count. From Armv8, this field is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDF, bit [7]

Input Denormal trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Input Denormal exception occurred while FPSCR.IDE was 1:

IDF Meaning
0b0 Input Denormal exception has not occurred.
0b1 Input Denormal exception has occurred.

Input Denormal exceptions can occur only when FPSCR.FZ is 1.

Note

A half-precision floating-point value that is flushed to zero because the value
of FPSCR.FZ16 is 1 does not generate an Input Denormal exception.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

FPEXC, Floating-Point Exception Control register

Page 1274

IXF, bit [4]

Inexact trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Inexact exception occurred while FPSCR.IXE was 1:

IXF Meaning
0b0 Inexact exception has not occurred.
0b1 Inexact exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFF, bit [3]

Underflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Underflow exception occurred while FPSCR.UFE was 1:

UFF Meaning
0b0 Underflow exception has not occurred.
0b1 Underflow exception has occurred.

Underflow trapped exceptions can occur:

• On half-precision data-processing instructions only when FPSCR.FZ16 is 0.
• Otherwise only when FPSCR.FZ is 0.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFF, bit [2]

Overflow trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether an
Overflow exception occurred while FPSCR.OFE was 1:

OFF Meaning
0b0 Overflow exception has not occurred.
0b1 Overflow exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZF, bit [1]

Divide by Zero trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether a
Divide by Zero exception occurred while FPSCR.DZE was 1:

DZF Meaning
0b0 Divide by Zero exception has not occurred.
0b1 Divide by Zero exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

FPEXC, Floating-Point Exception Control register

Page 1275

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOF, bit [0]

Invalid Operation trapped exception bit. Valid only when the value of FPEXC.TFV is 1. When valid, it indicates whether
an Invalid Operation exception occurred while FPSCR.IOE was 1:

IOF Meaning
0b0 Invalid Operation exception has not occurred.
0b1 Invalid Operation exception has occurred.

This bit must be cleared to 0 by the exception-handling routine.

When the value of FPEXC.TFV is 0 and this bit is RW, this bit is invalid and UNKNOWN.

On an implementation that does not support the trapping of floating-point exceptions this bit is RAZ/WI.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FPEXC
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b1000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&

NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);

else
return FPEXC;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x00);

else
return FPEXC;

elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then

UNDEFINED;
else

return FPEXC;

FPEXC, Floating-Point Exception Control register

Page 1276

VMSR{<c>}{<q>} <spec_reg>, <Rt>

reg
0b1000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&

NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);

else
FPEXC = R[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x00);

else
FPEXC = R[t];

elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then

UNDEFINED;
else

FPEXC = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPEXC, Floating-Point Exception Control register

Page 1277

(old) htmldiff from- (new)

FPSCR, Floating-Point Status and Control Register
The FPSCR characteristics are:

Purpose
Provides floating-point system status information and control.

Configuration
AArch32 System register FPSCR bits [31:27] are architecturally mapped to AArch64 System register FPSR[31:27].

AArch32 System register FPSCR bit [7] is architecturally mapped to AArch64 System register FPSR[7].

AArch32 System register FPSCR bits [4:0] are architecturally mapped to AArch64 System register FPSR[4:0].

AArch32 System register FPSCR bits [26:15] are architecturally mapped to AArch64 System register FPCR[26:15].

AArch32 System register FPSCR bits [12:8] are architecturally mapped to AArch64 System register FPCR[12:8].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to FPSCR
are UNDEFINED.

The named fields in this register map to the equivalent fields in the AArch64 FPCR and FPSR.

It is IMPLEMENTATION DEFINED whether the Len and Stride fields can be programmed to non-zero values, which will
cause some AArch32 floating-point instruction encodings to be UNDEFINED, or whether these fields are RAZ.

Implemented only if the implementation includes the Advanced SIMD and floating-point functionality.

Attributes
FPSCR is a 32-bit register.

Field descriptions
The FPSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V QCAHPDNFZRModeStrideFZ16 Len IDERES0IXEUFEOFEDZEIOEIDCRES0IXCUFCOFCDZCIOC

N, bit [31]

Negative condition flag. This is updated by floating-point comparison operations.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero condition flag. This is updated by floating-point comparison operations.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry condition flag. This is updated by floating-point comparison operations.

FPSCR, Floating-Point Status and Control Register

Page 1278

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow condition flag. This is updated by floating-point comparison operations.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

QC, bit [27]

Cumulative saturation bit, Advanced SIMD only. This bit is set to 1 to indicate that an Advanced SIMD integer
operation has saturated since 0 was last written to this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

AHP, bit [26]

Alternative half-precision control bit:

AHP Meaning
0b0 IEEE half-precision format selected.
0b1 Alternative half-precision format selected.

This bit is used only for conversions between half-precision floating-point and other floating-point formats.

The data-processing instructions added as part of the FEAT_FP16 extension always use the IEEE half-precision format,
and ignore the value of this bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DN, bit [25]

Default NaN mode control bit:

DN Meaning
0b0 NaN operands propagate through to the output of a floating-point

operation.
0b1 Any operation involving one or more NaNs returns the Default

NaN.

The value of this bit controls only scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Default
NaN setting, regardless of the value of the DN bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ, bit [24]

Flush-to-zero mode control bit:

FZ Meaning
0b0 Flush-to-zero mode disabled. Behavior of the floating-point system

is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.

The value of this bit controls only scalar floating-point arithmetic. Advanced SIMD arithmetic always uses the Flush-to-
zero setting, regardless of the value of the FZ bit.

This bit has no effect on half-precision calculations.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

RMode, bits [23:22]

Rounding Mode control field. The encoding of this field is:

FPSCR, Floating-Point Status and Control Register

Page 1279

RMode Meaning
0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
0b11 Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all scalar floating-point instructions. Advanced SIMD arithmetic always
uses the Round to Nearest setting, regardless of the value of the RMode bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Stride, bits [21:20]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The
instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FZ16, bit [19]

When FEAT_FP16 is implemented:

Flush-to-zero mode control bit on half-precision data-processing instructions:

FZ16 Meaning
0b0 Flush-to-zero mode disabled. Behavior of the floating-point

system is fully compliant with the IEEE 754 standard.
0b1 Flush-to-zero mode enabled.

The value of this bit applies to both scalar and Advanced SIMD floating-point half-precision calculations.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Len, bits [18:16]

It is IMPLEMENTATION DEFINED whether this field is RW or RAZ.

If this field is RW and is set to a value other than zero, some floating-point instruction encodings are UNDEFINED. The
instruction pseudocode identifies these instructions.

Arm strongly recommends that software never sets this field to a value other than zero.

The value of this field is ignored when processing Advanced SIMD instructions.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDE, bit [15]

Input Denormal floating-point exception trap enable.

IDE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the IDC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the IDC bit.

FPSCR, Floating-Point Status and Control Register

Page 1280

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [14:13]

Reserved, RES0.

IXE, bit [12]

Inexact floating-point exception trap enable.

IXE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the IXC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the IXC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

UFE, bit [11]

Underflow floating-point exception trap enable.

UFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the UFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs and Flush-to-zero is not enabled, the PE does
not update the UFC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFE, bit [10]

Overflow floating-point exception trap enable.

OFE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the OFC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the OFC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPSCR, Floating-Point Status and Control Register

Page 1281

DZE, bit [9]

Divide by Zero floating-point exception trap enable.

DZE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the DZC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the DZC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOE, bit [8]

Invalid Operation floating-point exception trap enable.

IOE Meaning
0b0 Untrapped exception handling selected. If the floating-point

exception occurs, the IOC bit is set to 1.
0b1 Trapped exception handling selected. If the floating-point

exception occurs, the PE does not update the IOC bit.

This bit is RW only if the implementation supports the trapping of floating-point exceptions. In an implementation that
does not support floating-point exception trapping, this bit is RAZ/WI.

When this bit is RW, it applies only to floating-point operations. Advanced SIMD operations always use untrapped
floating-point exception handling in AArch32 state.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IDC, bit [7]

Input Denormal cumulative floating-point exception bit. This bit is set to 1 to indicate that the Input Denormal floating-
point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IDE bit.

Advanced SIMD instructions set this bit if the Input Denormal floating-point exception occurs in one or more of the
floating-point calculations performed by the instruction, regardless of the value of the IDE bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [6:5]

Reserved, RES0.

IXC, bit [4]

Inexact cumulative floating-point exception bit. This bit is set to 1 to indicate that the Inexact floating-point exception
has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IXE bit.

Advanced SIMD instructions set this bit if the Inexact floating-point exception occurs in one or more of the floating-
point calculations performed by the instruction, regardless of the value of the IXE bit.

The criteria for the Inexact floating-point exception to occur are different in Flush-to-zero mode. For more
informationdetails, see 'Flush-to-zero'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

FPSCR, Floating-Point Status and Control Register

Page 1282

UFC, bit [3]

Underflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Underflow floating-point
exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the UFE bit.

Advanced SIMD instructions set this bit if the Underflow floating-point exception occurs in one or more of the floating-
point calculations performed by the instruction, if FPSCR.UFE is 0 or if Flush-to-zero is enabled.

The criteria for the Underflow floating-point exception to occur are different in Flush-to-zero mode. For more
informationdetails, see 'Flush-to-zero'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

OFC, bit [2]

Overflow cumulative floating-point exception bit. This bit is set to 1 to indicate that the Overflow floating-point
exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the OFE bit.

Advanced SIMD instructions set this bit if the Overflow floating-point exception occurs in one or more of the floating-
point calculations performed by the instruction, regardless of the value of the OFE bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DZC, bit [1]

Divide by Zero cumulative floating-point exception bit. This bit is set to 1 to indicate that the Divide by Zero floating-
point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the DZE bit.

Advanced SIMD instructions set this bit if the Divide by Zero floating-point exception occurs in one or more of the
floating-point calculations performed by the instruction, regardless of the value of the DZE bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IOC, bit [0]

Invalid Operation cumulative floating-point exception bit. This bit is set to 1 to indicate that the Invalid Operation
floating-point exception has occurred since 0 was last written to this bit.

How VFP instructions update this bit depends on the value of the IOE bit.

Advanced SIMD instructions set this bit if the Invalid Operation floating-point exception occurs in one or more of the
floating-point calculations performed by the instruction, regardless of the value of the IOE bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the FPSCR
Accesses to this register use the following encodings:

VMRS{<c>}{<q>} <Rt>, <spec_reg>

reg
0b0001

FPSCR, Floating-Point Status and Control Register

Page 1283

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN !=

'11' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x00);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x07);
elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '0x') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN !=
'11' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&

NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);

else
return FPSCR;

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL1, 0x07);
elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&

NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);

else
return FPSCR;

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x00);

else
return FPSCR;

elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then

UNDEFINED;
else

return FPSCR;

VMSR{<c>}{<q>} <spec_reg>, <Rt>

reg
0b0001

FPSCR, Floating-Point Status and Control Register

Page 1284

if PSTATE.EL == EL0 then
if !ELUsingAArch32(EL1) && !(EL2Enabled() && HCR_EL2.<E2H,TGE> == '11') && CPACR_EL1.FPEN !=

'11' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x00);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x07);
elsif ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

CPACR.cp10 == '0x') then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> == '11' && CPTR_EL2.FPEN !=
'11' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL1) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&

NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);

else
FPSCR = R[t];

elsif PSTATE.EL == EL1 then
if CPACR_EL1.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL1, 0x07);
elsif (ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') || CPACR.cp10 == '00' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H != '1' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ((ELUsingAArch32(EL3) && SCR.NS == '1' &&

NSACR.cp10 == '0') || HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x08);

else
FPSCR = R[t];

elsif PSTATE.EL == EL2 then
if HCR_EL2.E2H == '0' && CPTR_EL2.TFP == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif HCR_EL2.E2H == '1' && CPTR_EL2.FPEN == 'x0' then

AArch64.AArch32SystemAccessTrap(EL2, 0x07);
elsif EL2Enabled() && ((ELUsingAArch32(EL3) && SCR.NS == '1' && NSACR.cp10 == '0') ||

HCPTR.TCP10 == '1') then
AArch32.TakeHypTrapException(0x00);

else
FPSCR = R[t];

elsif PSTATE.EL == EL3 then
if CPACR.cp10 == '00' then

UNDEFINED;
else

FPSCR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

FPSCR, Floating-Point Status and Control Register

Page 1285

(old) htmldiff from- (new)

HDCR, Hyp Debug Control Register
The HDCR characteristics are:

Purpose
Controls the trapping to Hyp mode of Non-secure accesses, at EL1 or lower, to functions provided by the debug and
trace architectures and the Performance Monitors Extension.

Configuration
AArch32 System register HDCR bits [31:0] are architecturally mapped to AArch64 System register MDCR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HDCR
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3, and other than for a direct read of the register, the PE
behaves as if HDCR.HPMN == PMCR.N.

Attributes
HDCR is a 32-bit register.

Field descriptions
The HDCR bit assignments are:

31 30 29 28 27 26 25 24 23 222120 19 18 17 1615141312 11 10 9 8 7 6 5 43210
RES0HPMFZOMTPMETDCCHLPRES0HCCD RES0 TTRFRES0HPMD RES0 TDRATDOSATDATDEHPMETPMTPMCRHPMN

Bits [31:30]

Reserved, RES0.

HPMFZO, bit [29]

When FEAT_PMUv3p7 is implemented:

Hyp Performance Monitors Freeze-on-overflow. Stop event counters on overflow.

HPMFZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when

PMOVSR[(PMCR.N-1):HDCR.HPMN] is nonzero.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range [HDCR.HPMN ..
(PMCR.N-1)].

If HDCR.HPMN is equal to PMCR.N, this bit has no effect.

This bit does not affect the operation of event counters in the range [0 .. (HDCR.HPMN-1)] and PMCCNTR.

The operation of this bit ignores the values of PMOVSR[(HDCR.HPMN-1):0].

The operation of this bit applies even when EL2 is disabled in the current Security state.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN
value.

HDCR, Hyp Debug Control Register

Page 1286

AArch32-pmovsr.html
AArch32-pmccntr.html
AArch32-pmovsr.html

Otherwise:

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented and EL3 is not implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is zero.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

On a Cold reset, in a system where the PE resets into EL2 or EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel at EL1 and EL0 to EL2.

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 If EL2 is implemented and enabled in the current Security state,

accesses to the DCC registers at EL1 and EL0 generate a Hyp
Trap exception, unless the access also generates a higher
priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

The traps are reported with EC syndrome value:

• 0x05 for trapped MRC and MCR accesses with coproc == 0b1110.
• 0x06 for trapped LDC to DBGDTRTXint and STC from DBGDTRRXint.

When the PE is in Debug state, HDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HDCR, Hyp Debug Control Register

Page 1287

HLP, bit [26]

When FEAT_PMUv3p5 is implemented:

Hypervisor Long event counter enable. Determines when unsigned overflow is recorded by an eventa counter overflow
bit.

HLP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is read/
write or RAZ/WI.

If HDCR.HPMN is less than PMCR.N, this bit affects the operation of event counters in the range
[HDCR.HPMN..(PMCR.N-1)]. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit always applies if EL2 is
implemented, at all Exception levels including EL2 and EL3, and regardless of
whether EL2 is enabled in the current Security state.

For more information see the description of the HDCR.HPMN field.

Note

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

Bits [25:24]

Reserved, RES0.

HCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Hypervisor Cycle Counter Disable. Prohibits PMCCNTR from counting at EL2.

HCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this

mechanism.bit.
0b1 Cycle counting by PMCCNTR is prohibited at EL2.

This fieldbit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HDCR, Hyp Debug Control Register

Page 1288

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

Bits [22:20]

Reserved, RES0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Traps use of the Trace Filter Control registers at EL1 to EL2.

TTRF Meaning
0b0 Accesses to TRFCR at EL1 are not affected by this control bit.
0b1 Accesses to TRFCR at EL1 generate a Hyp Trap exception.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [18]

Reserved, RES0.

HPMD, bit [17]

When FEAT_PMUv3p1 is implemented and FEAT_Debugv8p2 is implemented:

Guest Performance Monitors Disable. ControlsThis eventcontrol countingprohibits by some event counterscounting at
EL2.

HPMD Meaning
0b0 Event counting andallowed in Hyp mode. PMCCNTR are not

affected by this mechanism.
0b1 If FEAT_Debugv8p2 is not implemented, event counting is

prohibited unless enabled by the IMPLEMENTATION DEFINED
authentication interface
ExternalSecureNoninvasiveDebugEnabled().
Event counting by some event counters is prohibited in Hyp
mode. If PMCR.DP is 1, PMCCNTR is disabled in Hyp mode.
Otherwise, PMCCNTR is not affected by this mechanism.

This fieldcontrol applies only to:

• The event counters in the range [0 .. 0..(HDCR.HPMN-1)].
• If PMCR.DP is set to 1, PMCCNTR.

The other event counters are not affected.unaffected. When PMCR.DP is set to 0, PMCCNTR is not affected.unaffected.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

When FEAT_PMUv3p1 is implemented:

Guest Performance Monitors Disable. Controls event counting by some event counters at EL2.

HPMD Meaning
0b0 Event counting and PMCCNTR are not affected by this

mechanism.
0b1 If ExternalSecureNoninvasiveDebugEnabled() is FALSE, event

counting by some event counters is prohibited in Hyp mode,
and if PMCR.DP is 1, PMCCNTR is disabled in Hyp mode.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, the event counters and PMCCNTR are not affected by this
field.

HDCR, Hyp Debug Control Register

Page 1289

AArch32-trfcr.html
AArch32-trfcr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

Otherwise, this field applies only to:

• The event counters in the range [0 .. (HDCR.HPMN-1)].
• If PMCR.DP is 1, PMCCNTR.

The other event counters are not affected. When PMCR.DP is 0, PMCCNTR is not affected.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bits [16:12]

Reserved, RES0.

TDRA, bit [11]

Trap Debug ROM Address register access. Traps Non-secure EL0 and EL1 System register accesses to the Debug
ROM registers to Hyp mode.

TDRA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 System register accesses to the

DBGDRAR or DBGDSAR are trapped to Hyp mode, unless it is
trapped by DBGDSCRext.UDCCdis.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDOSA, bit [10]

When FEAT_DoubleLock is implemented:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, DBGOSDLR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped

by this bit.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Trap debug OS-related register access. Traps Non-secure EL1 System register accesses to the powerdown debug
registers to Hyp mode.

HDCR, Hyp Debug Control Register

Page 1290

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-hcr.html
AArch32-dbgoslsr.html
AArch32-dbgoslar.html
AArch32-dbgosdlr.html
AArch32-dbgprcr.html
AArch32-hcr.html

TDOSA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL1 System register accesses to the powerdown

debug registers are trapped to Hyp mode.

The registers for which accesses are trapped are as follows:

• DBGOSLSR, DBGOSLAR, and DBGPRCR.
• Any IMPLEMENTATION DEFINED register with similar functionality that the implementation specifies as trapped

by this bit.

It is IMPLEMENTATION DEFINED whether accesses to DBGOSDLR are trapped.

Note

These registers are not accessible at EL0.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDA, bit [9]

Trap debug access. Traps Non-secure EL0 and EL1 System register accesses to those debug System registers in the
(coproc==0b1110) encoding space that are not trapped by either of the following:

• HDCR.TDRA.
• HDCR.TDOSA.

TDA Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 or EL1 System register accesses to the debug

registers, other than the registers trapped by HDCR.TDRA and
HDCR.TDOSA, are trapped to Hyp mode, unless it is trapped by
DBGDSCRext.UDCCdis.

Traps of AArch32 accesses to DBGDTRRXint and DBGDTRTXint are ignored in Debug state.

If HCR.TGE or HDCR.TDE is 1, behavior is as if this bit is 1 other than for the purpose of a direct read.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

TDE, bit [8]

Trap Debug exceptions. Controls routing of Debug exceptions, and defines the debug target Exception level, ELD.

TDE Meaning
0b0 The debug target Exception level is EL1.
0b1 If EL2 is enabled for the current Effective value of SCR.NS, the

debug target Exception level is EL2, otherwise the debug target
Exception level is EL1.
The HDCR.{TDRA, TDOSA, TDA} fields are treated as being 1 for
all purposes other than returning the result of a direct read of the
register.

For more information, see 'Routing debug exceptions'.

When HCR.TGE == 1, the PE behaves as if the value of this field is 1 for all purposes other than returning the value of
a direct read of the register.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

HPME, bit [7]

When FEAT_PMUv3 is implemented:

[HDCR.HPMN..(N-1)] event counters enable.

HDCR, Hyp Debug Control Register

Page 1291

AArch32-dbgoslsr.html
AArch32-dbgoslar.html
AArch32-dbgprcr.html
AArch32-dbgosdlr.html
AArch32-hcr.html
AArch32-hcr.html
AArch32-scr.html
AArch32-hcr.html

HPME Meaning
0b0 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

disabled.
0b1 Event counters in the range [HDCR.HPMN..(PMCR.N-1)] are

enabled by PMCNTENSET.

If HDCR.HPMN is less than PMCR.N, the event counters in the range [HDCR.HPMN..(PMCR.N-1)], are enabled and
disabled by this bit. Otherwise this bit has no effect on the operation of the event counters.

Note

The effect of HDCR.HPMN on the operation of this bit applies regardless of
whether EL2 is enabled in the current Security state.

For more information see the description of the HPMN field.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to an architecturally UNKNOWN
value.

Otherwise:

Reserved, RES0.

TPM, bit [6]

When FEAT_PMUv3 is implemented:

Trap Performance Monitors accesses. Traps Non-secure EL0 and EL1 accesses to all Performance Monitors registers
to Hyp mode.

TPM Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to all Performance Monitors

registers are trapped to Hyp mode.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

TPMCR, bit [5]

When FEAT_PMUv3 is implemented:

Trap PMCR accesses. Traps Non-secure EL0 and EL1 accesses to the PMCR to Hyp mode.

TPMCR Meaning
0b0 This control does not cause any instructions to be trapped.
0b1 Non-secure EL0 and EL1 accesses to the PMCR are trapped to

Hyp mode, unless it is trapped by PMUSERENR.EN.

Note

EL2 does not provide traps on Performance Monitor register accesses through
the optional memory-mapped external debug interface.

HDCR, Hyp Debug Control Register

Page 1292

AArch32-pmcntenset.html
AArch32-pmuserenr.html

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

HPMN, bits [4:0]

When FEAT_PMUv3 is implemented:

Defines the number of event counters that are accessible from Non-secure EL1 modes, and from Non-secure EL0
modes if unprivileged access is enabled.

If HPMN is less than PMCR.N, HPMN divides the event counters into two ranges, [0..(HPMN-1)] and
[HPMN..(PMCR.N-1)].

For an event counter in the range [0..(HPMN-1)]:

• The counter is accessible from EL1 and EL2, and from EL0 if unprivileged access to the counters is enabled.
• If FEAT_PMUv3p5 is implemented, PMCR.LP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• PMCR.E enables the operation of counters in this range.

Note

If HPMN is equal to PMCR.N, this applies to all event counters.

If HPMN is less than PMCR.N, for an event counter in the range [HPMN..(PMCR.N-1)]:

• The counter is accessible only from EL2 and from Secure state.
• If FEAT_PMUv3p5 is implemented, HDCR.HLP determines whether the counter overflows at

PMEVCNTR<n>[31:0] or PMEVCNTR<n>[63:0].
• HDCR.HPME enables the operation of counters in this range.

If this field is set to 0, or to a value larger than PMCR.N, then the following CONSTRAINED UNPREDICTABLE behaviors
apply:

• The value returned by a direct read of HDCR.HPMN is UNKNOWN.
• Either:

◦ An UNKNOWN number of counters are reserved for EL2 use. That is, the PE behaves as if
HDCR.HPMN is set to an UNKNOWN non-zero value less than or equal to PMCR.N.

◦ All counters are reserved for EL2 use, meaning no counters are accessible from Non-secure EL1 and
Non-secure EL0.

On a Warm reset, in a system where the PE resets into EL2 or EL3, this field resets to the value in PMCR.N.

Otherwise:

Reserved, RES0.

Accessing the HDCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

HDCR, Hyp Debug Control Register

Page 1293

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return HDCR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

return HDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TDA == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
HDCR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

UNDEFINED;
else

HDCR = R[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HDCR, Hyp Debug Control Register

Page 1294

(old) htmldiff from- (new)

HDFAR, Hyp Data Fault Address Register
The HDFAR characteristics are:

Purpose
Holds the virtual address of the faulting address that caused a synchronous Data Abort exception that is taken to Hyp
mode.

Configuration
AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL2[31:0].

AArch32 System register HDFAR bits [31:0] are architecturally mapped to AArch32 System register DFAR[31:0] (S)
(S) when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32
state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HDFAR
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HDFAR is a 32-bit register.

Field descriptions
The HDFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA of faulting address of synchronous Data Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Data Abort exception taken to Hyp mode.

On a Prefetch Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the HDFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b000

HDFAR, Hyp Data Fault Address Register

Page 1295

AArch32-dfar.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HDFAR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HDFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HDFAR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HDFAR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HDFAR, Hyp Data Fault Address Register

Page 1296

(old) htmldiff from- (new)

HIFAR, Hyp Instruction Fault Address Register
The HIFAR characteristics are:

Purpose
Holds the virtual address of the faulting address that caused a synchronous Prefetch Abort exception that is taken to
Hyp mode.

Configuration
AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch64 System register FAR_EL2[63:32].

AArch32 System register HIFAR bits [31:0] are architecturally mapped to AArch32 System register IFAR[31:0] (S) (S)
when EL2 is implemented, EL3 is implemented and the highest implemented Exception level is using AArch32 state.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HIFAR
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HIFAR is a 32-bit register.

Field descriptions
The HIFAR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode

Bits [31:0]

VA of faulting address of synchronous Prefetch Abort exception taken to Hyp mode.

On a Data Abort exception, this register is UNKNOWN.

Any execution in a Non-secure EL1 or Non-secure EL0 mode makes this register UNKNOWN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the HIFAR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b010

HIFAR, Hyp Instruction Fault Address Register

Page 1297

AArch32-ifar.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HIFAR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HIFAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0110 0b0000 0b010

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T6 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T6 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HIFAR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HIFAR = R[t];

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HIFAR, Hyp Instruction Fault Address Register

Page 1298

(old) htmldiff from- (new)

HMAIR0, Hyp Memory Attribute Indirection Register 0
The HMAIR0 characteristics are:

Purpose
Along with HMAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.
• When AttrIndx[2] is 1, HMAIR1 is used.

Configuration
AArch32 System register HMAIR0 bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HMAIR0
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HMAIR0 is a 32-bit register.

Field descriptions
The HMAIR0 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr3 Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], for n = 3 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 1299

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when
Attr<n>[7:4]

is0b0000
Meaning when Attr<n>[7:4] is

not0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the HMAIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HMAIR0;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HMAIR0;

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 1300

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HMAIR0 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HMAIR0 = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HMAIR0, Hyp Memory Attribute Indirection Register 0

Page 1301

(old) htmldiff from- (new)

HMAIR1, Hyp Memory Attribute Indirection Register 1
The HMAIR1 characteristics are:

Purpose
Along with HMAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a
Long-descriptor format translation table entry for stage 1 translations for memory accesses from Hyp mode.

AttrIndx[2] indicates the HMAIR register to be used:

• When AttrIndx[2] is 0, HMAIR0 is used.
• When AttrIndx[2] is 1, HMAIR1 is used.

Configuration
AArch32 System register HMAIR1 bits [31:0] are architecturally mapped to AArch64 System register
MAIR_EL2[63:32].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HMAIR1
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HMAIR1 is a 32-bit register.

Field descriptions
The HMAIR1 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr7 Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 7 to 4

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 1302

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when
Attr<n>[7:4]

is0b0000
Meaning when Attr<n>[7:4] is

not0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the HMAIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HMAIR1;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HMAIR1;

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 1303

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1010 0b0010 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HMAIR1 = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HMAIR1 = R[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HMAIR1, Hyp Memory Attribute Indirection Register 1

Page 1304

(old) htmldiff from- (new)

HSCTLR, Hyp System Control Register
The HSCTLR characteristics are:

Purpose
Provides top level control of the system operation in Hyp mode.

Configuration
AArch32 System register HSCTLR bits [31:0] are architecturally mapped to AArch64 System register
SCTLR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to HSCTLR
are UNDEFINED.

If EL2 is not implemented, this register is RES0 from EL3.

Attributes
HSCTLR is a 32-bit register.

Field descriptions
The HSCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15141312 11 10 9 8 7 6 5 4 3 2 1 0
DSSBSTERES1RES0EERES0RES1RES0WXNRES1RES0RES1 RES0 I RES1RES0SEDITDRES0CP15BENLSMAOEnTLSMDCAM

DSSBS, bit [31]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to Hyp mode.
0b1 PSTATE.SSBS is set to 1 on an exception to Hyp mode.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to EL2 are taken to A32 or T32 state:

TE Meaning
0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally IMPLEMENTATION
DEFINEDUNKNOWN value.

HSCTLR, Hyp System Control Register

Page 1305

Bits [29:28]

Reserved, RES1.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on entry to Hyp mode, the endianness of stage 1 translation table walks in the EL2
translation regime, and the endianness of stage 2 translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

EE Meaning
0b0 Little-endian. PSTATE.E is cleared to 0 on entry to Hyp mode.

Stage 1 translation table walks in the EL2 translation regime, and
stage 2 translation table walks in the PL1&0 translation regime are
little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on entry to Hyp mode. Stage 1
translation table walks in the EL2 translation regime, and stage 2
translation table walks in the PL1&0 translation regime are big-
endian.

If an implementation does not provide Big-endian support at Exception levelsLevels higher than EL0, this bit is RES0.

If an implementation does not provide Little-endian support at Exception levelsLevels higher than EL0, this bit is RES1.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

Bits [23:22]

Reserved, RES1.

Bits [21:20]

Reserved, RES0.

WXN, bit [19]

Write permission implies XN (Execute-never). For the EL2 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the EL2 translation regime is

forced to XN for accesses from software executing at EL2.

This bit applies only when HSCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [18]

Reserved, RES1.

HSCTLR, Hyp System Control Register

Page 1306

Bit [17]

Reserved, RES0.

Bit [16]

Reserved, RES1.

Bits [15:13]

Reserved, RES0.

I, bit [12]

Instruction access Cacheability control, for accesses at EL2:

I Meaning
0b0 All instruction access to Normal memory from EL2 are Non-

cacheable for all levels of instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of
the EL2 translation regime are to Normal, Outer Shareable, Inner
Non-cacheable, Outer Non-cacheable memory.

0b1 All instruction access to Normal memory from EL2 can be cached
at all levels of instruction and unified cache.
If the value of HSCTLR.M is 0, instruction accesses from stage 1 of
the EL2 translation regime are to Normal, Outer Shareable, Inner
Write-Through, Outer Write-Through memory.

This bit has no effect on the PL1&0 translation regime.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Bit [11]

Reserved, RES1.

Bits [10:9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at EL2.

SED Meaning
0b0 SETEND instruction execution is enabled at EL2.
0b1 SETEND instructions are UNDEFINED at EL2.

If the implementation does not support mixed-endian operation at EL2, this bit is RES1.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at EL2.

HSCTLR, Hyp System Control Register

Page 1307

ITD Meaning
0b0 All IT instruction functionality is enabled at EL2.
0b1 Any attempt at EL2 to execute any of the following is UNDEFINED:

• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 1011xxxxxxxxxxxx: All instructions in 'Miscellaneous

16-bit instructions'.
◦ 10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV

Rd, PC; BX PC; BLX PC.
◦ 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV

PC, Rm. This pattern also covers unpredictable cases
with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information, see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is not
implemented then this bit is RAZ/WI.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

Bit [6]

Reserved, RES0.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from EL2:

CP15BEN Meaning
0b0 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is UNDEFINED.
0b1 EL2 execution of the CP15DMB, CP15DSB, and CP15ISB

instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the HSCTLR. If it is
not implemented then this bit is RAO/WI.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

HSCTLR, Hyp System Control Register

Page 1308

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

LSMAOE Meaning
0b0 For all memory accesses at EL2, A32 and T32 Load Multiple

and Store Multiple can have an interrupt taken during the
sequence memory accesses, and the memory accesses are
not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL2 is as defined for Armv8.0.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL2 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are trapped
and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL2 that are marked at stage 1 as Device-
nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 1.

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL2:

C Meaning
0b0 All data access to Normal memory from EL2, and all accesses to

the EL2 translation tables, are Non-cacheable for all levels of data
and unified cache.

0b1 All data access to Normal memory from EL2, and all accesses to
the EL2 translation tables, can be cached at all levels of data and
unified cache.

This bit has no effect on the PL1&0 translation regime.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at EL2:

HSCTLR, Hyp System Control Register

Page 1309

A Meaning
0b0 Alignment fault checking disabled when executing at EL2.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element or data elements being accessed.

0b1 Alignment fault checking enabled when executing at EL2.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element or data elements being accessed. If this
check fails it causes an Alignment fault, which is taken as a Data
Abort exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

On a Warm reset, in a system where the PE resets into EL2, this field resets to an architecturally UNKNOWN value.

M, bit [0]

MMU enable for EL2 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL2 stage 1 address translation disabled.

See the HSCTLR.I field for the behavior of instruction accesses to
Normal memory.

0b1 EL2 stage 1 address translation enabled.

On a Warm reset, in a system where the PE resets into EL2, this field resets to 0.

Accessing the HSCTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return HSCTLR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return HSCTLR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0001 0b0000 0b000

HSCTLR, Hyp System Control Register

Page 1310

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

HSCTLR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
HSCTLR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

HSCTLR, Hyp System Control Register

Page 1311

(old) htmldiff from- (new)

ICC_AP1R<n>, Interrupt Controller Active Priorities
Group 1 Registers, n = 0 - 3

The ICC_AP1R<n> characteristics are:

Purpose
Provides information about Group 1 active priorities.

Configuration
AArch32 System register ICC_AP1R<n> bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_AP1R<n>_EL1[31:0] (S) (S)..

AArch32 System register ICC_AP1R<n> bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_AP1R<n>_EL1[31:0] (NS) (NS)..

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_AP1R<n> are UNDEFINED.

Attributes
ICC_AP1R<n> is a 32-bit register.

Field descriptions
The ICC_AP1R<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to 0.

The contents of these registers are IMPLEMENTATION DEFINED with the one architectural requirement that the value
0x00000000 is consistent with no interrupts being active.

Accessing the ICC_AP1R<n>
Writing to these registers with any value other than the last read value of the register (or 0x00000000 when there are
no Group 1 active priorities) might result in UNPREDICTABLE behavior of the interrupt prioritization system, causing:

• Interrupts that should preempt execution to not preempt execution.
• Interrupts that should not preempt execution to preempt execution.

ICC_AP1R1 is only implemented in implementations that support 6 or more bits of preemption. ICC_AP1R2 and
ICC_AP1R3 are only implemented in implementations that support 7 bits of preemption. Unimplemented registers are
UNDEFINED.

Note

The number of bits of preemption is indicated by ICH_VTR.PREbits.

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1312

Writing to the active priority registers in any order other than the following order will result in UNPREDICTABLE
behavior:

• ICC_AP0R<n>
• Secure ICC_AP1R<n>
• Non-secure ICC_AP1R<n>

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1313

AArch32-icc_ap0rn.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_AP1R[UInt(opc2<1:0>)];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_AP1R[UInt(opc2<1:0>)];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_AP1R_NS[UInt(opc2<1:0>)];
else

return ICC_AP1R[UInt(opc2<1:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
UNDEFINED;

elsif ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_AP1R_NS[UInt(opc2<1:0>)];

else
return ICC_AP1R[UInt(opc2<1:0>)];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_AP1R_S[UInt(opc2<1:0>)];

else
return ICC_AP1R_NS[UInt(opc2<1:0>)];

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1314

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1001 0b0:n[1:0]

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1315

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_AP1R[UInt(opc2<1:0>)] = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_AP1R[UInt(opc2<1:0>)] = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];
else

ICC_AP1R[UInt(opc2<1:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
UNDEFINED;

elsif ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];

else
ICC_AP1R[UInt(opc2<1:0>)] = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_AP1R_S[UInt(opc2<1:0>)] = R[t];

else
ICC_AP1R_NS[UInt(opc2<1:0>)] = R[t];

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1316

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3

Page 1317

(old) htmldiff from- (new)

ICC_BPR1, Interrupt Controller Binary Point Register 1
The ICC_BPR1 characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

Configuration
AArch32 System register ICC_BPR1 bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_BPR1_EL1[31:0] (S) (S)..

AArch32 System register ICC_BPR1 bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_BPR1_EL1[31:0] (NS) (NS)..

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_BPR1 are UNDEFINED.

In GIC implementations supporting two Security states, this register is Banked.

Attributes
ICC_BPR1 is a 32-bit register.

Field descriptions
The ICC_BPR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 BinaryPoint

Bits [31:3]

Reserved, RES0.

BinaryPoint, bits [2:0]

If the GIC is configured to use separate binary point fields for Group 0 and Group 1 interrupts, the value of this field
controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. For more information about priorities, see 'Priority grouping' in ARM® Generic Interrupt
Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

Writing 0 to this field will set this field to its reset value.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1S is 1:

• Accesses to this register at EL3 not in Monitor mode access the state of ICC_BPR0.
• When SCR_EL3.EEL2 is 1 and HCR_EL2.IMO is 1, Secure accesses to this register at EL1 access the state of

ICV_BPR1.
• Otherwise, Secure accesses to this register at EL1 access the state of ICC_BPR0.

If EL3 is implemented and ICC_MCTLR.CBPR_EL1NS is 1, Non-secure accesses to this register at EL1 or EL2 behave
as follows, depending on the values of HCR.IMO and SCR.IRQ:

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 1318

AArch32-icc_mctlr.html
AArch32-icc_bpr0.html
AArch32-icv_bpr1.html
AArch32-icc_bpr0.html
AArch32-icc_mctlr.html

HCR.IMO SCR_IRQ Behavior
0b0 0b0 Non-secure EL1 and EL2 reads return

ICC_BPR0 + 1 saturated to0b111. Non-secure
EL1 and EL2 writes are ignored.

0b0 0b1 Non-secure EL1 and EL2 accesses trap to EL3.
0b1 0b0 Non-secure EL1 accesses affect virtual

interrupts. Non-secure EL2 reads return
ICC_BPR0 + 1 saturated to0b111. Non-secure
EL2 writes ignored.

0b1 0b1 Non-secure EL1 accesses affect virtual
interrupts. Non-secure EL2 accesses trap to
EL3.

If EL3 is not implemented and ICC_CTLR.CBPR is 1, Non-secure accesses to this register at EL1 or EL2 behave as
follows, depending on the values of HCR.IMO:

HCR.IMO Behavior
0b0 Non-secure EL1 and EL2 reads return ICC_BPR0 + 1

saturated to0b111. Non-secure EL1 and EL2 writes are
ignored.

0b1 Non-secure EL1 accesses affect virtual interrupts. Non-secure
EL2 reads return ICC_BPR0 + 1 saturated to0b111. Non-
secure EL2 writes are ignored.

This field resets to an IMPLEMENTATION DEFINED non-zero value.

Accessing the ICC_BPR1
When the PE resets into an Exception level that is using AArch32, the reset value is equal to:

• For the Secure copy of the register, the minimum value of ICC_BPR0 plus one.
• For the Non-secure copy of the register, the minimum value of ICC_BPR0.

Where the minimum value of ICC_BPR0 is IMPLEMENTATION DEFINED.

If EL3 is not implemented:

• If the PE is Secure this reset value is (minimum value of ICC_BPR0 plus one).
• If the PE is Non-secure this reset value is (minimum value of ICC_BPR0).

An attempt to program the binary point field to a value less than the reset value sets the field to the reset value.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b011

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 1319

AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_bpr0.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_BPR1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_BPR1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_BPR1_NS;
else

return ICC_BPR1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
UNDEFINED;

elsif ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_BPR1_NS;

else
return ICC_BPR1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_BPR1_S;

else
return ICC_BPR1_NS;

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 1320

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b011

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 1321

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_BPR1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_BPR1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_BPR1_NS = R[t];
else

ICC_BPR1 = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
UNDEFINED;

elsif ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_BPR1_NS = R[t];

else
ICC_BPR1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_BPR1_S = R[t];

else
ICC_BPR1_NS = R[t];

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 1322

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_BPR1, Interrupt Controller Binary Point Register 1

Page 1323

(old) htmldiff from- (new)

ICC_CTLR, Interrupt Controller Control Register
The ICC_CTLR characteristics are:

Purpose
Controls aspects of the behavior of the GIC CPU interface and provides information about the features implemented.

Configuration
AArch32 System register ICC_CTLR bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_CTLR_EL1[31:0] (S) (S)..

AArch32 System register ICC_CTLR bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_CTLR_EL1[31:0] (NS) (NS)..

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_CTLR are UNDEFINED.

Attributes
ICC_CTLR is a 32-bit register.

Field descriptions
The ICC_CTLR bit assignments are:

313029282726252423222120 19 18 17 16 15 14 13121110 9 8 7 6 5 4 3 2 1 0
RES0 ExtRangeRSSRES0A3VSEIS IDbits PRIbitsRES0PMHE RES0 EOImodeCBPR

Bits [31:20]

Reserved, RES0.

ExtRange, bit [19]

Extended INTID range (read-only).

ExtRange Meaning
0b0 CPU interface does not support INTIDs in the range

1024..8191.
Behaviour is UNPREDICTABLE if the IRI delivers an interrupt
in the range 1024 to 8191 to the CPU interface.

Note
Arm strongly recommends that the
IRI is not configured to deliver
interrupts in this range to a PE that
does not support them.

0b1 CPU interface supports INTIDs in the range 1024..8191.
All INTIDs in the range 1024..8191 are treated as requiring
deactivation.

If EL3 is implemented, ICC_CTLR_EL1.ExtRange is an alias of ICC_CTLR_EL3.ExtRange.

ICC_CTLR, Interrupt Controller Control Register

Page 1324

AArch64-icc_ctlr_el3.html

RSS, bit [18]

Range Selector Support. Possible values are:

RSS Meaning
0b0 Targeted SGIs with affinity level 0 values of 0 - 15 are supported.
0b1 Targeted SGIs with affinity level 0 values of 0 - 255 are supported.

This bit is read-only.

Bits [17:16]

Reserved, RES0.

A3V, bit [15]

Affinity 3 Valid. Read-only and writes are ignored. Possible values are:

A3V Meaning
0b0 The CPU interface logic only supports zero values of Affinity 3 in

SGI generation System registers.
0b1 The CPU interface logic supports non-zero values of Affinity 3 in

SGI generation System registers.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.A3V.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.A3V.

SEIS, bit [14]

SEI Support. Read-only and writes are ignored. Indicates whether the CPU interface supports local generation of SEIs:

SEIS Meaning
0b0 The CPU interface logic does not support local generation of

SEIs.
0b1 The CPU interface logic supports local generation of SEIs.

If EL3 is implemented and using AArch32, this bit is an alias of ICC_MCTLR.SEIS.

If EL3 is implemented and using AArch64, this bit is an alias of ICC_CTLR_EL3.SEIS.

IDbits, bits [13:11]

Identifier bits. Read-only and writes are ignored. The number of physical interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

If EL3 is implemented and using AArch32, this field is an alias of ICC_MCTLR.IDbits.

If EL3 is implemented and using AArch64, this field is an alias of ICC_CTLR_EL3.IDbits.

PRIbits, bits [10:8]

Priority bits. Read-only and writes are ignored. The number of priority bits implemented, minus one.

An implementation that supports two Security states must implement at least 32 levels of physical priority (5 priority
bits).

An implementation that supports only a single Security state must implement at least 16 levels of physical priority (4
priority bits).

ICC_CTLR, Interrupt Controller Control Register

Page 1325

AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html
AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html
AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html

Note

This field always returns the number of priority bits implemented, regardless
of the Security state of the access or the value of GICD_CTLR.DS.

The division between group priority and subpriority is defined in the binary point registers ICC_BPR0 and ICC_BPR1.

If EL3 is implemented and using AArch32, physical accesses return the value from ICC_MCTLR.PRIbits.

If EL3 is implemented and using AArch64, physical accesses return the value from ICC_CTLR_EL3.PRIbits.

If EL3 is not implemented, physical accesses return the value from this field.

Bit [7]

Reserved, RES0.

PMHE, bit [6]

Priority Mask Hint Enable. Controls whether the priority mask register is used as a hint for interrupt distribution:

PMHE Meaning
0b0 Disables use of ICC_PMR as a hint for interrupt distribution.
0b1 Enables use of ICC_PMR as a hint for interrupt distribution.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.PMHE.
• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.PMHE.
• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Bits [5:2]

Reserved, RES0.

EOImode, bit [1]

EOI mode for the current Security state. Controls whether a write to an End of Interrupt register also deactivates the
interrupt:

EOImode Meaning
0b0 ICC_EOIR0 and ICC_EOIR1 provide both priority drop and

interrupt deactivation functionality. Accesses to ICC_DIR are
UNPREDICTABLE.

0b1 ICC_EOIR0 and ICC_EOIR1 provide priority drop
functionality only. ICC_DIR provides interrupt deactivation
functionality.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.EOImode_EL1{S, NS} where S or NS corresponds
to the current Security state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.EOImode_EL1{S, NS} where S or NS
corresponds to the current Security state.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

ICC_CTLR, Interrupt Controller Control Register

Page 1326

AArch32-icc_bpr0.html
AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html
AArch32-icc_pmr.html
AArch32-icc_pmr.html
AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html
AArch32-icc_eoir0.html
AArch32-icc_eoir1.html
AArch32-icc_dir.html
AArch32-icc_eoir0.html
AArch32-icc_eoir1.html
AArch32-icc_dir.html
AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html

CBPR, bit [0]

Common Binary Point Register. Controls whether the same register is used for interrupt preemption of both Group 0
and Group 1 interrupts:

CBPR Meaning
0b0 ICC_BPR0 determines the preemption group for Group 0

interrupts only.
ICC_BPR1 determines the preemption group for Group 1
interrupts.

0b1 ICC_BPR0 determines the preemption group for both Group 0
and Group 1 interrupts.

If EL3 is implemented:

• If EL3 is using AArch32, this bit is an alias of ICC_MCTLR.CBPR_EL1{S,NS} where S or NS corresponds to
the current Security state.

• If EL3 is using AArch64, this bit is an alias of ICC_CTLR_EL3.CBPR_EL1{S,NS} where S or NS corresponds to
the current Security state.

• If GICD_CTLR.DS == 0, this bit is read-only.
• If GICD_CTLR.DS == 1, this bit is read/write.

If EL3 is not implemented, it is IMPLEMENTATION DEFINED whether this bit is read-only or read-write:

• If this bit is read-only, an implementation can choose to make this field RAZ/WI or RAO/WI.
• If this bit is read/write, it resets to zero.

Accessing the ICC_CTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b100

ICC_CTLR, Interrupt Controller Control Register

Page 1327

AArch32-icc_bpr0.html
AArch32-icc_bpr0.html
AArch32-icc_mctlr.html
AArch64-icc_ctlr_el3.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> ==
'11' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

return ICV_CTLR;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_CTLR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'
then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_CTLR_NS;

else
return ICC_CTLR;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

UNDEFINED;
elsif ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_CTLR_NS;
else

return ICC_CTLR;
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
if SCR.NS == '0' then

return ICC_CTLR_S;

ICC_CTLR, Interrupt Controller Control Register

Page 1328

else
return ICC_CTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b100

ICC_CTLR, Interrupt Controller Control Register

Page 1329

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> ==
'11' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TC == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TC == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.FMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.FMO == '1' then

ICV_CTLR = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_CTLR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.<IRQ,FIQ> == '11'
then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_CTLR_NS = R[t];

else
ICC_CTLR = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then

UNDEFINED;
elsif ICC_HSRE.SRE == '0' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.<IRQ,FIQ> == '11' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.<IRQ,FIQ> == '11' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_CTLR_NS = R[t];
else

ICC_CTLR = R[t];
elsif PSTATE.EL == EL3 then

if ICC_MSRE.SRE == '0' then
UNDEFINED;

else
if SCR.NS == '0' then

ICC_CTLR_S = R[t];

ICC_CTLR, Interrupt Controller Control Register

Page 1330

else
ICC_CTLR_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_CTLR, Interrupt Controller Control Register

Page 1331

(old) htmldiff from- (new)

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1
Enable register

The ICC_IGRPEN1 characteristics are:

Purpose
Controls whether Group 1 interrupts are enabled for the current Security state.

Configuration
AArch32 System register ICC_IGRPEN1 bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_IGRPEN1_EL1[31:0] (S) (S)..

AArch32 System register ICC_IGRPEN1 bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_IGRPEN1_EL1[31:0] (NS) (NS)..

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICC_IGRPEN1 are UNDEFINED.

Attributes
ICC_IGRPEN1 is a 32-bit register.

Field descriptions
The ICC_IGRPEN1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Enable

Bits [31:1]

Reserved, RES0.

Enable, bit [0]

Enables Group 1 interrupts for the current Security state.

Enable Meaning
0b0 Group 1 interrupts are disabled for the current Security state.
0b1 Group 1 interrupts are enabled for the current Security state.

Virtual accesses to this register update ICH_VMCR.VENG1.

If EL3 is present:

• This bit is a read/write alias of ICC_MGRPEN1.EnableGrp1{S, NS} as appropriate if EL3 is using AArch32, or
ICC_IGRPEN1_EL3.EnableGrp1{S, NS} as appropriate if EL3 is using AArch64.

• When this register is accessed at EL3, the copy of this register appropriate to the current setting of SCR.NS is
accessed.

On a Warm reset, this field resets to 0.

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 1332

AArch32-ich_vmcr.html
AArch32-icc_mgrpen1.html
AArch64-icc_igrpen1_el3.html

Accessing the ICC_IGRPEN1
The lowest Exception level at which this register can be accessed is governed by the Exception level to which IRQ is
routed. This routing depends on SCR.IRQ, SCR.NS and HCR.IMO.

If an interrupt is pending within the CPU interface when Enable becomes 0, the interrupt must be released to allow
the Distributor to forward the interrupt to a different PE.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b111

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 1333

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

return ICV_IGRPEN1;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

return ICV_IGRPEN1;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

return ICC_IGRPEN1_NS;
else

return ICC_IGRPEN1;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
UNDEFINED;

elsif ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
return ICC_IGRPEN1_NS;

else
return ICC_IGRPEN1;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
return ICC_IGRPEN1_S;

else
return ICC_IGRPEN1_NS;

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 1334

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b111

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 1335

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
UNDEFINED;

elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif ICC_SRE.SRE == '0' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICH_HCR_EL2.TALL1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && ICH_HCR.TALL1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.IMO == '1' then

ICV_IGRPEN1 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.IMO == '1' then

ICV_IGRPEN1 = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && PSTATE.M != M32_Monitor && SCR.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch32.TakeMonitorTrapException();
elsif HaveEL(EL3) then

ICC_IGRPEN1_NS = R[t];
else

ICC_IGRPEN1 = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then

UNDEFINED;
elsif Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && ELUsingAArch32(EL3) && SCR.IRQ == '1' then
UNDEFINED;

elsif ICC_HSRE.SRE == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && SCR_EL3.IRQ == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && SCR.IRQ == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch32.TakeMonitorTrapException();

elsif HaveEL(EL3) then
ICC_IGRPEN1_NS = R[t];

else
ICC_IGRPEN1 = R[t];

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

if SCR.NS == '0' then
ICC_IGRPEN1_S = R[t];

else
ICC_IGRPEN1_NS = R[t];

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 1336

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register

Page 1337

(old) htmldiff from- (new)

ICC_SRE, Interrupt Controller System Register Enable
register

The ICC_SRE characteristics are:

Purpose
Controls whether the System register interface or the memory-mapped interface to the GIC CPU interface is used for
EL0 and EL1.

Configuration
AArch32 System register ICC_SRE bits [31:0] (S) are architecturally mapped to AArch64 System register
ICC_SRE_EL1[31:0] (S) (S)..

AArch32 System register ICC_SRE bits [31:0] (NS) are architecturally mapped to AArch64 System register
ICC_SRE_EL1[31:0] (NS) (NS)..

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ICC_SRE
are UNDEFINED.

Attributes
ICC_SRE is a 32-bit register.

Field descriptions
The ICC_SRE bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 DIBDFBSRE

Bits [31:3]

Reserved, RES0.

DIB, bit [2]

Disable IRQ bypass.

DIB Meaning
0b0 IRQ bypass enabled.
0b1 IRQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DIB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_MSRE.DIB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DIB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DIB.

In systems that do not support IRQ bypass, this field is RAO/WI.

On a Warm reset, this field resets to 0.

ICC_SRE, Interrupt Controller System Register Enable register

Page 1338

AArch32-icc_msre.html
AArch32-icc_msre.html
AArch32-icc_hsre.html
AArch32-icc_hsre.html

DFB, bit [1]

Disable FIQ bypass.

DFB Meaning
0b0 FIQ bypass enabled.
0b1 FIQ bypass disabled.

If EL3 is implemented and GICD_CTLR.DS == 0, this field is a read-only alias of ICC_MSRE.DFB.

If EL3 is implemented and GICD_CTLR.DS == 1, and EL2 is not implemented, this field is a read-write alias of
ICC_MSRE.DFB.

If EL3 is not implemented and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DFB.

If GICD_CTLR.DS == 1 and EL2 is implemented, this field is a read-only alias of ICC_HSRE.DFB.

In systems that do not support FIQ bypass, this field is RAO/WI.

On a Warm reset, this field resets to 0.

SRE, bit [0]

System Register Enable.

SRE Meaning
0b0 The memory-mapped interface must be used. Accesses at EL1 to

any ICC_* System register other than ICC_SRE are UNDEFINED.
0b1 The System register interface for the current Security state is

enabled.

If software changes this bit from 1 to 0 in the Secure instance of this register, the results are UNPREDICTABLE.

If an implementation supports only a System register interface to the GIC CPU interface, this bit is RAO/WI.

If EL3 is implemented and using AArch64:

• When ICC_SRE_EL3.SRE==0 the Secure copy of this bit is RAZ/WI.
• When ICC_SRE_EL3.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL3 is implemented and using AArch32:

• When ICC_MSRE.SRE==0 the Secure copy of this bit is RAZ/WI.
• When ICC_MSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch64:

• When ICC_SRE_EL2.SRE==0 the Non-secure copy of this bit is RAZ/WI.

If EL2 is implemented and using AArch32:

• When ICC_HSRE.SRE==0 the Non-secure copy of this bit is RAZ/WI.

On a Warm reset, this field resets to 0.

Accessing the ICC_SRE
The GIC architecture permits, but does not require, that registers can be shared between memory-mapped registers
and the equivalent System registers. This means that if the memory-mapped registers have been accessed while
ICC_SRE.SRE==0, then the System registers might be modified. Therefore, software must only rely on the reset
values of the System registers if there has been no use of the GIC functionality while the memory-mapped registers
are in use. Otherwise, the System register values must be treated as UNKNOWN.

Accesses to this register use the following encodings:

ICC_SRE, Interrupt Controller System Register Enable register

Page 1339

AArch32-icc_msre.html
AArch32-icc_msre.html
AArch32-icc_hsre.html
AArch32-icc_hsre.html
AArch64-icc_sre_el3.html
AArch64-icc_sre_el3.html
AArch32-icc_msre.html
AArch32-icc_msre.html
AArch64-icc_sre_el2.html
AArch32-icc_hsre.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICC_SRE_EL2.Enable == '0' thenelse
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ICC_HSRE.Enable == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && ICC_MSRE.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_SRE_S;

else
return ICC_SRE_NS;

else
return ICC_SRE;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif ICC_MSRE.Enable == '0' then

UNDEFINED;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
return ICC_SRE_S;

else
return ICC_SRE_NS;

else
return ICC_SRE;

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

return ICC_SRE_S;
else

return ICC_SRE_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b1100 0b101

ICC_SRE, Interrupt Controller System Register Enable register

Page 1340

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && ICC_SRE_EL2.Enable == '0' thenelse
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && ICC_HSRE.Enable == '0' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && ICC_MSRE.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_SRE_S = R[t];

else
ICC_SRE_NS = R[t];

else
ICC_SRE = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && ICC_SRE_EL3.Enable == '0' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
elsif ICC_MSRE.Enable == '0' then

UNDEFINED;
elsif HaveEL(EL3) then

if SCR_EL3.NS == '0' then
ICC_SRE_S = R[t];

else
ICC_SRE_NS = R[t];

else
ICC_SRE = R[t];

elsif PSTATE.EL == EL3 then
if SCR_EL3.NS == '0' then

ICC_SRE_S = R[t];
else

ICC_SRE_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICC_SRE, Interrupt Controller System Register Enable register

Page 1341

(old) htmldiff from- (new)

ICH_VTR, Interrupt Controller VGIC Type Register
The ICH_VTR characteristics are:

Purpose
Reports supported GIC virtualization features.

Configuration
AArch32 System register ICH_VTR bits [31:0] are architecturally mapped to AArch64 System register
ICH_VTR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ICH_VTR are UNDEFINED.

If EL2 is not implemented, all bits in this register are RES0 from EL3, except for nV4, which is RES1 from EL3.

Attributes
ICH_VTR is a 32-bit register.

Field descriptions
The ICH_VTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PRIbits PREbits IDbits SEISA3VnV4TDS RES0 ListRegs

PRIbits, bits [31:29]

Priority bits. The number of virtual priority bits implemented, minus one.

An implementation must implement at least 32 levels of virtual priority (5 priority bits).

This field is an alias of ICV_CTLR.PRIbits.

PREbits, bits [28:26]

The number of virtual preemption bits implemented, minus one.

An implementation must implement at least 32 levels of virtual preemption priority (5 preemption bits).

The value of this field must be less than or equal to the value of ICH_VTR.PRIbits.

IDbits, bits [25:23]

The number of virtual interrupt identifier bits supported:

IDbits Meaning
0b000 16 bits.
0b001 24 bits.

All other values are reserved.

This field is an alias of ICV_CTLR.IDbits.

ICH_VTR, Interrupt Controller VGIC Type Register

Page 1342

AArch32-icv_ctlr.html
AArch32-icv_ctlr.html

SEIS, bit [22]

SEI Support. Indicates whether the virtual CPU interface supports generation of SEIs:

SEIS Meaning
0b0 The virtual CPU interface logic does not support generation of

SEIs.
0b1 The virtual CPU interface logic supports generation of SEIs.

This bit is an alias of ICV_CTLR.SEIS.

A3V, bit [21]

Affinity 3 Valid. Possible values are:

A3V Meaning
0b0 The virtual CPU interface logic only supports zero values of

Affinity 3 in SGI generation System registers.
0b1 The virtual CPU interface logic supports non-zero values of

Affinity 3 in SGI generation System registers.

This bit is an alias of ICV_CTLR.A3V.

nV4, bit [20]

Direct injection of virtual interrupts not supported. Possible values are:

nV4 Meaning
0b0 The CPU interface logic supports direct injection of virtual

interrupts.
0b1 The CPU interface logic does not support direct injection of virtual

interrupts.

InIf GICv3,FEAT_GICv4 theis onlynot permittedimplemented, valuethis bit is 0b1RES1.

TDS, bit [19]

Separate trapping of Non-secure EL1 writes to ICV_DIR supported.

TDS Meaning
0b0 Implementation does not support ICH_HCR.TDIR.
0b1 Implementation supports ICH_HCR.TDIR.

Bits [18:5]

Reserved, RES0.

ListRegs, bits [4:0]

The number of implemented List registers, minus one. For example, a value of 0b01111 indicates that the maximum of
16 List registers are implemented.

Accessing the ICH_VTR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b1011 0b001

ICH_VTR, Interrupt Controller VGIC Type Register

Page 1343

AArch32-icv_ctlr.html
AArch32-icv_ctlr.html
AArch32-icv_dir.html
AArch32-ich_hcr.html
AArch32-ich_hcr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if ICC_HSRE.SRE == '0' then
UNDEFINED;

else
return ICH_VTR;

elsif PSTATE.EL == EL3 then
if ICC_MSRE.SRE == '0' then

UNDEFINED;
else

return ICH_VTR;

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ICH_VTR, Interrupt Controller VGIC Type Register

Page 1344

(old) htmldiff from- (new)

ID_MMFR5, Memory Model Feature Register 5
The ID_MMFR5 characteristics are:

Purpose
Provides information about the implemented memory model and memory management support in AArch32 state.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_MMFR5 bits [31:0] are architecturally mapped to AArch64 System register
ID_MMFR5_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
ID_MMFR5 are UNDEFINED.

Attributes
ID_MMFR5 is a 32-bit register.

Field descriptions
The ID_MMFR5 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 nTLBPAETS ETS

Bits [31:84]

Reserved, RES0.

nTLBPA, bits [7:4]

Indicates support for intermediate caching of translation table walks. Defined values are:

nTLBPA Meaning
0b0000 The intermediate caching of translation table walks might

include non-coherent caches of previous valid translation
table entries since the last completed relevant TLBI
applicable to the PE where either:

• The caching is indexed by the physical address of the
location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

0b0001 The intermediate caching of translation table walks does not
include non-coherent caches of previous valid translation
table entries since the last completed TLBI applicable to the
PE where either:

• The caching is indexed by the physical address of the
location holding the translation table entry.

• The caching is used for stage 1 translations and is
indexed by the intermediate physical address of the
location holding the translation table entry.

ID_MMFR5, Memory Model Feature Register 5

Page 1345

All other values are reserved.

FEAT_nTLBPA implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

ETS, bits [3:0]

Indicates supportSupport for Enhanced Translation Synchronization. Defined values are:

ETS Meaning
0b0000 Enhanced Translation Synchronization is not supported.
0b0001 Enhanced Translation Synchronization is supported.

All other values are reserved.

FEAT_ETS implements the functionality identified by the value 0b0001.

From Armv8.0, the permitted values are 0b0000 and 0b0001.

From Armv8.7, the only permitted value is 0b0001.

Accessing the ID_MMFR5
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0011 0b110

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean

IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR_EL2.TID3") && HCR_EL2.TID3 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && (!IsZero(ID_MMFR5) || boolean
IMPLEMENTATION_DEFINED "ID_MMFR5 trapped by HCR.TID3") && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_MMFR5;
elsif PSTATE.EL == EL2 then

return ID_MMFR5;
elsif PSTATE.EL == EL3 then

return ID_MMFR5;

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_MMFR5, Memory Model Feature Register 5

Page 1346

(old) htmldiff from- (new)

ID_PFR0, Processor Feature Register 0
The ID_PFR0 characteristics are:

Purpose
Gives top-level information about the instruction sets and other features supported by the PE in AArch32 state.

Must be interpreted with ID_PFR1.

For general information about the interpretation of the ID registers, see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_PFR0 bits [31:0] are architecturally mapped to AArch64 System register
ID_PFR0_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR0
are UNDEFINED.

Attributes
ID_PFR0 is a 32-bit register.

Field descriptions
The ID_PFR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAS DIT AMU CSV2 State3 State2 State1 State0

RAS, bits [31:28]

RAS Extension version. Defined values are:

RAS Meaning
0b0000 No RAS Extension.
0b0001 RAS Extension present.
0b0010 FEAT_RASv1p1 present. As 0b0001, and adds support for

additional ERXMISC<m> System registers.
Error records accessed through System registers conform to
RAS System Architecture v1.1, which includes simplifications
to ERR<n>STATUS and support for the optional RAS
Timestamp Extension.

All other values are reserved.

FEAT_RAS implements the functionality identified by the value 0b0001.

FEAT_RASv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0 and Armv8.1, the permitted values are 0b0000 and 0b0001.

In Armv8.2, the only permitted value is 0b0001.

From Armv8.4, if FEAT_DoubleFault is implemented, the only permitted value is 0b0010.

ID_PFR0, Processor Feature Register 0

Page 1347

From Armv8.4, when FEAT_DoubleFault is not implemented, and ERRIDR.NUM is 0, the permitted values are
IMPLEMENTATION DEFINED 0b0001 or 0b0010.

Note

When the value of this field is 0b0001, ID_PFR2.RAS_frac indicates whether
FEAT_RASv1p1 is implemented.

DIT, bits [27:24]

Data Independent Timing. Defined values are:

DIT Meaning
0b0000 AArch32 does not guarantee constant execution time of any

instructions.
0b0001 AArch32 provides the PSTATE.DIT mechanism to guarantee

constant execution time of certain instructions.

All other values are reserved.

FEAT_DIT implements the functionality identified by the value 0b0001.

From Armv8.4, the only permitted value is 0b0001.

AMU, bits [23:20]

Indicates support for Activity Monitors Extension. Defined values are:

AMU Meaning
0b0000 Activity Monitors Extension is not implemented.
0b0001 FEAT_AMUv1 is implemented.
0b0010 FEAT_AMUv1p1 is implemented. As 0b0001 and adds support

for virtualization of the activity monitor event counters.

All other values are reserved.

FEAT_AMUv1 implements the functionality identified by the value 0b0001.

FEAT_AMUv1p1 implements the functionality identified by the value 0b0010.

In Armv8.0, the only permitted value is 0b0000.

In Armv8.4, the permitted values are 0b0000 and 0b0001.

From Armv8.6, the permitted values are 0b0000, 0b0001, and 0b0010.

CSV2, bits [19:16]

Speculative use of out of context branch targets. Defined values are:

ID_PFR0, Processor Feature Register 0

Page 1348

AArch32-erridr.html
AArch32-id_pfr2.html

CSV2 Meaning
0b0000 This deviceDevice does not disclose whether branch targets

trained in one hardware-describedhardware described context
can exploitativelyaffect control speculative execution in a
different hardware-describedhardware described context.

0b0001 Branch targets trained in one hardware-describedhardware
described context can exploitativelyonly controlaffect
speculative execution in a different hardware-
describedhardware described context only in a hard-to-
determine way.

0b0010 Branch targets trained in one hardware-described context can
exploitatively control speculative execution in a different
hardware-described context only in a hard-to-determine way.
Within a hardware-described context, branch targets trained
for branches situated at one address can control speculative
execution of branches situated at different addresses only in a
hard-to-determine way.

All other values are reserved.

FEAT_CSV2 implements the functionality identified by the values 0b0001 and. 0b0010.

From Armv8.5, the only permitted valuesvalue areis 0b0001 and. 0b0010.

State3, bits [15:12]

T32EE instruction set support. Defined values are:

State3 Meaning
0b0000 Not implemented.
0b0001 T32EE instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

State2, bits [11:8]

Jazelle extension support. Defined values are:

State2 Meaning
0b0000 Not implemented.
0b0001 Jazelle extension implemented, without clearing of JOSCR.CV

on exception entry.
0b0010 Jazelle extension implemented, with clearing of JOSCR.CV on

exception entry.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

State1, bits [7:4]

T32 instruction set support. Defined values are:

State1 Meaning
0b0000 T32 instruction set not implemented.
0b0001 T32 encodings before the introduction of Thumb-2 technology

implemented:
• All instructions are 16-bit.
• A BL or BLX is a pair of 16-bit instructions.
• 32-bit instructions other than BL and BLX cannot be

encoded.
0b0011 T32 encodings after the introduction of Thumb-2 technology

implemented, for all 16-bit and 32-bit T32 basic instructions.

All other values are reserved.

ID_PFR0, Processor Feature Register 0

Page 1349

AArch32-joscr.html
AArch32-joscr.html

In Armv8-A, the only permitted value is 0b0011.

State0, bits [3:0]

A32 instruction set support. Defined values are:

State0 Meaning
0b0000 A32 instruction set not implemented.
0b0001 A32 instruction set implemented.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_PFR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_PFR0;
elsif PSTATE.EL == EL2 then

return ID_PFR0;
elsif PSTATE.EL == EL3 then

return ID_PFR0;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_PFR0, Processor Feature Register 0

Page 1350

(old) htmldiff from- (new)

ID_PFR1, Processor Feature Register 1
The ID_PFR1 characteristics are:

Purpose
Gives information about the AArch32 programmers' model.

Must be interpreted with ID_PFR0.

For general information about the interpretation of the ID registers see 'Principles of the ID scheme for fields in ID
registers'.

Configuration
AArch32 System register ID_PFR1 bits [31:0] are architecturally mapped to AArch64 System register
ID_PFR1_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to ID_PFR1
are UNDEFINED.

Attributes
ID_PFR1 is a 32-bit register.

Field descriptions
The ID_PFR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
GIC Virt_frac Sec_frac GenTimer Virtualization MProgMod Security ProgMod

GIC, bits [31:28]

System register GIC CPU interface. Defined values are:

GIC Meaning
0b0000 GIC CPU interface system registers not implemented.
0b0001 System register interface to versions 3.0 and 4.0 of the GIC

CPU interface is supported.
0b0011 System register interface to version 4.1 of the GIC CPU

interface is supported.

All other values are reserved.

Virt_frac, bits [27:24]

Virtualization fractional field. When the Virtualization field is 0b0000, determines the support for features from the
ARMv7 Virtualization Extensions. Defined values are:

ID_PFR1, Processor Feature Register 1

Page 1351

Virt_frac Meaning
0b0000 No features from the ARMv7 Virtualization Extensions are

implemented.
0b0001 The following features of the ARMv7 Virtualization

Extensions are implemented:
• The SCR.SIF bit, if EL3 is implemented.
• The modifications to the SCR.AW and SCR.FW bits

described in the Virtualization Extensions, if EL3 is
implemented.

• The MSR (banked register) and MRS (banked register)
instructions.

• The ERET instruction.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is implemented.
• 0b0001 when EL2 is not implemented.

This field is only valid when the value of ID_PFR1.Virtualization is 0, otherwise it holds the value 0b0000.

Note

The ID_ISAR registers do not identify whether the instructions added by the
ARMv7 Virtualization Extensions are implemented.

Sec_frac, bits [23:20]

Security fractional field. When the Security field is 0b0000, determines the support for features from the ARMv7
Security Extensions. Defined values are:

Sec_frac Meaning
0b0000 No features from the ARMv7 Security Extensions are

implemented.
0b0001 The following features from the ARMv7 Security Extensions

are implemented:
• The VBAR register.
• The TTBCR.PD0 and TTBCR.PD1 bits.

0b0010 As for 0b0001, plus the ability to access Secure or Non-
secure physical memory is supported.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is implemented.
• 0b0001 or 0b0010 when EL3 is not implemented.

This field is only valid when the value of ID_PFR1.Security is 0, otherwise it holds the value 0b0000.

GenTimer, bits [19:16]

Generic Timer support. Defined values are:

GenTimer Meaning
0b0000 Generic Timer is not implemented.
0b0001 Generic Timer is implemented.
0b0010 Generic Timer is implemented, and also includes support

for CNTHCTL.EVNTIS and CNTKCTL.EVNTIS fields, and
CNTPCTSS and CNTVCTSS counter views.

All other values are reserved.

FEAT_ECV implements the functionality identified by the value 0b0010.

In Armv8.0 to Armv8.4, the only permitted value is 0b0001.

ID_PFR1, Processor Feature Register 1

Page 1352

AArch32-scr.html
AArch32-scr.html
AArch32-scr.html
AArch32-ttbcr.html
AArch32-ttbcr.html
AArch32-cnthctl.html
AArch32-cntkctl.html
AArch32-cntpctss.html
AArch32-cntvctss.html

From Armv8.6, the only permitted value is 0b0010.

Virtualization, bits [15:12]

Virtualization support. Defined values are:

Virtualization Meaning
0b0000 EL2, Hyp mode, and the HVC instruction not

implemented.
0b0001 EL2, Hyp mode, the HVC instruction, and all the

features described by Virt_frac == 0b0001
implemented.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL2 is not implemented.
• 0b0001 when EL2 is implemented.

In an implementation that includes EL2, if EL2 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

Note

The ID_ISARs do not identify whether the HVC instruction is implemented.

MProgMod, bits [11:8]

M profile programmers' model support. Defined values are:

MProgMod Meaning
0b0000 Not supported.
0b0010 Support for two-stack programmers' model.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0000.

Security, bits [7:4]

Security support. Defined values are:

Security Meaning
0b0000 EL3, Monitor mode, and the SMC instruction not

implemented.
0b0001 EL3, Monitor mode, the SMC instruction, and all the features

described by Sec_frac == 0b0001 implemented.
0b0010 As for 0b0001, and adds the ability to set the NSACR.RFR bit.

Not permitted in Armv8 as the NSACR.RFR bit is RES0.

All other values are reserved.

In Armv8-A, the permitted values are:

• 0b0000 when EL3 is not implemented.
• 0b0001 when EL3 is implemented.

In an implementation that includes EL3, if EL3 cannot use AArch32 but EL1 can use AArch32 then this field has the
value 0b0001.

ProgMod, bits [3:0]

Support for the standard programmers' model for ARMv4 and later. Model must support User, FIQ, IRQ, Supervisor,
Abort, Undefined, and System modes. Defined values are:

ID_PFR1, Processor Feature Register 1

Page 1353

AArch32-nsacr.html
AArch32-nsacr.html

ProgMod Meaning
0b0000 Not supported.
0b0001 Supported.

All other values are reserved.

In Armv8-A, the only permitted value is 0b0001.

Accessing the ID_PFR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TID3 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TID3 == '1' then

AArch32.TakeHypTrapException(0x03);
else

return ID_PFR1;
elsif PSTATE.EL == EL2 then

return ID_PFR1;
elsif PSTATE.EL == EL3 then

return ID_PFR1;

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ID_PFR1, Processor Feature Register 1

Page 1354

(old) htmldiff from- (new)

MAIR0, Memory Attribute Indirection Register 0
The MAIR0 characteristics are:

Purpose
Along with MAIR1, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-
descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.
• When AttrIndx[2] is 1, MAIR1 is used.

Configuration
AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[31:0]
when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0 bits [31:0] are architecturally mapped to AArch32 System register PRRR[31:0] when
EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR0 bits [31:0] (MAIR0_NS) are architecturally mapped to AArch32 System register
PRRR[31:0] (PRRR_NS) (PRRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR0 bits [31:0] (MAIR0_S) are architecturally mapped to AArch32 System register
PRRR[31:0] (PRRR_S) (PRRR_S) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MAIR0
are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

When EL3 is using AArch32, write access to MAIR0(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes
MAIR0 is a 32-bit register.

Field descriptions
The MAIR0 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr3 Attr2 Attr1 Attr0

Attr<n>, bits [8n+7:8n], for n = 3 to 0

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

MAIR0, Memory Attribute Indirection Register 0

Page 1355

AArch32-ttbcr.html

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when
Attr<n>[7:4]

is0b0000
Meaning when Attr<n>[7:4] is

not0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MAIR0
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

MAIR0, Memory Attribute Indirection Register 0

Page 1356

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
return MAIR0_NS;

else
return PRRR_NS;

else
if TTBCR.EAE == '1' then

return MAIR0;
else

return PRRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

return MAIR0_NS;
else

return PRRR_NS;
else

if TTBCR.EAE == '1' then
return MAIR0;

else
return PRRR;

elsif PSTATE.EL == EL3 then
if TTBCR.EAE == '1' then

if SCR.NS == '0' then
return MAIR0_S;

else
return MAIR0_NS;

else
if SCR.NS == '0' then

return PRRR_S;
else

return PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

MAIR0, Memory Attribute Indirection Register 0

Page 1357

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
MAIR0_NS = R[t];

else
PRRR_NS = R[t];

else
if TTBCR.EAE == '1' then

MAIR0 = R[t];
else

PRRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

MAIR0_NS = R[t];
else

PRRR_NS = R[t];
else

if TTBCR.EAE == '1' then
MAIR0 = R[t];

else
PRRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if TTBCR.EAE == '1' then
if SCR.NS == '0' then

MAIR0_S = R[t];
else

MAIR0_NS = R[t];
else

if SCR.NS == '0' then
PRRR_S = R[t];

else
PRRR_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MAIR0, Memory Attribute Indirection Register 0

Page 1358

(old) htmldiff from- (new)

MAIR1, Memory Attribute Indirection Register 1
The MAIR1 characteristics are:

Purpose
Along with MAIR0, provides the memory attribute encodings corresponding to the possible AttrIndx values in a Long-
descriptor format translation table entry for stage 1 translations.

AttrIndx[2] indicates the MAIR register to be used:

• When AttrIndx[2] is 0, MAIR0 is used.
• When AttrIndx[2] is 1, MAIR1 is used.

Configuration
AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[63:32]
when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1 bits [31:0] are architecturally mapped to AArch32 System register NMRR[31:0] when
EL3 is not implemented or EL3 is using AArch64.

AArch32 System register MAIR1 bits [31:0] (MAIR1_NS) are architecturally mapped to AArch32 System register
NMRR[31:0] (NMRR_NS) (NMRR_NS) when EL3 is using AArch32.

AArch32 System register MAIR1 bits [31:0] (MAIR1_S) are architecturally mapped to AArch32 System register
NMRR[31:0] (NMRR_S) (NMRR_S) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MAIR1
are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

When EL3 is using AArch32, write access to MAIR1(S) is disabled when the CP15SDISABLE signal is asserted HIGH.

Attributes
MAIR1 is a 32-bit register.

Field descriptions
The MAIR1 bit assignments are:

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Attr7 Attr6 Attr5 Attr4

Attr<n>, bits [8(n-4)+7:8(n-4)], for n = 7 to 4

The memory attribute encoding for an AttrIndx[2:0] entry in a Long descriptor format translation table entry, where:

• AttrIndx[2:0] gives the value of <n> in Attr<n>.
• AttrIndx[2] defines which MAIR to access. Attr7 to Attr4 are in MAIR1, and Attr3 to Attr0 are in MAIR0.

MAIR1, Memory Attribute Indirection Register 1

Page 1359

AArch32-ttbcr.html

Bits [7:4] are encoded as follows:

Attr<n>[7:4] Meaning
0b0000 Device memory. See encoding of Attr<n>[3:0] for the

type of Device memory.
0b00RW, RW
not0b00

Normal memory, Outer Write-Through Transient.

0b0100 Normal memory, Outer Non-cacheable.
0b01RW, RW
not0b00

Normal memory, Outer Write-Back Transient.

0b10RW Normal memory, Outer Write-Through Non-transient.
0b11RW Normal memory, Outer Write-Back Non-transient.

R = Outer Read-Allocate policy, W = Outer Write-Allocate policy.

The meaning of bits [3:0] depends on the value of bits [7:4]:

Attr<n>[3:0]
Meaning when
Attr<n>[7:4]

is0b0000
Meaning when Attr<n>[7:4] is

not0b0000
0b0000 Device-nGnRnE

memory
UNPREDICTABLE

0b00RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Transient

0b0100 Device-nGnRE
memory

Normal memory, Inner Non-
cacheable

0b01RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Transient

0b1000 Device-nGRE
memory

Normal memory, Inner Write-
Through Non-transient
(RW=0b00)

0b10RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Through Non-transient

0b1100 Device-GRE memory Normal memory, Inner Write-
Back Non-transient (RW=0b00)

0b11RW, RW
not0b00

UNPREDICTABLE Normal memory, Inner Write-
Back Non-transient

R = Inner Read-Allocate policy, W = Inner Write-Allocate policy.

The R and W bits in some Attr<n> fields have the following meanings:

R or W Meaning
0b0 No Allocate
0b1 Allocate

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MAIR1
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

MAIR1, Memory Attribute Indirection Register 1

Page 1360

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
return MAIR1_NS;

else
return NMRR_NS;

else
if TTBCR.EAE == '1' then

return MAIR1;
else

return NMRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

return MAIR1_NS;
else

return NMRR_NS;
else

if TTBCR.EAE == '1' then
return MAIR1;

else
return NMRR;

elsif PSTATE.EL == EL3 then
if TTBCR.EAE == '1' then

if SCR.NS == '0' then
return MAIR1_S;

else
return MAIR1_NS;

else
if SCR.NS == '0' then

return NMRR_S;
else

return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

MAIR1, Memory Attribute Indirection Register 1

Page 1361

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
MAIR1_NS = R[t];

else
NMRR_NS = R[t];

else
if TTBCR.EAE == '1' then

MAIR1 = R[t];
else

NMRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

MAIR1_NS = R[t];
else

NMRR_NS = R[t];
else

if TTBCR.EAE == '1' then
MAIR1 = R[t];

else
NMRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if TTBCR.EAE == '1' then
if SCR.NS == '0' then

MAIR1_S = R[t];
else

MAIR1_NS = R[t];
else

if SCR.NS == '0' then
NMRR_S = R[t];

else
NMRR_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MAIR1, Memory Attribute Indirection Register 1

Page 1362

(old) htmldiff from- (new)

MIDR, Main ID Register
The MIDR characteristics are:

Purpose
Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configuration
AArch32 System register MIDR bits [31:0] are architecturally mapped to AArch64 System register MIDR_EL1[31:0].

AArch32 System register MIDR bits [31:0] are architecturally mapped to External register MIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MIDR
are UNDEFINED.

Some fields of the MIDR are IMPLEMENTATION DEFINED. For moredetails information aboutof the values of these fields
for a particular Armv8 implementation, and any implementation-specific significance of these values, see the product
documentation.

Attributes
MIDR is a 32-bit register.

Field descriptions
The MIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Implementer Variant Architecture PartNum Revision

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes
include the following:

Hex representation Implementer
0x00 Reserved for software use
0xC0 Ampere Computing
0x41 Arm Limited
0x42 Broadcom Corporation
0x43 Cavium Inc.
0x44 Digital Equipment Corporation
0x46 Fujitsu Ltd.
0x49 Infineon Technologies AG
0x4D Motorola or Freescale Semiconductor Inc.
0x4E NVIDIA Corporation
0x50 Applied Micro Circuits Corporation
0x51 Qualcomm Inc.
0x56 Marvell International Ltd.
0x69 Intel Corporation

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not
be used.

MIDR, Main ID Register

Page 1363

AArch64-midr_el1.html
ext-midr_el1.html

Variant, bits [23:20]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish between different product
variants, or major revisions of a product.

Architecture, bits [19:16]

Architecture version. Defined values are:

Architecture Meaning
0b0001 Armv4.
0b0010 Armv4T.
0b0011 Armv5 (obsolete).
0b0100 Armv5T.
0b0101 Armv5TE.
0b0110 Armv5TEJ.
0b0111 Armv6.
0b1111 Architectural features are individually identified in the

ID_* registers, see 'ID registers'.

All other values are reserved.

PartNum, bits [15:4]

An IMPLEMENTATION DEFINED primary part number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and
architecture are encoded differently.

Revision, bits [3:0]

An IMPLEMENTATION DEFINED revision number for the device.

Accessing the MIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VPIDR;
else

return MIDR;
elsif PSTATE.EL == EL2 then

return MIDR;
elsif PSTATE.EL == EL3 then

return MIDR;

MIDR, Main ID Register

Page 1364

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MIDR, Main ID Register

Page 1365

(old) htmldiff from- (new)

MPIDR, Multiprocessor Affinity Register
The MPIDR characteristics are:

Purpose
In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configuration
AArch32 System register MPIDR bits [31:0] are architecturally mapped to AArch64 System register MPIDR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MPIDR
are UNDEFINED.

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes
MPIDR is a 32-bit register.

Field descriptions
The MPIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
M U RES0 MT Aff2 Aff1 Aff0

M, bit [31]

Indicates whether this implementation includes the functionality introduced by the ARMv7 Multiprocessing
Extensions. The possible values of this bit are:

M Meaning
0b0 This implementation does not include the ARMv7 Multiprocessing

Extensions functionality.
0b1 This implementation includes the ARMv7 Multiprocessing

Extensions functionality.

From Armv8, this bit is RAO.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system. The possible values of this bit are:

U Meaning
0b0 Processor is part of a multiprocessor system.
0b1 Processor is part of a uniprocessor system.

Bits [29:25]

Reserved, RES0.

MPIDR, Multiprocessor Affinity Register

Page 1366

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type
approach. See the description of Aff0 for more information about affinity levels. The possible values of this bit are:

MT Meaning
0b0 Performance of PEs at the lowest affinity level, or PEs with

MPIDR.MT set to 1, different affinity level 0 values, and the same
values for affinity level 1 and higher, is largely independent.

0b1 Performance of PEs at the lowest affinity level, or PEs with
MPIDR.MT set to 1, different affinity level 0 values, and the same
values for affinity level 1 and higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are
increasingly less significant in determining PE behavior. The assigned value of the MPIDR.{Aff2, Aff1, Aff0} or
MPIDR_EL1.{Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

Accessing the MPIDR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0000 0b0000 0b101

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T0 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) then

return VMPIDR_EL2<31:0>;
elsif EL2Enabled() && ELUsingAArch32(EL2) then

return VMPIDR;
else

return MPIDR;
elsif PSTATE.EL == EL2 then

return MPIDR;
elsif PSTATE.EL == EL3 then

return MPIDR;

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPIDR, Multiprocessor Affinity Register

Page 1367

(old) htmldiff from- (new)

MVBAR, Monitor Vector Base Address Register
The MVBAR characteristics are:

Purpose
When EL3 is implemented and can use AArch32, holds the vector base address for any exception that is taken to
Monitor mode.

Secure software must program the MVBAR with the required initial value as part of the PE boot sequence.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to MVBAR
are UNDEFINED.

It is IMPLEMENTATION DEFINED whether MVBAR[0] has a fixed value and ignored writes, or takes the last value written
to it.

On a Warm reset into EL3 using AArch32, the reset value of MVBAR is an IMPLEMENTATION DEFINED choice between the
following:

• MVBAR[31:5] = an IMPLEMENTATION DEFINED value, which might be UNKNOWN, MVBAR[4:1] = RES0, and
MVBAR[0] = 0.

• MVBAR[31:1] = an IMPLEMENTATION DEFINED value that is bits[31:1] of the AArch32 reset address, and
MVBAR[0] = 1.

Attributes
MVBAR is a 32-bit register.

Field descriptions
The MVBAR bit assignments are:

When programmed with a vector base address:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Vector Base Address Reserved

Bits [31:5]

Vector Base Address. Bits[31:5] of the base address of the exception vectors for exceptions taken to this Exception
level. Bits[4:0] of an exception vector are the exception offset.

Reserved, bits [4:0]

Reserved, see Configurations.

Accessing the MVBAR
Accesses to this register use the following encodings:

MVBAR, Monitor Vector Base Address Register

Page 1368

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if IsHighestEL(EL1) then

return RVBAR;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

if IsHighestEL(EL2) then
return RVBAR;

else
UNDEFINED;

elsif PSTATE.EL == EL3 then
return MVBAR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0000 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE == HIGH then
UNDEFINED;

elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
MVBAR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MVBAR, Monitor Vector Base Address Register

Page 1369

(old) htmldiff from- (new)

NMRR, Normal Memory Remap Register
The NMRR characteristics are:

Purpose
Provides additional mapping controls for memory regions that are mapped as Normal memory by their entry in the
PRRR.

Used in conjunction with the PRRR.

Configuration
AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[63:32]
when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] are architecturally mapped to AArch32 System register MAIR1[31:0] when
EL3 is not implemented or EL3 is using AArch64.

AArch32 System register NMRR bits [31:0] (NMRR_S) are architecturally mapped to AArch32 System register
MAIR1[31:0] (MAIR1_S) (MAIR1_S) when EL3 is using AArch32.

AArch32 System register NMRR bits [31:0] (NMRR_NS) are architecturally mapped to AArch32 System register
MAIR1[31:0] (MAIR1_NS) (MAIR1_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to NMRR
are UNDEFINED.

MAIR1 and NMRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in NMRR.
• When it is set to 1, the register is as described in MAIR1.

Attributes
NMRR is a 32-bit register.

Field descriptions
The NMRR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OR7 OR6 OR5 OR4 OR3 OR2 OR1 OR0 IR7 IR6 IR5 IR4 IR3 IR2 IR1 IR0

OR<n>, bits [2n+17:2n+16], for n = 7 to 0

Outer Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the
PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

OR<n> Meaning
0b00 Region is Non-cacheable.
0b01 Region is Write-Back, Write-Allocate.
0b10 Region is Write-Through, no Write-Allocate.
0b11 Region is Write-Back, no Write-Allocate.

NMRR, Normal Memory Remap Register

Page 1370

AArch32-ttbcr.html

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is
because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Outer Write-Back Cacheable memory types have the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IR<n>, bits [2n+1:2n], for n = 7 to 0

Inner Cacheable property mapping for memory attributes n, if the region is mapped as Normal memory by the
PRRR.TR<n> entry. n is the value of the TEX[0], C, and B bits concatenated. The possible values of this field are:

IR<n> Meaning
0b00 Region is Non-cacheable.
0b01 Region is Write-Back, Write-Allocate.
0b10 Region is Write-Through, no Write-Allocate.
0b11 Region is Write-Back, no Write-Allocate.

The meaning of the field with n = 6 is IMPLEMENTATION DEFINED and might differ from the meaning given here. This is
because the meaning of the attribute combination {TEX[0] = 1, C = 1, B = 0} is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable memory types have the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the NMRR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

NMRR, Normal Memory Remap Register

Page 1371

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
return MAIR1_NS;

else
return NMRR_NS;

else
if TTBCR.EAE == '1' then

return MAIR1;
else

return NMRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

return MAIR1_NS;
else

return NMRR_NS;
else

if TTBCR.EAE == '1' then
return MAIR1;

else
return NMRR;

elsif PSTATE.EL == EL3 then
if TTBCR.EAE == '1' then

if SCR.NS == '0' then
return MAIR1_S;

else
return MAIR1_NS;

else
if SCR.NS == '0' then

return NMRR_S;
else

return NMRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b001

NMRR, Normal Memory Remap Register

Page 1372

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
MAIR1_NS = R[t];

else
NMRR_NS = R[t];

else
if TTBCR.EAE == '1' then

MAIR1 = R[t];
else

NMRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

MAIR1_NS = R[t];
else

NMRR_NS = R[t];
else

if TTBCR.EAE == '1' then
MAIR1 = R[t];

else
NMRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if TTBCR.EAE == '1' then
if SCR.NS == '0' then

MAIR1_S = R[t];
else

MAIR1_NS = R[t];
else

if SCR.NS == '0' then
NMRR_S = R[t];

else
NMRR_NS = R[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

NMRR, Normal Memory Remap Register

Page 1373

(old) htmldiff from- (new)

PMCR, Performance Monitors Control Register
The PMCR characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
AArch32 System register PMCR bits [31:0] are architecturally mapped to AArch64 System register PMCR_EL0[31:0].

AArch32 System register PMCR bits [7:0] are architecturally mapped to External register PMCR_EL0[7:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMCR are UNDEFINED.

Attributes
PMCR is a 32-bit register.

Field descriptions
The PMCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMP IDCODE N RES0FZORES0 LP LC DP X D C P E

IMP, bits [31:24]

When FEAT_PMUv3p7 is not implemented:

Implementer code.

If this field is zero, then PMCR.IDCODE is RES0 and software must use MIDR to identify the PE.

Otherwise, this field and PMCR.IDCODE identify the PMU implementation to software. The implementer codes are
allocated by Arm. A non-zero value has the same interpretation as MIDR.Implementer.

Use of this field is deprecated.

This field reads as an IMPLEMENTATION DEFINED value.

Access to this field is RO.

Otherwise:

Reserved, RAZ.

IDCODE, bits [23:16]

When PMCR.IMP != 0x00:

Identification code. Use of this field is deprecated. This field has an IMPLEMENTATION DEFINED value.

PMCR, Performance Monitors Control Register

Page 1374

Each implementer must maintain a list of identification codes that are specific to the implementer. A specific
implementation is identified by the combination of the implementer code and the identification code.

Access to this field is RO.

Otherwise:

Reserved, RES0.

N, bits [15:11]

Indicates the number of event counters implemented. This value is in the range of 0b00000-0b111111. If the value is
0b00000 then only PMCCNTR is implemented. If the value is 0b111111 PMCCNTR and 31 event counters are
implemented.

In an implementation that includes EL2:

• If EL2 is using AArch32, reads of this field from Non-secure EL1 and Non-secure EL0 return the value of
HDCR.HPMN.

• If EL2 is using AArch64 and enabled in the current Security state, reads of this field from EL1 and EL0
return the value of MDCR_EL2.HPMN.

Access to this field is RO.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when PMOVSR[(N-1):0] is nonzero,

where N is the value of HDCR.HPMN if EL2 is implemented, and
PMCR.N otherwise.

If EL2 is implemented, then:

• This bit affects the operation of event counters in the range [0 .. (HDCR.HPMN-1)].
• If HDCR.HPMN is less than PMCR.N:

◦ This bit does not affect the operation of event counters in the range [HDCR.HPMN .. (PMCR.N-1)].
◦ The operation of this bit ignores the values of PMOVSR[(PMCR.N-1):HDCR.HPMN].

• This applies even when EL2 is disabled in the current Security state.

This bit does not affect the operation of PMCCNTR.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

PMCR, Performance Monitors Control Register

Page 1375

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmovsr.html
AArch32-pmovsr.html
AArch32-pmccntr.html

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an eventa counter overflow bit.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>[63:0].

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW or
RAZ/WI.

If EL2 is implemented and HDCR.HPMN or MDCR_EL2.HPMN is less than PMCR.N, this bit does not affect the
operation of event counters in the range [HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].

PMEVCNTR<n>[63:32] cannot be accessed directly in AArch32 state.

Note

The effect of HDCR.HPMN or MDCR_EL2.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of HDCR.HPMN or
MDCR_EL2.HPMN.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

LC, bit [6]

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR[63:0].

Arm deprecates use of PMCR.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited.

DP Meaning
0b0 Cycle counting by PMCCNTR is not affected by this bit.
0b1 When event counting for counters in the range

[0..(HDCR.HPMN-1)] or [0..(MDCR_EL2.HPMN-1)] is prohibited,
cycle counting by PMCCNTR is disabled.

For more information see 'Prohibiting event counting'

On a Warm reset, this field resets to 0.

PMCR, Performance Monitors Control Register

Page 1376

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device,
for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-
trigger interface (CTI) that can be implemented as signals exported from the PE.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

Clock divider. The possible values of this bit are:

D Meaning
0b0 When enabled, PMCCNTR counts every clock cycle.
0b1 When enabled, PMCCNTR counts once every 64 clock cycles.

If PMCR.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR.D = 1.

On a Warm reset, this field resets to 0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR to zero.

Note

The value of PMCR_EL0.LC is ignored, and bits [63:0] of all affected event
counters are reset.

Resetting PMCCNTR does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR.LC is ignored, and bits
[63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

PMCR, Performance Monitors Control Register

Page 1377

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters accessible in the current Exception level,

not including PMCCNTR, to zero.

In EL0 and EL1:

• If EL2 is implemented and enabled in the current Security state, and HDCR.HPMN or MDCR_EL2.HPMN is
less than PMCR_EL0.N, a write of 1 to this bit does not reset event counters in the range
[HDCR.HPMN..(PMCR.N-1)] or [MDCR_EL2.HPMN..(PMCR.N-1)].

• If EL2 is not implemented, EL2 is disabled in the current Security state, or HDCR.HPMN or
MDCR_EL2.HPMN is equal to PMCR_EL0.N, a write of 1 to this bit resets all the event counters.

In EL2 and EL3, a write of 1 to this bit resets all the event counters.

Note

If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and PMCR.LP are
ignored and bits [63:0] of all affected event counters are reset.

Resetting the event counters does not change the event counter overflow bits.
If FEAT_PMUv3p5 is implemented, the values of HDCR.HLP and PMCR.LP are
ignored and bits [63:0] of all affected event counters are reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR, are

disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR, are

enabled by PMCNTENSET.

If EL2 is implemented then:

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR.N-1)].

If EL2 is not implemented, PMN is PMCR.N.

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, regardless of whether EL2 is enabled in the current Security state.
For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

On a Warm reset, this field resets to 0.

Accessing the PMCR
Accesses to this register use the following encodings:

PMCR, Performance Monitors Control Register

Page 1378

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmcntenset.html

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b000

PMCR, Performance Monitors Control Register

Page 1379

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCR;

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMCR;
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMCR;

PMCR, Performance Monitors Control Register

Page 1380

elsif PSTATE.EL == EL3 then
return PMCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b000

PMCR, Performance Monitors Control Register

Page 1381

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMCR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCR = R[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPMCR == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPMCR == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMCR = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

PMCR, Performance Monitors Control Register

Page 1382

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMCR = R[t];
elsif PSTATE.EL == EL3 then

PMCR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR, Performance Monitors Control Register

Page 1383

(old) htmldiff from- (new)

PMEVCNTR<n>, Performance Monitors Event Count
Registers, n = 0 - 30

The PMEVCNTR<n> characteristics are:

Purpose
Holds event counter n, which counts events, where n is 0 to 30.

Configuration
AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVCNTR<n>_EL0[31:0].

AArch32 System register PMEVCNTR<n> bits [31:0] are architecturally mapped to External register
PMEVCNTR<n>_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMEVCNTR<n> are UNDEFINED.

Attributes
PMEVCNTR<n> is a 32-bit register.

Field descriptions
The PMEVCNTR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Event counter n

Bits [31:0]

Event counter n. Value of event counter n, where n is the number of this register and is a number from 0 to 30.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part of the event counter
is accessible in AArch32 state:

• Reads from PMEVCNTR<n> return bits [31:0] of the counter.

• Writes to PMEVCNTR<n> update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64 at any Exception level, bits [63:32] are not required to be
implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVCNTR<n>
PMEVCNTR<n> can also be accessed by using PMXEVCNTR with PMSELR.SEL set to the value of <n>.

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1384

ext-pmevcntrn_el0.html

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVCNTR<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If <n> is greater than or equal to the number of accessible event counters, then reads and writes of PMEVCNTR<n>
are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVCNTR<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or
PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible event counters.

Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee HDCR.HPMN and
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1385

AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b10:n[4:3] n[2:0]

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1386

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
PMEVCNTR[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30

Page 1387

(old) htmldiff from- (new)

PMEVTYPER<n>, Performance Monitors Event Type
Registers, n = 0 - 30

The PMEVTYPER<n> characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[31:0].

AArch32 System register PMEVTYPER<n> bits [31:0] are architecturally mapped to External register
PMEVTYPER<n>_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMEVTYPER<n> are UNDEFINED.

Attributes
PMEVTYPER<n> is a 32-bit register.

Field descriptions
The PMEVTYPER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSHRES0MT RES0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>.NSU bit.

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1388

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of PMEVTYPER<n>.P, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of PMEVTYPER<n>.U, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hyp mode) filtering bit. Controls counting in EL2.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [26]

Reserved, RES0.

MT, bit [25]

When FEAT_MTPMU is implemented or an IMPLEMENTATION DEFINED multi-threaded PMU extension is implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1389

From Armv8.6, the IMPLEMENTATION DEFINED multi-threaded PMU extension is not permitted, meaning if FEAT_MTPMU
is not implemented, this bit is RES0. See ID_DFR1.MTPMU.

This bit is ignored by the PE and treated as zero when FEAT_MTPMU is implemented and Disabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [24:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. ForSee more information, see evtCount[9:0].] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space'.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value
written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of
the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned
by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the
value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>
PMEVTYPER<n> can also be accessed by using PMXEVTYPER with PMSELR.SEL set to n.

If FEAT_FGT is implemented and <n> is greater than or equal to the number of accessible event counters, then the
behavior of permitted reads and writes of PMEVTYPER<n> is as follows:

• If <n> is an unimplemented event counter, the access is UNDEFINED.

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1390

AArch32-id_dfr1.html

• Otherwise, the access is trapped to EL2.

If <n> is greater or equal to the number of accessible event counters, then reads and writes of PMEVTYPER<n> are
CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

If FEAT_FGT is not implemented and <n> is greater than or equal to the number of accessible event counters, then
reads and writes of PMEVTYPER<n> are CONSTRAINED UNPREDICTABLE, and the following behaviors are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP.
• If EL2 is implemented and enabled in the current Security state, and <n> is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or
PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible event counters.

Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee HDCR.HPMN and
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1391

AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

elsif PSTATE.EL == EL3 then
return PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)];

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1110 0b11:n[4:3] n[2:0]

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1392

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL1 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];
elsif PSTATE.EL == EL2 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

elsif PSTATE.EL == EL3 then
PMEVTYPER[UInt(CRm<1:0>:opc2<2:0>)] = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30

Page 1393

(old) htmldiff from- (new)

PMSELR, Performance Monitors Event Counter
Selection Register

The PMSELR characteristics are:

Purpose
Selects the current event counter PMEVCNTR<n> or the cycle counter, CCNT.

PMSELR is used in conjunction with PMXEVTYPER to determine the event that increments a selected event counter,
and the modes and states in which the selected counter increments.

It is also used in conjunction with PMXEVCNTR, to determine the value of a selected event counter.

Configuration
AArch32 System register PMSELR bits [31:0] are architecturally mapped to AArch64 System register
PMSELR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMSELR are UNDEFINED.

Attributes
PMSELR is a 32-bit register.

Field descriptions
The PMSELR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SEL

Bits [31:5]

Reserved, RES0.

SEL, bits [4:0]

Selects event counter, PMEVCNTR<n>, where n is the value held in this field. This value identifies which event
counter is accessed when a subsequent access to PMXEVTYPER or PMXEVCNTR occurs.

This field can take any value from 0 (0b00000) to (PMCR.N)-1, or 31 (0b11111).

When PMSELR.SEL is 0b11111, it selects the cycle counter and:

• A read of the PMXEVTYPER returns the value of PMCCFILTR.
• A write of the PMXEVTYPER writes to PMCCFILTR.
• A read or write of PMXEVCNTR has CONSTRAINED UNPREDICTABLE effects. For more information, seeSee

PMXEVCNTR.for more details.

For moredetails information aboutof the results of accesses to event counters, see PMXEVTYPER and PMXEVCNTR.

For more information about the number of counters accessible at each Exception level, see HDCR.HPMN and
MDCR_EL2.HPMN.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PMSELR, Performance Monitors Event Counter Selection Register

Page 1394

AArch32-pmccfiltr.html
AArch32-pmccfiltr.html

Accessing the PMSELR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b101

PMSELR, Performance Monitors Event Counter Selection Register

Page 1395

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSELR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMSELR;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMSELR;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMSELR;
elsif PSTATE.EL == EL3 then

return PMSELR;

PMSELR, Performance Monitors Event Counter Selection Register

Page 1396

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1100 0b101

PMSELR, Performance Monitors Event Counter Selection Register

Page 1397

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSELR_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMSELR = R[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMSELR = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMSELR = R[t];
elsif PSTATE.EL == EL3 then

PMSELR = R[t];

PMSELR, Performance Monitors Event Counter Selection Register

Page 1398

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMSELR, Performance Monitors Event Counter Selection Register

Page 1399

(old) htmldiff from- (new)

PMXEVCNTR, Performance Monitors Selected Event
Count Register

The PMXEVCNTR characteristics are:

Purpose
Reads or writes the value of the selected event counter, PMEVCNTR<n>. PMSELR.SEL determines which event
counter is selected.

Configuration
AArch32 System register PMXEVCNTR bits [31:0] are architecturally mapped to AArch64 System register
PMXEVCNTR_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMXEVCNTR are UNDEFINED.

Attributes
PMXEVCNTR is a 32-bit register.

Field descriptions
The PMXEVCNTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PMEVCNTR<n>

PMEVCNTR<n>, bits [31:0]

Value of the selected event counter, PMEVCNTR<n>, where n is the value stored in PMSELR.SEL.

If FEAT_PMUv3p5 is implemented, the event counter is 64 bits and only the least-significant part of the event counter
is accessible in AArch32 state:

• Reads from PMXEVCNTR return bits [31:0] of the counter.

• Writes to PMXEVCNTR update bits [31:0] and leave bits [63:32] unchanged.

• There is no means to access bits [63:32] directly from AArch32 state.

• If the implementation does not support AArch64 at any Exception level, bits [63:32] are not required to be
implemented.

If FEAT_PMUv3p5 is not implemented, the event counter is 32 bits.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMXEVCNTR
If FEAT_FGT is implemented and PMSELR.SEL is greater than or equal to the number of accessible event counters,
then the behavior of permitted reads and writes of PMXEVCNTR is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 1400

If FEAT_FGT is not implemented and PMSELR.SEL is greater than or equal to the number of accessible event
counters, then reads and writes of PMXEVCNTR are CONSTRAINED UNPREDICTABLE, and the following behaviors are
permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of event

counters accessible at the current Exception level and Security state.
• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of

implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.{ER,EN} or
PMUSERENR_EL0.{ER,EN}.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible event counters.

Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee HDCR.HPMN and
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b010

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 1401

AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.<ER,EN> == '00' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.<ER,EN> == '00' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVCNTR;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMXEVCNTR;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVCNTR;
elsif PSTATE.EL == EL3 then

return PMXEVCNTR;

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 1402

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b010

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 1403

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVCNTRn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVCNTR = R[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMXEVCNTR = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVCNTR = R[t];
elsif PSTATE.EL == EL3 then

PMXEVCNTR = R[t];

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 1404

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMXEVCNTR, Performance Monitors Selected Event Count Register

Page 1405

(old) htmldiff from- (new)

PMXEVTYPER, Performance Monitors Selected Event
Type Register

The PMXEVTYPER characteristics are:

Purpose
When PMSELR.SEL selects an event counter, this accesses a PMEVTYPER<n> register. When PMSELR.SEL selects
the cycle counter, this accesses PMCCFILTR.

Configuration
AArch32 System register PMXEVTYPER bits [31:0] are architecturally mapped to AArch64 System register
PMXEVTYPER_EL0[31:0].

This register is present only when AArch32 is supported at any Exception level and FEAT_PMUv3 is implemented.
Otherwise, direct accesses to PMXEVTYPER are UNDEFINED.

Attributes
PMXEVTYPER is a 32-bit register.

Field descriptions
The PMXEVTYPER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Event type register or PMCCFILTR

Bits [31:0]

Event type register or PMCCFILTR.

When PMSELR.SEL == 31, this register accesses PMCCFILTR.

Otherwise, this register accesses PMEVTYPER<n> where n is the value in PMSELR.SEL.

Accessing the PMXEVTYPER
If FEAT_FGT is implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible
event counters, then the behavior of permitted reads and writes of PMXEVTYPER is as follows:

• If PMSELR.SEL selects an unimplemented event counter, the access is UNDEFINED.
• Otherwise, the access is trapped to EL2.

If FEAT_FGT is not implemented, and PMSELR.SEL is not 31 and is greater than or equal to the number of accessible
event counters, then reads and writes of PMXEVTYPER are CONSTRAINED UNPREDICTABLE, and the following behaviors
are permitted:

• Accesses to the register are UNDEFINED.
• Accesses to the register behave as RAZ/WI.
• Accesses to the register execute as a NOP
• Accesses to the register behave as if PMSELR.SEL has an UNKNOWN value less than the number of event

counters accessible at the current Exception level and Security state.
• Accesses to the register behave as if PMSELR.SEL is 31.

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 1406

AArch32-pmccfiltr.html
AArch32-pmccfiltr.html
AArch32-pmccfiltr.html

• If EL2 is implemented and enabled in the current Security state, and PMSELR.SEL is less than the number of
implemented event counters, accesses from EL1 or permitted accesses from EL0 are trapped to EL2.

Note

In EL0, an access is permitted if it is enabled by PMUSERENR.EN or
PMUSERENR_EL0.EN.

If EL2 is implemented and enabled in the current Security state, at EL0 and
EL1:

• If EL2 is using AArch32, HDCR.HPMN identifies the number of
accessible event counters.

• If EL2 is using AArch64, MDCR_EL2.HPMN identifies the number of
accessible event counters.

Otherwise, the number of accessible event counters is the number of
implemented event counters. For more information, seeSee HDCR.HPMN and
MDCR_EL2.HPMN.HPMN for more details.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b001

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 1407

AArch32-pmuserenr.html
AArch64-pmuserenr_el0.html

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVTYPER;
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
return PMXEVTYPER;

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

return PMXEVTYPER;
elsif PSTATE.EL == EL3 then

return PMXEVTYPER;

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 1408

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1001 0b1101 0b001

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 1409

if PSTATE.EL == EL0 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif !ELUsingAArch32(EL1) && PMUSERENR_EL0.EN == '0' then
if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
else

AArch64.AArch32SystemAccessTrap(EL1, 0x03);
elsif ELUsingAArch32(EL1) && PMUSERENR.EN == '0' then

if EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TGE == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TGE == '1' then
AArch32.TakeHypTrapException(0x00);

else
UNDEFINED;

elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.<E2H,TGE> != '11' && HSTR_EL2.T9 == '1'
then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL1) && HCR_EL2.<E2H,TGE> != '11' && (!HaveEL(EL3) ||

SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMEVTYPERn_EL0 == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then
AArch64.AArch32SystemAccessTrap(EL2, 0x03);

elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then
AArch32.TakeHypTrapException(0x03);

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVTYPER = R[t];
elsif PSTATE.EL == EL1 then

if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap
priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

UNDEFINED;
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T9 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T9 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && MDCR_EL2.TPM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HDCR.TPM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then

if Halted() && EDSCR.SDD == '1' then
UNDEFINED;

else
AArch64.AArch32SystemAccessTrap(EL3, 0x03);

else
PMXEVTYPER = R[t];

elsif PSTATE.EL == EL2 then
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1' && boolean IMPLEMENTATION_DEFINED "EL3 trap

priority when SDD == '1'" && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
UNDEFINED;

elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && MDCR_EL3.TPM == '1' then
if Halted() && EDSCR.SDD == '1' then

UNDEFINED;
else

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

PMXEVTYPER = R[t];
elsif PSTATE.EL == EL3 then

PMXEVTYPER = R[t];

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 1410

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMXEVTYPER, Performance Monitors Selected Event Type Register

Page 1411

(old) htmldiff from- (new)

PRRR, Primary Region Remap Register
The PRRR characteristics are:

Purpose
Controls the top level mapping of the TEX[0], C, and B memory region attributes.

Configuration
AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch64 System register MAIR_EL1[31:0]
when EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] are architecturally mapped to AArch32 System register MAIR0[31:0] when
EL3 is not implemented or EL3 is using AArch64.

AArch32 System register PRRR bits [31:0] (PRRR_S) are architecturally mapped to AArch32 System register
MAIR0[31:0] (MAIR0_S) (MAIR0_S) when EL3 is using AArch32.

AArch32 System register PRRR bits [31:0] (PRRR_NS) are architecturally mapped to AArch32 System register
MAIR0[31:0] (MAIR0_NS) (MAIR0_NS) when EL3 is using AArch32.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to PRRR
are UNDEFINED.

MAIR0 and PRRR are the same register, with a different view depending on the value of TTBCR.EAE:

• When it is set to 0, the register is as described in PRRR.
• When it is set to 1, the register is as described in MAIR0.

Attributes
PRRR is a 32-bit register.

Field descriptions
The PRRR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
NOS7NOS6NOS5NOS4NOS3NOS2NOS1NOS0 RES0 NS1NS0DS1DS0TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

NOS<n>, bit [n+24], for n = 7 to 0

Not Outer Shareable. NOS<n> is the Outer Shareable property for memory attributes n, if the region is mapped as
Normal memory that is not Inner Non-cacheable, Outer Non-cacheable, and the appropriate PRRR.{NS0, NS1} field
identifies the region as shareable. n is the value of the concatenation of the {TEX[0], C, B} bits from the translation
table descriptor. The possible values of each NOS<n> field other than NOS6 are:

NOS<n> Meaning
0b0 Memory region is Outer Shareable.
0b1 Memory region is Inner Shareable.

The value of this bit is ignored if the region is:

• Device memory
• Normal memory that is at least one of:

PRRR, Primary Region Remap Register

Page 1412

AArch32-ttbcr.html

◦ Inner Non-cacheable, Outer Non-cacheable.
◦ Identified by the appropriate PRRR.{NS0, NS1} field as Non-shareable.

The meaning of the NOS6 field is IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [23:20]

Reserved, RES0.

NS1, bit [19]

Mapping of S = 1 attribute for Normal memory regions. This field is used in determining the Shareability of a memory
region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 1.

The possible values of this bit are:

NS1 Meaning
0b0 Region is Non-shareable.
0b1 Region is shareable. The value of the appropriate PRRR.NOS<n>

field determines whether the region is Inner Shareable or Outer
Shareable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NS0, bit [18]

Mapping of S = 0 attribute for Normal memory regions. This field is used in determining the Shareability of a memory
region that is mapped to Normal memory and both:

• Is not Inner Non-cacheable, Outer Non-cacheable.
• Has the S bit in the translation table descriptor set to 0.

The possible values of this bit are:

NS0 Meaning
0b0 Region is Non-shareable.
0b1 Region is shareable. The value of the appropriate PRRR.NOS<n>

field determines whether the region is Inner Shareable or Outer
Shareable.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS1, bit [17]

Mapping of S = 1 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and
therefore this bit is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS0, bit [16]

Mapping of S = 0 attribute for Device memory. From Armv8, all types of Device memory are Outer Shareable, and
therefore this bit is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PRRR, Primary Region Remap Register

Page 1413

TR<n>, bits [2n+1:2n], for n = 7 to 0

TR<n> is the primary TEX mapping for memory attributes n, and defines the mapped memory type for a region with
attributes n. n is the value of the concatenation of the {TEX[0], C, B} bits from the translation table descriptor. The
possible values for each field other than TR6 are:

TR<n> Meaning
0b00 Device-nGnRnE memory
0b01 Device-nGnRE memory
0b10 Normal memory

The value 0b11 is reserved. The effect of programming a field to 0b11 is CONSTRAINED UNPREDICTABLE.

The meaning of the TR6 field is IMPLEMENTATION DEFINED.

When FEAT_XS is implemented, stage 1 Inner Write-Back Cacheable, Outer Write-Back Cacheable memory types have
the XS attribute set to 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PRRR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

PRRR, Primary Region Remap Register

Page 1414

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
return MAIR0_NS;

else
return PRRR_NS;

else
if TTBCR.EAE == '1' then

return MAIR0;
else

return PRRR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

return MAIR0_NS;
else

return PRRR_NS;
else

if TTBCR.EAE == '1' then
return MAIR0;

else
return PRRR;

elsif PSTATE.EL == EL3 then
if TTBCR.EAE == '1' then

if SCR.NS == '0' then
return MAIR0_S;

else
return MAIR0_NS;

else
if SCR.NS == '0' then

return PRRR_S;
else

return PRRR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1010 0b0010 0b000

PRRR, Primary Region Remap Register

Page 1415

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T10 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T10 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

if TTBCR.EAE == '1' then
MAIR0_NS = R[t];

else
PRRR_NS = R[t];

else
if TTBCR.EAE == '1' then

MAIR0 = R[t];
else

PRRR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
if TTBCR.EAE == '1' then

MAIR0_NS = R[t];
else

PRRR_NS = R[t];
else

if TTBCR.EAE == '1' then
MAIR0 = R[t];

else
PRRR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if TTBCR.EAE == '1' then
if SCR.NS == '0' then

MAIR0_S = R[t];
else

MAIR0_NS = R[t];
else

if SCR.NS == '0' then
PRRR_S = R[t];

else
PRRR_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PRRR, Primary Region Remap Register

Page 1416

(old) htmldiff from- (new)

SCTLR, System Control Register
The SCTLR characteristics are:

Purpose
Provides the top level control of the system, including its memory system.

Configuration
AArch32 System register SCTLR bits [31:0] are architecturally mapped to AArch64 System register SCTLR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SCTLR
are UNDEFINED.

Some bits in the register are read-only. These bits relate to non-configurable features of an implementation, and are
provided for compatibility with previous versions of the architecture.

Attributes
SCTLR is a 32-bit register.

Field descriptions
The SCTLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 1312 11 10 9 8 7 6 5 4 3 2 1 0
DSSBSTEAFETRERES0EERES0SPANRES1RES0UWXNWXNnTWERES0nTWIRES0 V I RES1EnRCTXRES0SEDITDUNKCP15BENLSMAOEnTLSMDCAM

DSSBS, bit [31]

When FEAT_SSBS is implemented:

Default PSTATE.SSBS value on Exception Entry. The defined values are:

DSSBS Meaning
0b0 PSTATE.SSBS is set to 0 on an exception to any mode in this

security state except Hyp mode
0b1 PSTATE.SSBS is set to 1 on an exception to any mode in this

security state except Hyp mode

Note

When EL3 is implemented and is using AArch32, this bit is banked between
the two Security states.

On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Otherwise:

Reserved, RES0.

SCTLR, System Control Register

Page 1417

TE, bit [30]

T32 Exception Enable. This bit controls whether exceptions to an Exception levelLevel that is executing at PL1 are
taken to A32 or T32 state:

TE Meaning
0b0 Exceptions, including reset, taken to A32 state.
0b1 Exceptions, including reset, taken to T32 state.

On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

AFE, bit [29]

Access Flag Enable. When using the Short-descriptor translation table format for the PL1&0 translation regime, this
bit enables use of the AP[0] bit in the translation descriptors as the Access flag, and restricts access permissions in the
translation descriptors to the simplified model. The possible values of this bit are:

AFE Meaning
0b0 In the translation table descriptors, AP[0] is an access

permissions bit. The full range of access permissions is supported.
No Access flag is implemented.

0b1 In the translation table descriptors, AP[0] is the Access flag. Only
the simplified model for access permissions is supported.

When using the Long-descriptor translation table format, the VMSA behaves as if this bit is set to 1, regardless of the
value of this bit.

The AFE bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to 0.

TRE, bit [28]

TEX remap enable. This bit enables remapping of the TEX[2:1] bits in the PL1&0 translation regime for use as two
translation table bits that can be managed by the operating system. Enabling this remapping also changes the scheme
used to describe the memory region attributes in the VMSA. The possible values of this bit are:

TRE Meaning
0b0 TEX remap disabled. TEX[2:0] are used, with the C and B bits, to

describe the memory region attributes.
0b1 TEX remap enabled. TEX[2:1] are reassigned for use as bits

managed by the operating system. The TEX[0], C, and B bits are
used to describe the memory region attributes, with the MMU
remap registers.

When the value of TTBCR.EAE is 1, this bit is RES1.

The TRE bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to 0.

Bits [27:26]

Reserved, RES0.

EE, bit [25]

The value of the PSTATE.E bit on branch to an exception vector or coming out of reset, and the endianness of stage 1
translation table walks in the PL1&0 translation regime.

The possible values of this bit are:

SCTLR, System Control Register

Page 1418

AArch32-ttbcr.html

EE Meaning
0b0 Little-endian. PSTATE.E is cleared to 0 on taking an exception or

coming out of reset. Stage 1 translation table walks in the PL1&0
translation regime are little-endian.

0b1 Big-endian. PSTATE.E is set to 1 on taking an exception or coming
out of reset. Stage 1 translation table walks in the PL1&0
translation regime are big-endian.

If an implementation does not provide Big-endian support for data accesses at Exception levelsLevels higher than EL0,
this bit is RES0.

If an implementation does not provide Little-endian support for data accesses at Exception levelsLevels higher than
EL0, this bit is RES1.

On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

Bit [24]

Reserved, RES0.

SPAN, bit [23]

When FEAT_PAN is implemented:

Set Privileged Access Never, on taking an exception to EL1 from either Secure or Non-secure state, or to EL3 from
Secure state when EL3 is using AArch32.

SPAN Meaning
0b0 PSTATE.PAN is set to 1 in the following situations:

• In Non-secure state, on taking an exception to EL1.
• In Secure state, when EL3 is using AArch64, on taking an

exception to EL1.
• In Secure state, when EL3 is using AArch32, on taking an

exception to EL3.
0b1 The value of PSTATE.PAN is left unchanged on taking an

exception to EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

Bit [22]

Reserved, RES1.

Bit [21]

Reserved, RES0.

UWXN, bit [20]

Unprivileged write permission implies PL1 XN (Execute-never). This bit can force all memory regions that are writable
at PL0 to be treated as XN for accesses from software executing at PL1. The possible values of this bit are:

UWXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable at PL0 forced to XN for accesses

from software executing at PL1.

The UWXN bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to 0.

SCTLR, System Control Register

Page 1419

WXN, bit [19]

Write permission implies XN (Execute-never). For the PL1&0 translation regime, this bit can force all memory regions
that are writable to be treated as XN. The possible values of this bit are:

WXN Meaning
0b0 This control has no effect on memory access permissions.
0b1 Any region that is writable in the PL1&0 translation regime is

forced to XN for accesses from software executing at PL1 or PL0.

This bit applies only when SCTLR.M bit is set.

The WXN bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to 0.

nTWE, bit [18]

Traps EL0 execution of WFE instructions to Undefined mode.

nTWE Meaning
0b0 Any attempt to execute a WFE instruction at EL0 is trapped to

Undefined mode, if the instruction would otherwise have caused
the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFE instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

On a Warm reset, this field resets to 1.

Bit [17]

Reserved, RES0.

nTWI, bit [16]

Traps EL0 execution of WFI instructions to Undefined mode.

nTWI Meaning
0b0 Any attempt to execute a WFI instruction at EL0 is trapped to

Undefined mode, if the instruction would otherwise have caused
the PE to enter a low-power state.

0b1 This control does not cause any instructions to be trapped.

The attempted execution of a conditional WFI instruction is only trapped if the instruction passes its condition code
check.

Note

Since a WFE or WFI can complete at any time, even without a Wakeup event,
the traps on WFE of WFI are not guaranteed to be taken, even if the WFE or
WFI is executed when there is no Wakeup event. The only guarantee is that if
the instruction does not complete in finite time in the absence of a Wakeup
event, the trap will be taken.

SCTLR, System Control Register

Page 1420

On a Warm reset, this field resets to 1.

Bits [15:14]

Reserved, RES0.

V, bit [13]

Vectors bit. This bit selects the base address of the exception vectors for exceptions taken to a PE mode other than
Monitor mode or Hyp mode:

V Meaning
0b0 Normal exception vectors. Base address is held in VBAR.
0b1 High exception vectors (Hivecs), base address 0xFFFF0000. This

base address cannot be remapped.

On a Warm reset, this field resets to an IMPLEMENTATION DEFINED value.

I, bit [12]

Instruction access Cacheability control, for accesses at EL1 and EL0:

I Meaning
0b0 All instruction access to Normal memory from PL1 and PL0 are

Non-cacheable for all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of
the PL1&0 translation regime are to Normal, Outer Shareable,
Inner Non-cacheable, Outer Non-cacheable memory.

0b1 All instruction access to Normal memory from PL1 and PL0 can be
cached at all levels of instruction and unified cache.
If the value of SCTLR.M is 0, instruction accesses from stage 1 of
the PL1&0 translation regime are to Normal, Outer Shareable,
Inner Write-Through, Outer Write-Through memory.

Instruction accesses to Normal memory from EL1 and EL0 are Cacheable regardless of the value of the SCTLR.I bit if
either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

On a Warm reset, this field resets to 0.

Bit [11]

Reserved, RES1.

EnRCTX, bit [10]

When FEAT_CSV2 is implemented:

Enable EL0 Access to the AArch32 CFPRCTX, DVPRCTX and CPPRCTX instructions. The defined values are:

EnRCTX Meaning
0b0 EL0 access to these instructions is disabled, and these

instructions are trapped to EL1.
0b1 EL0 access to these instructions is enabled.

Note

When EL3 is implemented and is using AArch32, this bit is banked between
the two Security states.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SCTLR, System Control Register

Page 1421

AArch32-vbar.html
AArch32-hcr.html

Otherwise:

Reserved, RES0.

Bit [9]

Reserved, RES0.

SED, bit [8]

SETEND instruction disable. Disables SETEND instructions at PL0 and PL1.

SED Meaning
0b0 SETEND instruction execution is enabled at PL0 and PL1.
0b1 SETEND instructions are UNDEFINED at PL0 and PL1.

If the implementation does not support mixed-endian operation at any Exception level, this bit is RES1.

On a Warm reset, this field resets to 0.

ITD, bit [7]

IT Disable. Disables some uses of IT instructions at PL1 and PL0.

ITD Meaning
0b0 All IT instruction functionality is enabled at PL1 and PL0.
0b1 Any attempt at PL1 or PL0 to execute any of the following is

UNDEFINED:
• All encodings of the IT instruction with hw1[3:0]!=1000.
• All encodings of the subsequent instruction with the

following values for hw1:
◦ 11xxxxxxxxxxxxxx: All 32-bit instructions, and the

16-bit instructions B, UDF, SVC, LDM, and STM.
◦ 1011xxxxxxxxxxxx: All instructions in 'Miscellaneous

16-bit instructions'.
◦ 10100xxxxxxxxxxx: ADD Rd, PC, #imm
◦ 01001xxxxxxxxxxx: LDR Rd, [PC, #imm]
◦ 0100x1xxx1111xxx: ADD Rdn, PC; CMP Rn, PC; MOV

Rd, PC; BX PC; BLX PC.
◦ 010001xx1xxxx111: ADD PC, Rm; CMP PC, Rm; MOV

PC, Rm. This pattern also covers unpredictable cases
with BLX Rn.

These instructions are always UNDEFINED, regardless of whether
they would pass or fail the condition code check that applies to
them as a result of being in an IT block.
It is IMPLEMENTATION DEFINED whether the IT instruction is treated
as:

• A 16-bit instruction, that can only be followed by another
16-bit instruction.

• The first half of a 32-bit instruction.
This means that, for the situations that are UNDEFINED, either the
second 16-bit instruction or the 32-bit instruction is UNDEFINED.
An implementation might vary dynamically as to whether IT is
treated as a 16-bit instruction or the first half of a 32-bit
instruction.

If an instruction in an active IT block that would be disabled by this field sets this field to 1 then behavior is
CONSTRAINED UNPREDICTABLE. For more information see 'Changes to an ITD control by an instruction in an IT block'.

ITD is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it is not
implemented then this bit is RAZ/WI.

On a Warm reset, this field resets to 0.

SCTLR, System Control Register

Page 1422

UNK, bit [6]

Writes to this bit are IGNORED. Reads of this bit return an UNKNOWN value.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CP15BEN, bit [5]

System instruction memory barrier enable. Enables accesses to the DMB, DSB, and ISB System instructions in the
(coproc==0b1111) encoding space from PL1 and PL0:

CP15BEN Meaning
0b0 PL0 and PL1 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is UNDEFINED.
0b1 PL0 and PL1 execution of the CP15DMB, CP15DSB, and

CP15ISB instructions is enabled.

CP15BEN is optional, but if it is implemented in the SCTLR then it must also be implemented in the SCTLR_EL1. If it
is not implemented then this bit is RAO/WI.

On a Warm reset, this field resets to 1.

LSMAOE, bit [4]

When FEAT_LSMAOC is implemented:

Load Multiple and Store Multiple Atomicity and Ordering Enable.

LSMAOE Meaning
0b0 For all memory accesses at EL1 or EL0, A32 and T32 Load

Multiple and Store Multiple can have an interrupt taken
during the sequence memory accesses, and the memory
accesses are not required to be ordered.

0b1 The ordering and interrupt behavior of A32 and T32 Load
Multiple and Store Multiple at EL1 or EL0 is as defined for
Armv8.0.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to 1.

Otherwise:

Reserved, RES1.

nTLSMD, bit [3]

When FEAT_LSMAOC is implemented:

No Trap Load Multiple and Store Multiple to Device-nGRE/Device-nGnRE/Device-nGnRnE memory.

nTLSMD Meaning
0b0 All memory accesses by A32 and T32 Load Multiple and

Store Multiple at EL1 or EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are
trapped and generate a stage 1 Alignment fault.

0b1 All memory accesses by A32 and T32 Load Multiple and
Store Multiple at EL1 or EL0 that are marked at stage 1 as
Device-nGRE/Device-nGnRE/Device-nGnRnE memory are not
trapped.

This bit is permitted to be cached in a TLB.

On a Warm reset, this field resets to 1.

SCTLR, System Control Register

Page 1423

AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html
AArch32-cp15dmb.html
AArch32-cp15dsb.html
AArch32-cp15isb.html

Otherwise:

Reserved, RES1.

C, bit [2]

Cacheability control, for data accesses at EL1 and EL0:

C Meaning
0b0 All data access to Normal memory from PL1 and PL0, and all

accesses to the PL1&0 stage 1 translation tables, are Non-
cacheable for all levels of data and unified cache.

0b1 All data access to Normal memory from PL1 and PL0, and all
accesses to the PL1&0 stage 1 translation tables, can be cached at
all levels of data and unified cache.

The PE ignores SCTLR.C for Non-secure state and data accesses to Normal memory from EL1 and EL0 are Cacheable
if either:

• EL2 is using AArch32 and the value of HCR.DC is 1.
• EL2 is using AArch64 and the value of HCR_EL2.DC is 1.

On a Warm reset, this field resets to 0.

A, bit [1]

Alignment check enable. This is the enable bit for Alignment fault checking at PL1 and PL0:

A Meaning
0b0 Alignment fault checking disabled when executing at PL1 or PL0.

Instructions that load or store one or more registers, other than
load/store exclusive and load-acquire/store-release, do not check
that the address being accessed is aligned to the size of the data
element(s) being accessed.

0b1 Alignment fault checking enabled when executing at PL1 or PL0.
All instructions that load or store one or more registers have an
alignment check that the address being accessed is aligned to the
size of the data element(s) being accessed. If this check fails it
causes an Alignment fault, which is taken as a Data Abort
exception.

Load/store exclusive and load-acquire/store-release instructions have an alignment check regardless of the value of
the A bit.

On a Warm reset, this field resets to 0.

M, bit [0]

MMU enable for EL1 and EL0 stage 1 address translation. Possible values of this bit are:

M Meaning
0b0 EL1 and EL0 stage 1 address translation disabled.

See the SCTLR.I field for the behavior of instruction accesses to
Normal memory.

0b1 EL1 and EL0 stage 1 address translation enabled.

In the Non-secure state the PE behaves as if the value of the SCTLR.M field is 0 for all purposes other than returning
the value of a direct read of the field if either:

• EL2 is using AArch32 and the value of HCR.{DC, TGE} is not {0, 0}.
• EL2 is using AArch64 and the value of HCR_EL2.{DC, TGE} is not {0, 0}.

On a Warm reset, this field resets to 0.

SCTLR, System Control Register

Page 1424

AArch32-hcr.html
AArch32-hcr.html

Accessing the SCTLR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b000

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TRVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TRVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

return SCTLR_NS;
else

return SCTLR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
return SCTLR_NS;

else
return SCTLR;

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' then

return SCTLR_S;
else

return SCTLR_NS;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0000 0b000

SCTLR, System Control Register

Page 1425

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.TVM == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.TVM == '1' then

AArch32.TakeHypTrapException(0x03);
elsif HaveEL(EL3) && ELUsingAArch32(EL3) then

SCTLR_NS = R[t];
else

SCTLR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && ELUsingAArch32(EL3) then
SCTLR_NS = R[t];

else
SCTLR = R[t];

elsif PSTATE.EL == EL3 then
if SCR.NS == '0' && CP15SDISABLE == HIGH then

UNDEFINED;
elsif SCR.NS == '0' && CP15SDISABLE2 == HIGH then

UNDEFINED;
else

if SCR.NS == '0' then
SCTLR_S = R[t];

else
SCTLR_NS = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SCTLR, System Control Register

Page 1426

(old) htmldiff from- (new)

SDCR, Secure Debug Control Register
The SDCR characteristics are:

Purpose
Provides EL3 configuration options for self-hosted debug, trace, and the Performance Monitors Extension.

Configuration
AArch32 System register SDCR bits [31:0] can be mapped to AArch64 System register MDCR_EL3[31:0], but this is
not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SDCR
are UNDEFINED.

Attributes
SDCR is a 32-bit register.

Field descriptions
The SDCR bit assignments are:

313029 28 27 262524 23 22 21 20 19 18 17 16 151413121110 9 8 7 6 5 4 3 2 1 0
RES0 MTPMETDCC RES0 SCCDRES0EPMADEDADTTRFSTESPMERES0SPD RES0

Bits [31:29]

Reserved, RES0.

MTPME, bit [28]

When FEAT_MTPMU is implemented:

Multi-threaded PMU Enable. Enables use of the PMEVTYPER<n>.MT bits.

MTPME Meaning
0b0 FEAT_MTPMU is disabled. The Effective value of

PMEVTYPER<n>.MT is 0.zero.
0b1 PMEVTYPER<n>.MT bits not affected by this bit.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0.

If FEAT_MTPMU is disabled for any other PE in the system that has the same level 1 Affinity as the PE, it is
IMPLEMENTATION DEFINED whether the PE behaves as if this bit is 0b0.

On a Cold reset, in a system where the PE resets into EL3, this field resets to 1.

Otherwise:

Reserved, RES0.

TDCC, bit [27]

SDCR, Secure Debug Control Register

Page 1427

When FEAT_FGT is implemented:

Trap DCC. Traps use of the Debug Comms Channel in modes other than Monitor mode to Monitor mode.

TDCC Meaning
0b0 This control does not cause any register accesses to be trapped.
0b1 Accesses to the DCC registers in modes other than Monitor

mode generate a Monitor Trap exception, unless the access also
generates a higher priority exception.
Traps on the DCC data transfer registers are ignored when the
PE is in Debug state.

The DCC registers trapped by this control are:

• DBGDTRRXext, DBGDTRTXext, DBGDSCRint, DBGDCCINT, and, when the PE is in Non-debug state,
DBGDTRRXint and DBGDTRTXint.

When the PE is in Debug state, SDCR.TDCC does not trap any accesses to:

• DBGDTRRXint and DBGDTRTXint.

On a Warm reset, in a system where the PE resets into EL3, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bits [26:24]

Reserved, RES0.

SCCD, bit [23]

When FEAT_PMUv3p5 is implemented:

Secure Cycle Counter Disable. Prohibits PMCCNTR from counting in Secure state.

SCCD Meaning
0b0 Cycle counting by PMCCNTR is not affected by this

mechanism.bit.
0b1 Cycle counting by PMCCNTR is prohibited in Secure state.

This fieldbit does not affect the CPU_CYCLES event or any other event that counts cycles.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

Bit [22]

Reserved, RES0.

EPMAD, bit [21]

When FEAT_Debugv8p4 is implemented and FEAT_PMUv3 is implemented:

External Performance Monitors Non-secure access disable. Controls Non-secure access to Performance Monitors
registers by an external debugger.

SDCR, Secure Debug Control Register

Page 1428

AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html

EPMAD Meaning
0b0 Non-secure access to the Performance Monitors registers

from an external debugger is permitted.
0b1 Non-secure access to the Performance Monitors registers

from an external debugger is not permitted.

If the Performance Monitors Extension does not support external debug interface accesses, this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is
0b1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

External Performance Monitors access disable. Controls access to Performance Monitors registers by an external
debugger.

EPMAD Meaning
0b0 Access to Performance Monitors registers from an external

debugger is permitted.
0b1 Access to Performance Monitors registers from an external

debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.

If the Performance Monitors Extension does not support external debug interface accesses, this bit is RES0.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

Otherwise, if EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is
0b1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

EDAD, bit [20]

When FEAT_Debugv8p4 is implemented:

External debug Non-secure access disable. Controls Non-secure access to breakpoint, watchpoint, and OSLAR_EL1
registers by an external debugger.

EDAD Meaning
0b0 Non-secure access to debug registers from an external

debugger is permitted.
0b1 Non-secure access to breakpoint registers, watchpoint

registers, and OSLAR_EL1 from an external debugger is not
permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_Debugv8p2 is implemented:

External debug access disable. Controls access to breakpoint, watchpoint, and OSLAR_EL1 registers by an external
debugger.

SDCR, Secure Debug Control Register

Page 1429

AArch32-scr.html
AArch32-scr.html
AArch32-scr.html
AArch32-scr.html
ext-oslar_el1.html
ext-oslar_el1.html
AArch32-scr.html
AArch32-scr.html
ext-oslar_el1.html

EDAD Meaning
0b0 Access to debug registers from an external debugger is

permitted.
0b1 Access to breakpoint registers, watchpoint registers, and

OSLAR_EL1 from an external debugger is not permitted, unless
overridden by the IMPLEMENTATION DEFINED authentication
interface.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

External debug access disable. Controls access to breakpoint, watchpoint, and optionally OSLAR_EL1 registers by an
external debugger.

EDAD Meaning
0b0 Access to debug registers from an external debugger is

permitted.
0b1 Access to breakpoint registers and watchpoint registers from an

external debugger is not permitted, unless overridden by the
IMPLEMENTATION DEFINED authentication interface.
It is IMPLEMENTATION DEFINED whether access to the OSLAR_EL1
register from an external debugger is permitted or not
permitted.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

TTRF, bit [19]

When FEAT_TRF is implemented:

Trap Trace Filter controls. Controls whether accesses inat modesEL2 otherand thanEL1 Monitor mode to the trace
filter control registers generateare atrapped Monitorto Trap exception.EL3.

TTRF Meaning
0b0 Accesses to HTRFCR and TRFCR registers are not affected by

this control bit.
0b1 When not in Monitor mode, accesses to HTRFCR and TRFCR

registers generate a Monitor Trap exception, unless the access
generates a higher priority exception.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

STE, bit [18]

When FEAT_TRF is implemented:

Secure Trace Enable. This bit enables tracing in Secure state and controls the level of authentication required by an
external debugger to enable external tracing.

SDCR, Secure Debug Control Register

Page 1430

ext-oslar_el1.html
AArch32-scr.html
AArch32-scr.html
ext-oslar_el1.html
ext-oslar_el1.html
AArch32-scr.html
AArch32-scr.html
AArch32-htrfcr.html
AArch32-trfcr.html
AArch32-htrfcr.html
AArch32-trfcr.html

STE Meaning
0b0 Trace is prohibited in Secure state unless overridden by the

IMPLEMENTATION DEFINED authentication interface.
0b1 Trace in Secure state is not affected by this bit.

This bit also controls the level of authentication required by an external debugger to enable external tracing. See
'Register controls to enable self-hosted trace'.

If EL3 is not implemented and the Effective value of SCR.NS is 0, the PE behaves as if this bit is set to 1.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, the PE behaves as if this bit is set to 0b1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Otherwise:

Reserved, RES0.

SPME, bit [17]

When FEAT_PMUv3FEAT_Debugv8p2 is implemented and FEAT_Debugv8p2FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable.enable. ControlsThis allows event counting in Secure state.

SPME Meaning
0b0 Event counting is prohibited in Secure state. If PMCR.DP is 1,

PMCCNTR is disabled in Secure state. Otherwise, PMCCNTR is
not affected by this mechanism.

0b1 Event counting andallowed in Secure state. PMCCNTR are not
affected by this mechanism.

This field affects the operation of all event counters in Secure state, and if PMCR.DP is 1, the operation of PMCCNTR
in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by this field.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this bit is 0b1.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

When FEAT_PMUv3 is implemented:

Secure Performance Monitors Enable.enable. ControlsThis allows event counting in Secure state.

SPME Meaning
0b0 IfEvent ExternalSecureNoninvasiveDebugEnabled() is FALSE,

event counting is prohibited in Secure state, andunless
ifExternalSecureNoninvasiveDebugEnabled() is TRUE.
PMCR.DP is 1, PMCCNTR is disabled in Secure state.

0b1 Event counting andallowed in Secure state. PMCCNTR are not
affected by this mechanism.

If ExternalSecureNoninvasiveDebugEnabled() is TRUE, the event counters and PMCCNTR are not affected by this
field.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this bit is 0b1.

Otherwise, this field affects the operation of all event counters in Secure state, and if PMCR.DP is 1, the operation of
PMCCNTR in Secure state. When PMCR.DP is 0, PMCCNTR is not affected by this field.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 1.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

SDCR, Secure Debug Control Register

Page 1431

AArch32-scr.html
AArch32-scr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-scr.html
AArch32-scr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-scr.html
AArch32-pmccntr.html
AArch32-pmccntr.html
AArch32-scr.html

Otherwise:

Reserved, RES0.

Bit [16]

Reserved, RES0.

SPD, bits [15:14]

AArch32 Secure self-hosted Privileged Debug. Enables or disables debug exceptions from EL3, other than Breakpoint
Instruction exceptions.

SPD Meaning
0b00 Legacy mode. Debug exceptions from EL3 are enabled by the

authentication interface.
0b10 Secure privileged debug disabled. Debug exceptions from EL3 are

disabled.
0b11 Secure privileged debug enabled. Debug exceptions from EL3 are

enabled.

Other values are reserved, and have the CONSTRAINED UNPREDICTABLE behavior that they must have the same behavior
as 0b00. Software must not rely on this property as the behavior of reserved values might change in a future revision
of the architecture.

This field has no effect on Breakpoint Instruction exceptions. These are always enabled.

This field is ignored in Non-secure state.

If debug exceptions from EL3 are enabled, then debug exceptions from Secure EL0 are also enabled.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 1.

Otherwise, debug exceptions from Secure EL0 are enabled only if the value of SDER.SUIDEN is 0b1.

If EL3 is not implemented and the Effective value of SCR.NS is 0, then the Effective value of this field is 0b11.

If EL3 is not implemented and the Effective value of SCR.NS is 0b0, then the Effective value of this field is 0b11.

On a Warm reset, in a system where the PE resets into EL3, this field resets to 0.

Bits [13:0]

Reserved, RES0.

Accessing the SDCR
Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0011 0b001

SDCR, Secure Debug Control Register

Page 1432

AArch32-sder.html
AArch32-sder.html
AArch32-scr.html
AArch32-scr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

return SDCR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b0001 0b0011 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T1 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T1 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif !ELUsingAArch32(EL2) && SCR_EL3.<NS,EEL2> == '01' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif !ELUsingAArch32(EL3) && SCR_EL3.NS == '0' then

AArch64.AArch32SystemAccessTrap(EL3, 0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

UNDEFINED;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' && CP15SDISABLE2 == HIGH then
UNDEFINED;

else
SDCR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SDCR, Secure Debug Control Register

Page 1433

(old) htmldiff from- (new)

SPSR, Saved Program Status Register
The SPSR characteristics are:

Purpose
Holds the saved process state for the current mode.

Configuration
This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR
are UNDEFINED.

Attributes
SPSR is a 32-bit register.

Field descriptions
The SPSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to the current mode, and copied to
PSTATE.N on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to the current mode, and copied to PSTATE.Z
on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to the current mode, and copied to
PSTATE.C on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to the current mode, and copied to
PSTATE.V on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR, Saved Program Status Register

Page 1434

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to the current mode, and copied to
PSTATE.Q on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to the current mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in the current mode.

On executing an exception return operation in the current mode SPSR.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR[26:25].
• IT[7:2] is SPSR[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to the current mode, and copied to
PSTATE.SSBS on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to the current mode, and copied to
PSTATE.PAN on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to the current mode, and copied to
PSTATE.DIT on executing an exception return operation in the current mode.

SPSR, Saved Program Status Register

Page 1435

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to the current mode, and copied to
PSTATE.IL on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to the current mode, and copied to
PSTATE.GE on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to the current mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in the current mode.

SPSR.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to the current mode, and copied to PSTATE.E on
executing an exception return operation in the current mode.

If the implementation does not support big-endian operation, SPSR.E is RES0. If the implementation does not support
little-endian operation, SPSR.E is RES1. On executing an exception return operation in the current mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR.E is RES0, and if
the implementation does not support little-endian operation at the Exception level being returned to, SPSR.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to the current mode, and copied to
PSTATE.A on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to the current mode, and copied to PSTATE.I
on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to the current mode, and copied to PSTATE.F
on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR, Saved Program Status Register

Page 1436

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to the current mode, and copied to
PSTATE.T on executing an exception return operation in the current mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to the current mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in the current mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 Monitor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in the current mode is an illegal return event, as described in 'Illegal return
events from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR
SPSR can be read using the MRS instruction and written using the MSR (register) or MSR (immediate) instructions.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR, Saved Program Status Register

Page 1437

(old) htmldiff from- (new)

SPSR_abt, Saved Program Status Register (Abort
mode)

The SPSR_abt characteristics are:

Purpose
Holds the saved process state when an exception is taken to Abort mode.

Configuration
AArch32 System register SPSR_abt bits [31:0] are architecturally mapped to AArch64 System register SPSR_abt[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_abt are UNDEFINED.

Attributes
SPSR_abt is a 32-bit register.

Field descriptions
The SPSR_abt bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Abort mode, and copied to PSTATE.N
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Abort mode, and copied to PSTATE.Z on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Abort mode, and copied to PSTATE.C on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Abort mode, and copied to PSTATE.V
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1438

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Abort mode, and copied to
PSTATE.Q on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Abort mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Abort mode.

On executing an exception return operation in Abort mode SPSR_abt.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_abt[26:25].
• IT[7:2] is SPSR_abt[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Abort mode, and copied to
PSTATE.SSBS on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Abort mode, and copied to
PSTATE.PAN on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Abort mode, and copied to
PSTATE.DIT on executing an exception return operation in Abort mode.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1439

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Abort mode, and copied to PSTATE.IL
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Abort mode, and copied to
PSTATE.GE on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Abort mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Abort mode.

SPSR_abt.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Abort mode, and copied to PSTATE.E on executing
an exception return operation in Abort mode.

If the implementation does not support big-endian operation, SPSR_abt.E is RES0. If the implementation does not
support little-endian operation, SPSR_abt.E is RES1. On executing an exception return operation in Abort mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_abt.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_abt.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Abort mode, and copied to PSTATE.A on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Abort mode, and copied to PSTATE.I on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Abort mode, and copied to PSTATE.F on
executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1440

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Abort mode, and copied to PSTATE.T
on executing an exception return operation in Abort mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Abort mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Abort mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_abt.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Abort mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_abt
SPSR_abt is accessible in all modes other than User mode and Abort mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_abt

R M M1
0b1 0b1 0b0100

MSR{<c>}{<q>} SPSR_abt, <Rn>

R M M1
0b1 0b1 0b0100

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_abt, Saved Program Status Register (Abort mode)

Page 1441

(old) htmldiff from- (new)

SPSR_fiq, Saved Program Status Register (FIQ mode)
The SPSR_fiq characteristics are:

Purpose
Holds the saved process state when an exception is taken to FIQ mode.

Configuration
AArch32 System register SPSR_fiq bits [31:0] are architecturally mapped to AArch64 System register SPSR_fiq[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to SPSR_fiq
are UNDEFINED.

Attributes
SPSR_fiq is a 32-bit register.

Field descriptions
The SPSR_fiq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to FIQ mode, and copied to PSTATE.N on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to FIQ mode, and copied to PSTATE.Z on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to FIQ mode, and copied to PSTATE.C on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to FIQ mode, and copied to PSTATE.V on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1442

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to FIQ mode, and copied to PSTATE.Q
on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to FIQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in FIQ mode.

On executing an exception return operation in FIQ mode SPSR_fiq.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_fiq[26:25].
• IT[7:2] is SPSR_fiq[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to FIQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to FIQ mode, and copied to
PSTATE.PAN on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to FIQ mode, and copied to
PSTATE.DIT on executing an exception return operation in FIQ mode.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1443

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to FIQ mode, and copied to PSTATE.IL on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to FIQ mode, and copied to
PSTATE.GE on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to FIQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in FIQ mode.

SPSR_fiq.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to FIQ mode, and copied to PSTATE.E on executing
an exception return operation in FIQ mode.

If the implementation does not support big-endian operation, SPSR_fiq.E is RES0. If the implementation does not
support little-endian operation, SPSR_fiq.E is RES1. On executing an exception return operation in FIQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_fiq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_fiq.E
is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to FIQ mode, and copied to PSTATE.A on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to FIQ mode, and copied to PSTATE.I on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to FIQ mode, and copied to PSTATE.F on
executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1444

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to FIQ mode, and copied to PSTATE.T
on executing an exception return operation in FIQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to FIQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in FIQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_fiq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in FIQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_fiq
SPSR_fiq is accessible in all modes other than User mode and FIQ mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_fiq

R M M1
0b1 0b0 0b1110

MSR{<c>}{<q>} SPSR_fiq, <Rn>

R M M1
0b1 0b0 0b1110

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_fiq, Saved Program Status Register (FIQ mode)

Page 1445

(old) htmldiff from- (new)

SPSR_hyp, Saved Program Status Register (Hyp
mode)

The SPSR_hyp characteristics are:

Purpose
Holds the saved process state when an exception is taken to Hyp mode.

Configuration
AArch32 System register SPSR_hyp bits [31:0] are architecturally mapped to AArch64 System register
SPSR_EL2[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_hyp are UNDEFINED.

Attributes
SPSR_hyp is a 32-bit register.

Field descriptions
The SPSR_hyp bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Hyp mode, and copied to PSTATE.N
on executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Hyp mode, and copied to PSTATE.Z on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Hyp mode, and copied to PSTATE.C on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Hyp mode, and copied to PSTATE.V on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 1446

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Hyp mode, and copied to
PSTATE.Q on executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Hyp mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Hyp mode.

On executing an exception return operation in Hyp mode SPSR_hyp.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_hyp[26:25].
• IT[7:2] is SPSR_hyp[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Hyp mode, and copied to
PSTATE.SSBS on executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Hyp mode, and copied to
PSTATE.PAN on executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Hyp mode, and copied to
PSTATE.DIT on executing an exception return operation in Hyp mode.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 1447

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Hyp mode, and copied to PSTATE.IL on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Hyp mode, and copied to
PSTATE.GE on executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Hyp mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Hyp mode.

SPSR_hyp.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Hyp mode, and copied to PSTATE.E on executing
an exception return operation in Hyp mode.

If the implementation does not support big-endian operation, SPSR_hyp.E is RES0. If the implementation does not
support little-endian operation, SPSR_hyp.E is RES1. On executing an exception return operation in Hyp mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_hyp.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_hyp.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Hyp mode, and copied to PSTATE.A on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Hyp mode, and copied to PSTATE.I on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Hyp mode, and copied to PSTATE.F on
executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 1448

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Hyp mode, and copied to PSTATE.T
on executing an exception return operation in Hyp mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Hyp mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Hyp mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_hyp.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Hyp mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_hyp
SPSR_hyp is accessible only in Monitor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_hyp

R M M1
0b1 0b1 0b1110

MSR{<c>}{<q>} SPSR_hyp, <Rn>

R M M1
0b1 0b1 0b1110

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_hyp, Saved Program Status Register (Hyp mode)

Page 1449

(old) htmldiff from- (new)

SPSR_irq, Saved Program Status Register (IRQ mode)
The SPSR_irq characteristics are:

Purpose
Holds the saved process state when an exception is taken to IRQ mode.

Configuration
AArch32 System register SPSR_irq bits [31:0] are architecturally mapped to AArch64 System register SPSR_irq[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_irq are UNDEFINED.

Attributes
SPSR_irq is a 32-bit register.

Field descriptions
The SPSR_irq bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to IRQ mode, and copied to PSTATE.N
on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to IRQ mode, and copied to PSTATE.Z on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to IRQ mode, and copied to PSTATE.C on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to IRQ mode, and copied to PSTATE.V on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1450

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to IRQ mode, and copied to
PSTATE.Q on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to IRQ mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in IRQ mode.

On executing an exception return operation in IRQ mode SPSR_irq.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_irq[26:25].
• IT[7:2] is SPSR_irq[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to IRQ mode, and copied to
PSTATE.SSBS on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to IRQ mode, and copied to
PSTATE.PAN on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to IRQ mode, and copied to
PSTATE.DIT on executing an exception return operation in IRQ mode.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1451

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to IRQ mode, and copied to PSTATE.IL on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to IRQ mode, and copied to
PSTATE.GE on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to IRQ mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in IRQ mode.

SPSR_irq.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to IRQ mode, and copied to PSTATE.E on executing
an exception return operation in IRQ mode.

If the implementation does not support big-endian operation, SPSR_irq.E is RES0. If the implementation does not
support little-endian operation, SPSR_irq.E is RES1. On executing an exception return operation in IRQ mode, if the
implementation does not support big-endian operation at the Exception level being returned to, SPSR_irq.E is RES0,
and if the implementation does not support little-endian operation at the Exception level being returned to, SPSR_irq.E
is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to IRQ mode, and copied to PSTATE.A on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to IRQ mode, and copied to PSTATE.I on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to IRQ mode, and copied to PSTATE.F on
executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1452

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to IRQ mode, and copied to PSTATE.T
on executing an exception return operation in IRQ mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to IRQ mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in IRQ mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_irq.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in IRQ mode is an illegal return event, as described in 'Illegal return events
from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_irq
SPSR_irq is accessible in all modes other than User mode and IRQ mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_irq

R M M1
0b1 0b1 0b0000

MSR{<c>}{<q>} SPSR_irq, <Rn>

R M M1
0b1 0b1 0b0000

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_irq, Saved Program Status Register (IRQ mode)

Page 1453

(old) htmldiff from- (new)

SPSR_mon, Saved Program Status Register (Monitor
mode)

The SPSR_mon characteristics are:

Purpose
Holds the saved process state when an exception is taken to Monitor mode.

Configuration
AArch32 System register SPSR_mon bits [31:0] can be mapped to AArch64 System register SPSR_EL3[31:0], but this
is not architecturally mandated.

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_mon are UNDEFINED.

Attributes
SPSR_mon is a 32-bit register.

Field descriptions
The SPSR_mon bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Monitor mode, and copied to
PSTATE.N on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Monitor mode, and copied to PSTATE.Z on
executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Monitor mode, and copied to PSTATE.C
on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Monitor mode, and copied to
PSTATE.V on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 1454

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Monitor mode, and copied to
PSTATE.Q on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Monitor mode, and copied to PSTATE.IT[1:0] on
executing an exception return operation in Monitor mode.

On executing an exception return operation in Monitor mode SPSR_mon.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_mon[26:25].
• IT[7:2] is SPSR_mon[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Monitor mode, and copied to
PSTATE.SSBS on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Monitor mode, and copied to
PSTATE.PAN on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Monitor mode, and copied to
PSTATE.DIT on executing an exception return operation in Monitor mode.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 1455

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Monitor mode, and copied to
PSTATE.IL on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Monitor mode, and copied to
PSTATE.GE on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Monitor mode, and copied to PSTATE.IT[7:2] on
executing an exception return operation in Monitor mode.

SPSR_mon.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Monitor mode, and copied to PSTATE.E on
executing an exception return operation in Monitor mode.

If the implementation does not support big-endian operation, SPSR_mon.E is RES0. If the implementation does not
support little-endian operation, SPSR_mon.E is RES1. On executing an exception return operation in Monitor mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_mon.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_mon.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Monitor mode, and copied to PSTATE.A
on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Monitor mode, and copied to PSTATE.I on
executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Monitor mode, and copied to PSTATE.F on
executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 1456

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Monitor mode, and copied to
PSTATE.T on executing an exception return operation in Monitor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Monitor mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Monitor mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10110 Monitor.
0b10111 Abort.
0b11010 Hyp.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_mon.M[4:0] has a Reserved value, or a value for an unimplemented Exception
level, executing an exception return operation in Monitor mode is an illegal return event, as described in 'Illegal
return events from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_mon
SPSR_mon is only accessible in EL3 modes other than Monitor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_mon

R M M1
0b1 0b1 0b1100

MSR{<c>}{<q>} SPSR_mon, <Rn>

R M M1
0b1 0b1 0b1100

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_mon, Saved Program Status Register (Monitor mode)

Page 1457

(old) htmldiff from- (new)

SPSR_svc, Saved Program Status Register (Supervisor
mode)

The SPSR_svc characteristics are:

Purpose
Holds the saved process state when an exception is taken to Supervisor mode.

Configuration
AArch32 System register SPSR_svc bits [31:0] are architecturally mapped to AArch64 System register
SPSR_EL1[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_svc are UNDEFINED.

Attributes
SPSR_svc is a 32-bit register.

Field descriptions
The SPSR_svc bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Supervisor mode, and copied to
PSTATE.N on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Supervisor mode, and copied to PSTATE.Z
on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Supervisor mode, and copied to
PSTATE.C on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Supervisor mode, and copied to
PSTATE.V on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 1458

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Supervisor mode, and copied to
PSTATE.Q on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Supervisor mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in Supervisor mode.

On executing an exception return operation in Supervisor mode SPSR_svc.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_svc[26:25].
• IT[7:2] is SPSR_svc[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Supervisor mode, and copied to
PSTATE.SSBS on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Supervisor mode, and copied to
PSTATE.PAN on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Supervisor mode, and copied to
PSTATE.DIT on executing an exception return operation in Supervisor mode.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 1459

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Supervisor mode, and copied to
PSTATE.IL on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Supervisor mode, and copied to
PSTATE.GE on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Supervisor mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in Supervisor mode.

SPSR_svc.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Supervisor mode, and copied to PSTATE.E on
executing an exception return operation in Supervisor mode.

If the implementation does not support big-endian operation, SPSR_svc.E is RES0. If the implementation does not
support little-endian operation, SPSR_svc.E is RES1. On executing an exception return operation in Supervisor mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_svc.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_svc.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Supervisor mode, and copied to
PSTATE.A on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Supervisor mode, and copied to PSTATE.I
on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Supervisor mode, and copied to PSTATE.F
on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 1460

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Supervisor mode, and copied to
PSTATE.T on executing an exception return operation in Supervisor mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Supervisor mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Supervisor mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_svc.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Supervisor mode is an illegal return event, as described in 'Illegal return
events from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_svc
SPSR_svc is accessible in all modes other than User mode and Supervisor mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_svc

R M M1
0b1 0b1 0b0010

MSR{<c>}{<q>} SPSR_svc, <Rn>

R M M1
0b1 0b1 0b0010

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_svc, Saved Program Status Register (Supervisor mode)

Page 1461

(old) htmldiff from- (new)

SPSR_und, Saved Program Status Register (Undefined
mode)

The SPSR_und characteristics are:

Purpose
Holds the saved process state when an exception is taken to Undefined mode.

Configuration
AArch32 System register SPSR_und bits [31:0] are architecturally mapped to AArch64 System register
SPSR_und[31:0].

This register is present only when AArch32 is supported at any Exception level. Otherwise, direct accesses to
SPSR_und are UNDEFINED.

Attributes
SPSR_und is a 32-bit register.

Field descriptions
The SPSR_und bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
N Z C V Q IT[1:0] J SSBSPANDIT IL GE IT[7:2] E A I F T M[4:0]

N, bit [31]

Negative Condition flag. Set to the value of PSTATE.N on taking an exception to Undefined mode, and copied to
PSTATE.N on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Z, bit [30]

Zero Condition flag. Set to the value of PSTATE.Z on taking an exception to Undefined mode, and copied to PSTATE.Z
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

C, bit [29]

Carry Condition flag. Set to the value of PSTATE.C on taking an exception to Undefined mode, and copied to PSTATE.C
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

V, bit [28]

Overflow Condition flag. Set to the value of PSTATE.V on taking an exception to Undefined mode, and copied to
PSTATE.V on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1462

Q, bit [27]

Overflow or saturation flag. Set to the value of PSTATE.Q on taking an exception to Undefined mode, and copied to
PSTATE.Q on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT,[1:0], bits [15:10, 26:25]

If-Then. Set to the value of PSTATE.IT[1:0] on taking an exception to Undefined mode, and copied to PSTATE.IT[1:0]
on executing an exception return operation in Undefined mode.

On executing an exception return operation in Undefined mode SPSR_und.IT must contain a value that is valid for the
instruction being returned to.

The IT field is split as follows:

• IT[1:0] is SPSR_und[26:25].
• IT[7:2] is SPSR_und[15:10].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

J, bit [24]

RES0.

In previous versions of the architecture, the {J, T} bits determined the AArch32 Instruction set state.

Armv8 does not support either Jazelle state or T32EE state, and the T bit determines the Instruction set state.

SSBS, bit [23]

When FEAT_SSBS is implemented:

Speculative Store Bypass. Set to the value of PSTATE.SSBS on taking an exception to Undefined mode, and copied to
PSTATE.SSBS on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PAN, bit [22]

When FEAT_PAN is implemented:

Privileged Access Never. Set to the value of PSTATE.PAN on taking an exception to Undefined mode, and copied to
PSTATE.PAN on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DIT, bit [21]

When FEAT_DIT is implemented:

Data Independent Timing. Set to the value of PSTATE.DIT on taking an exception to Undefined mode, and copied to
PSTATE.DIT on executing an exception return operation in Undefined mode.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1463

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IL, bit [20]

Illegal Execution state. Set to the value of PSTATE.IL on taking an exception to Undefined mode, and copied to
PSTATE.IL on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GE, bits [19:16]

Greater than or Equal flags. Set to the value of PSTATE.GE on taking an exception to Undefined mode, and copied to
PSTATE.GE on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

IT[7:2], bits [15:10]

If-Then. Set to the value of PSTATE.IT[7:2] on taking an exception to Undefined mode, and copied to PSTATE.IT[7:2]
on executing an exception return operation in Undefined mode.

SPSR_und.IT must contain a value that is valid for the instruction being returned to.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

E, bit [9]

Endianness. Set to the value of PSTATE.E on taking an exception to Undefined mode, and copied to PSTATE.E on
executing an exception return operation in Undefined mode.

If the implementation does not support big-endian operation, SPSR_und.E is RES0. If the implementation does not
support little-endian operation, SPSR_und.E is RES1. On executing an exception return operation in Undefined mode, if
the implementation does not support big-endian operation at the Exception level being returned to, SPSR_und.E is
RES0, and if the implementation does not support little-endian operation at the Exception level being returned to,
SPSR_und.E is RES1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

A, bit [8]

SError interrupt mask. Set to the value of PSTATE.A on taking an exception to Undefined mode, and copied to
PSTATE.A on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

I, bit [7]

IRQ interrupt mask. Set to the value of PSTATE.I on taking an exception to Undefined mode, and copied to PSTATE.I
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

F, bit [6]

FIQ interrupt mask. Set to the value of PSTATE.F on taking an exception to Undefined mode, and copied to PSTATE.F
on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1464

T, bit [5]

T32 Instruction set state. Set to the value of PSTATE.T on taking an exception to Undefined mode, and copied to
PSTATE.T on executing an exception return operation in Undefined mode.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

M[4:0], bits [4:0]

Mode. Set to the value of PSTATE.M[4:0] on taking an exception to Undefined mode, and copied to PSTATE.M[4:0] on
executing an exception return operation in Undefined mode.

M[4:0] Meaning
0b10000 User.
0b10001 FIQ.
0b10010 IRQ.
0b10011 Supervisor.
0b10111 Abort.
0b11011 Undefined.
0b11111 System.

Other values are reserved. If SPSR_und.M[4:0] has a Reserved value, or a value for an unimplemented Exception level,
executing an exception return operation in Undefined mode is an illegal return event, as described in 'Illegal return
events from AArch32 state'.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the SPSR_und
SPSR_und is accessible in all modes other than User mode and Undefined mode.

Accesses to this register use the following encodings:

MRS{<c>}{<q>} <Rd>, SPSR_und

R M M1
0b1 0b1 0b0110

MSR{<c>}{<q>} SPSR_und, <Rn>

R M M1
0b1 0b1 0b0110

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

SPSR_und, Saved Program Status Register (Undefined mode)

Page 1465

(old) htmldiff from- (new)

VDFSR, Virtual SError Exception Syndrome Register
The VDFSR characteristics are:

Purpose
Provides the syndrome value reported to software on taking a virtual SError interrupt exception to EL1, or on
executing an ESB instruction at EL1.

When thea virtual SError interrupt injectedis usingtaken, the syndrome value is reported in HCR.VA is taken to EL1
using AArch32, then the syndrome value is reported in DFSR.{AET, ExT} and the remainder of the DFSR is set as
defined by VMSAv8-32. For more information, see 'The AArch32 Virtual Memory System Architecture'.

If the virtual SError interrupt injectedis usingdeferred by an HCR.VA is deferred by an ESB instruction, then the
syndrome value is written to VDISR.

Configuration
AArch32 System register VDFSR bits [31:0] are architecturally mapped to AArch64 System register VSESR_EL2[31:0]
when the highest implemented Exception level is using AArch64.

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VDFSR are UNDEFINED.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Attributes
VDFSR is a 32-bit register.

Field descriptions
The VDFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 AET RES0ExT RES0

Bits [31:16]

Reserved, RES0.

AET, bits [15:14]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[15:4] is set to VDFSR.AET.

When a virtual SError interrupt is deferred by an ESB instruction, VDISR[15:4] is set to VDFSR.AET.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

When a virtual SError interrupt is taken to EL1 using AArch32, DFSR[12] is set to VDFSR.ExT.

VDFSR, Virtual SError Exception Syndrome Register

Page 1466

AArch32-hcr.html
AArch32-dfsr.html
AArch32-dfsr.html
AArch32-hcr.html
AArch32-scr.html
AArch32-dfsr.html
AArch32-dfsr.html

When a virtual SError interrupt is deferred by an ESB instruction, VDISR[12] is set to VDFSR.ExT.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:0]

Reserved, RES0.

Accessing the VDFSR
Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure privileged
modes other than Monitor mode.

If EL2 is not implemented, then VDFSR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VDFSR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return VDFSR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b0101 0b0010 0b011

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T5 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T5 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VDFSR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VDFSR = R[t];

VDFSR, Virtual SError Exception Syndrome Register

Page 1467

AArch32-scr.html

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VDFSR, Virtual SError Exception Syndrome Register

Page 1468

(old) htmldiff from- (new)

VDISR, Virtual Deferred Interrupt Status Register
The VDISR characteristics are:

Purpose
Records that an SError interrupt has been consumed by an ESB instruction.

Configuration
AArch32 System register VDISR bits [31:0] are architecturally mapped to AArch64 System register VDISR_EL2[31:0].

This register is present only when FEAT_RAS is implemented. Otherwise, direct accesses to VDISR are UNDEFINED.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Attributes
VDISR is a 32-bit register.

Field descriptions
The VDISR bit assignments are:

When TTBCR.EAE == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExTRES0FS[4]LPAE RES0 FS[3:0]

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

ExT, bit [12]

The value copied from VDFSR.ExT.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

VDISR, Virtual Deferred Interrupt Status Register

Page 1469

Bit [11]

Reserved, RES0.

FS, bits [10, 3:0]

Fault status code. Set to 0b10110 when an ESB instruction defers a virtual SError interrupt.

FS Meaning
0b10110 Asynchronous SError interrupt.

All other values are reserved.

The FS field is split as follows:

• FS[4] is VDISR[10].
• FS[3:0] is VDISR[3:0].

On a Warm reset, this field resets to an architecturally UNKNOWN value.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b0 Using the Short-descriptor translation table format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:4]

Reserved, RES0.

When TTBCR.EAE == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
A RES0 AET RES0ExT RES0 LPAE RES0 STATUS

A, bit [31]

Set to 1 when an ESB instruction defers a virtual SError interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:16]

Reserved, RES0.

AET, bits [15:14]

The value copied from VDFSR.AET.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bit [13]

Reserved, RES0.

VDISR, Virtual Deferred Interrupt Status Register

Page 1470

AArch32-ttbcr.html

ExT, bit [12]

The value copied from VDFSR.ExT.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [11:10]

Reserved, RES0.

LPAE, bit [9]

Format.

Set to TTBCR.EAE when an ESB instruction defers a virtual SError interrupt.

LPAE Meaning
0b1 Using the Long-descriptor translation table format.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [8:6]

Reserved, RES0.

STATUS, bits [5:0]

Fault status code. Set to 0b010001 when an ESB instruction defers a virtual SError interrupt.

STATUS Meaning
0b010001 Asynchronous SError interrupt.

All other values are reserved.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the VDISR
Direct reads and writes of VDFSR are UNDEFINED if EL3 is implemented and using AArch32 in all Secure privileged
modes other than Monitor mode.

An indirect write to VDISR made by an ESB instruction does not require an explicit synchronization operation for the
value that is written to be observed by a direct read of DISR occurring in program order after the ESB instruction.

If EL2 is not implemented, then VDISR is RES0 from Monitor mode when SCR.NS == 1.

Accesses to this register use the following encodings:

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0001 0b001

VDISR, Virtual Deferred Interrupt Status Register

Page 1471

AArch32-ttbcr.html
AArch32-scr.html

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

return VDISR;
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
return VDISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b100 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
else

UNDEFINED;
elsif PSTATE.EL == EL2 then

VDISR = R[t];
elsif PSTATE.EL == EL3 then

if SCR.NS == '0' then
UNDEFINED;

else
VDISR = R[t];

MRC{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

VDISR, Virtual Deferred Interrupt Status Register

Page 1472

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

return VDISR_EL2;
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

return VDISR;
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then

return Zeros();
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then

return Zeros();
else

return DISR;
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
return Zeros();

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
return Zeros();

else
return DISR;

elsif PSTATE.EL == EL3 then
return DISR;

MCR{<c>}{<q>} <coproc>, {#}<opc1>, <Rt>, <CRn>, <CRm>{, {#}<opc2>}

coproc opc1 CRn CRm opc2
0b1111 0b000 0b1100 0b0001 0b001

if PSTATE.EL == EL0 then
UNDEFINED;

elsif PSTATE.EL == EL1 then
if EL2Enabled() && !ELUsingAArch32(EL2) && HSTR_EL2.T12 == '1' then

AArch64.AArch32SystemAccessTrap(EL2, 0x03);
elsif EL2Enabled() && ELUsingAArch32(EL2) && HSTR.T12 == '1' then

AArch32.TakeHypTrapException(0x03);
elsif EL2Enabled() && !ELUsingAArch32(EL2) && HCR_EL2.AMO == '1' then

VDISR_EL2 = R[t];
elsif EL2Enabled() && ELUsingAArch32(EL2) && HCR.AMO == '1' then

VDISR = R[t];
elsif HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then

//no operation
elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then

//no operation
else

DISR = R[t];
elsif PSTATE.EL == EL2 then

if HaveEL(EL3) && !ELUsingAArch32(EL3) && !Halted() && SCR_EL3.EA == '1' then
//no operation

elsif HaveEL(EL3) && ELUsingAArch32(EL3) && !Halted() && SCR.EA == '1' then
//no operation

else
DISR = R[t];

elsif PSTATE.EL == EL3 then
DISR = R[t];

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

VDISR, Virtual Deferred Interrupt Status Register

Page 1473

(old) htmldiff from- (new)

System Register index by instruction and encoding
Below are indexes for registers and operations accessed in the following ways:

For AArch32

• MCR/MRC
• MCRR/MRRC
• MRS/MSR
• VMRS/VMSR

For AArch64

• AT
• CFP
• CPP
• DC
• DVP
• IC
• MRS/MSR
• TLBI

Registers and operations in AArch32

Accessed using MCR/MRC:
Register selectors

coproc opc1 CRn CRm opc2 Name Description

0b1110 0b000 0b0000 0b0000 0b000 DBGDIDR Debug ID
Register

0b1110 0b000 0b0000 0b0000 0b010 DBGDTRRXext Debug OS Lock
Data Transfer
Register,
Receive,
External View

0b1110 0b000 0b0000 0b0001 0b000 DBGDSCRint Debug Status
and Control
Register,
Internal View

0b1110 0b000 0b0000 0b0010 0b000 DBGDCCINT DCC Interrupt
Enable Register

0b1110 0b000 0b0000 0b0010 0b010 DBGDSCRext Debug Status
and Control
Register,
External View

0b1110 0b000 0b0000 0b0011 0b010 DBGDTRTXext Debug OS Lock
Data Transfer
Register,
Transmit

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRRXint Debug Data
Transfer
Register,
Receive

0b1110 0b000 0b0000 0b0101 0b000 DBGDTRTXint Debug Data
Transfer
Register,
Transmit

0b1110 0b000 0b0000 0b0110 0b000 DBGWFAR Debug
Watchpoint

System Register index by instruction and encoding

Page 1474

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Fault Address
Register

0b1110 0b000 0b0000 0b0110 0b010 DBGOSECCR Debug OS Lock
Exception
Catch Control
Register

0b1110 0b000 0b0000 0b0111 0b000 DBGVCR Debug Vector
Catch Register

0b1110 0b000 0b0000 n[3:0] 0b100 DBGBVR<n> Debug
Breakpoint
Value Registers

0b1110 0b000 0b0000 n[3:0] 0b101 DBGBCR<n> Debug
Breakpoint
Control
Registers

0b1110 0b000 0b0000 n[3:0] 0b110 DBGWVR<n> Debug
Watchpoint
Value Registers

0b1110 0b000 0b0000 n[3:0] 0b111 DBGWCR<n> Debug
Watchpoint
Control
Registers

0b1110 0b000 0b0001 0b0000 0b000 DBGDRAR Debug ROM
Address
Register

0b1110 0b000 0b0001 0b0000 0b100 DBGOSLAR Debug OS Lock
Access Register

0b1110 0b000 0b0001 0b0001 0b100 DBGOSLSR Debug OS Lock
Status Register

0b1110 0b000 0b0001 0b0011 0b100 DBGOSDLR Debug OS
Double Lock
Register

0b1110 0b000 0b0001 0b0100 0b100 DBGPRCR Debug Power
Control
Register

0b1110 0b000 0b0001 n[3:0] 0b001 DBGBXVR<n> Debug
Breakpoint
Extended Value
Registers

0b1110 0b000 0b0010 0b0000 0b000 DBGDSAR Debug Self
Address
Register

0b1110 0b000 0b0111 0b0000 0b111 DBGDEVID2 Debug Device
ID register 2

0b1110 0b000 0b0111 0b0001 0b111 DBGDEVID1 Debug Device
ID register 1

0b1110 0b000 0b0111 0b0010 0b111 DBGDEVID Debug Device
ID register 0

0b1110 0b000 0b0111 0b1000 0b110 DBGCLAIMSET Debug CLAIM
Tag Set register

0b1110 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR Debug CLAIM
Tag Clear
register

0b1110 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS Debug
Authentication
Status register

0b1110 0b111 0b0000 0b0000 0b000 JIDR Jazelle ID
Register

0b1110 0b111 0b0001 0b0000 0b000 JOSCR Jazelle OS
Control
Register

System Register index by instruction and encoding

Page 1475

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1110 0b111 0b0010 0b0000 0b000 JMCR Jazelle Main
Configuration
Register

0b1111 0b000 0b0000 0b0000 0b000 MIDR Main ID
Register

0b1111 0b000 0b0000 0b0000 0b001 CTR Cache Type
Register

0b1111 0b000 0b0000 0b0000 0b010 TCMTR TCM Type
Register

0b1111 0b000 0b0000 0b0000 0b011 TLBTR TLB Type
Register

0b1111 0b000 0b0000 0b0000 0b101 MPIDR Multiprocessor
Affinity
Register

0b1111 0b000 0b0000 0b0000 0b110 REVIDR Revision ID
Register

0b1111 0b000 0b0000 0b0001 0b000 ID_PFR0 Processor
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b001 ID_PFR1 Processor
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b010 ID_DFR0 Debug Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b011 ID_AFR0 Auxiliary
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b100 ID_MMFR0 Memory Model
Feature
Register 0

0b1111 0b000 0b0000 0b0001 0b101 ID_MMFR1 Memory Model
Feature
Register 1

0b1111 0b000 0b0000 0b0001 0b110 ID_MMFR2 Memory Model
Feature
Register 2

0b1111 0b000 0b0000 0b0001 0b111 ID_MMFR3 Memory Model
Feature
Register 3

0b1111 0b000 0b0000 0b0010 0b000 ID_ISAR0 Instruction Set
Attribute
Register 0

0b1111 0b000 0b0000 0b0010 0b001 ID_ISAR1 Instruction Set
Attribute
Register 1

0b1111 0b000 0b0000 0b0010 0b010 ID_ISAR2 Instruction Set
Attribute
Register 2

0b1111 0b000 0b0000 0b0010 0b011 ID_ISAR3 Instruction Set
Attribute
Register 3

0b1111 0b000 0b0000 0b0010 0b100 ID_ISAR4 Instruction Set
Attribute
Register 4

0b1111 0b000 0b0000 0b0010 0b101 ID_ISAR5 Instruction Set
Attribute
Register 5

0b1111 0b000 0b0000 0b0010 0b110 ID_MMFR4 Memory Model
Feature
Register 4

System Register index by instruction and encoding

Page 1476

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0000 0b0010 0b111 ID_ISAR6 Instruction Set
Attribute
Register 6

0b1111 0b000 0b0000 0b0011 0b100 ID_PFR2 Processor
Feature
Register 2

0b1111 0b000 0b0000 0b0011 0b101 ID_DFR1 Debug Feature
Register 1

0b1111 0b000 0b0000 0b0011 0b110 ID_MMFR5 Memory Model
Feature
Register 5

0b1111 0b000 0b0001 0b0000 0b000 SCTLR System Control
Register

0b1111 0b000 0b0001 0b0000 0b001 ACTLR Auxiliary
Control
Register

0b1111 0b000 0b0001 0b0000 0b010 CPACR Architectural
Feature Access
Control
Register

0b1111 0b000 0b0001 0b0000 0b011 ACTLR2 Auxiliary
Control
Register 2

0b1111 0b000 0b0001 0b0001 0b000 SCR Secure
Configuration
Register

0b1111 0b000 0b0001 0b0001 0b001 SDER Secure Debug
Enable Register

0b1111 0b000 0b0001 0b0001 0b010 NSACR Non-Secure
Access Control
Register

0b1111 0b000 0b0001 0b0010 0b001 TRFCR Trace Filter
Control
Register

0b1111 0b000 0b0001 0b0011 0b001 SDCR Secure Debug
Control
Register

0b1111 0b000 0b0010 0b0000 0b000 TTBR0 Translation
Table Base
Register 0

0b1111 0b000 0b0010 0b0000 0b001 TTBR1 Translation
Table Base
Register 1

0b1111 0b000 0b0010 0b0000 0b010 TTBCR Translation
Table Base
Control
Register

0b1111 0b000 0b0010 0b0000 0b011 TTBCR2 Translation
Table Base
Control
Register 2

0b1111 0b000 0b0011 0b0000 0b000 DACR Domain Access
Control
Register

0b1111 0b000 0b0100 0b0110 0b000 ICC_PMR Interrupt
Controller
Interrupt
Priority Mask
Register

0b1111 0b000 0b0101 0b0000 0b000 DFSR Data Fault
Status Register

System Register index by instruction and encoding

Page 1477

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0101 0b0000 0b001 IFSR Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b000 ADFSR Auxiliary Data
Fault Status
Register

0b1111 0b000 0b0101 0b0001 0b001 AIFSR Auxiliary
Instruction
Fault Status
Register

0b1111 0b000 0b0101 0b0011 0b000 ERRIDR Error Record ID
Register

0b1111 0b000 0b0101 0b0011 0b001 ERRSELR Error Record
Select Register

0b1111 0b000 0b0101 0b0100 0b000 ERXFR Selected Error
Record Feature
Register

0b1111 0b000 0b0101 0b0100 0b001 ERXCTLR Selected Error
Record Control
Register

0b1111 0b000 0b0101 0b0100 0b010 ERXSTATUS Selected Error
Record Primary
Status Register

0b1111 0b000 0b0101 0b0100 0b011 ERXADDR Selected Error
Record Address
Register

0b1111 0b000 0b0101 0b0100 0b100 ERXFR2 Selected Error
Record Feature
Register 2

0b1111 0b000 0b0101 0b0100 0b101 ERXCTLR2 Selected Error
Record Control
Register 2

0b1111 0b000 0b0101 0b0100 0b111 ERXADDR2 Selected Error
Record Address
Register 2

0b1111 0b000 0b0101 0b0101 0b000 ERXMISC0 Selected Error
Record
Miscellaneous
Register 0

0b1111 0b000 0b0101 0b0101 0b001 ERXMISC1 Selected Error
Record
Miscellaneous
Register 1

0b1111 0b000 0b0101 0b0101 0b010 ERXMISC4 Selected Error
Record
Miscellaneous
Register 4

0b1111 0b000 0b0101 0b0101 0b011 ERXMISC5 Selected Error
Record
Miscellaneous
Register 5

0b1111 0b000 0b0101 0b0101 0b100 ERXMISC2 Selected Error
Record
Miscellaneous
Register 2

0b1111 0b000 0b0101 0b0101 0b101 ERXMISC3 Selected Error
Record
Miscellaneous
Register 3

0b1111 0b000 0b0101 0b0101 0b110 ERXMISC6 Selected Error
Record

System Register index by instruction and encoding

Page 1478

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Miscellaneous
Register 6

0b1111 0b000 0b0101 0b0101 0b111 ERXMISC7 Selected Error
Record
Miscellaneous
Register 7

0b1111 0b000 0b0110 0b0000 0b000 DFAR Data Fault
Address
Register

0b1111 0b000 0b0110 0b0000 0b010 IFAR Instruction
Fault Address
Register

0b1111 0b000 0b0111 0b0001 0b000 ICIALLUIS Instruction
Cache
Invalidate All to
PoU, Inner
Shareable

0b1111 0b000 0b0111 0b0001 0b110 BPIALLIS Branch
Predictor
Invalidate All,
Inner Shareable

0b1111 0b000 0b0111 0b0011 0b100 CFPRCTX Control Flow
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b101 DVPRCTX Data Value
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0011 0b111 CPPRCTX Cache Prefetch
Prediction
Restriction by
Context

0b1111 0b000 0b0111 0b0100 0b000 PAR Physical
Address
Register

0b1111 0b000 0b0111 0b0101 0b000 ICIALLU Instruction
Cache
Invalidate All to
PoU

0b1111 0b000 0b0111 0b0101 0b001 ICIMVAU Instruction
Cache line
Invalidate by
VA to PoU

0b1111 0b000 0b0111 0b0101 0b100 CP15ISB Instruction
Synchronization
Barrier System
instruction

0b1111 0b000 0b0111 0b0101 0b110 BPIALL Branch
Predictor
Invalidate All

0b1111 0b000 0b0111 0b0101 0b111 BPIMVA Branch
Predictor
Invalidate by
VA

0b1111 0b000 0b0111 0b0110 0b001 DCIMVAC Data Cache line
Invalidate by
VA to PoC

0b1111 0b000 0b0111 0b0110 0b010 DCISW Data Cache line
Invalidate by
Set/Way

System Register index by instruction and encoding

Page 1479

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b1000 0b000 ATS1CPR Address
Translate Stage
1 Current state
PL1 Read

0b1111 0b000 0b0111 0b1000 0b001 ATS1CPW Address
Translate Stage
1 Current state
PL1 Write

0b1111 0b000 0b0111 0b1000 0b010 ATS1CUR Address
Translate Stage
1 Current state
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b011 ATS1CUW Address
Translate Stage
1 Current state
Unprivileged
Write

0b1111 0b000 0b0111 0b1000 0b100 ATS12NSOPR Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Read

0b1111 0b000 0b0111 0b1000 0b101 ATS12NSOPW Address
Translate
Stages 1 and 2
Non-secure
Only PL1 Write

0b1111 0b000 0b0111 0b1000 0b110 ATS12NSOUR Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Read

0b1111 0b000 0b0111 0b1000 0b111 ATS12NSOUW Address
Translate
Stages 1 and 2
Non-secure
Only
Unprivileged
Write

0b1111 0b000 0b0111 0b1001 0b000 ATS1CPRP Address
Translate Stage
1 Current state
PL1 Read PAN

0b1111 0b000 0b0111 0b1001 0b001 ATS1CPWP Address
Translate Stage
1 Current state
PL1 Write PAN

0b1111 0b000 0b0111 0b1010 0b001 DCCMVAC Data Cache line
Clean by VA to
PoC

0b1111 0b000 0b0111 0b1010 0b010 DCCSW Data Cache line
Clean by Set/
Way

0b1111 0b000 0b0111 0b1010 0b100 CP15DSB Data
Synchronization
Barrier System
instruction

0b1111 0b000 0b0111 0b1010 0b101 CP15DMB Data Memory
Barrier System
instruction

System Register index by instruction and encoding

Page 1480

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b0111 0b1011 0b001 DCCMVAU Data Cache line
Clean by VA to
PoU

0b1111 0b000 0b0111 0b1110 0b001 DCCIMVAC Data Cache line
Clean and
Invalidate by
VA to PoC

0b1111 0b000 0b0111 0b1110 0b010 DCCISW Data Cache line
Clean and
Invalidate by
Set/Way

0b1111 0b000 0b1000 0b0011 0b000 TLBIALLIS TLB Invalidate
All, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b001 TLBIMVAIS TLB Invalidate
by VA, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b010 TLBIASIDIS TLB Invalidate
by ASID match,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b011 TLBIMVAAIS TLB Invalidate
by VA, All ASID,
Inner Shareable

0b1111 0b000 0b1000 0b0011 0b101 TLBIMVALIS TLB Invalidate
by VA, Last
level, Inner
Shareable

0b1111 0b000 0b1000 0b0011 0b111 TLBIMVAALIS TLB Invalidate
by VA, All ASID,
Last level,
Inner Shareable

0b1111 0b000 0b1000 0b0101 0b000 ITLBIALL Instruction TLB
Invalidate All

0b1111 0b000 0b1000 0b0101 0b001 ITLBIMVA Instruction TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0101 0b010 ITLBIASID Instruction TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0110 0b000 DTLBIALL Data TLB
Invalidate All

0b1111 0b000 0b1000 0b0110 0b001 DTLBIMVA Data TLB
Invalidate by
VA

0b1111 0b000 0b1000 0b0110 0b010 DTLBIASID Data TLB
Invalidate by
ASID match

0b1111 0b000 0b1000 0b0111 0b000 TLBIALL TLB Invalidate
All

0b1111 0b000 0b1000 0b0111 0b001 TLBIMVA TLB Invalidate
by VA

0b1111 0b000 0b1000 0b0111 0b010 TLBIASID TLB Invalidate
by ASID match

0b1111 0b000 0b1000 0b0111 0b011 TLBIMVAA TLB Invalidate
by VA, All ASID

0b1111 0b000 0b1000 0b0111 0b101 TLBIMVAL TLB Invalidate
by VA, Last
level

0b1111 0b000 0b1000 0b0111 0b111 TLBIMVAAL TLB Invalidate
by VA, All ASID,
Last level

System Register index by instruction and encoding

Page 1481

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1001 0b1100 0b000 PMCR Performance
Monitors
Control
Register

0b1111 0b000 0b1001 0b1100 0b001 PMCNTENSET Performance
Monitors Count
Enable Set
register

0b1111 0b000 0b1001 0b1100 0b010 PMCNTENCLR Performance
Monitors Count
Enable Clear
register

0b1111 0b000 0b1001 0b1100 0b011 PMOVSR Performance
Monitors
Overflow Flag
Status Register

0b1111 0b000 0b1001 0b1100 0b100 PMSWINC Performance
Monitors
Software
Increment
register

0b1111 0b000 0b1001 0b1100 0b101 PMSELR Performance
Monitors Event
Counter
Selection
Register

0b1111 0b000 0b1001 0b1100 0b110 PMCEID0 Performance
Monitors
Common Event
Identification
register 0

0b1111 0b000 0b1001 0b1100 0b111 PMCEID1 Performance
Monitors
Common Event
Identification
register 1

0b1111 0b000 0b1001 0b1101 0b000 PMCCNTR Performance
Monitors Cycle
Count Register

0b1111 0b000 0b1001 0b1101 0b001 PMXEVTYPER Performance
Monitors
Selected Event
Type Register

0b1111 0b000 0b1001 0b1101 0b010 PMXEVCNTR Performance
Monitors
Selected Event
Count Register

0b1111 0b000 0b1001 0b1110 0b000 PMUSERENR Performance
Monitors User
Enable Register

0b1111 0b000 0b1001 0b1110 0b001 PMINTENSET Performance
Monitors
Interrupt
Enable Set
register

0b1111 0b000 0b1001 0b1110 0b010 PMINTENCLR Performance
Monitors
Interrupt
Enable Clear
register

0b1111 0b000 0b1001 0b1110 0b011 PMOVSSET Performance
Monitors
Overflow Flag

System Register index by instruction and encoding

Page 1482

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Status Set
register

0b1111 0b000 0b1001 0b1110 0b100 PMCEID2 Performance
Monitors
Common Event
Identification
register 2

0b1111 0b000 0b1001 0b1110 0b101 PMCEID3 Performance
Monitors
Common Event
Identification
register 3

0b1111 0b000 0b1001 0b1110 0b110 PMMIR Performance
Monitors
Machine
Identification
Register

0b1111 0b000 0b1010 0b0011 0b000 AMAIR0 Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b000 0b1010 0b0011 0b001 AMAIR1 Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b000 0b1100 0b0000 0b000 VBAR Vector Base
Address
Register

0b1111 0b000 0b1100 0b0000 0b010 RMR Reset
Management
Register

0b1111 0b000 0b1100 0b0001 0b000 ISR Interrupt
Status Register

0b1111 0b000 0b1100 0b0001 0b001 DISR Deferred
Interrupt
Status Register

0b1111 0b000 0b1100 0b1000 0b000 ICC_IAR0 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b1111 0b000 0b1100 0b1000 0b001 ICC_EOIR0 Interrupt
Controller End
Of Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b010 ICC_HPPIR0 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 0

0b1111 0b000 0b1100 0b1000 0b011 ICC_BPR0 Interrupt
Controller
Binary Point
Register 0

0b1111 0b000 0b1100 0b1000 0b1:n[1:0] ICC_AP0R<n> Interrupt
Controller
Active Priorities
Group 0
Registers

System Register index by instruction and encoding

Page 1483

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1100 0b1001 0b0:n[1:0] ICC_AP1R<n> Interrupt
Controller
Active Priorities
Group 1
Registers

0b1111 0b000 0b1100 0b1011 0b001 ICC_DIR Interrupt
Controller
Deactivate
Interrupt
Register

0b1111 0b000 0b1100 0b1011 0b011 ICC_RPR Interrupt
Controller
Running
Priority
Register

0b1111 0b000 0b1100 0b1100 0b000 ICC_IAR1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b1111 0b000 0b1100 0b1100 0b001 ICC_EOIR1 Interrupt
Controller End
Of Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b010 ICC_HPPIR1 Interrupt
Controller
Highest Priority
Pending
Interrupt
Register 1

0b1111 0b000 0b1100 0b1100 0b011 ICC_BPR1 Interrupt
Controller
Binary Point
Register 1

0b1111 0b000 0b1100 0b1100 0b100 ICC_CTLR Interrupt
Controller
Control
Register

0b1111 0b000 0b1100 0b1100 0b101 ICC_SRE Interrupt
Controller
System
Register Enable
register

0b1111 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0 Interrupt
Controller
Interrupt Group
0 Enable
register

0b1111 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1 Interrupt
Controller
Interrupt Group
1 Enable
register

0b1111 0b000 0b1101 0b0000 0b000 FCSEIDR FCSE Process
ID register

0b1111 0b000 0b1101 0b0000 0b001 CONTEXTIDR Context ID
Register

0b1111 0b000 0b1101 0b0000 0b010 TPIDRURW PL0 Read/Write
Software
Thread ID
Register

0b1111 0b000 0b1101 0b0000 0b011 TPIDRURO PL0 Read-Only
Software

System Register index by instruction and encoding

Page 1484

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Thread ID
Register

0b1111 0b000 0b1101 0b0000 0b100 TPIDRPRW PL1 Software
Thread ID
Register

0b1111 0b000 0b1101 0b0010 0b000 AMCR Activity
Monitors
Control
Register

0b1111 0b000 0b1101 0b0010 0b001 AMCFGR Activity
Monitors
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b010 AMCGCR Activity
Monitors
Counter Group
Configuration
Register

0b1111 0b000 0b1101 0b0010 0b011 AMUSERENR Activity
Monitors User
Enable Register

0b1111 0b000 0b1101 0b0010 0b100 AMCNTENCLR0 Activity
Monitors Count
Enable Clear
Register 0

0b1111 0b000 0b1101 0b0010 0b101 AMCNTENSET0 Activity
Monitors Count
Enable Set
Register 0

0b1111 0b000 0b1101 0b0011 0b000 AMCNTENCLR1 Activity
Monitors Count
Enable Clear
Register 1

0b1111 0b000 0b1101 0b0011 0b001 AMCNTENSET1 Activity
Monitors Count
Enable Set
Register 1

0b1111 0b000 0b1101 0b011:n[3] n[2:0] AMEVTYPER0<n> Activity
Monitors Event
Type Registers
0

0b1111 0b000 0b1101 0b111:n[3] n[2:0] AMEVTYPER1<n> Activity
Monitors Event
Type Registers
1

0b1111 0b000 0b1110 0b0000 0b000 CNTFRQ Counter-timer
Frequency
register

0b1111 0b000 0b1110 0b0001 0b000 CNTKCTL Counter-timer
Kernel Control
register

0b1111 0b000 0b1110 0b0010 0b000 CNTP_TVAL Counter-timer
Physical Timer
TimerValue
register

0b1111 0b000 0b1110 0b0010 0b001 CNTP_CTL Counter-timer
Physical Timer
Control register

0b1111 0b000 0b1110 0b0011 0b000 CNTV_TVAL Counter-timer
Virtual Timer
TimerValue
register

System Register index by instruction and encoding

Page 1485

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b000 0b1110 0b0011 0b001 CNTV_CTL Counter-timer
Virtual Timer
Control register

0b1111 0b000 0b1110 0b10:n[4:3] n[2:0] PMEVCNTR<n> Performance
Monitors Event
Count Registers

0b1111 0b000 0b1110 0b1111 0b111 PMCCFILTR Performance
Monitors Cycle
Count Filter
Register

0b1111 0b000 0b1110 0b11:n[4:3] n[2:0] PMEVTYPER<n> Performance
Monitors Event
Type Registers

0b1111 0b001 0b0000 0b0000 0b000 CCSIDR Current Cache
Size ID
Register

0b1111 0b001 0b0000 0b0000 0b001 CLIDR Cache Level ID
Register

0b1111 0b001 0b0000 0b0000 0b010 CCSIDR2 Current Cache
Size ID
Register 2

0b1111 0b001 0b0000 0b0000 0b111 AIDR Auxiliary ID
Register

0b1111 0b010 0b0000 0b0000 0b000 CSSELR Cache Size
Selection
Register

0b1111 0b011 0b0100 0b0101 0b000 DSPSR Debug Saved
Program Status
Register

0b1111 0b011 0b0100 0b0101 0b001 DLR Debug Link
Register

0b1111 0b100 0b0000 0b0000 0b000 VPIDR Virtualization
Processor ID
Register

0b1111 0b100 0b0000 0b0000 0b101 VMPIDR Virtualization
Multiprocessor
ID Register

0b1111 0b100 0b0001 0b0000 0b000 HSCTLR Hyp System
Control
Register

0b1111 0b100 0b0001 0b0000 0b001 HACTLR Hyp Auxiliary
Control
Register

0b1111 0b100 0b0001 0b0000 0b011 HACTLR2 Hyp Auxiliary
Control
Register 2

0b1111 0b100 0b0001 0b0001 0b000 HCR Hyp
Configuration
Register

0b1111 0b100 0b0001 0b0001 0b001 HDCR Hyp Debug
Control
Register

0b1111 0b100 0b0001 0b0001 0b010 HCPTR Hyp
Architectural
Feature Trap
Register

0b1111 0b100 0b0001 0b0001 0b011 HSTR Hyp System
Trap Register

0b1111 0b100 0b0001 0b0001 0b100 HCR2 Hyp
Configuration
Register 2

System Register index by instruction and encoding

Page 1486

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b0001 0b0001 0b111 HACR Hyp Auxiliary
Configuration
Register

0b1111 0b100 0b0001 0b0010 0b001 HTRFCR Hyp Trace
Filter Control
Register

0b1111 0b100 0b0010 0b0000 0b010 HTCR Hyp Translation
Control
Register

0b1111 0b100 0b0010 0b0001 0b010 VTCR Virtualization
Translation
Control
Register

0b1111 0b100 0b0101 0b0001 0b000 HADFSR Hyp Auxiliary
Data Fault
Status Register

0b1111 0b100 0b0101 0b0001 0b001 HAIFSR Hyp Auxiliary
Instruction
Fault Status
Register

0b1111 0b100 0b0101 0b0010 0b000 HSR Hyp Syndrome
Register

0b1111 0b100 0b0101 0b0010 0b011 VDFSR Virtual SError
Exception
Syndrome
Register

0b1111 0b100 0b0110 0b0000 0b000 HDFAR Hyp Data Fault
Address
Register

0b1111 0b100 0b0110 0b0000 0b010 HIFAR Hyp Instruction
Fault Address
Register

0b1111 0b100 0b0110 0b0000 0b100 HPFAR Hyp IPA Fault
Address
Register

0b1111 0b100 0b0111 0b1000 0b000 ATS1HR Address
Translate Stage
1 Hyp mode
Read

0b1111 0b100 0b0111 0b1000 0b001 ATS1HW Address
Translate Stage
1 Hyp mode
Write

0b1111 0b100 0b1000 0b0000 0b001 TLBIIPAS2IS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Inner
Shareable

0b1111 0b100 0b1000 0b0000 0b101 TLBIIPAS2LIS TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level,
Inner Shareable

0b1111 0b100 0b1000 0b0011 0b000 TLBIALLHIS TLB Invalidate
All, Hyp mode,
Inner Shareable

0b1111 0b100 0b1000 0b0011 0b001 TLBIMVAHIS TLB Invalidate
by VA, Hyp
mode, Inner
Shareable

System Register index by instruction and encoding

Page 1487

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1000 0b0011 0b100 TLBIALLNSNHIS TLB Invalidate
All, Non-Secure
Non-Hyp, Inner
Shareable

0b1111 0b100 0b1000 0b0011 0b101 TLBIMVALHIS TLB Invalidate
by VA, Last
level, Hyp
mode, Inner
Shareable

0b1111 0b100 0b1000 0b0100 0b001 TLBIIPAS2 TLB Invalidate
by Intermediate
Physical
Address, Stage
2

0b1111 0b100 0b1000 0b0100 0b101 TLBIIPAS2L TLB Invalidate
by Intermediate
Physical
Address, Stage
2, Last level

0b1111 0b100 0b1000 0b0111 0b000 TLBIALLH TLB Invalidate
All, Hyp mode

0b1111 0b100 0b1000 0b0111 0b001 TLBIMVAH TLB Invalidate
by VA, Hyp
mode

0b1111 0b100 0b1000 0b0111 0b100 TLBIALLNSNH TLB Invalidate
All, Non-Secure
Non-Hyp

0b1111 0b100 0b1000 0b0111 0b101 TLBIMVALH TLB Invalidate
by VA, Last
level, Hyp mode

0b1111 0b100 0b1010 0b0010 0b000 HMAIR0 Hyp Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0010 0b001 HMAIR1 Hyp Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1010 0b0011 0b000 HAMAIR0 Hyp Auxiliary
Memory
Attribute
Indirection
Register 0

0b1111 0b100 0b1010 0b0011 0b001 HAMAIR1 Hyp Auxiliary
Memory
Attribute
Indirection
Register 1

0b1111 0b100 0b1100 0b0000 0b000 HVBAR Hyp Vector
Base Address
Register

0b1111 0b100 0b1100 0b0000 0b010 HRMR Hyp Reset
Management
Register

0b1111 0b100 0b1100 0b0001 0b001 VDISR Virtual
Deferred
Interrupt
Status Register

0b1111 0b100 0b1100 0b1000 0b0:n[1:0] ICH_AP0R<n> Interrupt
Controller Hyp
Active Priorities
Group 0
Registers

System Register index by instruction and encoding

Page 1488

Register selectors
coproc opc1 CRn CRm opc2 Name Description

0b1111 0b100 0b1100 0b1001 0b0:n[1:0] ICH_AP1R<n> Interrupt
Controller Hyp
Active Priorities
Group 1
Registers

0b1111 0b100 0b1100 0b1001 0b101 ICC_HSRE Interrupt
Controller Hyp
System
Register Enable
register

0b1111 0b100 0b1100 0b1011 0b000 ICH_HCR Interrupt
Controller Hyp
Control
Register

0b1111 0b100 0b1100 0b1011 0b001 ICH_VTR Interrupt
Controller VGIC
Type Register

0b1111 0b100 0b1100 0b1011 0b010 ICH_MISR Interrupt
Controller
Maintenance
Interrupt State
Register

0b1111 0b100 0b1100 0b1011 0b011 ICH_EISR Interrupt
Controller End
of Interrupt
Status Register

0b1111 0b100 0b1100 0b1011 0b101 ICH_ELRSR Interrupt
Controller
Empty List
Register Status
Register

0b1111 0b100 0b1100 0b1011 0b111 ICH_VMCR Interrupt
Controller
Virtual Machine
Control
Register

0b1111 0b100 0b1100 0b110:n[3] n[2:0] ICH_LR<n> Interrupt
Controller List
Registers

0b1111 0b100 0b1100 0b111:n[3] n[2:0] ICH_LRC<n> Interrupt
Controller List
Registers

0b1111 0b100 0b1101 0b0000 0b010 HTPIDR Hyp Software
Thread ID
Register

0b1111 0b100 0b1110 0b0001 0b000 CNTHCTL Counter-timer
Hyp Control
register

0b1111 0b100 0b1110 0b0010 0b000 CNTHP_TVAL Counter-timer
Hyp Physical
Timer
TimerValue
register

0b1111 0b100 0b1110 0b0010 0b001 CNTHP_CTL Counter-timer
Hyp Physical
Timer Control
register

0b1111 0b110 0b1100 0b1100 0b100 ICC_MCTLR Interrupt
Controller
Monitor Control
Register

0b1111 0b110 0b1100 0b1100 0b101 ICC_MSRE Interrupt
Controller

System Register index by instruction and encoding

Page 1489

Register selectors
coproc opc1 CRn CRm opc2 Name Description

Monitor System
Register Enable
register

0b1111 0b110 0b1100 0b1100 0b111 ICC_MGRPEN1 Interrupt
Controller
Monitor
Interrupt Group
1 Enable
register

Accessed using MCRR/MRRC:
Register selectors

coproc CRm opc1 Name Description

0b1110 0b0001 0b0000 DBGDRAR Debug ROM Address Register
0b1110 0b0010 0b0000 DBGDSAR Debug Self Address Register
0b1111 0b000:n[3] 0b0:n[2:0] AMEVCNTR0<n> Activity Monitors Event Counter

Registers 0
0b1111 0b0010 0b0000 TTBR0 Translation Table Base Register 0
0b1111 0b0010 0b0001 TTBR1 Translation Table Base Register 1
0b1111 0b0010 0b0100 HTTBR Hyp Translation Table Base Register
0b1111 0b0010 0b0110 VTTBR Virtualization Translation Table Base

Register
0b1111 0b010:n[3] 0b0:n[2:0] AMEVCNTR1<n> Activity Monitors Event Counter

Registers 1
0b1111 0b0111 0b0000 PAR Physical Address Register
0b1111 0b1001 0b0000 PMCCNTR Performance Monitors Cycle Count

Register
0b1111 0b1100 0b0000 ICC_SGI1R Interrupt Controller Software

Generated Interrupt Group 1
Register

0b1111 0b1100 0b0001 ICC_ASGI1R Interrupt Controller Alias Software
Generated Interrupt Group 1
Register

0b1111 0b1100 0b0010 ICC_SGI0R Interrupt Controller Software
Generated Interrupt Group 0
Register

0b1111 0b1110 0b0000 CNTPCT Counter-timer Physical Count
register

0b1111 0b1110 0b0001 CNTVCT Counter-timer Virtual Count register
0b1111 0b1110 0b0010 CNTP_CVAL Counter-timer Physical Timer

CompareValue register
0b1111 0b1110 0b0011 CNTV_CVAL Counter-timer Virtual Timer

CompareValue register
0b1111 0b1110 0b0100 CNTVOFF Counter-timer Virtual Offset register
0b1111 0b1110 0b0110 CNTHP_CVAL Counter-timer Hyp Physical

CompareValue register
0b1111 0b1110 0b1000 CNTPCTSS Counter-timer Self-Synchronized

Physical Count register
0b1111 0b1110 0b1001 CNTVCTSS Counter-timer Self-Synchronized

Virtual Count register

Accessed using MRS/MSR:
Register selectors

R M M1 Name Description

0b0 0b1 0b1110 ELR_hyp Exception Link Register (Hyp mode)

System Register index by instruction and encoding

Page 1490

Register selectors
R M M1 Name Description

0b1 0b0 0b1110 SPSR_fiq Saved Program Status Register (FIQ mode)
0b1 0b1 0b0000 SPSR_irq Saved Program Status Register (IRQ mode)
0b1 0b1 0b0010 SPSR_svc Saved Program Status Register (Supervisor mode)
0b1 0b1 0b0100 SPSR_abt Saved Program Status Register (Abort mode)
0b1 0b1 0b0110 SPSR_und Saved Program Status Register (Undefined mode)
0b1 0b1 0b1100 SPSR_mon Saved Program Status Register (Monitor mode)
0b1 0b1 0b1110 SPSR_hyp Saved Program Status Register (Hyp mode)

Accessed using VMRS/VMSR:
Register
selectors

reg
Name Description

0b0000 FPSID Floating-Point System ID register
0b0001 FPSCR Floating-Point Status and Control Register
0b0101 MVFR2 Media and VFP Feature Register 2
0b0110 MVFR1 Media and VFP Feature Register 1
0b0111 MVFR0 Media and VFP Feature Register 0
0b1000 FPEXC Floating-Point Exception Control register

Registers and operations in AArch64

Accessed using AT:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b1000 0b000 AT
S1E1R

Address Translate Stage 1 EL1
Read

0b01 0b000 0b0111 0b1000 0b001 AT
S1E1W

Address Translate Stage 1 EL1
Write

0b01 0b000 0b0111 0b1000 0b010 AT
S1E0R

Address Translate Stage 1 EL0
Read

0b01 0b000 0b0111 0b1000 0b011 AT
S1E0W

Address Translate Stage 1 EL0
Write

0b01 0b000 0b0111 0b1001 0b000 AT
S1E1RP

Address Translate Stage 1 EL1
Read PAN

0b01 0b000 0b0111 0b1001 0b001 AT
S1E1WP

Address Translate Stage 1 EL1
Write PAN

0b01 0b100 0b0111 0b1000 0b000 AT
S1E2R

Address Translate Stage 1 EL2
Read

0b01 0b100 0b0111 0b1000 0b001 AT
S1E2W

Address Translate Stage 1 EL2
Write

0b01 0b100 0b0111 0b1000 0b100 AT
S12E1R

Address Translate Stages 1 and 2
EL1 Read

0b01 0b100 0b0111 0b1000 0b101 AT
S12E1W

Address Translate Stages 1 and 2
EL1 Write

0b01 0b100 0b0111 0b1000 0b110 AT
S12E0R

Address Translate Stages 1 and 2
EL0 Read

0b01 0b100 0b0111 0b1000 0b111 AT
S12E0W

Address Translate Stages 1 and 2
EL0 Write

0b01 0b110 0b0111 0b1000 0b000 AT
S1E3R

Address Translate Stage 1 EL3
Read

0b01 0b110 0b0111 0b1000 0b001 AT
S1E3W

Address Translate Stage 1 EL3
Write

System Register index by instruction and encoding

Page 1491

Accessed using CFP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b100 CFP
RCTX

Control Flow Prediction Restriction
by Context

Accessed using CPP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b111 CPP
RCTX

Cache Prefetch Prediction
Restriction by Context

Accessed using DC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0110 0b001 DC IVAC Data or unified Cache line
Invalidate by VA to PoC

0b01 0b000 0b0111 0b0110 0b010 DC ISW Data or unified Cache line
Invalidate by Set/Way

0b01 0b000 0b0111 0b0110 0b011 DC
IGVAC

Invalidate of Allocation Tags by VA
to PoC

0b01 0b000 0b0111 0b0110 0b100 DC IGSW Invalidate of Allocation Tags by
Set/Way

0b01 0b000 0b0111 0b0110 0b101 DC
IGDVAC

Invalidate of Data and Allocation
Tags by VA to PoC

0b01 0b000 0b0111 0b0110 0b110 DC
IGDSW

Invalidate of Data and Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1010 0b010 DC CSW Data or unified Cache line Clean
by Set/Way

0b01 0b000 0b0111 0b1010 0b100 DC CGSW Clean of Allocation Tags by Set/
Way

0b01 0b000 0b0111 0b1010 0b110 DC
CGDSW

Clean of Data and Allocation Tags
by Set/Way

0b01 0b000 0b0111 0b1110 0b010 DC CISW Data or unified Cache line Clean
and Invalidate by Set/Way

0b01 0b000 0b0111 0b1110 0b100 DC
CIGSW

Clean and Invalidate of Allocation
Tags by Set/Way

0b01 0b000 0b0111 0b1110 0b110 DC
CIGDSW

Clean and Invalidate of Data and
Allocation Tags by Set/Way

0b01 0b011 0b0111 0b0100 0b001 DC ZVA Data Cache Zero by VA
0b01 0b011 0b0111 0b0100 0b011 DC GVA Data Cache set Allocation Tag by

VA
0b01 0b011 0b0111 0b0100 0b100 DC GZVA Data Cache set Allocation Tags

and Zero by VA
0b01 0b011 0b0111 0b1010 0b001 DC CVAC Data or unified Cache line Clean

by VA to PoC
0b01 0b011 0b0111 0b1010 0b011 DC

CGVAC
Clean of Allocation Tags by VA to
PoC

0b01 0b011 0b0111 0b1010 0b101 DC
CGDVAC

Clean of Data and Allocation Tags
by VA to PoC

0b01 0b011 0b0111 0b1011 0b001 DC CVAU Data or unified Cache line Clean
by VA to PoU

0b01 0b011 0b0111 0b1100 0b001 DC CVAP Data or unified Cache line Clean
by VA to PoP

0b01 0b011 0b0111 0b1100 0b011 DC
CGVAP

Clean of Allocation Tags by VA to
PoP

System Register index by instruction and encoding

Page 1492

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b1100 0b101 DC
CGDVAP

Clean of Data and Allocation Tags
by VA to PoP

0b01 0b011 0b0111 0b1101 0b001 DC
CVADP

Data or unified Cache line Clean
by VA to PoDP

0b01 0b011 0b0111 0b1101 0b011 DC
CGVADP

Clean of Allocation Tags by VA to
PoDP

0b01 0b011 0b0111 0b1101 0b101 DC
CGDVADP

Clean of Data and Allocation Tags
by VA to PoDP

0b01 0b011 0b0111 0b1110 0b001 DC CIVAC Data or unified Cache line Clean
and Invalidate by VA to PoC

0b01 0b011 0b0111 0b1110 0b011 DC
CIGVAC

Clean and Invalidate of Allocation
Tags by VA to PoC

0b01 0b011 0b0111 0b1110 0b101 DC
CIGDVAC

Clean and Invalidate of Data and
Allocation Tags by VA to PoC

Accessed using DVP:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b011 0b0111 0b0011 0b101 DVP
RCTX

Data Value Prediction Restriction by
Context

Accessed using IC:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b0111 0b0001 0b000 IC
IALLUIS

Instruction Cache Invalidate All to
PoU, Inner Shareable

0b01 0b000 0b0111 0b0101 0b000 IC
IALLU

Instruction Cache Invalidate All to
PoU

0b01 0b011 0b0111 0b0101 0b001 IC IVAU Instruction Cache line Invalidate by
VA to PoU

Accessed using MRS/MSR:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b10 0b000 0b0000 0b0000 0b010 OSDTRRX_EL1 OS Lock Data
Transfer
Register,
Receive

0b10 0b000 0b0000 0b0010 0b000 MDCCINT_EL1 Monitor DCC
Interrupt
Enable
Register

0b10 0b000 0b0000 0b0010 0b010 MDSCR_EL1 Monitor
Debug System
Control
Register

0b10 0b000 0b0000 0b0011 0b010 OSDTRTX_EL1 OS Lock Data
Transfer
Register,
Transmit

0b10 0b000 0b0000 0b0110 0b010 OSECCR_EL1 OS Lock
Exception
Catch Control
Register

System Register index by instruction and encoding

Page 1493

Register selectors
op0 op1 CRn CRm op2 Name Description

0b10 0b000 0b0000 n[3:0] 0b100 DBGBVR<n>_EL1 Debug
Breakpoint
Value
Registers

0b10 0b000 0b0000 n[3:0] 0b101 DBGBCR<n>_EL1 Debug
Breakpoint
Control
Registers

0b10 0b000 0b0000 n[3:0] 0b110 DBGWVR<n>_EL1 Debug
Watchpoint
Value
Registers

0b10 0b000 0b0000 n[3:0] 0b111 DBGWCR<n>_EL1 Debug
Watchpoint
Control
Registers

0b10 0b000 0b0001 0b0000 0b000 MDRAR_EL1 Monitor
Debug ROM
Address
Register

0b10 0b000 0b0001 0b0000 0b100 OSLAR_EL1 OS Lock
Access
Register

0b10 0b000 0b0001 0b0001 0b100 OSLSR_EL1 OS Lock
Status
Register

0b10 0b000 0b0001 0b0011 0b100 OSDLR_EL1 OS Double
Lock Register

0b10 0b000 0b0001 0b0100 0b100 DBGPRCR_EL1 Debug Power
Control
Register

0b10 0b000 0b0111 0b1000 0b110 DBGCLAIMSET_EL1 Debug CLAIM
Tag Set
register

0b10 0b000 0b0111 0b1001 0b110 DBGCLAIMCLR_EL1 Debug CLAIM
Tag Clear
register

0b10 0b000 0b0111 0b1110 0b110 DBGAUTHSTATUS_EL1 Debug
Authentication
Status register

0b10 0b011 0b0000 0b0001 0b000 MDCCSR_EL0 Monitor DCC
Status
Register

0b10 0b011 0b0000 0b0100 0b000 DBGDTR_EL0 Debug Data
Transfer
Register, half-
duplex

0b10 0b011 0b0000 0b0101 0b000 DBGDTRRX_EL0 Debug Data
Transfer
Register,
Receive

0b10 0b011 0b0000 0b0101 0b000 DBGDTRTX_EL0 Debug Data
Transfer
Register,
Transmit

0b10 0b100 0b0000 0b0111 0b000 DBGVCR32_EL2 Debug Vector
Catch Register

0b11 0b000 0b0000 0b0000 0b000 MIDR_EL1 Main ID
Register

0b11 0b000 0b0000 0b0000 0b101 MPIDR_EL1 Multiprocessor
Affinity
Register

System Register index by instruction and encoding

Page 1494

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0000 0b110 REVIDR_EL1 Revision ID
Register

0b11 0b000 0b0000 0b0001 0b000 ID_PFR0_EL1 AArch32
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b001 ID_PFR1_EL1 AArch32
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0001 0b010 ID_DFR0_EL1 AArch32
Debug Feature
Register 0

0b11 0b000 0b0000 0b0001 0b011 ID_AFR0_EL1 AArch32
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0001 0b100 ID_MMFR0_EL1 AArch32
Memory
Model Feature
Register 0

0b11 0b000 0b0000 0b0001 0b101 ID_MMFR1_EL1 AArch32
Memory
Model Feature
Register 1

0b11 0b000 0b0000 0b0001 0b110 ID_MMFR2_EL1 AArch32
Memory
Model Feature
Register 2

0b11 0b000 0b0000 0b0001 0b111 ID_MMFR3_EL1 AArch32
Memory
Model Feature
Register 3

0b11 0b000 0b0000 0b0010 0b000 ID_ISAR0_EL1 AArch32
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0010 0b001 ID_ISAR1_EL1 AArch32
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0010 0b010 ID_ISAR2_EL1 AArch32
Instruction Set
Attribute
Register 2

0b11 0b000 0b0000 0b0010 0b011 ID_ISAR3_EL1 AArch32
Instruction Set
Attribute
Register 3

0b11 0b000 0b0000 0b0010 0b100 ID_ISAR4_EL1 AArch32
Instruction Set
Attribute
Register 4

0b11 0b000 0b0000 0b0010 0b101 ID_ISAR5_EL1 AArch32
Instruction Set
Attribute
Register 5

0b11 0b000 0b0000 0b0010 0b110 ID_MMFR4_EL1 AArch32
Memory
Model Feature
Register 4

System Register index by instruction and encoding

Page 1495

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0010 0b111 ID_ISAR6_EL1 AArch32
Instruction Set
Attribute
Register 6

0b11 0b000 0b0000 0b0011 0b000 MVFR0_EL1 AArch32
Media and
VFP Feature
Register 0

0b11 0b000 0b0000 0b0011 0b001 MVFR1_EL1 AArch32
Media and
VFP Feature
Register 1

0b11 0b000 0b0000 0b0011 0b010 MVFR2_EL1 AArch32
Media and
VFP Feature
Register 2

0b11 0b000 0b0000 0b0011 0b100 ID_PFR2_EL1 AArch32
Processor
Feature
Register 2

0b11 0b000 0b0000 0b0011 0b101 ID_DFR1_EL1 Debug Feature
Register 1

0b11 0b000 0b0000 0b0011 0b110 ID_MMFR5_EL1 AArch32
Memory
Model Feature
Register 5

0b11 0b000 0b0000 0b0100 0b000 ID_AA64PFR0_EL1 AArch64
Processor
Feature
Register 0

0b11 0b000 0b0000 0b0100 0b001 ID_AA64PFR1_EL1 AArch64
Processor
Feature
Register 1

0b11 0b000 0b0000 0b0100 0b100 ID_AA64ZFR0_EL1 SVE Feature
ID register 0

0b11 0b000 0b0000 0b0101 0b000 ID_AA64DFR0_EL1 AArch64
Debug Feature
Register 0

0b11 0b000 0b0000 0b0101 0b001 ID_AA64DFR1_EL1 AArch64
Debug Feature
Register 1

0b11 0b000 0b0000 0b0101 0b100 ID_AA64AFR0_EL1 AArch64
Auxiliary
Feature
Register 0

0b11 0b000 0b0000 0b0101 0b101 ID_AA64AFR1_EL1 AArch64
Auxiliary
Feature
Register 1

0b11 0b000 0b0000 0b0110 0b000 ID_AA64ISAR0_EL1 AArch64
Instruction Set
Attribute
Register 0

0b11 0b000 0b0000 0b0110 0b001 ID_AA64ISAR1_EL1 AArch64
Instruction Set
Attribute
Register 1

0b11 0b000 0b0000 0b0110 0b010 ID_AA64ISAR2_EL1 AArch64
Instruction Set
Attribute
Register 2

System Register index by instruction and encoding

Page 1496

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0000 0b0111 0b000 ID_AA64MMFR0_EL1 AArch64
Memory
Model Feature
Register 0

0b11 0b000 0b0000 0b0111 0b001 ID_AA64MMFR1_EL1 AArch64
Memory
Model Feature
Register 1

0b11 0b000 0b0000 0b0111 0b010 ID_AA64MMFR2_EL1 AArch64
Memory
Model Feature
Register 2

0b11 0b000 0b0001 0b0000 0b000 SCTLR_EL1 System
Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b001 ACTLR_EL1 Auxiliary
Control
Register (EL1)

0b11 0b000 0b0001 0b0000 0b010 CPACR_EL1 Architectural
Feature
Access Control
Register

0b11 0b000 0b0001 0b0000 0b101 RGSR_EL1 Random
Allocation Tag
Seed Register.

0b11 0b000 0b0001 0b0000 0b110 GCR_EL1 Tag Control
Register.

0b11 0b000 0b0001 0b0010 0b000 ZCR_EL1 SVE Control
Register (for
EL1)

0b11 0b000 0b0001 0b0010 0b001 TRFCR_EL1 Trace Filter
Control
Register (EL1)

0b11 0b000 0b0010 0b0000 0b000 TTBR0_EL1 Translation
Table Base
Register 0
(EL1)

0b11 0b000 0b0010 0b0000 0b001 TTBR1_EL1 Translation
Table Base
Register 1
(EL1)

0b11 0b000 0b0010 0b0000 0b010 TCR_EL1 Translation
Control
Register (EL1)

0b11 0b000 0b0010 0b0001 0b000 APIAKeyLo_EL1 Pointer
Authentication
Key A for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b001 APIAKeyHi_EL1 Pointer
Authentication
Key A for
Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0001 0b010 APIBKeyLo_EL1 Pointer
Authentication
Key B for
Instruction
(bits[63:0])

0b11 0b000 0b0010 0b0001 0b011 APIBKeyHi_EL1 Pointer
Authentication
Key B for

System Register index by instruction and encoding

Page 1497

Register selectors
op0 op1 CRn CRm op2 Name Description

Instruction
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b000 APDAKeyLo_EL1 Pointer
Authentication
Key A for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b001 APDAKeyHi_EL1 Pointer
Authentication
Key A for Data
(bits[127:64])

0b11 0b000 0b0010 0b0010 0b010 APDBKeyLo_EL1 Pointer
Authentication
Key B for Data
(bits[63:0])

0b11 0b000 0b0010 0b0010 0b011 APDBKeyHi_EL1 Pointer
Authentication
Key B for Data
(bits[127:64])

0b11 0b000 0b0010 0b0011 0b000 APGAKeyLo_EL1 Pointer
Authentication
Key A for Code
(bits[63:0])

0b11 0b000 0b0010 0b0011 0b001 APGAKeyHi_EL1 Pointer
Authentication
Key A for Code
(bits[127:64])

0b11 0b000 0b0100 0b0000 0b000 SPSR_EL1 Saved
Program
Status
Register (EL1)

0b11 0b000 0b0100 0b0000 0b001 ELR_EL1 Exception Link
Register (EL1)

0b11 0b000 0b0100 0b0001 0b000 SP_EL0 Stack Pointer
(EL0)

0b11 0b000 0b0100 0b0010 0b000 SPSel Stack Pointer
Select

0b00 0b000 0b0100 - 0b101 SPSel Stack Pointer
Select

0b11 0b000 0b0100 0b0010 0b010 CurrentEL Current
Exception
Level

0b11 0b000 0b0100 0b0010 0b011 PAN Privileged
Access Never

0b00 0b000 0b0100 - 0b100 PAN Privileged
Access Never

0b11 0b000 0b0100 0b0010 0b100 UAO User Access
Override

0b00 0b000 0b0100 - 0b011 UAO User Access
Override

0b11 0b000 0b0100 0b0110 0b000 ICC_PMR_EL1 Interrupt
Controller
Interrupt
Priority Mask
Register

0b11 0b000 0b0101 0b0001 0b000 AFSR0_EL1 Auxiliary Fault
Status
Register 0
(EL1)

0b11 0b000 0b0101 0b0001 0b001 AFSR1_EL1 Auxiliary Fault
Status
Register 1
(EL1)

System Register index by instruction and encoding

Page 1498

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0101 0b0010 0b000 ESR_EL1 Exception
Syndrome
Register (EL1)

0b11 0b000 0b0101 0b0011 0b000 ERRIDR_EL1 Error Record
ID Register

0b11 0b000 0b0101 0b0011 0b001 ERRSELR_EL1 Error Record
Select
Register

0b11 0b000 0b0101 0b0100 0b000 ERXFR_EL1 Selected Error
Record
Feature
Register

0b11 0b000 0b0101 0b0100 0b001 ERXCTLR_EL1 Selected Error
Record
Control
Register

0b11 0b000 0b0101 0b0100 0b010 ERXSTATUS_EL1 Selected Error
Record
Primary Status
Register

0b11 0b000 0b0101 0b0100 0b011 ERXADDR_EL1 Selected Error
Record
Address
Register

0b11 0b000 0b0101 0b0100 0b100 ERXPFGF_EL1 Selected
Pseudo-fault
Generation
Feature
register

0b11 0b000 0b0101 0b0100 0b101 ERXPFGCTL_EL1 Selected
Pseudo-fault
Generation
Control
register

0b11 0b000 0b0101 0b0100 0b110 ERXPFGCDN_EL1 Selected
Pseudo-fault
Generation
Countdown
register

0b11 0b000 0b0101 0b0101 0b000 ERXMISC0_EL1 Selected Error
Record
Miscellaneous
Register 0

0b11 0b000 0b0101 0b0101 0b001 ERXMISC1_EL1 Selected Error
Record
Miscellaneous
Register 1

0b11 0b000 0b0101 0b0101 0b010 ERXMISC2_EL1 Selected Error
Record
Miscellaneous
Register 2

0b11 0b000 0b0101 0b0101 0b011 ERXMISC3_EL1 Selected Error
Record
Miscellaneous
Register 3

0b11 0b000 0b0101 0b0110 0b000 TFSR_EL1 Tag Fault
Status
Register (EL1)

0b11 0b000 0b0101 0b0110 0b001 TFSRE0_EL1 Tag Fault
Status
Register
(EL0).

System Register index by instruction and encoding

Page 1499

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b0110 0b0000 0b000 FAR_EL1 Fault Address
Register (EL1)

0b11 0b000 0b0111 0b0100 0b000 PAR_EL1 Physical
Address
Register

0b11 0b000 0b1001 0b1001 0b000 PMSCR_EL1 Statistical
Profiling
Control
Register (EL1)

0b11 0b000 0b1001 0b1001 0b001 PMSNEVFR_EL1 Sampling
Inverted Event
Filter Register

0b11 0b000 0b1001 0b1001 0b010 PMSICR_EL1 Sampling
Interval
Counter
Register

0b11 0b000 0b1001 0b1001 0b011 PMSIRR_EL1 Sampling
Interval
Reload
Register

0b11 0b000 0b1001 0b1001 0b100 PMSFCR_EL1 Sampling
Filter Control
Register

0b11 0b000 0b1001 0b1001 0b101 PMSEVFR_EL1 Sampling
Event Filter
Register

0b11 0b000 0b1001 0b1001 0b110 PMSLATFR_EL1 Sampling
Latency Filter
Register

0b11 0b000 0b1001 0b1001 0b111 PMSIDR_EL1 Sampling
Profiling ID
Register

0b11 0b000 0b1001 0b1010 0b000 PMBLIMITR_EL1 Profiling
Buffer Limit
Address
Register

0b11 0b000 0b1001 0b1010 0b001 PMBPTR_EL1 Profiling
Buffer Write
Pointer
Register

0b11 0b000 0b1001 0b1010 0b011 PMBSR_EL1 Profiling
Buffer Status/
syndrome
Register

0b11 0b000 0b1001 0b1010 0b111 PMBIDR_EL1 Profiling
Buffer ID
Register

0b11 0b000 0b1001 0b1110 0b001 PMINTENSET_EL1 Performance
Monitors
Interrupt
Enable Set
register

0b11 0b000 0b1001 0b1110 0b010 PMINTENCLR_EL1 Performance
Monitors
Interrupt
Enable Clear
register

0b11 0b000 0b1001 0b1110 0b110 PMMIR_EL1 Performance
Monitors
Machine
Identification
Register

System Register index by instruction and encoding

Page 1500

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1010 0b0010 0b000 MAIR_EL1 Memory
Attribute
Indirection
Register (EL1)

0b11 0b000 0b1010 0b0011 0b000 AMAIR_EL1 Auxiliary
Memory
Attribute
Indirection
Register (EL1)

0b11 0b000 0b1010 0b0100 0b000 LORSA_EL1 LORegion
Start Address
(EL1)

0b11 0b000 0b1010 0b0100 0b001 LOREA_EL1 LORegion End
Address (EL1)

0b11 0b000 0b1010 0b0100 0b010 LORN_EL1 LORegion
Number (EL1)

0b11 0b000 0b1010 0b0100 0b011 LORC_EL1 LORegion
Control (EL1)

0b11 0b000 0b1010 0b0100 0b100 MPAMIDR_EL1 MPAM ID
Register (EL1)

0b11 0b000 0b1010 0b0100 0b111 LORID_EL1 LORegionID
(EL1)

0b11 0b000 0b1010 0b0101 0b000 MPAM1_EL1 MPAM1
Register (EL1)

0b11 0b000 0b1010 0b0101 0b001 MPAM0_EL1 MPAM0
Register (EL1)

0b11 0b000 0b1100 0b0000 0b000 VBAR_EL1 Vector Base
Address
Register (EL1)

0b11 0b000 0b1100 0b0000 0b001 RVBAR_EL1 Reset Vector
Base Address
Register (if
EL2 and EL3
not
implemented)

0b11 0b000 0b1100 0b0000 0b010 RMR_EL1 Reset
Management
Register (EL1)

0b11 0b000 0b1100 0b0001 0b000 ISR_EL1 Interrupt
Status
Register

0b11 0b000 0b1100 0b0001 0b001 DISR_EL1 Deferred
Interrupt
Status
Register

0b11 0b000 0b1100 0b1000 0b000 ICC_IAR0_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 0

0b11 0b000 0b1100 0b1000 0b001 ICC_EOIR0_EL1 Interrupt
Controller End
Of Interrupt
Register 0

0b11 0b000 0b1100 0b1000 0b010 ICC_HPPIR0_EL1 Interrupt
Controller
Highest
Priority
Pending
Interrupt
Register 0

System Register index by instruction and encoding

Page 1501

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1100 0b1000 0b011 ICC_BPR0_EL1 Interrupt
Controller
Binary Point
Register 0

0b11 0b000 0b1100 0b1000 0b1:n[1:0] ICC_AP0R<n>_EL1 Interrupt
Controller
Active
Priorities
Group 0
Registers

0b11 0b000 0b1100 0b1001 0b0:n[1:0] ICC_AP1R<n>_EL1 Interrupt
Controller
Active
Priorities
Group 1
Registers

0b11 0b000 0b1100 0b1011 0b001 ICC_DIR_EL1 Interrupt
Controller
Deactivate
Interrupt
Register

0b11 0b000 0b1100 0b1011 0b011 ICC_RPR_EL1 Interrupt
Controller
Running
Priority
Register

0b11 0b000 0b1100 0b1011 0b101 ICC_SGI1R_EL1 Interrupt
Controller
Software
Generated
Interrupt
Group 1
Register

0b11 0b000 0b1100 0b1011 0b110 ICC_ASGI1R_EL1 Interrupt
Controller
Alias Software
Generated
Interrupt
Group 1
Register

0b11 0b000 0b1100 0b1011 0b111 ICC_SGI0R_EL1 Interrupt
Controller
Software
Generated
Interrupt
Group 0
Register

0b11 0b000 0b1100 0b1100 0b000 ICC_IAR1_EL1 Interrupt
Controller
Interrupt
Acknowledge
Register 1

0b11 0b000 0b1100 0b1100 0b001 ICC_EOIR1_EL1 Interrupt
Controller End
Of Interrupt
Register 1

0b11 0b000 0b1100 0b1100 0b010 ICC_HPPIR1_EL1 Interrupt
Controller
Highest
Priority
Pending
Interrupt
Register 1

System Register index by instruction and encoding

Page 1502

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b000 0b1100 0b1100 0b011 ICC_BPR1_EL1 Interrupt
Controller
Binary Point
Register 1

0b11 0b000 0b1100 0b1100 0b100 ICC_CTLR_EL1 Interrupt
Controller
Control
Register (EL1)

0b11 0b000 0b1100 0b1100 0b101 ICC_SRE_EL1 Interrupt
Controller
System
Register
Enable
register (EL1)

0b11 0b000 0b1100 0b1100 0b110 ICC_IGRPEN0_EL1 Interrupt
Controller
Interrupt
Group 0
Enable
register

0b11 0b000 0b1100 0b1100 0b111 ICC_IGRPEN1_EL1 Interrupt
Controller
Interrupt
Group 1
Enable
register

0b11 0b000 0b1101 0b0000 0b001 CONTEXTIDR_EL1 Context ID
Register (EL1)

0b11 0b000 0b1101 0b0000 0b100 TPIDR_EL1 EL1 Software
Thread ID
Register

0b11 0b000 0b1101 0b0000 0b101 ACCDATA_EL1 Accelerator
Data

0b11 0b000 0b1101 0b0000 0b111 SCXTNUM_EL1 EL1 Read/
Write Software
Context
Number

0b11 0b000 0b1110 0b0001 0b000 CNTKCTL_EL1 Counter-timer
Kernel Control
register

0b11 0b001 0b0000 0b0000 0b000 CCSIDR_EL1 Current Cache
Size ID
Register

0b11 0b001 0b0000 0b0000 0b001 CLIDR_EL1 Cache Level
ID Register

0b11 0b001 0b0000 0b0000 0b010 CCSIDR2_EL1 Current Cache
Size ID
Register 2

0b11 0b001 0b0000 0b0000 0b100 GMID_EL1 Multiple tag
transfer ID
register

0b11 0b001 0b0000 0b0000 0b111 AIDR_EL1 Auxiliary ID
Register

0b11 0b010 0b0000 0b0000 0b000 CSSELR_EL1 Cache Size
Selection
Register

0b11 0b011 0b0000 0b0000 0b001 CTR_EL0 Cache Type
Register

0b11 0b011 0b0000 0b0000 0b111 DCZID_EL0 Data Cache
Zero ID
register

System Register index by instruction and encoding

Page 1503

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b011 0b0010 0b0100 0b000 RNDR Random
Number

0b11 0b011 0b0010 0b0100 0b001 RNDRRS Reseeded
Random
Number

0b11 0b011 0b0100 0b0010 0b000 NZCV Condition
Flags

0b11 0b011 0b0100 0b0010 0b001 DAIF Interrupt
Mask Bits

0b11 0b011 0b0100 0b0010 0b101 DIT Data
Independent
Timing

0b00 0b011 0b0100 - 0b010 DIT Data
Independent
Timing

0b11 0b011 0b0100 0b0010 0b110 SSBS Speculative
Store Bypass
Safe

0b00 0b011 0b0100 - 0b001 SSBS Speculative
Store Bypass
Safe

0b11 0b011 0b0100 0b0010 0b111 TCO Tag Check
Override

0b00 0b011 0b0100 - 0b100 TCO Tag Check
Override

0b11 0b011 0b0100 0b0100 0b000 FPCR Floating-point
Control
Register

0b11 0b011 0b0100 0b0100 0b001 FPSR Floating-point
Status
Register

0b11 0b011 0b0100 0b0101 0b000 DSPSR_EL0 Debug Saved
Program
Status
Register

0b11 0b011 0b0100 0b0101 0b001 DLR_EL0 Debug Link
Register

0b11 0b011 0b1001 0b1100 0b000 PMCR_EL0 Performance
Monitors
Control
Register

0b11 0b011 0b1001 0b1100 0b001 PMCNTENSET_EL0 Performance
Monitors
Count Enable
Set register

0b11 0b011 0b1001 0b1100 0b010 PMCNTENCLR_EL0 Performance
Monitors
Count Enable
Clear register

0b11 0b011 0b1001 0b1100 0b011 PMOVSCLR_EL0 Performance
Monitors
Overflow Flag
Status Clear
Register

0b11 0b011 0b1001 0b1100 0b100 PMSWINC_EL0 Performance
Monitors
Software
Increment
register

0b11 0b011 0b1001 0b1100 0b101 PMSELR_EL0 Performance
Monitors

System Register index by instruction and encoding

Page 1504

Register selectors
op0 op1 CRn CRm op2 Name Description

Event Counter
Selection
Register

0b11 0b011 0b1001 0b1100 0b110 PMCEID0_EL0 Performance
Monitors
Common
Event
Identification
register 0

0b11 0b011 0b1001 0b1100 0b111 PMCEID1_EL0 Performance
Monitors
Common
Event
Identification
register 1

0b11 0b011 0b1001 0b1101 0b000 PMCCNTR_EL0 Performance
Monitors
Cycle Count
Register

0b11 0b011 0b1001 0b1101 0b001 PMXEVTYPER_EL0 Performance
Monitors
Selected Event
Type Register

0b11 0b011 0b1001 0b1101 0b010 PMXEVCNTR_EL0 Performance
Monitors
Selected Event
Count Register

0b11 0b011 0b1001 0b1110 0b000 PMUSERENR_EL0 Performance
Monitors User
Enable
Register

0b11 0b011 0b1001 0b1110 0b011 PMOVSSET_EL0 Performance
Monitors
Overflow Flag
Status Set
register

0b11 0b011 0b1101 0b0000 0b010 TPIDR_EL0 EL0 Read/
Write Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b011 TPIDRRO_EL0 EL0 Read-Only
Software
Thread ID
Register

0b11 0b011 0b1101 0b0000 0b111 SCXTNUM_EL0 EL0 Read/
Write Software
Context
Number

0b11 0b011 0b1101 0b0010 0b000 AMCR_EL0 Activity
Monitors
Control
Register

0b11 0b011 0b1101 0b0010 0b001 AMCFGR_EL0 Activity
Monitors
Configuration
Register

0b11 0b011 0b1101 0b0010 0b010 AMCGCR_EL0 Activity
Monitors
Counter Group
Configuration
Register

0b11 0b011 0b1101 0b0010 0b011 AMUSERENR_EL0 Activity
Monitors User

System Register index by instruction and encoding

Page 1505

Register selectors
op0 op1 CRn CRm op2 Name Description

Enable
Register

0b11 0b011 0b1101 0b0010 0b100 AMCNTENCLR0_EL0 Activity
Monitors
Count Enable
Clear Register
0

0b11 0b011 0b1101 0b0010 0b101 AMCNTENSET0_EL0 Activity
Monitors
Count Enable
Set Register 0

0b11 0b011 0b1101 0b0010 0b110 AMCG1IDR_EL0 Activity
Monitors
Counter Group
1
Identification
Register

0b11 0b011 0b1101 0b0011 0b000 AMCNTENCLR1_EL0 Activity
Monitors
Count Enable
Clear Register
1

0b11 0b011 0b1101 0b0011 0b001 AMCNTENSET1_EL0 Activity
Monitors
Count Enable
Set Register 1

0b11 0b011 0b1101 0b010:n[3] n[2:0] AMEVCNTR0<n>_EL0 Activity
Monitors
Event Counter
Registers 0

0b11 0b011 0b1101 0b011:n[3] n[2:0] AMEVTYPER0<n>_EL0 Activity
Monitors
Event Type
Registers 0

0b11 0b011 0b1101 0b110:n[3] n[2:0] AMEVCNTR1<n>_EL0 Activity
Monitors
Event Counter
Registers 1

0b11 0b011 0b1101 0b111:n[3] n[2:0] AMEVTYPER1<n>_EL0 Activity
Monitors
Event Type
Registers 1

0b11 0b011 0b1110 0b0000 0b000 CNTFRQ_EL0 Counter-timer
Frequency
register

0b11 0b011 0b1110 0b0000 0b001 CNTPCT_EL0 Counter-timer
Physical Count
register

0b11 0b011 0b1110 0b0000 0b010 CNTVCT_EL0 Counter-timer
Virtual Count
register

0b11 0b011 0b1110 0b0000 0b101 CNTPCTSS_EL0 Counter-timer
Self-
Synchronized
Physical Count
register

0b11 0b011 0b1110 0b0000 0b110 CNTVCTSS_EL0 Counter-timer
Self-
Synchronized
Virtual Count
register

0b11 0b011 0b1110 0b0010 0b000 CNTP_TVAL_EL0 Counter-timer
Physical Timer

System Register index by instruction and encoding

Page 1506

Register selectors
op0 op1 CRn CRm op2 Name Description

TimerValue
register

0b11 0b011 0b1110 0b0010 0b001 CNTP_CTL_EL0 Counter-timer
Physical Timer
Control
register

0b11 0b011 0b1110 0b0010 0b010 CNTP_CVAL_EL0 Counter-timer
Physical Timer
CompareValue
register

0b11 0b011 0b1110 0b0011 0b000 CNTV_TVAL_EL0 Counter-timer
Virtual Timer
TimerValue
register

0b11 0b011 0b1110 0b0011 0b001 CNTV_CTL_EL0 Counter-timer
Virtual Timer
Control
register

0b11 0b011 0b1110 0b0011 0b010 CNTV_CVAL_EL0 Counter-timer
Virtual Timer
CompareValue
register

0b11 0b011 0b1110 0b10:n[4:3] n[2:0] PMEVCNTR<n>_EL0 Performance
Monitors
Event Count
Registers

0b11 0b011 0b1110 0b1111 0b111 PMCCFILTR_EL0 Performance
Monitors
Cycle Count
Filter Register

0b11 0b011 0b1110 0b11:n[4:3] n[2:0] PMEVTYPER<n>_EL0 Performance
Monitors
Event Type
Registers

0b11 0b100 0b0000 0b0000 0b000 VPIDR_EL2 Virtualization
Processor ID
Register

0b11 0b100 0b0000 0b0000 0b101 VMPIDR_EL2 Virtualization
Multiprocessor
ID Register

0b11 0b100 0b0001 0b0000 0b000 SCTLR_EL2 System
Control
Register (EL2)

0b11 0b100 0b0001 0b0000 0b001 ACTLR_EL2 Auxiliary
Control
Register (EL2)

0b11 0b100 0b0001 0b0001 0b000 HCR_EL2 Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0001 0b001 MDCR_EL2 Monitor
Debug
Configuration
Register (EL2)

0b11 0b100 0b0001 0b0001 0b010 CPTR_EL2 Architectural
Feature Trap
Register (EL2)

0b11 0b100 0b0001 0b0001 0b011 HSTR_EL2 Hypervisor
System Trap
Register

0b11 0b100 0b0001 0b0001 0b100 HFGRTR_EL2 Hypervisor
Fine-Grained

System Register index by instruction and encoding

Page 1507

Register selectors
op0 op1 CRn CRm op2 Name Description

Read Trap
Register

0b11 0b100 0b0001 0b0001 0b101 HFGWTR_EL2 Hypervisor
Fine-Grained
Write Trap
Register

0b11 0b100 0b0001 0b0001 0b110 HFGITR_EL2 Hypervisor
Fine-Grained
Instruction
Trap Register

0b11 0b100 0b0001 0b0001 0b111 HACR_EL2 Hypervisor
Auxiliary
Control
Register

0b11 0b100 0b0001 0b0010 0b000 ZCR_EL2 SVE Control
Register (for
EL2)

0b11 0b100 0b0001 0b0010 0b001 TRFCR_EL2 Trace Filter
Control
Register (EL2)

0b11 0b100 0b0001 0b0010 0b010 HCRX_EL2 Extended
Hypervisor
Configuration
Register

0b11 0b100 0b0001 0b0011 0b001 SDER32_EL2 AArch32
Secure Debug
Enable
Register

0b11 0b100 0b0010 0b0000 0b000 TTBR0_EL2 Translation
Table Base
Register 0
(EL2)

0b11 0b100 0b0010 0b0000 0b001 TTBR1_EL2 Translation
Table Base
Register 1
(EL2)

0b11 0b100 0b0010 0b0000 0b010 TCR_EL2 Translation
Control
Register (EL2)

0b11 0b100 0b0010 0b0001 0b000 VTTBR_EL2 Virtualization
Translation
Table Base
Register

0b11 0b100 0b0010 0b0001 0b010 VTCR_EL2 Virtualization
Translation
Control
Register

0b11 0b100 0b0010 0b0010 0b000 VNCR_EL2 Virtual Nested
Control
Register

0b11 0b100 0b0010 0b0110 0b000 VSTTBR_EL2 Virtualization
Secure
Translation
Table Base
Register

0b11 0b100 0b0010 0b0110 0b010 VSTCR_EL2 Virtualization
Secure
Translation
Control
Register

0b11 0b100 0b0011 0b0000 0b000 DACR32_EL2 Domain
Access Control
Register

System Register index by instruction and encoding

Page 1508

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b0011 0b0001 0b100 HDFGRTR_EL2 Hypervisor
Debug Fine-
Grained Read
Trap Register

0b11 0b100 0b0011 0b0001 0b101 HDFGWTR_EL2 Hypervisor
Debug Fine-
Grained Write
Trap Register

0b11 0b100 0b0011 0b0001 0b110 HAFGRTR_EL2 Hypervisor
Activity
Monitors Fine-
Grained Read
Trap Register

0b11 0b100 0b0100 0b0000 0b000 SPSR_EL2 Saved
Program
Status
Register (EL2)

0b11 0b100 0b0100 0b0000 0b001 ELR_EL2 Exception Link
Register (EL2)

0b11 0b100 0b0100 0b0001 0b000 SP_EL1 Stack Pointer
(EL1)

0b11 0b100 0b0100 0b0011 0b000 SPSR_irq Saved
Program
Status
Register (IRQ
mode)

0b11 0b100 0b0100 0b0011 0b001 SPSR_abt Saved
Program
Status
Register
(Abort mode)

0b11 0b100 0b0100 0b0011 0b010 SPSR_und Saved
Program
Status
Register
(Undefined
mode)

0b11 0b100 0b0100 0b0011 0b011 SPSR_fiq Saved
Program
Status
Register (FIQ
mode)

0b11 0b100 0b0101 0b0000 0b001 IFSR32_EL2 Instruction
Fault Status
Register (EL2)

0b11 0b100 0b0101 0b0001 0b000 AFSR0_EL2 Auxiliary Fault
Status
Register 0
(EL2)

0b11 0b100 0b0101 0b0001 0b001 AFSR1_EL2 Auxiliary Fault
Status
Register 1
(EL2)

0b11 0b100 0b0101 0b0010 0b000 ESR_EL2 Exception
Syndrome
Register (EL2)

0b11 0b100 0b0101 0b0010 0b011 VSESR_EL2 Virtual SError
Exception
Syndrome
Register

0b11 0b100 0b0101 0b0011 0b000 FPEXC32_EL2 Floating-Point
Exception

System Register index by instruction and encoding

Page 1509

Register selectors
op0 op1 CRn CRm op2 Name Description

Control
register

0b11 0b100 0b0101 0b0110 0b000 TFSR_EL2 Tag Fault
Status
Register (EL2)

0b11 0b100 0b0110 0b0000 0b000 FAR_EL2 Fault Address
Register (EL2)

0b11 0b100 0b0110 0b0000 0b100 HPFAR_EL2 Hypervisor IPA
Fault Address
Register

0b11 0b100 0b1001 0b1001 0b000 PMSCR_EL2 Statistical
Profiling
Control
Register (EL2)

0b11 0b100 0b1010 0b0010 0b000 MAIR_EL2 Memory
Attribute
Indirection
Register (EL2)

0b11 0b100 0b1010 0b0011 0b000 AMAIR_EL2 Auxiliary
Memory
Attribute
Indirection
Register (EL2)

0b11 0b100 0b1010 0b0100 0b000 MPAMHCR_EL2 MPAM
Hypervisor
Control
Register (EL2)

0b11 0b100 0b1010 0b0100 0b001 MPAMVPMV_EL2 MPAM Virtual
Partition
Mapping Valid
Register

0b11 0b100 0b1010 0b0101 0b000 MPAM2_EL2 MPAM2
Register (EL2)

0b11 0b100 0b1010 0b0110 0b000 MPAMVPM0_EL2 MPAM Virtual
PARTID
Mapping
Register 0

0b11 0b100 0b1010 0b0110 0b001 MPAMVPM1_EL2 MPAM Virtual
PARTID
Mapping
Register 1

0b11 0b100 0b1010 0b0110 0b010 MPAMVPM2_EL2 MPAM Virtual
PARTID
Mapping
Register 2

0b11 0b100 0b1010 0b0110 0b011 MPAMVPM3_EL2 MPAM Virtual
PARTID
Mapping
Register 3

0b11 0b100 0b1010 0b0110 0b100 MPAMVPM4_EL2 MPAM Virtual
PARTID
Mapping
Register 4

0b11 0b100 0b1010 0b0110 0b101 MPAMVPM5_EL2 MPAM Virtual
PARTID
Mapping
Register 5

0b11 0b100 0b1010 0b0110 0b110 MPAMVPM6_EL2 MPAM Virtual
PARTID
Mapping
Register 6

System Register index by instruction and encoding

Page 1510

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1010 0b0110 0b111 MPAMVPM7_EL2 MPAM Virtual
PARTID
Mapping
Register 7

0b11 0b100 0b1100 0b0000 0b000 VBAR_EL2 Vector Base
Address
Register (EL2)

0b11 0b100 0b1100 0b0000 0b001 RVBAR_EL2 Reset Vector
Base Address
Register (if
EL3 not
implemented)

0b11 0b100 0b1100 0b0000 0b010 RMR_EL2 Reset
Management
Register (EL2)

0b11 0b100 0b1100 0b0001 0b001 VDISR_EL2 Virtual
Deferred
Interrupt
Status
Register

0b11 0b100 0b1100 0b1000 0b0:n[1:0] ICH_AP0R<n>_EL2 Interrupt
Controller Hyp
Active
Priorities
Group 0
Registers

0b11 0b100 0b1100 0b1001 0b0:n[1:0] ICH_AP1R<n>_EL2 Interrupt
Controller Hyp
Active
Priorities
Group 1
Registers

0b11 0b100 0b1100 0b1001 0b101 ICC_SRE_EL2 Interrupt
Controller
System
Register
Enable
register (EL2)

0b11 0b100 0b1100 0b1011 0b000 ICH_HCR_EL2 Interrupt
Controller Hyp
Control
Register

0b11 0b100 0b1100 0b1011 0b001 ICH_VTR_EL2 Interrupt
Controller
VGIC Type
Register

0b11 0b100 0b1100 0b1011 0b010 ICH_MISR_EL2 Interrupt
Controller
Maintenance
Interrupt State
Register

0b11 0b100 0b1100 0b1011 0b011 ICH_EISR_EL2 Interrupt
Controller End
of Interrupt
Status
Register

0b11 0b100 0b1100 0b1011 0b101 ICH_ELRSR_EL2 Interrupt
Controller
Empty List
Register
Status
Register

System Register index by instruction and encoding

Page 1511

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1100 0b1011 0b111 ICH_VMCR_EL2 Interrupt
Controller
Virtual
Machine
Control
Register

0b11 0b100 0b1100 0b110:n[3] n[2:0] ICH_LR<n>_EL2 Interrupt
Controller List
Registers

0b11 0b100 0b1101 0b0000 0b001 CONTEXTIDR_EL2 Context ID
Register (EL2)

0b11 0b100 0b1101 0b0000 0b010 TPIDR_EL2 EL2 Software
Thread ID
Register

0b11 0b100 0b1101 0b0000 0b111 SCXTNUM_EL2 EL2 Read/
Write Software
Context
Number

0b11 0b100 0b1101 0b100:n[3] n[2:0] AMEVCNTVOFF0<n>_EL2 Activity
Monitors
Event Counter
Virtual Offset
Registers 0

0b11 0b100 0b1101 0b101:n[3] n[2:0] AMEVCNTVOFF1<n>_EL2 Activity
Monitors
Event Counter
Virtual Offset
Registers 1

0b11 0b100 0b1110 0b0000 0b011 CNTVOFF_EL2 Counter-timer
Virtual Offset
register

0b11 0b100 0b1110 0b0000 0b110 CNTPOFF_EL2 Counter-timer
Physical Offset
register

0b11 0b100 0b1110 0b0001 0b000 CNTHCTL_EL2 Counter-timer
Hypervisor
Control
register

0b11 0b100 0b1110 0b0010 0b000 CNTHP_TVAL_EL2 Counter-timer
Physical Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0010 0b001 CNTHP_CTL_EL2 Counter-timer
Hypervisor
Physical Timer
Control
register

0b11 0b100 0b1110 0b0010 0b010 CNTHP_CVAL_EL2 Counter-timer
Physical Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0011 0b000 CNTHV_TVAL_EL2 Counter-timer
Virtual Timer
TimerValue
Register (EL2)

0b11 0b100 0b1110 0b0011 0b001 CNTHV_CTL_EL2 Counter-timer
Virtual Timer
Control
register (EL2)

0b11 0b100 0b1110 0b0011 0b010 CNTHV_CVAL_EL2 Counter-timer
Virtual Timer
CompareValue
register (EL2)

System Register index by instruction and encoding

Page 1512

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b100 0b1110 0b0100 0b000 CNTHVS_TVAL_EL2 Counter-timer
Secure Virtual
Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0100 0b001 CNTHVS_CTL_EL2 Counter-timer
Secure Virtual
Timer Control
register (EL2)

0b11 0b100 0b1110 0b0100 0b010 CNTHVS_CVAL_EL2 Counter-timer
Secure Virtual
Timer
CompareValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b000 CNTHPS_TVAL_EL2 Counter-timer
Secure
Physical Timer
TimerValue
register (EL2)

0b11 0b100 0b1110 0b0101 0b001 CNTHPS_CTL_EL2 Counter-timer
Secure
Physical Timer
Control
register (EL2)

0b11 0b100 0b1110 0b0101 0b010 CNTHPS_CVAL_EL2 Counter-timer
Secure
Physical Timer
CompareValue
register (EL2)

0b11 0b110 0b0001 0b0000 0b000 SCTLR_EL3 System
Control
Register (EL3)

0b11 0b110 0b0001 0b0000 0b001 ACTLR_EL3 Auxiliary
Control
Register (EL3)

0b11 0b110 0b0001 0b0001 0b000 SCR_EL3 Secure
Configuration
Register

0b11 0b110 0b0001 0b0001 0b001 SDER32_EL3 AArch32
Secure Debug
Enable
Register

0b11 0b110 0b0001 0b0001 0b010 CPTR_EL3 Architectural
Feature Trap
Register (EL3)

0b11 0b110 0b0001 0b0010 0b000 ZCR_EL3 SVE Control
Register (for
EL3)

0b11 0b110 0b0001 0b0011 0b001 MDCR_EL3 Monitor
Debug
Configuration
Register (EL3)

0b11 0b110 0b0010 0b0000 0b000 TTBR0_EL3 Translation
Table Base
Register 0
(EL3)

0b11 0b110 0b0010 0b0000 0b010 TCR_EL3 Translation
Control
Register (EL3)

0b11 0b110 0b0100 0b0000 0b000 SPSR_EL3 Saved
Program
Status
Register (EL3)

System Register index by instruction and encoding

Page 1513

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b110 0b0100 0b0000 0b001 ELR_EL3 Exception Link
Register (EL3)

0b11 0b110 0b0100 0b0001 0b000 SP_EL2 Stack Pointer
(EL2)

0b11 0b110 0b0101 0b0001 0b000 AFSR0_EL3 Auxiliary Fault
Status
Register 0
(EL3)

0b11 0b110 0b0101 0b0001 0b001 AFSR1_EL3 Auxiliary Fault
Status
Register 1
(EL3)

0b11 0b110 0b0101 0b0010 0b000 ESR_EL3 Exception
Syndrome
Register (EL3)

0b11 0b110 0b0101 0b0110 0b000 TFSR_EL3 Tag Fault
Status
Register (EL3)

0b11 0b110 0b0110 0b0000 0b000 FAR_EL3 Fault Address
Register (EL3)

0b11 0b110 0b1010 0b0010 0b000 MAIR_EL3 Memory
Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0011 0b000 AMAIR_EL3 Auxiliary
Memory
Attribute
Indirection
Register (EL3)

0b11 0b110 0b1010 0b0101 0b000 MPAM3_EL3 MPAM3
Register (EL3)

0b11 0b110 0b1100 0b0000 0b000 VBAR_EL3 Vector Base
Address
Register (EL3)

0b11 0b110 0b1100 0b0000 0b001 RVBAR_EL3 Reset Vector
Base Address
Register (if
EL3
implemented)

0b11 0b110 0b1100 0b0000 0b010 RMR_EL3 Reset
Management
Register (EL3)

0b11 0b110 0b1100 0b1100 0b100 ICC_CTLR_EL3 Interrupt
Controller
Control
Register (EL3)

0b11 0b110 0b1100 0b1100 0b101 ICC_SRE_EL3 Interrupt
Controller
System
Register
Enable
register (EL3)

0b11 0b110 0b1100 0b1100 0b111 ICC_IGRPEN1_EL3 Interrupt
Controller
Interrupt
Group 1
Enable
register (EL3)

0b11 0b110 0b1101 0b0000 0b010 TPIDR_EL3 EL3 Software
Thread ID
Register

System Register index by instruction and encoding

Page 1514

Register selectors
op0 op1 CRn CRm op2 Name Description

0b11 0b110 0b1101 0b0000 0b111 SCXTNUM_EL3 EL3 Read/
Write Software
Context
Number

0b11 0b111 0b1110 0b0010 0b000 CNTPS_TVAL_EL1 Counter-timer
Physical
Secure Timer
TimerValue
register

0b11 0b111 0b1110 0b0010 0b001 CNTPS_CTL_EL1 Counter-timer
Physical
Secure Timer
Control
register

0b11 0b111 0b1110 0b0010 0b010 CNTPS_CVAL_EL1 Counter-timer
Physical
Secure Timer
CompareValue
register

Accessed using TLBI:
Register selectors

op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0001 0b000 TLBI VMALLE1OS TLB Invalidate by
VMID, All at stage 1,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b000 TLBI
VMALLE1OSNXS

TLB Invalidate by
VMID, All at stage 1,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0001 0b001 TLBI VAE1OS TLB Invalidate by VA,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b001 TLBI VAE1OSNXS TLB Invalidate by VA,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0001 0b010 TLBI ASIDE1OS TLB Invalidate by
ASID, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b010 TLBI ASIDE1OSNXS TLB Invalidate by
ASID, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b011 TLBI VAAE1OS TLB Invalidate by VA,
All ASID, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b011 TLBI VAAE1OSNXS TLB Invalidate by VA,
All ASID, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b101 TLBI VALE1OS TLB Invalidate by VA,
Last level, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0001 0b101 TLBI VALE1OSNXS TLB Invalidate by VA,
Last level, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0001 0b111 TLBI VAALE1OS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Outer Shareable

0b01 0b000 0b1001 0b0001 0b111 TLBI VAALE1OSNXS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Outer Shareable

0b01 0b000 0b1000 0b0010 0b001 TLBI RVAE1IS TLB Range Invalidate
by VA, EL1, Inner
Shareable

System Register index by instruction and encoding

Page 1515

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1001 0b0010 0b001 TLBI RVAE1ISNXS TLB Range Invalidate
by VA, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0010 0b011 TLBI RVAAE1IS TLB Range Invalidate
by VA, All ASID, EL1,
Inner Shareable

0b01 0b000 0b1001 0b0010 0b011 TLBI RVAAE1ISNXS TLB Range Invalidate
by VA, All ASID, EL1,
Inner Shareable

0b01 0b000 0b1000 0b0010 0b101 TLBI RVALE1IS TLB Range Invalidate
by VA, Last level, EL1,
Inner Shareable

0b01 0b000 0b1001 0b0010 0b101 TLBI RVALE1ISNXS TLB Range Invalidate
by VA, Last level, EL1,
Inner Shareable

0b01 0b000 0b1000 0b0010 0b111 TLBI RVAALE1IS TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0010 0b111 TLBI
RVAALE1ISNXS

TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b000 TLBI VMALLE1IS TLB Invalidate by
VMID, All at stage 1,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b000 TLBI
VMALLE1ISNXS

TLB Invalidate by
VMID, All at stage 1,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0011 0b001 TLBI VAE1IS TLB Invalidate by VA,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b001 TLBI VAE1ISNXS TLB Invalidate by VA,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0011 0b010 TLBI ASIDE1IS TLB Invalidate by
ASID, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b010 TLBI ASIDE1ISNXS TLB Invalidate by
ASID, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b011 TLBI VAAE1IS TLB Invalidate by VA,
All ASID, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b011 TLBI VAAE1ISNXS TLB Invalidate by VA,
All ASID, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b101 TLBI VALE1IS TLB Invalidate by VA,
Last level, EL1, Inner
Shareable

0b01 0b000 0b1001 0b0011 0b101 TLBI VALE1ISNXS TLB Invalidate by VA,
Last level, EL1, Inner
Shareable

0b01 0b000 0b1000 0b0011 0b111 TLBI VAALE1IS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Inner Shareable

0b01 0b000 0b1001 0b0011 0b111 TLBI VAALE1ISNXS TLB Invalidate by VA,
All ASID, Last Level,
EL1, Inner Shareable

0b01 0b000 0b1000 0b0101 0b001 TLBI RVAE1OS TLB Range Invalidate
by VA, EL1, Outer
Shareable

System Register index by instruction and encoding

Page 1516

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1001 0b0101 0b001 TLBI RVAE1OSNXS TLB Range Invalidate
by VA, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0101 0b011 TLBI RVAAE1OS TLB Range Invalidate
by VA, All ASID, EL1,
Outer Shareable

0b01 0b000 0b1001 0b0101 0b011 TLBI RVAAE1OSNXS TLB Range Invalidate
by VA, All ASID, EL1,
Outer Shareable

0b01 0b000 0b1000 0b0101 0b101 TLBI RVALE1OS TLB Range Invalidate
by VA, Last level, EL1,
Outer Shareable

0b01 0b000 0b1001 0b0101 0b101 TLBI RVALE1OSNXS TLB Range Invalidate
by VA, Last level, EL1,
Outer Shareable

0b01 0b000 0b1000 0b0101 0b111 TLBI RVAALE1OS TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Outer
Shareable

0b01 0b000 0b1001 0b0101 0b111 TLBI
RVAALE1OSNXS

TLB Range Invalidate
by VA, All ASID, Last
Level, EL1, Outer
Shareable

0b01 0b000 0b1000 0b0110 0b001 TLBI RVAE1 TLB Range Invalidate
by VA, EL1

0b01 0b000 0b1001 0b0110 0b001 TLBI RVAE1NXS TLB Range Invalidate
by VA, EL1

0b01 0b000 0b1000 0b0110 0b011 TLBI RVAAE1 TLB Range Invalidate
by VA, All ASID, EL1

0b01 0b000 0b1001 0b0110 0b011 TLBI RVAAE1NXS TLB Range Invalidate
by VA, All ASID, EL1

0b01 0b000 0b1000 0b0110 0b101 TLBI RVALE1 TLB Range Invalidate
by VA, Last level, EL1

0b01 0b000 0b1001 0b0110 0b101 TLBI RVALE1NXS TLB Range Invalidate
by VA, Last level, EL1

0b01 0b000 0b1000 0b0110 0b111 TLBI RVAALE1 TLB Range Invalidate
by VA, All ASID, Last
level, EL1

0b01 0b000 0b1001 0b0110 0b111 TLBI RVAALE1NXS TLB Range Invalidate
by VA, All ASID, Last
level, EL1

0b01 0b000 0b1000 0b0111 0b000 TLBI VMALLE1 TLB Invalidate by
VMID, All at stage 1,
EL1

0b01 0b000 0b1001 0b0111 0b000 TLBI VMALLE1NXS TLB Invalidate by
VMID, All at stage 1,
EL1

0b01 0b000 0b1000 0b0111 0b001 TLBI VAE1 TLB Invalidate by VA,
EL1

0b01 0b000 0b1001 0b0111 0b001 TLBI VAE1NXS TLB Invalidate by VA,
EL1

0b01 0b000 0b1000 0b0111 0b010 TLBI ASIDE1 TLB Invalidate by
ASID, EL1

0b01 0b000 0b1001 0b0111 0b010 TLBI ASIDE1NXS TLB Invalidate by
ASID, EL1

0b01 0b000 0b1000 0b0111 0b011 TLBI VAAE1 TLB Invalidate by VA,
All ASID, EL1

0b01 0b000 0b1001 0b0111 0b011 TLBI VAAE1NXS TLB Invalidate by VA,
All ASID, EL1

System Register index by instruction and encoding

Page 1517

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b000 0b1000 0b0111 0b101 TLBI VALE1 TLB Invalidate by VA,
Last level, EL1

0b01 0b000 0b1001 0b0111 0b101 TLBI VALE1NXS TLB Invalidate by VA,
Last level, EL1

0b01 0b000 0b1000 0b0111 0b111 TLBI VAALE1 TLB Invalidate by VA,
All ASID, Last level,
EL1

0b01 0b000 0b1001 0b0111 0b111 TLBI VAALE1NXS TLB Invalidate by VA,
All ASID, Last level,
EL1

0b01 0b100 0b1000 0b0000 0b001 TLBI IPAS2E1IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Inner Shareable

0b01 0b100 0b1001 0b0000 0b001 TLBI IPAS2E1ISNXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Inner Shareable

0b01 0b100 0b1000 0b0000 0b010 TLBI RIPAS2E1IS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0000 0b010 TLBI
RIPAS2E1ISNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b101 TLBI IPAS2LE1IS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0000 0b101 TLBI
IPAS2LE1ISNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0000 0b110 TLBI RIPAS2LE1IS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner Shareable

0b01 0b100 0b1001 0b0000 0b110 TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Inner Shareable

0b01 0b100 0b1000 0b0001 0b000 TLBI ALLE2OS TLB Invalidate All,
EL2, Outer Shareable

0b01 0b100 0b1001 0b0001 0b000 TLBI ALLE2OSNXS TLB Invalidate All,
EL2, Outer Shareable

0b01 0b100 0b1000 0b0001 0b001 TLBI VAE2OS TLB Invalidate by VA,
EL2, Outer Shareable

0b01 0b100 0b1001 0b0001 0b001 TLBI VAE2OSNXS TLB Invalidate by VA,
EL2, Outer Shareable

0b01 0b100 0b1000 0b0001 0b100 TLBI ALLE1OS TLB Invalidate All,
EL1, Outer Shareable

0b01 0b100 0b1001 0b0001 0b100 TLBI ALLE1OSNXS TLB Invalidate All,
EL1, Outer Shareable

System Register index by instruction and encoding

Page 1518

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0001 0b101 TLBI VALE2OS TLB Invalidate by VA,
Last level, EL2, Outer
Shareable

0b01 0b100 0b1001 0b0001 0b101 TLBI VALE2OSNXS TLB Invalidate by VA,
Last level, EL2, Outer
Shareable

0b01 0b100 0b1000 0b0001 0b110 TLBI
VMALLS12E1OS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0001 0b110 TLBI
VMALLS12E1OSNXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0010 0b001 TLBI RVAE2IS TLB Range Invalidate
by VA, EL2, Inner
Shareable

0b01 0b100 0b1001 0b0010 0b001 TLBI RVAE2ISNXS TLB Range Invalidate
by VA, EL2, Inner
Shareable

0b01 0b100 0b1000 0b0010 0b101 TLBI RVALE2IS TLB Range Invalidate
by VA, Last level, EL2,
Inner Shareable

0b01 0b100 0b1001 0b0010 0b101 TLBI RVALE2ISNXS TLB Range Invalidate
by VA, Last level, EL2,
Inner Shareable

0b01 0b100 0b1000 0b0011 0b000 TLBI ALLE2IS TLB Invalidate All,
EL2, Inner Shareable

0b01 0b100 0b1001 0b0011 0b000 TLBI ALLE2ISNXS TLB Invalidate All,
EL2, Inner Shareable

0b01 0b100 0b1000 0b0011 0b001 TLBI VAE2IS TLB Invalidate by VA,
EL2, Inner Shareable

0b01 0b100 0b1001 0b0011 0b001 TLBI VAE2ISNXS TLB Invalidate by VA,
EL2, Inner Shareable

0b01 0b100 0b1000 0b0011 0b100 TLBI ALLE1IS TLB Invalidate All,
EL1, Inner Shareable

0b01 0b100 0b1001 0b0011 0b100 TLBI ALLE1ISNXS TLB Invalidate All,
EL1, Inner Shareable

0b01 0b100 0b1000 0b0011 0b101 TLBI VALE2IS TLB Invalidate by VA,
Last level, EL2, Inner
Shareable

0b01 0b100 0b1001 0b0011 0b101 TLBI VALE2ISNXS TLB Invalidate by VA,
Last level, EL2, Inner
Shareable

0b01 0b100 0b1000 0b0011 0b110 TLBI
VMALLS12E1IS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Inner
Shareable

0b01 0b100 0b1001 0b0011 0b110 TLBI
VMALLS12E1ISNXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1, Inner
Shareable

0b01 0b100 0b1000 0b0100 0b000 TLBI IPAS2E1OS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Outer Shareable

0b01 0b100 0b1001 0b0100 0b000 TLBI
IPAS2E1OSNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1,
Outer Shareable

System Register index by instruction and encoding

Page 1519

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0100 0b001 TLBI IPAS2E1 TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1

0b01 0b100 0b1001 0b0100 0b001 TLBI IPAS2E1NXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b010 TLBI RIPAS2E1 TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1

0b01 0b100 0b1001 0b0100 0b010 TLBI RIPAS2E1NXS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1

0b01 0b100 0b1000 0b0100 0b011 TLBI RIPAS2E1OS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0100 0b011 TLBI
RIPAS2E1OSNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b100 TLBI IPAS2LE1OS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Outer
Shareable

0b01 0b100 0b1001 0b0100 0b100 TLBI
IPAS2LE1OSNXS

TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1, Outer
Shareable

0b01 0b100 0b1000 0b0100 0b101 TLBI IPAS2LE1 TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1

0b01 0b100 0b1001 0b0100 0b101 TLBI IPAS2LE1NXS TLB Invalidate by
Intermediate Physical
Address, Stage 2, Last
level, EL1

0b01 0b100 0b1000 0b0100 0b110 TLBI RIPAS2LE1 TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1

0b01 0b100 0b1001 0b0100 0b110 TLBI RIPAS2LE1NXS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1

0b01 0b100 0b1000 0b0100 0b111 TLBI RIPAS2LE1OS TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Outer Shareable

0b01 0b100 0b1001 0b0100 0b111 TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate
by Intermediate
Physical Address,
Stage 2, Last level,
EL1, Outer Shareable

System Register index by instruction and encoding

Page 1520

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b100 0b1000 0b0101 0b001 TLBI RVAE2OS TLB Range Invalidate
by VA, EL2, Outer
Shareable

0b01 0b100 0b1001 0b0101 0b001 TLBI RVAE2OSNXS TLB Range Invalidate
by VA, EL2, Outer
Shareable

0b01 0b100 0b1000 0b0101 0b101 TLBI RVALE2OS TLB Range Invalidate
by VA, Last level, EL2,
Outer Shareable

0b01 0b100 0b1001 0b0101 0b101 TLBI RVALE2OSNXS TLB Range Invalidate
by VA, Last level, EL2,
Outer Shareable

0b01 0b100 0b1000 0b0110 0b001 TLBI RVAE2 TLB Range Invalidate
by VA, EL2

0b01 0b100 0b1001 0b0110 0b001 TLBI RVAE2NXS TLB Range Invalidate
by VA, EL2

0b01 0b100 0b1000 0b0110 0b101 TLBI RVALE2 TLB Range Invalidate
by VA, Last level, EL2

0b01 0b100 0b1001 0b0110 0b101 TLBI RVALE2NXS TLB Range Invalidate
by VA, Last level, EL2

0b01 0b100 0b1000 0b0111 0b000 TLBI ALLE2 TLB Invalidate All, EL2
0b01 0b100 0b1001 0b0111 0b000 TLBI ALLE2NXS TLB Invalidate All, EL2
0b01 0b100 0b1000 0b0111 0b001 TLBI VAE2 TLB Invalidate by VA,

EL2
0b01 0b100 0b1001 0b0111 0b001 TLBI VAE2NXS TLB Invalidate by VA,

EL2
0b01 0b100 0b1000 0b0111 0b100 TLBI ALLE1 TLB Invalidate All, EL1
0b01 0b100 0b1001 0b0111 0b100 TLBI ALLE1NXS TLB Invalidate All, EL1
0b01 0b100 0b1000 0b0111 0b101 TLBI VALE2 TLB Invalidate by VA,

Last level, EL2
0b01 0b100 0b1001 0b0111 0b101 TLBI VALE2NXS TLB Invalidate by VA,

Last level, EL2
0b01 0b100 0b1000 0b0111 0b110 TLBI VMALLS12E1 TLB Invalidate by

VMID, All at Stage 1
and 2, EL1

0b01 0b100 0b1001 0b0111 0b110 TLBI
VMALLS12E1NXS

TLB Invalidate by
VMID, All at Stage 1
and 2, EL1

0b01 0b110 0b1000 0b0001 0b000 TLBI ALLE3OS TLB Invalidate All,
EL3, Outer Shareable

0b01 0b110 0b1001 0b0001 0b000 TLBI ALLE3OSNXS TLB Invalidate All,
EL3, Outer Shareable

0b01 0b110 0b1000 0b0001 0b001 TLBI VAE3OS TLB Invalidate by VA,
EL3, Outer Shareable

0b01 0b110 0b1001 0b0001 0b001 TLBI VAE3OSNXS TLB Invalidate by VA,
EL3, Outer Shareable

0b01 0b110 0b1000 0b0001 0b101 TLBI VALE3OS TLB Invalidate by VA,
Last level, EL3, Outer
Shareable

0b01 0b110 0b1001 0b0001 0b101 TLBI VALE3OSNXS TLB Invalidate by VA,
Last level, EL3, Outer
Shareable

0b01 0b110 0b1000 0b0010 0b001 TLBI RVAE3IS TLB Range Invalidate
by VA, EL3, Inner
Shareable

0b01 0b110 0b1001 0b0010 0b001 TLBI RVAE3ISNXS TLB Range Invalidate
by VA, EL3, Inner
Shareable

System Register index by instruction and encoding

Page 1521

Register selectors
op0 op1 CRn CRm op2 Name Description

0b01 0b110 0b1000 0b0010 0b101 TLBI RVALE3IS TLB Range Invalidate
by VA, Last level, EL3,
Inner Shareable

0b01 0b110 0b1001 0b0010 0b101 TLBI RVALE3ISNXS TLB Range Invalidate
by VA, Last level, EL3,
Inner Shareable

0b01 0b110 0b1000 0b0011 0b000 TLBI ALLE3IS TLB Invalidate All,
EL3, Inner Shareable

0b01 0b110 0b1001 0b0011 0b000 TLBI ALLE3ISNXS TLB Invalidate All,
EL3, Inner Shareable

0b01 0b110 0b1000 0b0011 0b001 TLBI VAE3IS TLB Invalidate by VA,
EL3, Inner Shareable

0b01 0b110 0b1001 0b0011 0b001 TLBI VAE3ISNXS TLB Invalidate by VA,
EL3, Inner Shareable

0b01 0b110 0b1000 0b0011 0b101 TLBI VALE3IS TLB Invalidate by VA,
Last level, EL3, Inner
Shareable

0b01 0b110 0b1001 0b0011 0b101 TLBI VALE3ISNXS TLB Invalidate by VA,
Last level, EL3, Inner
Shareable

0b01 0b110 0b1000 0b0101 0b001 TLBI RVAE3OS TLB Range Invalidate
by VA, EL3, Outer
Shareable

0b01 0b110 0b1001 0b0101 0b001 TLBI RVAE3OSNXS TLB Range Invalidate
by VA, EL3, Outer
Shareable

0b01 0b110 0b1000 0b0101 0b101 TLBI RVALE3OS TLB Range Invalidate
by VA, Last level, EL3,
Outer Shareable

0b01 0b110 0b1001 0b0101 0b101 TLBI RVALE3OSNXS TLB Range Invalidate
by VA, Last level, EL3,
Outer Shareable

0b01 0b110 0b1000 0b0110 0b001 TLBI RVAE3 TLB Range Invalidate
by VA, EL3

0b01 0b110 0b1001 0b0110 0b001 TLBI RVAE3NXS TLB Range Invalidate
by VA, EL3

0b01 0b110 0b1000 0b0110 0b101 TLBI RVALE3 TLB Range Invalidate
by VA, Last level, EL3

0b01 0b110 0b1001 0b0110 0b101 TLBI RVALE3NXS TLB Range Invalidate
by VA, Last level, EL3

0b01 0b110 0b1000 0b0111 0b000 TLBI ALLE3 TLB Invalidate All, EL3
0b01 0b110 0b1001 0b0111 0b000 TLBI ALLE3NXS TLB Invalidate All, EL3
0b01 0b110 0b1000 0b0111 0b001 TLBI VAE3 TLB Invalidate by VA,

EL3
0b01 0b110 0b1001 0b0111 0b001 TLBI VAE3NXS TLB Invalidate by VA,

EL3
0b01 0b110 0b1000 0b0111 0b101 TLBI VALE3 TLB Invalidate by VA,

Last level, EL3
0b01 0b110 0b1001 0b0111 0b101 TLBI VALE3NXS TLB Invalidate by VA,

Last level, EL3

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

System Register index by instruction and encoding

Page 1522

(old) htmldiff from- (new)

System Register index by functional group
Below are indexes for registers with the following main functional groups:

• ID
• Memory
• Other
• Exception
• Special
• PSTATE
• Cache
• Address
• TLB
• PMU
• Reset
• Thread
• IMP DEF
• Timer
• Debug
• CTI
• Virt
• Secure
• Float
• Legacy
• GIC
• GICD
• GICR
• GICC
• GICV
• GICH
• GITS
• RAS
• MPAM
• Pointer authentication
• AMU
• GIC ITS registers

In the ID functional group:
Exec state Name Description
AArch32 CCSIDR Current Cache Size ID Register
AArch32 CCSIDR2 Current Cache Size ID Register 2
AArch32 CLIDR Cache Level ID Register
AArch32 CSSELR Cache Size Selection Register
AArch32 CTR Cache Type Register
AArch32 ID_AFR0 Auxiliary Feature Register 0
AArch32 ID_DFR0 Debug Feature Register 0
AArch32 ID_DFR1 Debug Feature Register 1
AArch32 ID_ISAR0 Instruction Set Attribute Register 0
AArch32 ID_ISAR1 Instruction Set Attribute Register 1
AArch32 ID_ISAR2 Instruction Set Attribute Register 2
AArch32 ID_ISAR3 Instruction Set Attribute Register 3
AArch32 ID_ISAR4 Instruction Set Attribute Register 4
AArch32 ID_ISAR5 Instruction Set Attribute Register 5
AArch32 ID_ISAR6 Instruction Set Attribute Register 6
AArch32 ID_MMFR0 Memory Model Feature Register 0
AArch32 ID_MMFR1 Memory Model Feature Register 1
AArch32 ID_MMFR2 Memory Model Feature Register 2
AArch32 ID_MMFR3 Memory Model Feature Register 3
AArch32 ID_MMFR4 Memory Model Feature Register 4
AArch32 ID_MMFR5 Memory Model Feature Register 5
AArch32 ID_PFR0 Processor Feature Register 0

System Register index by functional group

Page 1523

Exec state Name Description
AArch32 ID_PFR1 Processor Feature Register 1
AArch32 ID_PFR2 Processor Feature Register 2
AArch32 MIDR Main ID Register
AArch32 MPIDR Multiprocessor Affinity Register
AArch32 REVIDR Revision ID Register
AArch32 TCMTR TCM Type Register
AArch32 TLBTR TLB Type Register
AArch64 CCSIDR2_EL1 Current Cache Size ID Register 2
AArch64 CCSIDR_EL1 Current Cache Size ID Register
AArch64 CLIDR_EL1 Cache Level ID Register
AArch64 CSSELR_EL1 Cache Size Selection Register
AArch64 CTR_EL0 Cache Type Register
AArch64 DCZID_EL0 Data Cache Zero ID register
AArch64 GMID_EL1 Multiple tag transfer ID register
AArch64 ID_AA64AFR0_EL1 AArch64 Auxiliary Feature Register 0
AArch64 ID_AA64AFR1_EL1 AArch64 Auxiliary Feature Register 1
AArch64 ID_AA64DFR0_EL1 AArch64 Debug Feature Register 0
AArch64 ID_AA64DFR1_EL1 AArch64 Debug Feature Register 1
AArch64 ID_AA64ISAR0_EL1 AArch64 Instruction Set Attribute Register 0
AArch64 ID_AA64ISAR1_EL1 AArch64 Instruction Set Attribute Register 1
AArch64 ID_AA64ISAR2_EL1 AArch64 Instruction Set Attribute Register 2
AArch64 ID_AA64MMFR0_EL1 AArch64 Memory Model Feature Register 0
AArch64 ID_AA64MMFR1_EL1 AArch64 Memory Model Feature Register 1
AArch64 ID_AA64MMFR2_EL1 AArch64 Memory Model Feature Register 2
AArch64 ID_AA64PFR0_EL1 AArch64 Processor Feature Register 0
AArch64 ID_AA64PFR1_EL1 AArch64 Processor Feature Register 1
AArch64 ID_AA64ZFR0_EL1 SVE Feature ID register 0
AArch64 ID_AFR0_EL1 AArch32 Auxiliary Feature Register 0
AArch64 ID_DFR0_EL1 AArch32 Debug Feature Register 0
AArch64 ID_DFR1_EL1 Debug Feature Register 1
AArch64 ID_ISAR0_EL1 AArch32 Instruction Set Attribute Register 0
AArch64 ID_ISAR1_EL1 AArch32 Instruction Set Attribute Register 1
AArch64 ID_ISAR2_EL1 AArch32 Instruction Set Attribute Register 2
AArch64 ID_ISAR3_EL1 AArch32 Instruction Set Attribute Register 3
AArch64 ID_ISAR4_EL1 AArch32 Instruction Set Attribute Register 4
AArch64 ID_ISAR5_EL1 AArch32 Instruction Set Attribute Register 5
AArch64 ID_ISAR6_EL1 AArch32 Instruction Set Attribute Register 6
AArch64 ID_MMFR0_EL1 AArch32 Memory Model Feature Register 0
AArch64 ID_MMFR1_EL1 AArch32 Memory Model Feature Register 1
AArch64 ID_MMFR2_EL1 AArch32 Memory Model Feature Register 2
AArch64 ID_MMFR3_EL1 AArch32 Memory Model Feature Register 3
AArch64 ID_MMFR4_EL1 AArch32 Memory Model Feature Register 4
AArch64 ID_MMFR5_EL1 AArch32 Memory Model Feature Register 5
AArch64 ID_PFR0_EL1 AArch32 Processor Feature Register 0
AArch64 ID_PFR1_EL1 AArch32 Processor Feature Register 1
AArch64 ID_PFR2_EL1 AArch32 Processor Feature Register 2
AArch64 MIDR_EL1 Main ID Register
AArch64 MPAMIDR_EL1 MPAM ID Register (EL1)
AArch64 MPIDR_EL1 Multiprocessor Affinity Register
AArch64 REVIDR_EL1 Revision ID Register
External EDAA32PFR External Debug Auxiliary Processor Feature Register
External EDDFR External Debug Feature Register
External EDPFR External Debug Processor Feature Register
External MIDR_EL1 Main ID Register

In the Memory functional group:
Exec state Name Description
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection Register 1
AArch32 CONTEXTIDR Context ID Register
AArch32 DACR Domain Access Control Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0

System Register index by functional group

Page 1524

Exec state Name Description
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HTCR Hyp Translation Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 MAIR0 Memory Attribute Indirection Register 0
AArch32 MAIR1 Memory Attribute Indirection Register 1
AArch32 NMRR Normal Memory Remap Register
AArch32 PRRR Primary Region Remap Register
AArch32 TTBCR Translation Table Base Control Register
AArch32 TTBCR2 Translation Table Base Control Register 2
AArch32 TTBR0 Translation Table Base Register 0
AArch32 TTBR1 Translation Table Base Register 1
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CONTEXTIDR_EL1 Context ID Register (EL1)
AArch64 CONTEXTIDR_EL2 Context ID Register (EL2)
AArch64 DACR32_EL2 Domain Access Control Register
AArch64 LORC_EL1 LORegion Control (EL1)
AArch64 LOREA_EL1 LORegion End Address (EL1)
AArch64 LORID_EL1 LORegionID (EL1)
AArch64 LORN_EL1 LORegion Number (EL1)
AArch64 LORSA_EL1 LORegion Start Address (EL1)
AArch64 MAIR_EL1 Memory Attribute Indirection Register (EL1)
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MAIR_EL3 Memory Attribute Indirection Register (EL3)
AArch64 TCR_EL1 Translation Control Register (EL1)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TCR_EL3 Translation Control Register (EL3)
AArch64 TTBR0_EL1 Translation Table Base Register 0 (EL1)
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR0_EL3 Translation Table Base Register 0 (EL3)
AArch64 TTBR1_EL1 Translation Table Base Register 1 (EL1)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Other functional group:
Exec state Name Description
AArch32 CPACR Architectural Feature Access Control Register
AArch32 SCTLR System Control Register
AArch64 CPACR_EL1 Architectural Feature Access Control Register
AArch64 SCTLR_EL1 System Control Register (EL1)
AArch64 SCTLR_EL3 System Control Register (EL3)
AArch64 ZCR_EL1 SVE Control Register (for EL1)
AArch64 ZCR_EL2 SVE Control Register (for EL2)
AArch64 ZCR_EL3 SVE Control Register (for EL3)

In the Exception functional group:
Exec state Name Description
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIFSR Auxiliary Instruction Fault Status Register
AArch32 DFAR Data Fault Address Register
AArch32 DFSR Data Fault Status Register
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HDFAR Hyp Data Fault Address Register

System Register index by functional group

Page 1525

Exec state Name Description
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HSR Hyp Syndrome Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 IFAR Instruction Fault Address Register
AArch32 IFSR Instruction Fault Status Register
AArch32 ISR Interrupt Status Register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 VBAR Vector Base Address Register
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 ESR_EL1 Exception Syndrome Register (EL1)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 ESR_EL3 Exception Syndrome Register (EL3)
AArch64 FAR_EL1 Fault Address Register (EL1)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 FAR_EL3 Fault Address Register (EL3)
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 IFSR32_EL2 Instruction Fault Status Register (EL2)
AArch64 ISR_EL1 Interrupt Status Register
AArch64 VBAR_EL1 Vector Base Address Register (EL1)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Special functional group:
Exec state Name Description
AArch32 DLR Debug Link Register
AArch32 DSPSR Debug Saved Program Status Register
AArch32 ELR_hyp Exception Link Register (Hyp mode)
AArch32 SPSR Saved Program Status Register
AArch32 SPSR_abt Saved Program Status Register (Abort mode)
AArch32 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch32 SPSR_hyp Saved Program Status Register (Hyp mode)
AArch32 SPSR_irq Saved Program Status Register (IRQ mode)
AArch32 SPSR_mon Saved Program Status Register (Monitor mode)
AArch32 SPSR_svc Saved Program Status Register (Supervisor mode)
AArch32 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 ELR_EL1 Exception Link Register (EL1)
AArch64 ELR_EL2 Exception Link Register (EL2)
AArch64 ELR_EL3 Exception Link Register (EL3)
AArch64 SPSR_EL1 Saved Program Status Register (EL1)
AArch64 SPSR_EL2 Saved Program Status Register (EL2)
AArch64 SPSR_EL3 Saved Program Status Register (EL3)
AArch64 SPSR_abt Saved Program Status Register (Abort mode)
AArch64 SPSR_fiq Saved Program Status Register (FIQ mode)
AArch64 SPSR_irq Saved Program Status Register (IRQ mode)
AArch64 SPSR_und Saved Program Status Register (Undefined mode)
AArch64 SP_EL0 Stack Pointer (EL0)
AArch64 SP_EL1 Stack Pointer (EL1)
AArch64 SP_EL2 Stack Pointer (EL2)
AArch64 SP_EL3 Stack Pointer (EL3)

In the PSTATE functional group:
Exec state Name Description
AArch32 APSR Application Program Status Register
AArch32 CPSR Current Program Status Register

System Register index by functional group

Page 1526

Exec state Name Description
AArch64 CurrentEL Current Exception Level
AArch64 DAIF Interrupt Mask Bits
AArch64 DIT Data Independent Timing
AArch64 NZCV Condition Flags
AArch64 PAN Privileged Access Never
AArch64 SPSel Stack Pointer Select
AArch64 SSBS Speculative Store Bypass Safe
AArch64 TCO Tag Check Override
AArch64 UAO User Access Override

In the Cache functional group:
Exec state Name Description
AArch32 BPIALL Branch Predictor Invalidate All
AArch32 BPIALLIS Branch Predictor Invalidate All, Inner Shareable
AArch32 BPIMVA Branch Predictor Invalidate by VA
AArch32 DCCIMVAC Data Cache line Clean and Invalidate by VA to PoC
AArch32 DCCISW Data Cache line Clean and Invalidate by Set/Way
AArch32 DCCMVAC Data Cache line Clean by VA to PoC
AArch32 DCCMVAU Data Cache line Clean by VA to PoU
AArch32 DCCSW Data Cache line Clean by Set/Way
AArch32 DCIMVAC Data Cache line Invalidate by VA to PoC
AArch32 DCISW Data Cache line Invalidate by Set/Way
AArch32 ICIALLU Instruction Cache Invalidate All to PoU
AArch32 ICIALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch32 ICIMVAU Instruction Cache line Invalidate by VA to PoU
AArch64 DC CGDSW Clean of Data and Allocation Tags by Set/Way
AArch64 DC CGDVAC Clean of Data and Allocation Tags by VA to PoC
AArch64 DC CGDVADP Clean of Data and Allocation Tags by VA to PoDP
AArch64 DC CGDVAP Clean of Data and Allocation Tags by VA to PoP
AArch64 DC CGSW Clean of Allocation Tags by Set/Way
AArch64 DC CGVAC Clean of Allocation Tags by VA to PoC
AArch64 DC CGVADP Clean of Allocation Tags by VA to PoDP
AArch64 DC CGVAP Clean of Allocation Tags by VA to PoP
AArch64 DC CIGDSW Clean and Invalidate of Data and Allocation Tags by Set/Way
AArch64 DC CIGDVAC Clean and Invalidate of Data and Allocation Tags by VA to PoC
AArch64 DC CIGSW Clean and Invalidate of Allocation Tags by Set/Way
AArch64 DC CIGVAC Clean and Invalidate of Allocation Tags by VA to PoC
AArch64 DC CISW Data or unified Cache line Clean and Invalidate by Set/Way
AArch64 DC CIVAC Data or unified Cache line Clean and Invalidate by VA to PoC
AArch64 DC CSW Data or unified Cache line Clean by Set/Way
AArch64 DC CVAC Data or unified Cache line Clean by VA to PoC
AArch64 DC CVADP Data or unified Cache line Clean by VA to PoDP
AArch64 DC CVAP Data or unified Cache line Clean by VA to PoP
AArch64 DC CVAU Data or unified Cache line Clean by VA to PoU
AArch64 DC GVA Data Cache set Allocation Tag by VA
AArch64 DC GZVA Data Cache set Allocation Tags and Zero by VA
AArch64 DC IGDSW Invalidate of Data and Allocation Tags by Set/Way
AArch64 DC IGDVAC Invalidate of Data and Allocation Tags by VA to PoC
AArch64 DC IGSW Invalidate of Allocation Tags by Set/Way
AArch64 DC IGVAC Invalidate of Allocation Tags by VA to PoC
AArch64 DC ISW Data or unified Cache line Invalidate by Set/Way
AArch64 DC IVAC Data or unified Cache line Invalidate by VA to PoC
AArch64 DC ZVA Data Cache Zero by VA
AArch64 IC IALLU Instruction Cache Invalidate All to PoU
AArch64 IC IALLUIS Instruction Cache Invalidate All to PoU, Inner Shareable
AArch64 IC IVAU Instruction Cache line Invalidate by VA to PoU

In the Address functional group:
Exec state Name Description
AArch32 ATS12NSOPR Address Translate Stages 1 and 2 Non-secure Only PL1 Read

System Register index by functional group

Page 1527

Exec state Name Description
AArch32 ATS12NSOPW Address Translate Stages 1 and 2 Non-secure Only PL1 Write
AArch32 ATS12NSOUR Address Translate Stages 1 and 2 Non-secure Only Unprivileged Read
AArch32 ATS12NSOUW Address Translate Stages 1 and 2 Non-secure Only Unprivileged Write
AArch32 ATS1CPR Address Translate Stage 1 Current state PL1 Read
AArch32 ATS1CPRP Address Translate Stage 1 Current state PL1 Read PAN
AArch32 ATS1CPW Address Translate Stage 1 Current state PL1 Write
AArch32 ATS1CPWP Address Translate Stage 1 Current state PL1 Write PAN
AArch32 ATS1CUR Address Translate Stage 1 Current state Unprivileged Read
AArch32 ATS1CUW Address Translate Stage 1 Current state Unprivileged Write
AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 PAR Physical Address Register
AArch64 AT S12E0R Address Translate Stages 1 and 2 EL0 Read
AArch64 AT S12E0W Address Translate Stages 1 and 2 EL0 Write
AArch64 AT S12E1R Address Translate Stages 1 and 2 EL1 Read
AArch64 AT S12E1W Address Translate Stages 1 and 2 EL1 Write
AArch64 AT S1E0R Address Translate Stage 1 EL0 Read
AArch64 AT S1E0W Address Translate Stage 1 EL0 Write
AArch64 AT S1E1R Address Translate Stage 1 EL1 Read
AArch64 AT S1E1RP Address Translate Stage 1 EL1 Read PAN
AArch64 AT S1E1W Address Translate Stage 1 EL1 Write
AArch64 AT S1E1WP Address Translate Stage 1 EL1 Write PAN
AArch64 AT S1E2R Address Translate Stage 1 EL2 Read
AArch64 AT S1E2W Address Translate Stage 1 EL2 Write
AArch64 AT S1E3R Address Translate Stage 1 EL3 Read
AArch64 AT S1E3W Address Translate Stage 1 EL3 Write
AArch64 PAR_EL1 Physical Address Register

In the TLB functional group:
Exec
state Name Description

AArch32 CFPRCTX Control Flow Prediction Restriction by Context
AArch32 CPPRCTX Cache Prefetch Prediction Restriction by Context
AArch32 DTLBIALL Data TLB Invalidate All
AArch32 DTLBIASID Data TLB Invalidate by ASID match
AArch32 DTLBIMVA Data TLB Invalidate by VA
AArch32 DVPRCTX Data Value Prediction Restriction by Context
AArch32 ITLBIALL Instruction TLB Invalidate All
AArch32 ITLBIASID Instruction TLB Invalidate by ASID match
AArch32 ITLBIMVA Instruction TLB Invalidate by VA
AArch32 TLBIALL TLB Invalidate All
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIALLIS TLB Invalidate All, Inner Shareable
AArch32 TLBIALLNSNH TLB Invalidate All, Non-Secure Non-Hyp
AArch32 TLBIALLNSNHIS TLB Invalidate All, Non-Secure Non-Hyp, Inner Shareable
AArch32 TLBIASID TLB Invalidate by ASID match
AArch32 TLBIASIDIS TLB Invalidate by ASID match, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner

Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last

level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last

level, Inner Shareable
AArch32 TLBIMVA TLB Invalidate by VA
AArch32 TLBIMVAA TLB Invalidate by VA, All ASID
AArch32 TLBIMVAAIS TLB Invalidate by VA, All ASID, Inner Shareable
AArch32 TLBIMVAAL TLB Invalidate by VA, All ASID, Last level
AArch32 TLBIMVAALIS TLB Invalidate by VA, All ASID, Last level, Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVAIS TLB Invalidate by VA, Inner Shareable

System Register index by functional group

Page 1528

Exec
state Name Description

AArch32 TLBIMVAL TLB Invalidate by VA, Last level
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 TLBIMVALIS TLB Invalidate by VA, Last level, Inner Shareable
AArch64 TLBI ALLE1, TLBI ALLE1NXS TLB Invalidate All, EL1
AArch64 TLBI ALLE1IS, TLBI

ALLE1ISNXS
TLB Invalidate All, EL1, Inner Shareable

AArch64 TLBI ALLE1OS, TLBI
ALLE1OSNXS

TLB Invalidate All, EL1, Outer Shareable

AArch64 TLBI ALLE2, TLBI ALLE2NXS TLB Invalidate All, EL2
AArch64 TLBI ALLE2IS, TLBI

ALLE2ISNXS
TLB Invalidate All, EL2, Inner Shareable

AArch64 TLBI ALLE2OS, TLBI
ALLE2OSNXS

TLB Invalidate All, EL2, Outer Shareable

AArch64 TLBI ALLE3, TLBI ALLE3NXS TLB Invalidate All, EL3
AArch64 TLBI ALLE3IS, TLBI

ALLE3ISNXS
TLB Invalidate All, EL3, Inner Shareable

AArch64 TLBI ALLE3OS, TLBI
ALLE3OSNXS

TLB Invalidate All, EL3, Outer Shareable

AArch64 TLBI ASIDE1, TLBI ASIDE1NXS TLB Invalidate by ASID, EL1
AArch64 TLBI ASIDE1IS, TLBI

ASIDE1ISNXS
TLB Invalidate by ASID, EL1, Inner Shareable

AArch64 TLBI ASIDE1OS, TLBI
ASIDE1OSNXS

TLB Invalidate by ASID, EL1, Outer Shareable

AArch64 TLBI IPAS2E1, TLBI
IPAS2E1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

AArch64 TLBI IPAS2E1IS, TLBI
IPAS2E1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Inner Shareable

AArch64 TLBI IPAS2E1OS, TLBI
IPAS2E1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

AArch64 TLBI IPAS2LE1, TLBI
IPAS2LE1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1

AArch64 TLBI IPAS2LE1IS, TLBI
IPAS2LE1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Inner Shareable

AArch64 TLBI IPAS2LE1OS, TLBI
IPAS2LE1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last
level, EL1, Outer Shareable

AArch64 TLBI RIPAS2E1, TLBI
RIPAS2E1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1

AArch64 TLBI RIPAS2E1IS, TLBI
RIPAS2E1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 TLBI RIPAS2E1OS, TLBI
RIPAS2E1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Outer Shareable

AArch64 TLBI RIPAS2LE1, TLBI
RIPAS2LE1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

AArch64 TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

AArch64 TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Outer Shareable

AArch64 TLBI RVAAE1, TLBI RVAAE1NXS TLB Range Invalidate by VA, All ASID, EL1
AArch64 TLBI RVAAE1IS, TLBI

RVAAE1ISNXS
TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable

AArch64 TLBI RVAAE1OS, TLBI
RVAAE1OSNXS

TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable

AArch64 TLBI RVAALE1, TLBI
RVAALE1NXS

TLB Range Invalidate by VA, All ASID, Last level, EL1

AArch64 TLBI RVAALE1IS, TLBI
RVAALE1ISNXS

TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner
Shareable

AArch64 TLBI RVAALE1OS, TLBI
RVAALE1OSNXS

TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer
Shareable

AArch64 TLBI RVAE1, TLBI RVAE1NXS TLB Range Invalidate by VA, EL1
AArch64 TLBI RVAE1IS, TLBI

RVAE1ISNXS
TLB Range Invalidate by VA, EL1, Inner Shareable

AArch64 TLBI RVAE1OS, TLBI
RVAE1OSNXS

TLB Range Invalidate by VA, EL1, Outer Shareable

AArch64 TLBI RVAE2, TLBI RVAE2NXS TLB Range Invalidate by VA, EL2

System Register index by functional group

Page 1529

Exec
state Name Description

AArch64 TLBI RVAE2IS, TLBI
RVAE2ISNXS

TLB Range Invalidate by VA, EL2, Inner Shareable

AArch64 TLBI RVAE2OS, TLBI
RVAE2OSNXS

TLB Range Invalidate by VA, EL2, Outer Shareable

AArch64 TLBI RVAE3, TLBI RVAE3NXS TLB Range Invalidate by VA, EL3
AArch64 TLBI RVAE3IS, TLBI

RVAE3ISNXS
TLB Range Invalidate by VA, EL3, Inner Shareable

AArch64 TLBI RVAE3OS, TLBI
RVAE3OSNXS

TLB Range Invalidate by VA, EL3, Outer Shareable

AArch64 TLBI RVALE1, TLBI RVALE1NXS TLB Range Invalidate by VA, Last level, EL1
AArch64 TLBI RVALE1IS, TLBI

RVALE1ISNXS
TLB Range Invalidate by VA, Last level, EL1, Inner Shareable

AArch64 TLBI RVALE1OS, TLBI
RVALE1OSNXS

TLB Range Invalidate by VA, Last level, EL1, Outer Shareable

AArch64 TLBI RVALE2, TLBI RVALE2NXS TLB Range Invalidate by VA, Last level, EL2
AArch64 TLBI RVALE2IS, TLBI

RVALE2ISNXS
TLB Range Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 TLBI RVALE2OS, TLBI
RVALE2OSNXS

TLB Range Invalidate by VA, Last level, EL2, Outer Shareable

AArch64 TLBI RVALE3, TLBI RVALE3NXS TLB Range Invalidate by VA, Last level, EL3
AArch64 TLBI RVALE3IS, TLBI

RVALE3ISNXS
TLB Range Invalidate by VA, Last level, EL3, Inner Shareable

AArch64 TLBI RVALE3OS, TLBI
RVALE3OSNXS

TLB Range Invalidate by VA, Last level, EL3, Outer Shareable

AArch64 TLBI VAAE1, TLBI VAAE1NXS TLB Invalidate by VA, All ASID, EL1
AArch64 TLBI VAAE1IS, TLBI

VAAE1ISNXS
TLB Invalidate by VA, All ASID, EL1, Inner Shareable

AArch64 TLBI VAAE1OS, TLBI
VAAE1OSNXS

TLB Invalidate by VA, All ASID, EL1, Outer Shareable

AArch64 TLBI VAALE1, TLBI VAALE1NXS TLB Invalidate by VA, All ASID, Last level, EL1
AArch64 TLBI VAALE1IS, TLBI

VAALE1ISNXS
TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable

AArch64 TLBI VAALE1OS, TLBI
VAALE1OSNXS

TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable

AArch64 TLBI VAE1, TLBI VAE1NXS TLB Invalidate by VA, EL1
AArch64 TLBI VAE1IS, TLBI VAE1ISNXS TLB Invalidate by VA, EL1, Inner Shareable
AArch64 TLBI VAE1OS, TLBI VAE1OSNXS TLB Invalidate by VA, EL1, Outer Shareable
AArch64 TLBI VAE2, TLBI VAE2NXS TLB Invalidate by VA, EL2
AArch64 TLBI VAE2IS, TLBI VAE2ISNXS TLB Invalidate by VA, EL2, Inner Shareable
AArch64 TLBI VAE2OS, TLBI VAE2OSNXS TLB Invalidate by VA, EL2, Outer Shareable
AArch64 TLBI VAE3, TLBI VAE3NXS TLB Invalidate by VA, EL3
AArch64 TLBI VAE3IS, TLBI VAE3ISNXS TLB Invalidate by VA, EL3, Inner Shareable
AArch64 TLBI VAE3OS, TLBI VAE3OSNXS TLB Invalidate by VA, EL3, Outer Shareable
AArch64 TLBI VALE1, TLBI VALE1NXS TLB Invalidate by VA, Last level, EL1
AArch64 TLBI VALE1IS, TLBI

VALE1ISNXS
TLB Invalidate by VA, Last level, EL1, Inner Shareable

AArch64 TLBI VALE1OS, TLBI
VALE1OSNXS

TLB Invalidate by VA, Last level, EL1, Outer Shareable

AArch64 TLBI VALE2, TLBI VALE2NXS TLB Invalidate by VA, Last level, EL2
AArch64 TLBI VALE2IS, TLBI

VALE2ISNXS
TLB Invalidate by VA, Last level, EL2, Inner Shareable

AArch64 TLBI VALE2OS, TLBI
VALE2OSNXS

TLB Invalidate by VA, Last level, EL2, Outer Shareable

AArch64 TLBI VALE3, TLBI VALE3NXS TLB Invalidate by VA, Last level, EL3
AArch64 TLBI VALE3IS, TLBI

VALE3ISNXS
TLB Invalidate by VA, Last level, EL3, Inner Shareable

AArch64 TLBI VALE3OS, TLBI
VALE3OSNXS

TLB Invalidate by VA, Last level, EL3, Outer Shareable

AArch64 TLBI VMALLE1, TLBI
VMALLE1NXS

TLB Invalidate by VMID, All at stage 1, EL1

AArch64 TLBI VMALLE1IS, TLBI
VMALLE1ISNXS

TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable

AArch64 TLBI VMALLE1OS, TLBI
VMALLE1OSNXS

TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable

System Register index by functional group

Page 1530

Exec
state Name Description

AArch64 TLBI VMALLS12E1, TLBI
VMALLS12E1NXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1

AArch64 TLBI VMALLS12E1IS, TLBI
VMALLS12E1ISNXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner
Shareable

AArch64 TLBI VMALLS12E1OS, TLBI
VMALLS12E1OSNXS

TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer
Shareable

In the PMU functional group:
Exec state Name Description
AArch32 PMCCFILTR Performance Monitors Cycle Count Filter Register
AArch32 PMCCNTR Performance Monitors Cycle Count Register
AArch32 PMCEID0 Performance Monitors Common Event Identification register 0
AArch32 PMCEID1 Performance Monitors Common Event Identification register 1
AArch32 PMCEID2 Performance Monitors Common Event Identification register 2
AArch32 PMCEID3 Performance Monitors Common Event Identification register 3
AArch32 PMCNTENCLR Performance Monitors Count Enable Clear register
AArch32 PMCNTENSET Performance Monitors Count Enable Set register
AArch32 PMCR Performance Monitors Control Register
AArch32 PMEVCNTR<n> Performance Monitors Event Count Registers
AArch32 PMEVTYPER<n> Performance Monitors Event Type Registers
AArch32 PMINTENCLR Performance Monitors Interrupt Enable Clear register
AArch32 PMINTENSET Performance Monitors Interrupt Enable Set register
AArch32 PMMIR Performance Monitors Machine Identification Register
AArch32 PMOVSR Performance Monitors Overflow Flag Status Register
AArch32 PMOVSSET Performance Monitors Overflow Flag Status Set register
AArch32 PMSELR Performance Monitors Event Counter Selection Register
AArch32 PMSWINC Performance Monitors Software Increment register
AArch32 PMUSERENR Performance Monitors User Enable Register
AArch32 PMXEVCNTR Performance Monitors Selected Event Count Register
AArch32 PMXEVTYPER Performance Monitors Selected Event Type Register
AArch64 PMCCFILTR_EL0 Performance Monitors Cycle Count Filter Register
AArch64 PMCCNTR_EL0 Performance Monitors Cycle Count Register
AArch64 PMCEID0_EL0 Performance Monitors Common Event Identification register 0
AArch64 PMCEID1_EL0 Performance Monitors Common Event Identification register 1
AArch64 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
AArch64 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
AArch64 PMCR_EL0 Performance Monitors Control Register
AArch64 PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
AArch64 PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
AArch64 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
AArch64 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
AArch64 PMMIR_EL1 Performance Monitors Machine Identification Register
AArch64 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear Register
AArch64 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
AArch64 PMSELR_EL0 Performance Monitors Event Counter Selection Register
AArch64 PMSWINC_EL0 Performance Monitors Software Increment register
AArch64 PMUSERENR_EL0 Performance Monitors User Enable Register
AArch64 PMXEVCNTR_EL0 Performance Monitors Selected Event Count Register
AArch64 PMXEVTYPER_EL0 Performance Monitors Selected Event Type Register
External PMAUTHSTATUS Performance Monitors Authentication Status register
External PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
External PMCCNTR_EL0 Performance Monitors Cycle Counter
External PMCEID0 Performance Monitors Common Event Identification register 0
External PMCEID1 Performance Monitors Common Event Identification register 1
External PMCEID2 Performance Monitors Common Event Identification register 2
External PMCEID3 Performance Monitors Common Event Identification register 3
External PMCFGR Performance Monitors Configuration Register
External PMCID1SR CONTEXTIDR_EL1 Sample Register
External PMCID2SR CONTEXTIDR_EL2 Sample Register
External PMCIDR0 Performance Monitors Component Identification Register 0
External PMCIDR1 Performance Monitors Component Identification Register 1
External PMCIDR2 Performance Monitors Component Identification Register 2

System Register index by functional group

Page 1531

Exec state Name Description
External PMCIDR3 Performance Monitors Component Identification Register 3
External PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
External PMCNTENSET_EL0 Performance Monitors Count Enable Set register
External PMCR_EL0 Performance Monitors Control Register
External PMDEVAFF0 Performance Monitors Device Affinity register 0
External PMDEVAFF1 Performance Monitors Device Affinity register 1
External PMDEVARCH Performance Monitors Device Architecture register
External PMDEVID Performance Monitors Device ID register
External PMDEVTYPE Performance Monitors Device Type register
External PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
External PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
External PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register
External PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
External PMITCTRL Performance Monitors Integration mode Control register
External PMLAR Performance Monitors Lock Access Register
External PMLSR Performance Monitors Lock Status Register
External PMMIR Performance Monitors Machine Identification Register
External PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
External PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
External PMPCSR Program Counter Sample Register
External PMPIDR0 Performance Monitors Peripheral Identification Register 0
External PMPIDR1 Performance Monitors Peripheral Identification Register 1
External PMPIDR2 Performance Monitors Peripheral Identification Register 2
External PMPIDR3 Performance Monitors Peripheral Identification Register 3
External PMPIDR4 Performance Monitors Peripheral Identification Register 4
External PMSWINC_EL0 Performance Monitors Software Increment register
External PMVIDSR VMID Sample Register

In the Reset functional group:
Exec state Name Description
AArch32 HRMR Hyp Reset Management Register
AArch32 RMR Reset Management Register
AArch32 RVBAR Reset Vector Base Address Register
AArch64 RMR_EL1 Reset Management Register (EL1)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 RMR_EL3 Reset Management Register (EL3)
AArch64 RVBAR_EL1 Reset Vector Base Address Register (if EL2 and EL3 not implemented)
AArch64 RVBAR_EL2 Reset Vector Base Address Register (if EL3 not implemented)
AArch64 RVBAR_EL3 Reset Vector Base Address Register (if EL3 implemented)

In the Thread functional group:
Exec state Name Description
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 TPIDRPRW PL1 Software Thread ID Register
AArch32 TPIDRURO PL0 Read-Only Software Thread ID Register
AArch32 TPIDRURW PL0 Read/Write Software Thread ID Register
AArch64 SCXTNUM_EL0 EL0 Read/Write Software Context Number
AArch64 SCXTNUM_EL1 EL1 Read/Write Software Context Number
AArch64 SCXTNUM_EL2 EL2 Read/Write Software Context Number
AArch64 SCXTNUM_EL3 EL3 Read/Write Software Context Number
AArch64 TPIDRRO_EL0 EL0 Read-Only Software Thread ID Register
AArch64 TPIDR_EL0 EL0 Read/Write Software Thread ID Register
AArch64 TPIDR_EL1 EL1 Software Thread ID Register
AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TPIDR_EL3 EL3 Software Thread ID Register

System Register index by functional group

Page 1532

In the IMP DEF functional group:
Exec
state Name Description

AArch32 ACTLR Auxiliary Control Register
AArch32 ACTLR2 Auxiliary Control Register 2
AArch32 ADFSR Auxiliary Data Fault Status Register
AArch32 AIDR Auxiliary ID Register
AArch32 AIFSR Auxiliary Instruction Fault Status

Register
AArch32 AMAIR0 Auxiliary Memory Attribute Indirection

Register 0
AArch32 AMAIR1 Auxiliary Memory Attribute Indirection

Register 1
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status

Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute

Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute

Indirection Register 1
AArch64 ACTLR_EL1 Auxiliary Control Register (EL1)
AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL1 Auxiliary Fault Status Register 0 (EL1)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL1 Auxiliary Fault Status Register 1 (EL1)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AIDR_EL1 Auxiliary ID Register
AArch64 AMAIR_EL1 Auxiliary Memory Attribute Indirection

Register (EL1)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection

Register (EL2)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection

Register (EL3)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 S3_<op1>_<Cn>_<Cm>_<op2> IMPLEMENTATION DEFINED registers
AArch64 SYS S1_<op1>_<Cn>_<Cm>_<op2>, SYSL

S1_<op1>_<Cn>_<Cm>_<op2>
IMPLEMENTATION DEFINED
maintenance instructions

In the Timer functional group:
Exec state Name Description
AArch32 CNTFRQ Counter-timer Frequency register
AArch32 CNTHPS_CTL Counter-timer Secure Physical Timer Control Register (EL2)
AArch32 CNTHPS_CVAL Counter-timer Secure Physical Timer CompareValue Register (EL2)
AArch32 CNTHPS_TVAL Counter-timer Secure Physical Timer TimerValue Register (EL2)
AArch32 CNTHP_CTL Counter-timer Hyp Physical Timer Control register
AArch32 CNTHVS_CTL Counter-timer Secure Virtual Timer Control Register (EL2)
AArch32 CNTHVS_CVAL Counter-timer Secure Virtual Timer CompareValue Register (EL2)
AArch32 CNTHVS_TVAL Counter-timer Secure Virtual Timer TimerValue Register (EL2)
AArch32 CNTHV_CTL Counter-timer Virtual Timer Control register (EL2)
AArch32 CNTHV_CVAL Counter-timer Virtual Timer CompareValue register (EL2)
AArch32 CNTHV_TVAL Counter-timer Virtual Timer TimerValue register (EL2)
AArch32 CNTKCTL Counter-timer Kernel Control register
AArch32 CNTPCT Counter-timer Physical Count register
AArch32 CNTPCTSS Counter-timer Self-Synchronized Physical Count register
AArch32 CNTP_CTL Counter-timer Physical Timer Control register
AArch32 CNTP_CVAL Counter-timer Physical Timer CompareValue register
AArch32 CNTP_TVAL Counter-timer Physical Timer TimerValue register

System Register index by functional group

Page 1533

Exec state Name Description
AArch32 CNTVCT Counter-timer Virtual Count register
AArch32 CNTVCTSS Counter-timer Self-Synchronized Virtual Count register
AArch32 CNTV_CTL Counter-timer Virtual Timer Control register
AArch32 CNTV_CVAL Counter-timer Virtual Timer CompareValue register
AArch32 CNTV_TVAL Counter-timer Virtual Timer TimerValue register
AArch64 CNTFRQ_EL0 Counter-timer Frequency register
AArch64 CNTHVS_CTL_EL2 Counter-timer Secure Virtual Timer Control register (EL2)
AArch64 CNTHVS_CVAL_EL2 Counter-timer Secure Virtual Timer CompareValue register (EL2)
AArch64 CNTHVS_TVAL_EL2 Counter-timer Secure Virtual Timer TimerValue register (EL2)
AArch64 CNTHV_CTL_EL2 Counter-timer Virtual Timer Control register (EL2)
AArch64 CNTHV_CVAL_EL2 Counter-timer Virtual Timer CompareValue register (EL2)
AArch64 CNTHV_TVAL_EL2 Counter-timer Virtual Timer TimerValue Register (EL2)
AArch64 CNTKCTL_EL1 Counter-timer Kernel Control register
AArch64 CNTPCTSS_EL0 Counter-timer Self-Synchronized Physical Count register
AArch64 CNTPCT_EL0 Counter-timer Physical Count register
AArch64 CNTPOFF_EL2 Counter-timer Physical Offset register
AArch64 CNTPS_CTL_EL1 Counter-timer Physical Secure Timer Control register
AArch64 CNTPS_CVAL_EL1 Counter-timer Physical Secure Timer CompareValue register
AArch64 CNTPS_TVAL_EL1 Counter-timer Physical Secure Timer TimerValue register
AArch64 CNTP_CTL_EL0 Counter-timer Physical Timer Control register
AArch64 CNTP_CVAL_EL0 Counter-timer Physical Timer CompareValue register
AArch64 CNTP_TVAL_EL0 Counter-timer Physical Timer TimerValue register
AArch64 CNTVCTSS_EL0 Counter-timer Self-Synchronized Virtual Count register
AArch64 CNTVCT_EL0 Counter-timer Virtual Count register
AArch64 CNTV_CTL_EL0 Counter-timer Virtual Timer Control register
AArch64 CNTV_CVAL_EL0 Counter-timer Virtual Timer CompareValue register
AArch64 CNTV_TVAL_EL0 Counter-timer Virtual Timer TimerValue register
External CNTACR<n> Counter-timer Access Control Registers
External CNTCR Counter Control Register
External CNTCV Counter Count Value register
External CNTEL0ACR Counter-timer EL0 Access Control Register
External CNTFID0 Counter Frequency ID
External CNTFID<n> Counter Frequency IDs, n > 0
External CNTFRQ Counter-timer Frequency
External CNTID Counter Identification Register
External CNTNSAR Counter-timer Non-secure Access Register
External CNTPCT Counter-timer Physical Count
External CNTP_CTL Counter-timer Physical Timer Control
External CNTP_CVAL Counter-timer Physical Timer CompareValue
External CNTP_TVAL Counter-timer Physical Timer TimerValue
External CNTSCR Counter Scale Register
External CNTSR Counter Status Register
External CNTTIDR Counter-timer Timer ID Register
External CNTVCT Counter-timer Virtual Count
External CNTVOFF Counter-timer Virtual Offset
External CNTVOFF<n> Counter-timer Virtual Offsets
External CNTV_CTL Counter-timer Virtual Timer Control
External CNTV_CVAL Counter-timer Virtual Timer CompareValue
External CNTV_TVAL Counter-timer Virtual Timer TimerValue
External CounterID<n> Counter ID registers

In the Debug functional group:
Exec state Name Description
AArch32 DBGAUTHSTATUS Debug Authentication Status register
AArch32 DBGBCR<n> Debug Breakpoint Control Registers
AArch32 DBGBVR<n> Debug Breakpoint Value Registers
AArch32 DBGBXVR<n> Debug Breakpoint Extended Value Registers
AArch32 DBGCLAIMCLR Debug CLAIM Tag Clear register
AArch32 DBGCLAIMSET Debug CLAIM Tag Set register
AArch32 DBGDCCINT DCC Interrupt Enable Register
AArch32 DBGDEVID Debug Device ID register 0
AArch32 DBGDEVID1 Debug Device ID register 1

System Register index by functional group

Page 1534

Exec state Name Description
AArch32 DBGDEVID2 Debug Device ID register 2
AArch32 DBGDIDR Debug ID Register
AArch32 DBGDRAR Debug ROM Address Register
AArch32 DBGDSAR Debug Self Address Register
AArch32 DBGDSCRext Debug Status and Control Register, External View
AArch32 DBGDSCRint Debug Status and Control Register, Internal View
AArch32 DBGDTRRXext Debug OS Lock Data Transfer Register, Receive, External View
AArch32 DBGDTRRXint Debug Data Transfer Register, Receive
AArch32 DBGDTRTXext Debug OS Lock Data Transfer Register, Transmit
AArch32 DBGDTRTXint Debug Data Transfer Register, Transmit
AArch32 DBGOSDLR Debug OS Double Lock Register
AArch32 DBGOSECCR Debug OS Lock Exception Catch Control Register
AArch32 DBGOSLAR Debug OS Lock Access Register
AArch32 DBGOSLSR Debug OS Lock Status Register
AArch32 DBGPRCR Debug Power Control Register
AArch32 DBGVCR Debug Vector Catch Register
AArch32 DBGWCR<n> Debug Watchpoint Control Registers
AArch32 DBGWFAR Debug Watchpoint Fault Address Register
AArch32 DBGWVR<n> Debug Watchpoint Value Registers
AArch32 TRFCR Trace Filter Control Register
AArch64 DBGAUTHSTATUS_EL1 Debug Authentication Status register
AArch64 DBGBCR<n>_EL1 Debug Breakpoint Control Registers
AArch64 DBGBVR<n>_EL1 Debug Breakpoint Value Registers
AArch64 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
AArch64 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
AArch64 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
AArch64 DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
AArch64 DBGDTR_EL0 Debug Data Transfer Register, half-duplex
AArch64 DBGPRCR_EL1 Debug Power Control Register
AArch64 DBGVCR32_EL2 Debug Vector Catch Register
AArch64 DBGWCR<n>_EL1 Debug Watchpoint Control Registers
AArch64 DBGWVR<n>_EL1 Debug Watchpoint Value Registers
AArch64 DLR_EL0 Debug Link Register
AArch64 DSPSR_EL0 Debug Saved Program Status Register
AArch64 MDCCINT_EL1 Monitor DCC Interrupt Enable Register
AArch64 MDCCSR_EL0 Monitor DCC Status Register
AArch64 MDRAR_EL1 Monitor Debug ROM Address Register
AArch64 MDSCR_EL1 Monitor Debug System Control Register
AArch64 OSDLR_EL1 OS Double Lock Register
AArch64 OSDTRRX_EL1 OS Lock Data Transfer Register, Receive
AArch64 OSDTRTX_EL1 OS Lock Data Transfer Register, Transmit
AArch64 OSECCR_EL1 OS Lock Exception Catch Control Register
AArch64 OSLAR_EL1 OS Lock Access Register
AArch64 OSLSR_EL1 OS Lock Status Register
AArch64 TRFCR_EL1 Trace Filter Control Register (EL1)
AArch64 TRFCR_EL2 Trace Filter Control Register (EL2)
External DBGAUTHSTATUS_EL1 Debug Authentication Status register
External DBGBCR<n>_EL1 Debug Breakpoint Control Registers
External DBGBVR<n>_EL1 Debug Breakpoint Value Registers
External DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
External DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
External DBGDTRRX_EL0 Debug Data Transfer Register, Receive
External DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
External DBGWCR<n>_EL1 Debug Watchpoint Control Registers
External DBGWVR<n>_EL1 Debug Watchpoint Value Registers
External EDACR External Debug Auxiliary Control Register
External EDCIDR0 External Debug Component Identification Register 0
External EDCIDR1 External Debug Component Identification Register 1
External EDCIDR2 External Debug Component Identification Register 2
External EDCIDR3 External Debug Component Identification Register 3
External EDCIDSR External Debug Context ID Sample Register
External EDDEVAFF0 External Debug Device Affinity register 0
External EDDEVAFF1 External Debug Device Affinity register 1
External EDDEVARCH External Debug Device Architecture register

System Register index by functional group

Page 1535

Exec state Name Description
External EDDEVID External Debug Device ID register 0
External EDDEVID1 External Debug Device ID register 1
External EDDEVID2 External Debug Device ID register 2
External EDDEVTYPE External Debug Device Type register
External EDECCR External Debug Exception Catch Control Register
External EDECR External Debug Execution Control Register
External EDESR External Debug Event Status Register
External EDITCTRL External Debug Integration mode Control register
External EDITR External Debug Instruction Transfer Register
External EDLAR External Debug Lock Access Register
External EDLSR External Debug Lock Status Register
External EDPCSR External Debug Program Counter Sample Register
External EDPIDR0 External Debug Peripheral Identification Register 0
External EDPIDR1 External Debug Peripheral Identification Register 1
External EDPIDR2 External Debug Peripheral Identification Register 2
External EDPIDR3 External Debug Peripheral Identification Register 3
External EDPIDR4 External Debug Peripheral Identification Register 4
External EDPRCR External Debug Power/Reset Control Register
External EDPRSR External Debug Processor Status Register
External EDRCR External Debug Reserve Control Register
External EDSCR External Debug Status and Control Register
External EDVIDSR External Debug Virtual Context Sample Register
External EDWAR External Debug Watchpoint Address Register
External OSLAR_EL1 OS Lock Access Register

In the CTI functional group:
Exec state Name Description
External ASICCTL CTI External Multiplexer Control register
External CTIAPPCLEAR CTI Application Trigger Clear register
External CTIAPPPULSE CTI Application Pulse register
External CTIAPPSET CTI Application Trigger Set register
External CTIAUTHSTATUS CTI Authentication Status register
External CTICHINSTATUS CTI Channel In Status register
External CTICHOUTSTATUS CTI Channel Out Status register
External CTICIDR0 CTI Component Identification Register 0
External CTICIDR1 CTI Component Identification Register 1
External CTICIDR2 CTI Component Identification Register 2
External CTICIDR3 CTI Component Identification Register 3
External CTICLAIMCLR CTI CLAIM Tag Clear register
External CTICLAIMSET CTI CLAIM Tag Set register
External CTICONTROL CTI Control register
External CTIDEVAFF0 CTI Device Affinity register 0
External CTIDEVAFF1 CTI Device Affinity register 1
External CTIDEVARCH CTI Device Architecture register
External CTIDEVCTL CTI Device Control register
External CTIDEVID CTI Device ID register 0
External CTIDEVID1 CTI Device ID register 1
External CTIDEVID2 CTI Device ID register 2
External CTIDEVTYPE CTI Device Type register
External CTIGATE CTI Channel Gate Enable register
External CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
External CTIINTACK CTI Output Trigger Acknowledge register
External CTIITCTRL CTI Integration mode Control register
External CTILAR CTI Lock Access Register
External CTILSR CTI Lock Status Register
External CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers
External CTIPIDR0 CTI Peripheral Identification Register 0
External CTIPIDR1 CTI Peripheral Identification Register 1
External CTIPIDR2 CTI Peripheral Identification Register 2
External CTIPIDR3 CTI Peripheral Identification Register 3
External CTIPIDR4 CTI Peripheral Identification Register 4
External CTITRIGINSTATUS CTI Trigger In Status register

System Register index by functional group

Page 1536

Exec state Name Description
External CTITRIGOUTSTATUS CTI Trigger Out Status register

In the Virt functional group:
Exec
state Name Description

AArch32 ATS1HR Address Translate Stage 1 Hyp mode Read
AArch32 ATS1HW Address Translate Stage 1 Hyp mode Write
AArch32 CNTHCTL Counter-timer Hyp Control register
AArch32 CNTHP_CVAL Counter-timer Hyp Physical CompareValue register
AArch32 CNTHP_TVAL Counter-timer Hyp Physical Timer TimerValue register
AArch32 CNTVOFF Counter-timer Virtual Offset register
AArch32 HACR Hyp Auxiliary Configuration Register
AArch32 HACTLR Hyp Auxiliary Control Register
AArch32 HACTLR2 Hyp Auxiliary Control Register 2
AArch32 HADFSR Hyp Auxiliary Data Fault Status Register
AArch32 HAIFSR Hyp Auxiliary Instruction Fault Status Register
AArch32 HAMAIR0 Hyp Auxiliary Memory Attribute Indirection Register 0
AArch32 HAMAIR1 Hyp Auxiliary Memory Attribute Indirection Register 1
AArch32 HCPTR Hyp Architectural Feature Trap Register
AArch32 HCR Hyp Configuration Register
AArch32 HCR2 Hyp Configuration Register 2
AArch32 HDCR Hyp Debug Control Register
AArch32 HDFAR Hyp Data Fault Address Register
AArch32 HIFAR Hyp Instruction Fault Address Register
AArch32 HMAIR0 Hyp Memory Attribute Indirection Register 0
AArch32 HMAIR1 Hyp Memory Attribute Indirection Register 1
AArch32 HPFAR Hyp IPA Fault Address Register
AArch32 HRMR Hyp Reset Management Register
AArch32 HSCTLR Hyp System Control Register
AArch32 HSR Hyp Syndrome Register
AArch32 HSTR Hyp System Trap Register
AArch32 HTCR Hyp Translation Control Register
AArch32 HTPIDR Hyp Software Thread ID Register
AArch32 HTRFCR Hyp Trace Filter Control Register
AArch32 HTTBR Hyp Translation Table Base Register
AArch32 HVBAR Hyp Vector Base Address Register
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 TLBIALLH TLB Invalidate All, Hyp mode
AArch32 TLBIALLHIS TLB Invalidate All, Hyp mode, Inner Shareable
AArch32 TLBIIPAS2 TLB Invalidate by Intermediate Physical Address, Stage 2
AArch32 TLBIIPAS2IS TLB Invalidate by Intermediate Physical Address, Stage 2, Inner

Shareable
AArch32 TLBIIPAS2L TLB Invalidate by Intermediate Physical Address, Stage 2, Last level
AArch32 TLBIIPAS2LIS TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,

Inner Shareable
AArch32 TLBIMVAH TLB Invalidate by VA, Hyp mode
AArch32 TLBIMVAHIS TLB Invalidate by VA, Hyp mode, Inner Shareable
AArch32 TLBIMVALH TLB Invalidate by VA, Last level, Hyp mode
AArch32 TLBIMVALHIS TLB Invalidate by VA, Last level, Hyp mode, Inner Shareable
AArch32 VMPIDR Virtualization Multiprocessor ID Register
AArch32 VPIDR Virtualization Processor ID Register
AArch32 VTCR Virtualization Translation Control Register
AArch32 VTTBR Virtualization Translation Table Base Register

System Register index by functional group

Page 1537

Exec
state Name Description

AArch64 ACTLR_EL2 Auxiliary Control Register (EL2)
AArch64 AFSR0_EL2 Auxiliary Fault Status Register 0 (EL2)
AArch64 AFSR1_EL2 Auxiliary Fault Status Register 1 (EL2)
AArch64 AMAIR_EL2 Auxiliary Memory Attribute Indirection Register (EL2)
AArch64 CNTHCTL_EL2 Counter-timer Hypervisor Control register
AArch64 CNTHPS_CTL_EL2 Counter-timer Secure Physical Timer Control register (EL2)
AArch64 CNTHPS_CVAL_EL2 Counter-timer Secure Physical Timer CompareValue register (EL2)
AArch64 CNTHPS_TVAL_EL2 Counter-timer Secure Physical Timer TimerValue register (EL2)
AArch64 CNTHP_CTL_EL2 Counter-timer Hypervisor Physical Timer Control register
AArch64 CNTHP_CVAL_EL2 Counter-timer Physical Timer CompareValue register (EL2)
AArch64 CNTHP_TVAL_EL2 Counter-timer Physical Timer TimerValue register (EL2)
AArch64 CNTVOFF_EL2 Counter-timer Virtual Offset register
AArch64 CPTR_EL2 Architectural Feature Trap Register (EL2)
AArch64 ESR_EL2 Exception Syndrome Register (EL2)
AArch64 FAR_EL2 Fault Address Register (EL2)
AArch64 HACR_EL2 Hypervisor Auxiliary Control Register
AArch64 HCRX_EL2 Extended Hypervisor Configuration Register
AArch64 HCR_EL2 Hypervisor Configuration Register
AArch64 HPFAR_EL2 Hypervisor IPA Fault Address Register
AArch64 HSTR_EL2 Hypervisor System Trap Register
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 MAIR_EL2 Memory Attribute Indirection Register (EL2)
AArch64 MDCR_EL2 Monitor Debug Configuration Register (EL2)
AArch64 RMR_EL2 Reset Management Register (EL2)
AArch64 SCTLR_EL2 System Control Register (EL2)
AArch64 TCR_EL2 Translation Control Register (EL2)
AArch64 TLBI IPAS2E1, TLBI

IPAS2E1NXS
TLB Invalidate by Intermediate Physical Address, Stage 2, EL1

AArch64 TLBI IPAS2E1IS, TLBI
IPAS2E1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Inner Shareable

AArch64 TLBI IPAS2E1OS, TLBI
IPAS2E1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, EL1,
Outer Shareable

AArch64 TLBI IPAS2LE1, TLBI
IPAS2LE1NXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1

AArch64 TLBI IPAS2LE1IS, TLBI
IPAS2LE1ISNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Inner Shareable

AArch64 TLBI IPAS2LE1OS, TLBI
IPAS2LE1OSNXS

TLB Invalidate by Intermediate Physical Address, Stage 2, Last level,
EL1, Outer Shareable

AArch64 TLBI RIPAS2E1, TLBI
RIPAS2E1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1

AArch64 TLBI RIPAS2E1IS, TLBI
RIPAS2E1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Inner Shareable

AArch64 TLBI RIPAS2E1OS, TLBI
RIPAS2E1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
EL1, Outer Shareable

AArch64 TLBI RIPAS2LE1, TLBI
RIPAS2LE1NXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1

AArch64 TLBI RIPAS2LE1IS, TLBI
RIPAS2LE1ISNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Inner Shareable

AArch64 TLBI RIPAS2LE1OS, TLBI
RIPAS2LE1OSNXS

TLB Range Invalidate by Intermediate Physical Address, Stage 2,
Last level, EL1, Outer Shareable

AArch64 TPIDR_EL2 EL2 Software Thread ID Register
AArch64 TTBR0_EL2 Translation Table Base Register 0 (EL2)
AArch64 TTBR1_EL2 Translation Table Base Register 1 (EL2)
AArch64 VBAR_EL2 Vector Base Address Register (EL2)
AArch64 VMPIDR_EL2 Virtualization Multiprocessor ID Register

System Register index by functional group

Page 1538

Exec
state Name Description

AArch64 VPIDR_EL2 Virtualization Processor ID Register
AArch64 VTCR_EL2 Virtualization Translation Control Register
AArch64 VTTBR_EL2 Virtualization Translation Table Base Register

In the Secure functional group:
Exec state Name Description
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 MVBAR Monitor Vector Base Address Register
AArch32 NSACR Non-Secure Access Control Register
AArch32 SCR Secure Configuration Register
AArch32 SDCR Secure Debug Control Register
AArch32 SDER Secure Debug Enable Register
AArch64 ACTLR_EL3 Auxiliary Control Register (EL3)
AArch64 AFSR0_EL3 Auxiliary Fault Status Register 0 (EL3)
AArch64 AFSR1_EL3 Auxiliary Fault Status Register 1 (EL3)
AArch64 AMAIR_EL3 Auxiliary Memory Attribute Indirection Register (EL3)
AArch64 CPTR_EL3 Architectural Feature Trap Register (EL3)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 MDCR_EL3 Monitor Debug Configuration Register (EL3)
AArch64 SCR_EL3 Secure Configuration Register
AArch64 SDER32_EL3 AArch32 Secure Debug Enable Register
AArch64 VBAR_EL3 Vector Base Address Register (EL3)

In the Float functional group:
Exec state Name Description
AArch32 FPEXC Floating-Point Exception Control register
AArch32 FPSCR Floating-Point Status and Control Register
AArch32 FPSID Floating-Point System ID register
AArch32 MVFR0 Media and VFP Feature Register 0
AArch32 MVFR1 Media and VFP Feature Register 1
AArch32 MVFR2 Media and VFP Feature Register 2
AArch64 FPCR Floating-point Control Register
AArch64 FPEXC32_EL2 Floating-Point Exception Control register
AArch64 FPSR Floating-point Status Register
AArch64 MVFR0_EL1 AArch32 Media and VFP Feature Register 0
AArch64 MVFR1_EL1 AArch32 Media and VFP Feature Register 1
AArch64 MVFR2_EL1 AArch32 Media and VFP Feature Register 2

In the Legacy functional group:
Exec state Name Description
AArch32 CP15DMB Data Memory Barrier System instruction
AArch32 CP15DSB Data Synchronization Barrier System instruction
AArch32 CP15ISB Instruction Synchronization Barrier System instruction
AArch32 FCSEIDR FCSE Process ID register
AArch32 JIDR Jazelle ID Register
AArch32 JMCR Jazelle Main Configuration Register
AArch32 JOSCR Jazelle OS Control Register

In the GIC functional group:
Exec state Name Description
AArch32 ICC_AP0R<n> Interrupt Controller Active Priorities Group 0 Registers
AArch32 ICC_AP1R<n> Interrupt Controller Active Priorities Group 1 Registers
AArch32 ICC_ASGI1R Interrupt Controller Alias Software Generated Interrupt Group 1 Register

System Register index by functional group

Page 1539

Exec state Name Description
AArch32 ICC_BPR0 Interrupt Controller Binary Point Register 0
AArch32 ICC_BPR1 Interrupt Controller Binary Point Register 1
AArch32 ICC_CTLR Interrupt Controller Control Register
AArch32 ICC_DIR Interrupt Controller Deactivate Interrupt Register
AArch32 ICC_EOIR0 Interrupt Controller End Of Interrupt Register 0
AArch32 ICC_EOIR1 Interrupt Controller End Of Interrupt Register 1
AArch32 ICC_HPPIR0 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch32 ICC_HPPIR1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch32 ICC_HSRE Interrupt Controller Hyp System Register Enable register
AArch32 ICC_IAR0 Interrupt Controller Interrupt Acknowledge Register 0
AArch32 ICC_IAR1 Interrupt Controller Interrupt Acknowledge Register 1
AArch32 ICC_IGRPEN0 Interrupt Controller Interrupt Group 0 Enable register
AArch32 ICC_IGRPEN1 Interrupt Controller Interrupt Group 1 Enable register
AArch32 ICC_MCTLR Interrupt Controller Monitor Control Register
AArch32 ICC_MGRPEN1 Interrupt Controller Monitor Interrupt Group 1 Enable register
AArch32 ICC_MSRE Interrupt Controller Monitor System Register Enable register
AArch32 ICC_PMR Interrupt Controller Interrupt Priority Mask Register
AArch32 ICC_RPR Interrupt Controller Running Priority Register
AArch32 ICC_SGI0R Interrupt Controller Software Generated Interrupt Group 0 Register
AArch32 ICC_SGI1R Interrupt Controller Software Generated Interrupt Group 1 Register
AArch32 ICC_SRE Interrupt Controller System Register Enable register
AArch32 ICH_AP0R<n> Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch32 ICH_AP1R<n> Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch32 ICH_EISR Interrupt Controller End of Interrupt Status Register
AArch32 ICH_ELRSR Interrupt Controller Empty List Register Status Register
AArch32 ICH_HCR Interrupt Controller Hyp Control Register
AArch32 ICH_LR<n> Interrupt Controller List Registers
AArch32 ICH_LRC<n> Interrupt Controller List Registers
AArch32 ICH_MISR Interrupt Controller Maintenance Interrupt State Register
AArch32 ICH_VMCR Interrupt Controller Virtual Machine Control Register
AArch32 ICH_VTR Interrupt Controller VGIC Type Register
AArch32 ICV_AP0R<n> Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch32 ICV_AP1R<n> Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch32 ICV_BPR0 Interrupt Controller Virtual Binary Point Register 0
AArch32 ICV_BPR1 Interrupt Controller Virtual Binary Point Register 1
AArch32 ICV_CTLR Interrupt Controller Virtual Control Register
AArch32 ICV_DIR Interrupt Controller Deactivate Virtual Interrupt Register
AArch32 ICV_EOIR0 Interrupt Controller Virtual End Of Interrupt Register 0
AArch32 ICV_EOIR1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch32 ICV_HPPIR0 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch32 ICV_HPPIR1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch32 ICV_IAR0 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch32 ICV_IAR1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch32 ICV_IGRPEN0 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch32 ICV_IGRPEN1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch32 ICV_PMR Interrupt Controller Virtual Interrupt Priority Mask Register
AArch32 ICV_RPR Interrupt Controller Virtual Running Priority Register
AArch64 ICC_AP0R<n>_EL1 Interrupt Controller Active Priorities Group 0 Registers
AArch64 ICC_AP1R<n>_EL1 Interrupt Controller Active Priorities Group 1 Registers
AArch64 ICC_ASGI1R_EL1 Interrupt Controller Alias Software Generated Interrupt Group 1 Register
AArch64 ICC_BPR0_EL1 Interrupt Controller Binary Point Register 0
AArch64 ICC_BPR1_EL1 Interrupt Controller Binary Point Register 1
AArch64 ICC_CTLR_EL1 Interrupt Controller Control Register (EL1)
AArch64 ICC_CTLR_EL3 Interrupt Controller Control Register (EL3)
AArch64 ICC_DIR_EL1 Interrupt Controller Deactivate Interrupt Register
AArch64 ICC_EOIR0_EL1 Interrupt Controller End Of Interrupt Register 0
AArch64 ICC_EOIR1_EL1 Interrupt Controller End Of Interrupt Register 1
AArch64 ICC_HPPIR0_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 0
AArch64 ICC_HPPIR1_EL1 Interrupt Controller Highest Priority Pending Interrupt Register 1
AArch64 ICC_IAR0_EL1 Interrupt Controller Interrupt Acknowledge Register 0
AArch64 ICC_IAR1_EL1 Interrupt Controller Interrupt Acknowledge Register 1
AArch64 ICC_IGRPEN0_EL1 Interrupt Controller Interrupt Group 0 Enable register
AArch64 ICC_IGRPEN1_EL1 Interrupt Controller Interrupt Group 1 Enable register
AArch64 ICC_IGRPEN1_EL3 Interrupt Controller Interrupt Group 1 Enable register (EL3)

System Register index by functional group

Page 1540

Exec state Name Description
AArch64 ICC_PMR_EL1 Interrupt Controller Interrupt Priority Mask Register
AArch64 ICC_RPR_EL1 Interrupt Controller Running Priority Register
AArch64 ICC_SGI0R_EL1 Interrupt Controller Software Generated Interrupt Group 0 Register
AArch64 ICC_SGI1R_EL1 Interrupt Controller Software Generated Interrupt Group 1 Register
AArch64 ICC_SRE_EL1 Interrupt Controller System Register Enable register (EL1)
AArch64 ICC_SRE_EL2 Interrupt Controller System Register Enable register (EL2)
AArch64 ICC_SRE_EL3 Interrupt Controller System Register Enable register (EL3)
AArch64 ICH_AP0R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 0 Registers
AArch64 ICH_AP1R<n>_EL2 Interrupt Controller Hyp Active Priorities Group 1 Registers
AArch64 ICH_EISR_EL2 Interrupt Controller End of Interrupt Status Register
AArch64 ICH_ELRSR_EL2 Interrupt Controller Empty List Register Status Register
AArch64 ICH_HCR_EL2 Interrupt Controller Hyp Control Register
AArch64 ICH_LR<n>_EL2 Interrupt Controller List Registers
AArch64 ICH_MISR_EL2 Interrupt Controller Maintenance Interrupt State Register
AArch64 ICH_VMCR_EL2 Interrupt Controller Virtual Machine Control Register
AArch64 ICH_VTR_EL2 Interrupt Controller VGIC Type Register
AArch64 ICV_AP0R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 0 Registers
AArch64 ICV_AP1R<n>_EL1 Interrupt Controller Virtual Active Priorities Group 1 Registers
AArch64 ICV_BPR0_EL1 Interrupt Controller Virtual Binary Point Register 0
AArch64 ICV_BPR1_EL1 Interrupt Controller Virtual Binary Point Register 1
AArch64 ICV_CTLR_EL1 Interrupt Controller Virtual Control Register
AArch64 ICV_DIR_EL1 Interrupt Controller Deactivate Virtual Interrupt Register
AArch64 ICV_EOIR0_EL1 Interrupt Controller Virtual End Of Interrupt Register 0
AArch64 ICV_EOIR1_EL1 Interrupt Controller Virtual End Of Interrupt Register 1
AArch64 ICV_HPPIR0_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 0
AArch64 ICV_HPPIR1_EL1 Interrupt Controller Virtual Highest Priority Pending Interrupt Register 1
AArch64 ICV_IAR0_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 0
AArch64 ICV_IAR1_EL1 Interrupt Controller Virtual Interrupt Acknowledge Register 1
AArch64 ICV_IGRPEN0_EL1 Interrupt Controller Virtual Interrupt Group 0 Enable register
AArch64 ICV_IGRPEN1_EL1 Interrupt Controller Virtual Interrupt Group 1 Enable register
AArch64 ICV_PMR_EL1 Interrupt Controller Virtual Interrupt Priority Mask Register
AArch64 ICV_RPR_EL1 Interrupt Controller Virtual Running Priority Register

In the GICD functional group:
Exec
state Name Description

External GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICD_CLRSPI_SR Clear Secure SPI Pending Register
External GICD_CPENDSGIR<n> SGI Clear-Pending Registers
External GICD_CTLR Distributor Control Register
External GICD_ICACTIVER<n> Interrupt Clear-Active Registers
External GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended SPI range)
External GICD_ICENABLER<n> Interrupt Clear-Enable Registers
External GICD_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICD_ICFGR<n> Interrupt Configuration Registers
External GICD_ICFGR<n>E Interrupt Configuration Registers (Extended SPI Range)
External GICD_ICPENDR<n> Interrupt Clear-Pending Registers
External GICD_ICPENDR<n>E Interrupt Clear-Pending Registers (extended SPI range)
External GICD_IGROUPR<n> Interrupt Group Registers
External GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI range)
External GICD_IGRPMODR<n> Interrupt Group Modifier Registers
External GICD_IGRPMODR<n>E Interrupt Group Modifier Registers (extended SPI range)
External GICD_IIDR Distributor Implementer Identification Register
External GICD_IPRIORITYR<n> Interrupt Priority Registers
External GICD_IPRIORITYR<n>E Holds the priority of the corresponding interrupt for each extended SPI

supported by the GIC.
External GICD_IROUTER<n> Interrupt Routing Registers
External GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI Range)
External GICD_ISACTIVER<n> Interrupt Set-Active Registers
External GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended SPI range)
External GICD_ISENABLER<n> Interrupt Set-Enable Registers
External GICD_ISENABLER<n>E Interrupt Set-Enable Registers
External GICD_ISPENDR<n> Interrupt Set-Pending Registers

System Register index by functional group

Page 1541

Exec
state Name Description

External GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended SPI range)
External GICD_ITARGETSR<n> Interrupt Processor Targets Registers
External GICD_NSACR<n> Non-secure Access Control Registers
External GICD_NSACR<n>E Non-secure Access Control Registers
External GICD_SETSPI_NSR Set Non-secure SPI Pending Register
External GICD_SETSPI_SR Set Secure SPI Pending Register
External GICD_SGIR Software Generated Interrupt Register
External GICD_SPENDSGIR<n> SGI Set-Pending Registers
External GICD_STATUSR Error Reporting Status Register
External GICD_TYPER Interrupt Controller Type Register
External GICD_TYPER2 Interrupt Controller Type Register 2
External GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
External GICM_CLRSPI_SR Clear Secure SPI Pending Register
External GICM_IIDR Distributor Implementer Identification Register
External GICM_SETSPI_NSR Set Non-secure SPI Pending Register
External GICM_SETSPI_SR Set Secure SPI Pending Register
External GICM_TYPER Distributor MSI Type Register

In the GICR functional group:
Exec state Name Description
External GICR_CLRLPIR Clear LPI Pending Register
External GICR_CTLR Redistributor Control Register
External GICR_ICACTIVER0 Interrupt Clear-Active Register 0
External GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
External GICR_ICENABLER0 Interrupt Clear-Enable Register 0
External GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
External GICR_ICFGR0 Interrupt Configuration Register 0
External GICR_ICFGR1 Interrupt Configuration Register 1
External GICR_ICFGR<n>E Interrupt configuration registers
External GICR_ICPENDR0 Interrupt Clear-Pending Register 0
External GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
External GICR_IGROUPR0 Interrupt Group Register 0
External GICR_IGROUPR<n>E Interrupt Group Registers
External GICR_IGRPMODR0 Interrupt Group Modifier Register 0
External GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
External GICR_IIDR Redistributor Implementer Identification Register
External GICR_INVALLR Redistributor Invalidate All Register
External GICR_INVLPIR Redistributor Invalidate LPI Register
External GICR_IPRIORITYR<n> Interrupt Priority Registers
External GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI range)
External GICR_ISACTIVER0 Interrupt Set-Active Register 0
External GICR_ISACTIVER<n>E Interrupt Set-Active Registers
External GICR_ISENABLER0 Interrupt Set-Enable Register 0
External GICR_ISENABLER<n>E Interrupt Set-Enable Registers
External GICR_ISPENDR0 Interrupt Set-Pending Register 0
External GICR_ISPENDR<n>E Interrupt Set-Pending Registers
External GICR_MPAMIDR Report maximum PARTID and PMG Register
External GICR_NSACR Non-secure Access Control Register
External GICR_PARTIDR Set PARTID and PMG Register
External GICR_PENDBASER Redistributor LPI Pending Table Base Address Register
External GICR_PROPBASER Redistributor Properties Base Address Register
External GICR_SETLPIR Set LPI Pending Register
External GICR_STATUSR Error Reporting Status Register
External GICR_SYNCR Redistributor Synchronize Register
External GICR_TYPER Redistributor Type Register
External GICR_VPENDBASER Virtual Redistributor LPI Pending Table Base Address Register
External GICR_VPROPBASER Virtual Redistributor Properties Base Address Register
External GICR_VSGIPENDR Redistributor virtual SGI pending state register
External GICR_VSGIR Redistributor virtual SGI pending state request register
External GICR_WAKER Redistributor Wake Register

System Register index by functional group

Page 1542

In the GICC functional group:
Exec state Name Description
External GICC_ABPR CPU Interface Aliased Binary Point Register
External GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
External GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt Register
External GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
External GICC_APR<n> CPU Interface Active Priorities Registers
External GICC_BPR CPU Interface Binary Point Register
External GICC_CTLR CPU Interface Control Register
External GICC_DIR CPU Interface Deactivate Interrupt Register
External GICC_EOIR CPU Interface End Of Interrupt Register
External GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
External GICC_IAR CPU Interface Interrupt Acknowledge Register
External GICC_IIDR CPU Interface Identification Register
External GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers
External GICC_PMR CPU Interface Priority Mask Register
External GICC_RPR CPU Interface Running Priority Register
External GICC_STATUSR CPU Interface Status Register

In the GICV functional group:
Exec state Name Description
External GICV_ABPR Virtual Machine Aliased Binary Point Register
External GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
External GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt Register
External GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
External GICV_APR<n> Virtual Machine Active Priorities Registers
External GICV_BPR Virtual Machine Binary Point Register
External GICV_CTLR Virtual Machine Control Register
External GICV_DIR Virtual Machine Deactivate Interrupt Register
External GICV_EOIR Virtual Machine End Of Interrupt Register
External GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
External GICV_IAR Virtual Machine Interrupt Acknowledge Register
External GICV_IIDR Virtual Machine CPU Interface Identification Register
External GICV_PMR Virtual Machine Priority Mask Register
External GICV_RPR Virtual Machine Running Priority Register
External GICV_STATUSR Virtual Machine Error Reporting Status Register

In the GICH functional group:
Exec state Name Description
External GICH_APR<n> Active Priorities Registers
External GICH_EISR End Interrupt Status Register
External GICH_ELRSR Empty List Register Status Register
External GICH_HCR Hypervisor Control Register
External GICH_LR<n> List Registers
External GICH_MISR Maintenance Interrupt Status Register
External GICH_VMCR Virtual Machine Control Register
External GICH_VTR Virtual Type Register

In the GITS functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.

System Register index by functional group

Page 1543

Exec state Name Description
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_STATUSR ITS Error Reporting Status Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register
External GITS_UMSIR ITS Unmapped MSI register

In the RAS functional group:
Exec state Name Description
AArch32 DISR Deferred Interrupt Status Register
AArch32 ERRIDR Error Record ID Register
AArch32 ERRSELR Error Record Select Register
AArch32 ERXADDR Selected Error Record Address Register
AArch32 ERXADDR2 Selected Error Record Address Register 2
AArch32 ERXCTLR Selected Error Record Control Register
AArch32 ERXCTLR2 Selected Error Record Control Register 2
AArch32 ERXFR Selected Error Record Feature Register
AArch32 ERXFR2 Selected Error Record Feature Register 2
AArch32 ERXMISC0 Selected Error Record Miscellaneous Register 0
AArch32 ERXMISC1 Selected Error Record Miscellaneous Register 1
AArch32 ERXMISC2 Selected Error Record Miscellaneous Register 2
AArch32 ERXMISC3 Selected Error Record Miscellaneous Register 3
AArch32 ERXMISC4 Selected Error Record Miscellaneous Register 4
AArch32 ERXMISC5 Selected Error Record Miscellaneous Register 5
AArch32 ERXMISC6 Selected Error Record Miscellaneous Register 6
AArch32 ERXMISC7 Selected Error Record Miscellaneous Register 7
AArch32 ERXSTATUS Selected Error Record Primary Status Register
AArch32 VDFSR Virtual SError Exception Syndrome Register
AArch32 VDISR Virtual Deferred Interrupt Status Register
AArch64 DISR_EL1 Deferred Interrupt Status Register
AArch64 ERRIDR_EL1 Error Record ID Register
AArch64 ERRSELR_EL1 Error Record Select Register
AArch64 ERXADDR_EL1 Selected Error Record Address Register
AArch64 ERXCTLR_EL1 Selected Error Record Control Register
AArch64 ERXFR_EL1 Selected Error Record Feature Register
AArch64 ERXMISC0_EL1 Selected Error Record Miscellaneous Register 0
AArch64 ERXMISC1_EL1 Selected Error Record Miscellaneous Register 1
AArch64 ERXMISC2_EL1 Selected Error Record Miscellaneous Register 2
AArch64 ERXMISC3_EL1 Selected Error Record Miscellaneous Register 3
AArch64 ERXPFGCDN_EL1 Selected Pseudo-fault Generation Countdown register
AArch64 ERXPFGCTL_EL1 Selected Pseudo-fault Generation Control register
AArch64 ERXPFGF_EL1 Selected Pseudo-fault Generation Feature register
AArch64 ERXSTATUS_EL1 Selected Error Record Primary Status Register
AArch64 VDISR_EL2 Virtual Deferred Interrupt Status Register
AArch64 VSESR_EL2 Virtual SError Exception Syndrome Register
External ERR<n>ADDR Error Record Address Register
External ERR<n>CTLR Error Record Control Register
External ERR<n>FR Error Record Feature Register
External ERR<n>MISC0 Error Record Miscellaneous Register 0
External ERR<n>MISC1 Error Record Miscellaneous Register 1
External ERR<n>MISC2 Error Record Miscellaneous Register 2
External ERR<n>MISC3 Error Record Miscellaneous Register 3
External ERR<n>PFGCDN Pseudo-fault Generation Countdown Register
External ERR<n>PFGCTL Pseudo-fault Generation Control Register
External ERR<n>PFGF Pseudo-fault Generation Feature Register
External ERR<n>STATUS Error Record Primary Status Register
External ERRCIDR0 Component Identification Register 0
External ERRCIDR1 Component Identification Register 1
External ERRCIDR2 Component Identification Register 2
External ERRCIDR3 Component Identification Register 3
External ERRCRICR0 Critical Error Interrupt Configuration Register 0
External ERRCRICR1 Critical Error Interrupt Configuration Register 1

System Register index by functional group

Page 1544

Exec state Name Description
External ERRCRICR2 Critical Error Interrupt Configuration Register 2
External ERRDEVAFF Device Affinity Register
External ERRDEVARCH Device Architecture Register
External ERRDEVID Device Configuration Register
External ERRERICR0 Error Recovery Interrupt Configuration Register 0
External ERRERICR1 Error Recovery Interrupt Configuration Register 1
External ERRERICR2 Error Recovery Interrupt Configuration Register 2
External ERRFHICR0 Fault Handling Interrupt Configuration Register 0
External ERRFHICR1 Fault Handling Interrupt Configuration Register 1
External ERRFHICR2 Fault Handling Interrupt Configuration Register 2
External ERRGSR Error Group Status Register
External ERRIIDR Implementation Identification Register
External ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
External ERRIRQCR<n> Generic Error Interrupt Configuration Register
External ERRIRQSR Error Interrupt Status Register
External ERRPIDR0 Peripheral Identification Register 0
External ERRPIDR1 Peripheral Identification Register 1
External ERRPIDR2 Peripheral Identification Register 2
External ERRPIDR3 Peripheral Identification Register 3
External ERRPIDR4 Peripheral Identification Register 4

In the MPAM functional group:
Exec
state Name Description

AArch64 MPAM0_EL1 MPAM0 Register (EL1)
AArch64 MPAM1_EL1 MPAM1 Register (EL1)
AArch64 MPAM2_EL2 MPAM2 Register (EL2)
AArch64 MPAM3_EL3 MPAM3 Register (EL3)
AArch64 MPAMHCR_EL2 MPAM Hypervisor Control Register (EL2)
AArch64 MPAMVPM0_EL2 MPAM Virtual PARTID Mapping Register 0
AArch64 MPAMVPM1_EL2 MPAM Virtual PARTID Mapping Register 1
AArch64 MPAMVPM2_EL2 MPAM Virtual PARTID Mapping Register 2
AArch64 MPAMVPM3_EL2 MPAM Virtual PARTID Mapping Register 3
AArch64 MPAMVPM4_EL2 MPAM Virtual PARTID Mapping Register 4
AArch64 MPAMVPM5_EL2 MPAM Virtual PARTID Mapping Register 5
AArch64 MPAMVPM6_EL2 MPAM Virtual PARTID Mapping Register 6
AArch64 MPAMVPM7_EL2 MPAM Virtual PARTID Mapping Register 7
AArch64 MPAMVPMV_EL2 MPAM Virtual Partition Mapping Valid Register
External MPAMCFG_CMAX MPAM Cache Maximum Capacity Partition Configuration Register
External MPAMCFG_CPBM<n> MPAM Cache Portion Bitmap Partition Configuration Register
External MPAMCFG_INTPARTID MPAM Internal PARTID Narrowing Configuration Register
External MPAMCFG_MBW_MAX MPAM Memory Bandwidth Maximum Partition Configuration

Register
External MPAMCFG_MBW_MIN MPAM Memory Bandwidth Minimum Partition Configuration

Register
External MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion Bitmap Partition Configuration Register
External MPAMCFG_MBW_PROP MPAM Memory Bandwidth Proportional Stride Partition

Configuration Register
External MPAMCFG_MBW_WINWD MPAM Memory Bandwidth Partitioning Window Width

Configuration Register
External MPAMCFG_PART_SEL MPAM Partition Configuration Selection Register
External MPAMCFG_PRI MPAM Priority Partition Configuration Register
External MPAMF_AIDR MPAM Architecture Identification Register
External MPAMF_CCAP_IDR MPAM Features Cache Capacity Partitioning ID register
External MPAMF_CPOR_IDR MPAM Features Cache Portion Partitioning ID register
External MPAMF_CSUMON_IDR MPAM Features Cache Storage Usage Monitoring ID register
External MPAMF_ECR MPAM Error Control Register
External MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part Address Register
External MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part Address Register
External MPAMF_ERR_MSI_ATTR MPAM Error MSI Write Attributes Register
External MPAMF_ERR_MSI_DATA MPAM Error MSI Data Register
External MPAMF_ERR_MSI_MPAM MPAM Error MSI Write MPAM Information Register
External MPAMF_ESR MPAM Error Status Register

System Register index by functional group

Page 1545

Exec
state Name Description

External MPAMF_IDR MPAM Features Identification Register
External MPAMF_IIDR MPAM Implementation Identification Register
External MPAMF_IMPL_IDR MPAM Implementation-Specific Partitioning Feature Identification

Register
External MPAMF_MBWUMON_IDR MPAM Features Memory Bandwidth Usage Monitoring ID register
External MPAMF_MBW_IDR MPAM Memory Bandwidth Partitioning Identification Register
External MPAMF_MSMON_IDR MPAM Resource Monitoring Identification Register
External MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing ID register
External MPAMF_PRI_IDR MPAM Priority Partitioning Identification Register
External MPAMF_SIDR MPAM Features Secure Identification Register
External MSMON_CAPT_EVNT MPAM Capture Event Generation Register
External MSMON_CFG_CSU_CTL MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Control Register
External MSMON_CFG_CSU_FLT MPAM Memory System Monitor Configure Cache Storage Usage

Monitor Filter Register
External MSMON_CFG_MBWU_CTL MPAM Memory System Monitor Configure Memory Bandwidth

Usage Monitor Control Register
External MSMON_CFG_MBWU_FLT MPAM Memory System Monitor Configure Memory Bandwidth

Usage Monitor Filter Register
External MSMON_CFG_MON_SEL MPAM Monitor Instance Selection Register
External MSMON_CSU MPAM Cache Storage Usage Monitor Register
External MSMON_CSU_CAPTURE MPAM Cache Storage Usage Monitor Capture Register
External MSMON_CSU_OFSR MPAM CSU Monitor Overflow Status Register
External MSMON_MBWU MPAM Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_CAPTURE MPAM Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_L MPAM Long Memory Bandwidth Usage Monitor Register
External MSMON_MBWU_L_CAPTURE MPAM Long Memory Bandwidth Usage Monitor Capture Register
External MSMON_MBWU_OFSR MPAM MBWU Monitor Overflow Status Register
External MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow MSI Write High-part Address Register
External MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow MSI Low-part Address Register
External MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow MSI Write Attributes Register
External MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow MSI Write Data Register
External MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow MSI Write MPAM Information Register
External MSMON_OFLOW_SR MPAM Monitor Overflow Status Register

In the Pointer authentication functional group:
Exec state Name Description
AArch64 APDAKeyHi_EL1 Pointer Authentication Key A for Data (bits[127:64])
AArch64 APDAKeyLo_EL1 Pointer Authentication Key A for Data (bits[63:0])
AArch64 APDBKeyHi_EL1 Pointer Authentication Key B for Data (bits[127:64])
AArch64 APDBKeyLo_EL1 Pointer Authentication Key B for Data (bits[63:0])
AArch64 APGAKeyHi_EL1 Pointer Authentication Key A for Code (bits[127:64])
AArch64 APGAKeyLo_EL1 Pointer Authentication Key A for Code (bits[63:0])
AArch64 APIAKeyHi_EL1 Pointer Authentication Key A for Instruction (bits[127:64])
AArch64 APIAKeyLo_EL1 Pointer Authentication Key A for Instruction (bits[63:0])
AArch64 APIBKeyHi_EL1 Pointer Authentication Key B for Instruction (bits[127:64])
AArch64 APIBKeyLo_EL1 Pointer Authentication Key B for Instruction (bits[63:0])

In the AMU functional group:
Exec state Name Description
AArch32 AMCFGR Activity Monitors Configuration Register
AArch32 AMCGCR Activity Monitors Counter Group Configuration Register
AArch32 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
AArch32 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
AArch32 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
AArch32 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
AArch32 AMCR Activity Monitors Control Register
AArch32 AMEVCNTR0<n> Activity Monitors Event Counter Registers 0
AArch32 AMEVCNTR1<n> Activity Monitors Event Counter Registers 1
AArch32 AMEVTYPER0<n> Activity Monitors Event Type Registers 0

System Register index by functional group

Page 1546

Exec state Name Description
AArch32 AMEVTYPER1<n> Activity Monitors Event Type Registers 1
AArch32 AMUSERENR Activity Monitors User Enable Register
AArch64 AMCFGR_EL0 Activity Monitors Configuration Register
AArch64 AMCG1IDR_EL0 Activity Monitors Counter Group 1 Identification Register
AArch64 AMCGCR_EL0 Activity Monitors Counter Group Configuration Register
AArch64 AMCNTENCLR0_EL0 Activity Monitors Count Enable Clear Register 0
AArch64 AMCNTENCLR1_EL0 Activity Monitors Count Enable Clear Register 1
AArch64 AMCNTENSET0_EL0 Activity Monitors Count Enable Set Register 0
AArch64 AMCNTENSET1_EL0 Activity Monitors Count Enable Set Register 1
AArch64 AMCR_EL0 Activity Monitors Control Register
AArch64 AMEVCNTR0<n>_EL0 Activity Monitors Event Counter Registers 0
AArch64 AMEVCNTR1<n>_EL0 Activity Monitors Event Counter Registers 1
AArch64 AMEVCNTVOFF0<n>_EL2 Activity Monitors Event Counter Virtual Offset Registers 0
AArch64 AMEVCNTVOFF1<n>_EL2 Activity Monitors Event Counter Virtual Offset Registers 1
AArch64 AMEVTYPER0<n>_EL0 Activity Monitors Event Type Registers 0
AArch64 AMEVTYPER1<n>_EL0 Activity Monitors Event Type Registers 1
AArch64 AMUSERENR_EL0 Activity Monitors User Enable Register
External AMCFGR Activity Monitors Configuration Register
External AMCGCR Activity Monitors Counter Group Configuration Register
External AMCIDR0 Activity Monitors Component Identification Register 0
External AMCIDR1 Activity Monitors Component Identification Register 1
External AMCIDR2 Activity Monitors Component Identification Register 2
External AMCIDR3 Activity Monitors Component Identification Register 3
External AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
External AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
External AMCNTENSET0 Activity Monitors Count Enable Set Register 0
External AMCNTENSET1 Activity Monitors Count Enable Set Register 1
External AMCR Activity Monitors Control Register
External AMDEVAFF0 Activity Monitors Device Affinity Register 0
External AMDEVAFF1 Activity Monitors Device Affinity Register 1
External AMDEVARCH Activity Monitors Device Architecture Register
External AMDEVTYPE Activity Monitors Device Type Register
External AMEVCNTR0<n> Activity Monitors Event Counter Registers 0
External AMEVCNTR1<n> Activity Monitors Event Counter Registers 1
External AMEVTYPER0<n> Activity Monitors Event Type Registers 0
External AMEVTYPER1<n> Activity Monitors Event Type Registers 1
External AMIIDR Activity Monitors Implementation Identification Register
External AMPIDR0 Activity Monitors Peripheral Identification Register 0
External AMPIDR1 Activity Monitors Peripheral Identification Register 1
External AMPIDR2 Activity Monitors Peripheral Identification Register 2
External AMPIDR3 Activity Monitors Peripheral Identification Register 3
External AMPIDR4 Activity Monitors Peripheral Identification Register 4

In the GIC ITS registers functional group:
Exec state Name Description
External GITS_BASER<n> ITS Translation Table Descriptors
External GITS_CBASER ITS Command Queue Descriptor
External GITS_CREADR ITS Read Register
External GITS_CTLR ITS Control Register
External GITS_CWRITER ITS Write Register
External GITS_IIDR ITS Identification Register
External GITS_MPAMIDR Report maximum PARTID and PMG Register
External GITS_MPIDR Report ITS's affinity.
External GITS_PARTIDR Set PARTID and PMG Register
External GITS_SGIR ITS SGI Register
External GITS_STATUSR ITS Error Reporting Status Register
External GITS_TRANSLATER ITS Translation Register
External GITS_TYPER ITS Type Register
External GITS_UMSIR ITS Unmapped MSI register

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

System Register index by functional group

Page 1547

(old) htmldiff from- (new)

System Register index by functional group

Page 1548

(old) htmldiff from- (new)

External registers
AMCFGR: Activity Monitors Configuration Register

AMCGCR: Activity Monitors Counter Group Configuration Register

AMCIDR0: Activity Monitors Component Identification Register 0

AMCIDR1: Activity Monitors Component Identification Register 1

AMCIDR2: Activity Monitors Component Identification Register 2

AMCIDR3: Activity Monitors Component Identification Register 3

AMCNTENCLR0: Activity Monitors Count Enable Clear Register 0

AMCNTENCLR1: Activity Monitors Count Enable Clear Register 1

AMCNTENSET0: Activity Monitors Count Enable Set Register 0

AMCNTENSET1: Activity Monitors Count Enable Set Register 1

AMCR: Activity Monitors Control Register

AMDEVAFF0: Activity Monitors Device Affinity Register 0

AMDEVAFF1: Activity Monitors Device Affinity Register 1

AMDEVARCH: Activity Monitors Device Architecture Register

AMDEVTYPE: Activity Monitors Device Type Register

AMEVCNTR0<n>: Activity Monitors Event Counter Registers 0

AMEVCNTR1<n>: Activity Monitors Event Counter Registers 1

AMEVTYPER0<n>: Activity Monitors Event Type Registers 0

AMEVTYPER1<n>: Activity Monitors Event Type Registers 1

AMIIDR: Activity Monitors Implementation Identification Register

AMPIDR0: Activity Monitors Peripheral Identification Register 0

AMPIDR1: Activity Monitors Peripheral Identification Register 1

AMPIDR2: Activity Monitors Peripheral Identification Register 2

AMPIDR3: Activity Monitors Peripheral Identification Register 3

AMPIDR4: Activity Monitors Peripheral Identification Register 4

ASICCTL: CTI External Multiplexer Control register

CNTACR<n>: Counter-timer Access Control Registers

CNTCR: Counter Control Register

CNTCV: Counter Count Value register

CNTEL0ACR: Counter-timer EL0 Access Control Register

CNTFID0: Counter Frequency ID

CNTFID<n>: Counter Frequency IDs, n > 0

CNTFRQ: Counter-timer Frequency

External registers

Page 1549

CNTID: Counter Identification Register

CNTNSAR: Counter-timer Non-secure Access Register

CNTPCT: Counter-timer Physical Count

CNTP_CTL: Counter-timer Physical Timer Control

CNTP_CVAL: Counter-timer Physical Timer CompareValue

CNTP_TVAL: Counter-timer Physical Timer TimerValue

CNTSCR: Counter Scale Register

CNTSR: Counter Status Register

CNTTIDR: Counter-timer Timer ID Register

CNTVCT: Counter-timer Virtual Count

CNTVOFF: Counter-timer Virtual Offset

CNTVOFF<n>: Counter-timer Virtual Offsets

CNTV_CTL: Counter-timer Virtual Timer Control

CNTV_CVAL: Counter-timer Virtual Timer CompareValue

CNTV_TVAL: Counter-timer Virtual Timer TimerValue

CounterID<n>: Counter ID registers

CTIAPPCLEAR: CTI Application Trigger Clear register

CTIAPPPULSE: CTI Application Pulse register

CTIAPPSET: CTI Application Trigger Set register

CTIAUTHSTATUS: CTI Authentication Status register

CTICHINSTATUS: CTI Channel In Status register

CTICHOUTSTATUS: CTI Channel Out Status register

CTICIDR0: CTI Component Identification Register 0

CTICIDR1: CTI Component Identification Register 1

CTICIDR2: CTI Component Identification Register 2

CTICIDR3: CTI Component Identification Register 3

CTICLAIMCLR: CTI CLAIM Tag Clear register

CTICLAIMSET: CTI CLAIM Tag Set register

CTICONTROL: CTI Control register

CTIDEVAFF0: CTI Device Affinity register 0

CTIDEVAFF1: CTI Device Affinity register 1

CTIDEVARCH: CTI Device Architecture register

CTIDEVCTL: CTI Device Control register

CTIDEVID: CTI Device ID register 0

CTIDEVID1: CTI Device ID register 1

CTIDEVID2: CTI Device ID register 2

External registers

Page 1550

CTIDEVTYPE: CTI Device Type register

CTIGATE: CTI Channel Gate Enable register

CTIINEN<n>: CTI Input Trigger to Output Channel Enable registers

CTIINTACK: CTI Output Trigger Acknowledge register

CTIITCTRL: CTI Integration mode Control register

CTILAR: CTI Lock Access Register

CTILSR: CTI Lock Status Register

CTIOUTEN<n>: CTI Input Channel to Output Trigger Enable registers

CTIPIDR0: CTI Peripheral Identification Register 0

CTIPIDR1: CTI Peripheral Identification Register 1

CTIPIDR2: CTI Peripheral Identification Register 2

CTIPIDR3: CTI Peripheral Identification Register 3

CTIPIDR4: CTI Peripheral Identification Register 4

CTITRIGINSTATUS: CTI Trigger In Status register

CTITRIGOUTSTATUS: CTI Trigger Out Status register

DBGAUTHSTATUS_EL1: Debug Authentication Status register

DBGBCR<n>_EL1: Debug Breakpoint Control Registers

DBGBVR<n>_EL1: Debug Breakpoint Value Registers

DBGCLAIMCLR_EL1: Debug CLAIM Tag Clear register

DBGCLAIMSET_EL1: Debug CLAIM Tag Set register

DBGDTRRX_EL0: Debug Data Transfer Register, Receive

DBGDTRTX_EL0: Debug Data Transfer Register, Transmit

DBGWCR<n>_EL1: Debug Watchpoint Control Registers

DBGWVR<n>_EL1: Debug Watchpoint Value Registers

EDAA32PFR: External Debug Auxiliary Processor Feature Register

EDACR: External Debug Auxiliary Control Register

EDCIDR0: External Debug Component Identification Register 0

EDCIDR1: External Debug Component Identification Register 1

EDCIDR2: External Debug Component Identification Register 2

EDCIDR3: External Debug Component Identification Register 3

EDCIDSR: External Debug Context ID Sample Register

EDDEVAFF0: External Debug Device Affinity register 0

EDDEVAFF1: External Debug Device Affinity register 1

EDDEVARCH: External Debug Device Architecture register

EDDEVID: External Debug Device ID register 0

EDDEVID1: External Debug Device ID register 1

External registers

Page 1551

EDDEVID2: External Debug Device ID register 2

EDDEVTYPE: External Debug Device Type register

EDDFR: External Debug Feature Register

EDECCR: External Debug Exception Catch Control Register

EDECR: External Debug Execution Control Register

EDESR: External Debug Event Status Register

EDITCTRL: External Debug Integration mode Control register

EDITR: External Debug Instruction Transfer Register

EDLAR: External Debug Lock Access Register

EDLSR: External Debug Lock Status Register

EDPCSR: External Debug Program Counter Sample Register

EDPFR: External Debug Processor Feature Register

EDPIDR0: External Debug Peripheral Identification Register 0

EDPIDR1: External Debug Peripheral Identification Register 1

EDPIDR2: External Debug Peripheral Identification Register 2

EDPIDR3: External Debug Peripheral Identification Register 3

EDPIDR4: External Debug Peripheral Identification Register 4

EDPRCR: External Debug Power/Reset Control Register

EDPRSR: External Debug Processor Status Register

EDRCR: External Debug Reserve Control Register

EDSCR: External Debug Status and Control Register

EDVIDSR: External Debug Virtual Context Sample Register

EDWAR: External Debug Watchpoint Address Register

ERR<n>ADDR: Error Record Address Register

ERR<n>CTLR: Error Record Control Register

ERR<n>FR: Error Record Feature Register

ERR<n>MISC0: Error Record Miscellaneous Register 0

ERR<n>MISC1: Error Record Miscellaneous Register 1

ERR<n>MISC2: Error Record Miscellaneous Register 2

ERR<n>MISC3: Error Record Miscellaneous Register 3

ERR<n>PFGCDN: Pseudo-fault Generation Countdown Register

ERR<n>PFGCTL: Pseudo-fault Generation Control Register

ERR<n>PFGF: Pseudo-fault Generation Feature Register

ERR<n>STATUS: Error Record Primary Status Register

ERRCIDR0: Component Identification Register 0

ERRCIDR1: Component Identification Register 1

External registers

Page 1552

ERRCIDR2: Component Identification Register 2

ERRCIDR3: Component Identification Register 3

ERRCRICR0: Critical Error Interrupt Configuration Register 0

ERRCRICR1: Critical Error Interrupt Configuration Register 1

ERRCRICR2: Critical Error Interrupt Configuration Register 2

ERRDEVAFF: Device Affinity Register

ERRDEVARCH: Device Architecture Register

ERRDEVID: Device Configuration Register

ERRERICR0: Error Recovery Interrupt Configuration Register 0

ERRERICR1: Error Recovery Interrupt Configuration Register 1

ERRERICR2: Error Recovery Interrupt Configuration Register 2

ERRFHICR0: Fault Handling Interrupt Configuration Register 0

ERRFHICR1: Fault Handling Interrupt Configuration Register 1

ERRFHICR2: Fault Handling Interrupt Configuration Register 2

ERRGSR: Error Group Status Register

ERRIIDR: Implementation Identification Register

ERRIMPDEF<n>: IMPLEMENTATION DEFINED Register <n>

ERRIRQCR<n>: Generic Error Interrupt Configuration Register

ERRIRQSR: Error Interrupt Status Register

ERRPIDR0: Peripheral Identification Register 0

ERRPIDR1: Peripheral Identification Register 1

ERRPIDR2: Peripheral Identification Register 2

ERRPIDR3: Peripheral Identification Register 3

ERRPIDR4: Peripheral Identification Register 4

GICC_ABPR: CPU Interface Aliased Binary Point Register

GICC_AEOIR: CPU Interface Aliased End Of Interrupt Register

GICC_AHPPIR: CPU Interface Aliased Highest Priority Pending Interrupt Register

GICC_AIAR: CPU Interface Aliased Interrupt Acknowledge Register

GICC_APR<n>: CPU Interface Active Priorities Registers

GICC_BPR: CPU Interface Binary Point Register

GICC_CTLR: CPU Interface Control Register

GICC_DIR: CPU Interface Deactivate Interrupt Register

GICC_EOIR: CPU Interface End Of Interrupt Register

GICC_HPPIR: CPU Interface Highest Priority Pending Interrupt Register

GICC_IAR: CPU Interface Interrupt Acknowledge Register

GICC_IIDR: CPU Interface Identification Register

External registers

Page 1553

GICC_NSAPR<n>: CPU Interface Non-secure Active Priorities Registers

GICC_PMR: CPU Interface Priority Mask Register

GICC_RPR: CPU Interface Running Priority Register

GICC_STATUSR: CPU Interface Status Register

GICD_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICD_CLRSPI_SR: Clear Secure SPI Pending Register

GICD_CPENDSGIR<n>: SGI Clear-Pending Registers

GICD_CTLR: Distributor Control Register

GICD_ICACTIVER<n>: Interrupt Clear-Active Registers

GICD_ICACTIVER<n>E: Interrupt Clear-Active Registers (extended SPI range)

GICD_ICENABLER<n>: Interrupt Clear-Enable Registers

GICD_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICD_ICFGR<n>: Interrupt Configuration Registers

GICD_ICFGR<n>E: Interrupt Configuration Registers (Extended SPI Range)

GICD_ICPENDR<n>: Interrupt Clear-Pending Registers

GICD_ICPENDR<n>E: Interrupt Clear-Pending Registers (extended SPI range)

GICD_IGROUPR<n>: Interrupt Group Registers

GICD_IGROUPR<n>E: Interrupt Group Registers (extended SPI range)

GICD_IGRPMODR<n>: Interrupt Group Modifier Registers

GICD_IGRPMODR<n>E: Interrupt Group Modifier Registers (extended SPI range)

GICD_IIDR: Distributor Implementer Identification Register

GICD_IPRIORITYR<n>: Interrupt Priority Registers

GICD_IPRIORITYR<n>E: Holds the priority of the corresponding interrupt for each extended SPI supported by the
GIC.

GICD_IROUTER<n>: Interrupt Routing Registers

GICD_IROUTER<n>E: Interrupt Routing Registers (Extended SPI Range)

GICD_ISACTIVER<n>: Interrupt Set-Active Registers

GICD_ISACTIVER<n>E: Interrupt Set-Active Registers (extended SPI range)

GICD_ISENABLER<n>: Interrupt Set-Enable Registers

GICD_ISENABLER<n>E: Interrupt Set-Enable Registers

GICD_ISPENDR<n>: Interrupt Set-Pending Registers

GICD_ISPENDR<n>E: Interrupt Set-Pending Registers (extended SPI range)

GICD_ITARGETSR<n>: Interrupt Processor Targets Registers

GICD_NSACR<n>: Non-secure Access Control Registers

GICD_NSACR<n>E: Non-secure Access Control Registers

GICD_SETSPI_NSR: Set Non-secure SPI Pending Register

GICD_SETSPI_SR: Set Secure SPI Pending Register

External registers

Page 1554

GICD_SGIR: Software Generated Interrupt Register

GICD_SPENDSGIR<n>: SGI Set-Pending Registers

GICD_STATUSR: Error Reporting Status Register

GICD_TYPER: Interrupt Controller Type Register

GICD_TYPER2: Interrupt Controller Type Register 2

GICH_APR<n>: Active Priorities Registers

GICH_EISR: End Interrupt Status Register

GICH_ELRSR: Empty List Register Status Register

GICH_HCR: Hypervisor Control Register

GICH_LR<n>: List Registers

GICH_MISR: Maintenance Interrupt Status Register

GICH_VMCR: Virtual Machine Control Register

GICH_VTR: Virtual Type Register

GICM_CLRSPI_NSR: Clear Non-secure SPI Pending Register

GICM_CLRSPI_SR: Clear Secure SPI Pending Register

GICM_IIDR: Distributor Implementer Identification Register

GICM_SETSPI_NSR: Set Non-secure SPI Pending Register

GICM_SETSPI_SR: Set Secure SPI Pending Register

GICM_TYPER: Distributor MSI Type Register

GICR_CLRLPIR: Clear LPI Pending Register

GICR_CTLR: Redistributor Control Register

GICR_ICACTIVER0: Interrupt Clear-Active Register 0

GICR_ICACTIVER<n>E: Interrupt Clear-Active Registers

GICR_ICENABLER0: Interrupt Clear-Enable Register 0

GICR_ICENABLER<n>E: Interrupt Clear-Enable Registers

GICR_ICFGR0: Interrupt Configuration Register 0

GICR_ICFGR1: Interrupt Configuration Register 1

GICR_ICFGR<n>E: Interrupt configuration registers

GICR_ICPENDR0: Interrupt Clear-Pending Register 0

GICR_ICPENDR<n>E: Interrupt Clear-Pending Registers

GICR_IGROUPR0: Interrupt Group Register 0

GICR_IGROUPR<n>E: Interrupt Group Registers

GICR_IGRPMODR0: Interrupt Group Modifier Register 0

GICR_IGRPMODR<n>E: Interrupt Group Modifier Registers

GICR_IIDR: Redistributor Implementer Identification Register

GICR_INVALLR: Redistributor Invalidate All Register

External registers

Page 1555

GICR_INVLPIR: Redistributor Invalidate LPI Register

GICR_IPRIORITYR<n>: Interrupt Priority Registers

GICR_IPRIORITYR<n>E: Interrupt Priority Registers (extended PPI range)

GICR_ISACTIVER0: Interrupt Set-Active Register 0

GICR_ISACTIVER<n>E: Interrupt Set-Active Registers

GICR_ISENABLER0: Interrupt Set-Enable Register 0

GICR_ISENABLER<n>E: Interrupt Set-Enable Registers

GICR_ISPENDR0: Interrupt Set-Pending Register 0

GICR_ISPENDR<n>E: Interrupt Set-Pending Registers

GICR_MPAMIDR: Report maximum PARTID and PMG Register

GICR_NSACR: Non-secure Access Control Register

GICR_PARTIDR: Set PARTID and PMG Register

GICR_PENDBASER: Redistributor LPI Pending Table Base Address Register

GICR_PROPBASER: Redistributor Properties Base Address Register

GICR_SETLPIR: Set LPI Pending Register

GICR_STATUSR: Error Reporting Status Register

GICR_SYNCR: Redistributor Synchronize Register

GICR_TYPER: Redistributor Type Register

GICR_VPENDBASER: Virtual Redistributor LPI Pending Table Base Address Register

GICR_VPROPBASER: Virtual Redistributor Properties Base Address Register

GICR_VSGIPENDR: Redistributor virtual SGI pending state register

GICR_VSGIR: Redistributor virtual SGI pending state request register

GICR_WAKER: Redistributor Wake Register

GICV_ABPR: Virtual Machine Aliased Binary Point Register

GICV_AEOIR: Virtual Machine Aliased End Of Interrupt Register

GICV_AHPPIR: Virtual Machine Aliased Highest Priority Pending Interrupt Register

GICV_AIAR: Virtual Machine Aliased Interrupt Acknowledge Register

GICV_APR<n>: Virtual Machine Active Priorities Registers

GICV_BPR: Virtual Machine Binary Point Register

GICV_CTLR: Virtual Machine Control Register

GICV_DIR: Virtual Machine Deactivate Interrupt Register

GICV_EOIR: Virtual Machine End Of Interrupt Register

GICV_HPPIR: Virtual Machine Highest Priority Pending Interrupt Register

GICV_IAR: Virtual Machine Interrupt Acknowledge Register

GICV_IIDR: Virtual Machine CPU Interface Identification Register

GICV_PMR: Virtual Machine Priority Mask Register

External registers

Page 1556

GICV_RPR: Virtual Machine Running Priority Register

GICV_STATUSR: Virtual Machine Error Reporting Status Register

GITS_BASER<n>: ITS Translation Table Descriptors

GITS_CBASER: ITS Command Queue Descriptor

GITS_CREADR: ITS Read Register

GITS_CTLR: ITS Control Register

GITS_CWRITER: ITS Write Register

GITS_IIDR: ITS Identification Register

GITS_MPAMIDR: Report maximum PARTID and PMG Register

GITS_MPIDR: Report ITS's affinity.

GITS_PARTIDR: Set PARTID and PMG Register

GITS_SGIR: ITS SGI Register

GITS_STATUSR: ITS Error Reporting Status Register

GITS_TRANSLATER: ITS Translation Register

GITS_TYPER: ITS Type Register

GITS_UMSIR: ITS Unmapped MSI register

MIDR_EL1: Main ID Register

MPAMCFG_CMAX: MPAM Cache Maximum Capacity Partition Configuration Register

MPAMCFG_CPBM<n>: MPAM Cache Portion Bitmap Partition Configuration Register

MPAMCFG_INTPARTID: MPAM Internal PARTID Narrowing Configuration Register

MPAMCFG_MBW_MAX: MPAM Memory Bandwidth Maximum Partition Configuration Register

MPAMCFG_MBW_MIN: MPAM Memory Bandwidth Minimum Partition Configuration Register

MPAMCFG_MBW_PBM<n>: MPAM Bandwidth Portion Bitmap Partition Configuration Register

MPAMCFG_MBW_PROP: MPAM Memory Bandwidth Proportional Stride Partition Configuration Register

MPAMCFG_MBW_WINWD: MPAM Memory Bandwidth Partitioning Window Width Configuration Register

MPAMCFG_PART_SEL: MPAM Partition Configuration Selection Register

MPAMCFG_PRI: MPAM Priority Partition Configuration Register

MPAMF_AIDR: MPAM Architecture Identification Register

MPAMF_CCAP_IDR: MPAM Features Cache Capacity Partitioning ID register

MPAMF_CPOR_IDR: MPAM Features Cache Portion Partitioning ID register

MPAMF_CSUMON_IDR: MPAM Features Cache Storage Usage Monitoring ID register

MPAMF_ECR: MPAM Error Control Register

MPAMF_ERR_MSI_ADDR_H: MPAM Error MSI High-part Address Register

MPAMF_ERR_MSI_ADDR_L: MPAM Error MSI Low-part Address Register

MPAMF_ERR_MSI_ATTR: MPAM Error MSI Write Attributes Register

MPAMF_ERR_MSI_DATA: MPAM Error MSI Data Register

External registers

Page 1557

MPAMF_ERR_MSI_MPAM: MPAM Error MSI Write MPAM Information Register

MPAMF_ESR: MPAM Error Status Register

MPAMF_IDR: MPAM Features Identification Register

MPAMF_IIDR: MPAM Implementation Identification Register

MPAMF_IMPL_IDR: MPAM Implementation-Specific Partitioning Feature Identification Register

MPAMF_MBWUMON_IDR: MPAM Features Memory Bandwidth Usage Monitoring ID register

MPAMF_MBW_IDR: MPAM Memory Bandwidth Partitioning Identification Register

MPAMF_MSMON_IDR: MPAM Resource Monitoring Identification Register

MPAMF_PARTID_NRW_IDR: MPAM PARTID Narrowing ID register

MPAMF_PRI_IDR: MPAM Priority Partitioning Identification Register

MPAMF_SIDR: MPAM Features Secure Identification Register

MSMON_CAPT_EVNT: MPAM Capture Event Generation Register

MSMON_CFG_CSU_CTL: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

MSMON_CFG_CSU_FLT: MPAM Memory System Monitor Configure Cache Storage Usage Monitor Filter Register

MSMON_CFG_MBWU_CTL: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

MSMON_CFG_MBWU_FLT: MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Filter
Register

MSMON_CFG_MON_SEL: MPAM Monitor Instance Selection Register

MSMON_CSU: MPAM Cache Storage Usage Monitor Register

MSMON_CSU_CAPTURE: MPAM Cache Storage Usage Monitor Capture Register

MSMON_CSU_OFSR: MPAM CSU Monitor Overflow Status Register

MSMON_MBWU: MPAM Memory Bandwidth Usage Monitor Register

MSMON_MBWU_CAPTURE: MPAM Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_L: MPAM Long Memory Bandwidth Usage Monitor Register

MSMON_MBWU_L_CAPTURE: MPAM Long Memory Bandwidth Usage Monitor Capture Register

MSMON_MBWU_OFSR: MPAM MBWU Monitor Overflow Status Register

MSMON_OFLOW_MSI_ADDR_H: MPAM Monitor Overflow MSI Write High-part Address Register

MSMON_OFLOW_MSI_ADDR_L: MPAM Monitor Overflow MSI Low-part Address Register

MSMON_OFLOW_MSI_ATTR: MPAM Monitor Overflow MSI Write Attributes Register

MSMON_OFLOW_MSI_DATA: MPAM Monitor Overflow MSI Write Data Register

MSMON_OFLOW_MSI_MPAM: MPAM Monitor Overflow MSI Write MPAM Information Register

MSMON_OFLOW_SR: MPAM Monitor Overflow Status Register

OSLAR_EL1: OS Lock Access Register

PMAUTHSTATUS: Performance Monitors Authentication Status register

PMCCFILTR_EL0: Performance Monitors Cycle Counter Filter Register

PMCCNTR_EL0: Performance Monitors Cycle Counter

External registers

Page 1558

PMCEID0: Performance Monitors Common Event Identification register 0

PMCEID1: Performance Monitors Common Event Identification register 1

PMCEID2: Performance Monitors Common Event Identification register 2

PMCEID3: Performance Monitors Common Event Identification register 3

PMCFGR: Performance Monitors Configuration Register

PMCID1SR: CONTEXTIDR_EL1 Sample Register

PMCID2SR: CONTEXTIDR_EL2 Sample Register

PMCIDR0: Performance Monitors Component Identification Register 0

PMCIDR1: Performance Monitors Component Identification Register 1

PMCIDR2: Performance Monitors Component Identification Register 2

PMCIDR3: Performance Monitors Component Identification Register 3

PMCNTENCLR_EL0: Performance Monitors Count Enable Clear register

PMCNTENSET_EL0: Performance Monitors Count Enable Set register

PMCR_EL0: Performance Monitors Control Register

PMDEVAFF0: Performance Monitors Device Affinity register 0

PMDEVAFF1: Performance Monitors Device Affinity register 1

PMDEVARCH: Performance Monitors Device Architecture register

PMDEVID: Performance Monitors Device ID register

PMDEVTYPE: Performance Monitors Device Type register

PMEVCNTR<n>_EL0: Performance Monitors Event Count Registers

PMEVTYPER<n>_EL0: Performance Monitors Event Type Registers

PMINTENCLR_EL1: Performance Monitors Interrupt Enable Clear register

PMINTENSET_EL1: Performance Monitors Interrupt Enable Set register

PMITCTRL: Performance Monitors Integration mode Control register

PMLAR: Performance Monitors Lock Access Register

PMLSR: Performance Monitors Lock Status Register

PMMIR: Performance Monitors Machine Identification Register

PMOVSCLR_EL0: Performance Monitors Overflow Flag Status Clear register

PMOVSSET_EL0: Performance Monitors Overflow Flag Status Set register

PMPCSR: Program Counter Sample Register

PMPIDR0: Performance Monitors Peripheral Identification Register 0

PMPIDR1: Performance Monitors Peripheral Identification Register 1

PMPIDR2: Performance Monitors Peripheral Identification Register 2

PMPIDR3: Performance Monitors Peripheral Identification Register 3

PMPIDR4: Performance Monitors Peripheral Identification Register 4

PMSWINC_EL0: Performance Monitors Software Increment register

External registers

Page 1559

PMVIDSR: VMID Sample Register

1530/1209/2020 1015:0408

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

External registers

Page 1560

(old) htmldiff from- (new)

External register index by offset
Below are indexes for external registers in the following blocks:

• GIC DistributorDebug
• DebugPMU
• Timer
• PMUGIC Distributor
• GIC Redistributor
• GIC Virtual CPU interface
• CTI
• GIC CPU interface
• GIC ITS control
• GIC Virtual interface control
• GIC ITS translation
• RAS
• AMU
• MPAM

In the GIC Distributor block:
Frame Offset Name Description

0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0000 GICD_CTLR Distributor Control Register
Dist_base 0x0004 GICD_TYPER Interrupt Controller Type Register
Dist_base 0x0008 GICD_IIDR Distributor Implementer Identification

Register
Dist_base 0x000C GICD_TYPER2 Interrupt Controller Type Register 2
Dist_base 0x0010 GICD_STATUSR Error Reporting Status Register
Dist_base 0x0040 GICD_SETSPI_NSR Set Non-secure SPI Pending Register
Dist_base 0x0048 GICD_CLRSPI_NSR Clear Non-secure SPI Pending Register
Dist_base 0x0050 GICD_SETSPI_SR Set Secure SPI Pending Register
Dist_base 0x0058 GICD_CLRSPI_SR Clear Secure SPI Pending Register
Dist_base 0x0080 + (4 * n) GICD_IGROUPR<n> Interrupt Group Registers
Dist_base 0x0100 + (4 * n) GICD_ISENABLER<n> Interrupt Set-Enable Registers
Dist_base 0x0180 + (4 * n) GICD_ICENABLER<n> Interrupt Clear-Enable Registers
Dist_base 0x0200 + (4 * n) GICD_ISPENDR<n> Interrupt Set-Pending Registers
Dist_base 0x0280 + (4 * n) GICD_ICPENDR<n> Interrupt Clear-Pending Registers
Dist_base 0x0300 + (4 * n) GICD_ISACTIVER<n> Interrupt Set-Active Registers
Dist_base 0x0380 + (4 * n) GICD_ICACTIVER<n> Interrupt Clear-Active Registers
Dist_base 0x0400 + (4 * n) GICD_IPRIORITYR<n> Interrupt Priority Registers
Dist_base 0x0800 + (4 * n) GICD_ITARGETSR<n> Interrupt Processor Targets Registers
Dist_base 0x0C00 + (4 * n) GICD_ICFGR<n> Interrupt Configuration Registers
Dist_base 0x0D00 + (4 * n) GICD_IGRPMODR<n> Interrupt Group Modifier Registers
Dist_base 0x0E00 + (4 * n) GICD_NSACR<n> Non-secure Access Control Registers
Dist_base 0x0F00 GICD_SGIR Software Generated Interrupt Register
Dist_base 0x0F10 + (4 * n) GICD_CPENDSGIR<n> SGI Clear-Pending Registers
Dist_base 0x0F20 + (4 * n) GICD_SPENDSGIR<n> SGI Set-Pending Registers
Dist_base 0x1000 + (4 * n) GICD_IGROUPR<n>E Interrupt Group Registers (extended SPI

range)
Dist_base 0x1200 + (4 * n) GICD_ISENABLER<n>E Interrupt Set-Enable Registers
Dist_base 0x1400 + (4 * n) GICD_ICENABLER<n>E Interrupt Clear-Enable Registers

External register index by offset

Page 1561

Frame Offset Name Description
Dist_base 0x1600 + (4 * n) GICD_ISPENDR<n>E Interrupt Set-Pending Registers (extended

SPI range)
Dist_base 0x1800 + (4 * n) GICD_ICPENDR<n>E Interrupt Clear-Pending Registers

(extended SPI range)
Dist_base 0x1A00 + (4 * n) GICD_ISACTIVER<n>E Interrupt Set-Active Registers (extended

SPI range)
Dist_base 0x1C00 + (4 * n) GICD_ICACTIVER<n>E Interrupt Clear-Active Registers (extended

SPI range)
Dist_base 0x2000 + (4 * n) GICD_IPRIORITYR<n>E Holds the priority of the corresponding

interrupt for each extended SPI supported
by the GIC.

Dist_base 0x3000 + (4 * n) GICD_ICFGR<n>E Interrupt Configuration Registers
(Extended SPI Range)

Dist_base 0x3400 + (4 * n) GICD_IGRPMODR<n>E Interrupt Group Modifier Registers
(extended SPI range)

Dist_base 0x3600 + (4 * n) GICD_NSACR<n>E Non-secure Access Control Registers
Dist_base 0x6000 + (8 * n) GICD_IROUTER<n> Interrupt Routing Registers
Dist_base 0x8000 + (8 * n) GICD_IROUTER<n>E Interrupt Routing Registers (Extended SPI

Range)
MSI_base 0x0004 GICM_TYPER Distributor MSI Type Register
MSI_base 0x0040 GICM_SETSPI_NSR Set Non-secure SPI Pending Register
MSI_base 0x0048 GICM_CLRSPI_NSR Clear Non-secure SPI Pending Register
MSI_base 0x0050 GICM_SETSPI_SR Set Secure SPI Pending Register
MSI_base 0x0058 GICM_CLRSPI_SR Clear Secure SPI Pending Register
MSI_base 0x0FCC GICM_IIDR Distributor Implementer Identification

Register

In the Debug block:
Offset Name Description
0x020 EDESR External Debug Event Status Register
0x024 EDECR External Debug Execution Control Register
0x030 EDWAR[31:0] External Debug Watchpoint Address Register
0x034 EDWAR[63:32] External Debug Watchpoint Address Register
0x080 DBGDTRRX_EL0 Debug Data Transfer Register, Receive
0x084 EDITR External Debug Instruction Transfer Register
0x088 EDSCR External Debug Status and Control Register
0x08C DBGDTRTX_EL0 Debug Data Transfer Register, Transmit
0x090 EDRCR External Debug Reserve Control Register
0x094 EDACR External Debug Auxiliary Control Register
0x098 EDECCR External Debug Exception Catch Control Register
0x0A0 EDPCSR[31:0] External Debug Program Counter Sample Register
0x0A4 EDCIDSR External Debug Context ID Sample Register
0x0A8 EDVIDSR External Debug Virtual Context Sample Register
0x0AC EDPCSR[63:32] External Debug Program Counter Sample Register
0x300 OSLAR_EL1 OS Lock Access Register
0x310 EDPRCR External Debug Power/Reset Control Register
0x314 EDPRSR External Debug Processor Status Register

0x400 + (16 * n) DBGBVR<n>_EL1[63:0] Debug Breakpoint Value Registers
0x408 + (16 * n) DBGBCR<n>_EL1 Debug Breakpoint Control Registers
0x800 + (16 * n) DBGWVR<n>_EL1[63:0] Debug Watchpoint Value Registers
0x808 + (16 * n) DBGWCR<n>_EL1 Debug Watchpoint Control Registers

External register index by offset

Page 1562

Offset Name Description
0xD00 MIDR_EL1 Main ID Register
0xD20 EDPFR[31:0] External Debug Processor Feature Register
0xD24 EDPFR[63:32] External Debug Processor Feature Register
0xD28 EDDFR[31:0] External Debug Feature Register
0xD2C EDDFR[63:32] External Debug Feature Register
0xD60 EDAA32PFR External Debug Auxiliary Processor Feature Register
0xF00 EDITCTRL External Debug Integration mode Control register
0xFA0 DBGCLAIMSET_EL1 Debug CLAIM Tag Set register
0xFA4 DBGCLAIMCLR_EL1 Debug CLAIM Tag Clear register
0xFA8 EDDEVAFF0 External Debug Device Affinity register 0
0xFAC EDDEVAFF1 External Debug Device Affinity register 1
0xFB0 EDLAR External Debug Lock Access Register
0xFB4 EDLSR External Debug Lock Status Register
0xFB8 DBGAUTHSTATUS_EL1 Debug Authentication Status register
0xFBC EDDEVARCH External Debug Device Architecture register
0xFC0 EDDEVID2 External Debug Device ID register 2
0xFC4 EDDEVID1 External Debug Device ID register 1
0xFC8 EDDEVID External Debug Device ID register 0
0xFCC EDDEVTYPE External Debug Device Type register
0xFD0 EDPIDR4 External Debug Peripheral Identification Register 4
0xFE0 EDPIDR0 External Debug Peripheral Identification Register 0
0xFE4 EDPIDR1 External Debug Peripheral Identification Register 1
0xFE8 EDPIDR2 External Debug Peripheral Identification Register 2
0xFEC EDPIDR3 External Debug Peripheral Identification Register 3
0xFF0 EDCIDR0 External Debug Component Identification Register 0
0xFF4 EDCIDR1 External Debug Component Identification Register 1
0xFF8 EDCIDR2 External Debug Component Identification Register 2
0xFFC EDCIDR3 External Debug Component Identification Register 3

In the PMU block:
Offset Name Description

0x000 + (8 * n) PMEVCNTR<n>_EL0 Performance Monitors Event Count Registers
0x0F8 PMCCNTR_EL0[31:0] Performance Monitors Cycle Counter
0x0FC PMCCNTR_EL0[63:32] Performance Monitors Cycle Counter
0x200 PMPCSR[31:0] Program Counter Sample Register
0x204 PMPCSR[63:32] Program Counter Sample Register
0x208 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x20C PMVIDSR VMID Sample Register
0x220 PMPCSR[31:0] Program Counter Sample Register
0x224 PMPCSR[63:32] Program Counter Sample Register
0x228 PMCID1SR CONTEXTIDR_EL1 Sample Register
0x22C PMCID2SR CONTEXTIDR_EL2 Sample Register

0x400 + (4 * n) PMEVTYPER<n>_EL0 Performance Monitors Event Type Registers
0x47C PMCCFILTR_EL0 Performance Monitors Cycle Counter Filter Register
0xC00 PMCNTENSET_EL0 Performance Monitors Count Enable Set register
0xC20 PMCNTENCLR_EL0 Performance Monitors Count Enable Clear register
0xC40 PMINTENSET_EL1 Performance Monitors Interrupt Enable Set register
0xC60 PMINTENCLR_EL1 Performance Monitors Interrupt Enable Clear register

External register index by offset

Page 1563

Offset Name Description
0xC80 PMOVSCLR_EL0 Performance Monitors Overflow Flag Status Clear register
0xCA0 PMSWINC_EL0 Performance Monitors Software Increment register
0xCC0 PMOVSSET_EL0 Performance Monitors Overflow Flag Status Set register
0xE00 PMCFGR Performance Monitors Configuration Register
0xE04 PMCR_EL0 Performance Monitors Control Register
0xE20 PMCEID0 Performance Monitors Common Event Identification register

0
0xE24 PMCEID1 Performance Monitors Common Event Identification register

1
0xE28 PMCEID2 Performance Monitors Common Event Identification register

2
0xE2C PMCEID3 Performance Monitors Common Event Identification register

3
0xE40 PMMIR Performance Monitors Machine Identification Register
0xF00 PMITCTRL Performance Monitors Integration mode Control register
0xFA8 PMDEVAFF0 Performance Monitors Device Affinity register 0
0xFAC PMDEVAFF1 Performance Monitors Device Affinity register 1
0xFB0 PMLAR Performance Monitors Lock Access Register
0xFB4 PMLSR Performance Monitors Lock Status Register
0xFB8 PMAUTHSTATUS Performance Monitors Authentication Status register
0xFBC PMDEVARCH Performance Monitors Device Architecture register
0xFC8 PMDEVID Performance Monitors Device ID register
0xFCC PMDEVTYPE Performance Monitors Device Type register
0xFD0 PMPIDR4 Performance Monitors Peripheral Identification Register 4
0xFE0 PMPIDR0 Performance Monitors Peripheral Identification Register 0
0xFE4 PMPIDR1 Performance Monitors Peripheral Identification Register 1
0xFE8 PMPIDR2 Performance Monitors Peripheral Identification Register 2
0xFEC PMPIDR3 Performance Monitors Peripheral Identification Register 3
0xFF0 PMCIDR0 Performance Monitors Component Identification Register 0
0xFF4 PMCIDR1 Performance Monitors Component Identification Register 1
0xFF8 PMCIDR2 Performance Monitors Component Identification Register 2
0xFFC PMCIDR3 Performance Monitors Component Identification Register 3

In the Timer block:
Frame Offset Name Description

CNTBaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTBaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTBaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTBaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTBaseN 0x010 CNTFRQ Counter-timer Frequency
CNTBaseN 0x014 CNTEL0ACR Counter-timer EL0 Access Control

Register
CNTBaseN 0x018 CNTVOFF[31:0] Counter-timer Virtual Offset
CNTBaseN 0x01C CNTVOFF[63:32] Counter-timer Virtual Offset
CNTBaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer

CompareValue
CNTBaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer

CompareValue
CNTBaseN 0x028 CNTP_TVAL Counter-timer Physical Timer

TimerValue
CNTBaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control

External register index by offset

Page 1564

Frame Offset Name Description
CNTBaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer

CompareValue
CNTBaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer

CompareValue
CNTBaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTBaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTBaseN 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTCTLBase 0x000 CNTFRQ Counter-timer Frequency
CNTCTLBase 0x004 CNTNSAR Counter-timer Non-secure Access

Register
CNTCTLBase 0x008 CNTTIDR Counter-timer Timer ID Register
CNTCTLBase 0x040 + (4 * n) CNTACR<n> Counter-timer Access Control Registers
CNTCTLBase 0x080 + (8 * n) CNTVOFF<n>[31:0] Counter-timer Virtual Offsets
CNTCTLBase 0x084 + (8 * n) CNTVOFF<n>[63:32] Counter-timer Virtual Offsets
CNTCTLBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTControlBase 0x000 CNTCR Counter Control Register
CNTControlBase 0x004 CNTSR Counter Status Register
CNTControlBase 0x008 CNTCV[63:0] Counter Count Value register
CNTControlBase 0x020 CNTFID0 Counter Frequency ID
CNTControlBase 0x020 + (4 * n) CNTFID<n> Counter Frequency IDs, n > 0
CNTControlBase 0x10 CNTSCR Counter Scale Register
CNTControlBase 0x1C CNTID Counter Identification Register
CNTControlBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTEL0BaseN 0x000 CNTPCT[31:0] Counter-timer Physical Count
CNTEL0BaseN 0x004 CNTPCT[63:32] Counter-timer Physical Count
CNTEL0BaseN 0x008 CNTVCT[31:0] Counter-timer Virtual Count
CNTEL0BaseN 0x00C CNTVCT[63:32] Counter-timer Virtual Count
CNTEL0BaseN 0x010 CNTFRQ Counter-timer Frequency
CNTEL0BaseN 0x020 CNTP_CVAL[31:0] Counter-timer Physical Timer

CompareValue
CNTEL0BaseN 0x024 CNTP_CVAL[63:32] Counter-timer Physical Timer

CompareValue
CNTEL0BaseN 0x028 CNTP_TVAL Counter-timer Physical Timer

TimerValue
CNTEL0BaseN 0x02C CNTP_CTL Counter-timer Physical Timer Control
CNTEL0BaseN 0x030 CNTV_CVAL[31:0] Counter-timer Virtual Timer

CompareValue
CNTEL0BaseN 0x034 CNTV_CVAL[63:32] Counter-timer Virtual Timer

CompareValue
CNTEL0BaseN 0x038 CNTV_TVAL Counter-timer Virtual Timer TimerValue
CNTEL0BaseN 0x03C CNTV_CTL Counter-timer Virtual Timer Control
CNTEL0BaseN 0xFD0 + (4 * n) CounterID<n> Counter ID registers
CNTReadBase 0x000 CNTCV[63:0] Counter Count Value register
CNTReadBase 0xFD0 + (4 * n) CounterID<n> Counter ID registers

In the PMUGIC Distributor block:
Offset Name Description

0x000 + (8 * n)0x0000 PMEVCNTR<n>_EL0GICD_CTLR PerformanceDistributor
MonitorsControl Event
Count RegistersRegister

External register index by offset

Page 1565

Offset Name Description
0x0F80x0004 PMCCNTR_EL0[31:0]GICD_TYPER PerformanceInterrupt

MonitorsController
CycleType CounterRegister

0x0FC0x0008 PMCCNTR_EL0[63:32]GICD_IIDR PerformanceDistributor
MonitorsImplementer
CycleIdentification
CounterRegister

0x2000x000C PMPCSR[31:0]GICD_TYPER2 ProgramInterrupt
CounterController
SampleType Register 2

0x2040x0010 PMPCSR[63:32]GICD_STATUSR ProgramError
CounterReporting
SampleStatus Register

0x2080x0010 PMCID1SRGICD_STATUSR CONTEXTIDR_EL1Error
SampleReporting Status
Register

0x20C0x0040 PMVIDSRGICD_SETSPI_NSR VMIDSet SampleNon-secure
SPI Pending Register

0x2200x0048 PMPCSR[31:0]GICD_CLRSPI_NSR ProgramClear CounterNon-
secure SampleSPI Pending
Register

0x2240x0050 PMPCSR[63:32]GICD_SETSPI_SR ProgramSet CounterSecure
SampleSPI Pending Register

0x2280x0058 PMCID1SRGICD_CLRSPI_SR CONTEXTIDR_EL1Clear
SampleSecure SPI Pending
Register

0x22C0x0080 + (4 * n) PMCID2SRGICD_IGROUPR<n> CONTEXTIDR_EL2Interrupt
SampleGroup
RegisterRegisters

0x4000x0100 + (4 * n) PMEVTYPER<n>_EL0GICD_ISENABLER<n> PerformanceInterrupt
Monitors Event TypeSet-
Enable Registers

0x47C0x0180 + (4 * n) PMCCFILTR_EL0GICD_ICENABLER<n> PerformanceInterrupt
MonitorsClear-Enable Cycle
Counter Filter
RegisterRegisters

0xC000x0200 + (4 * n) PMCNTENSET_EL0GICD_ISPENDR<n> PerformanceInterrupt
MonitorsSet-Pending Count
Enable Set
registerRegisters

0xC200x0280 + (4 * n) PMCNTENCLR_EL0GICD_ICPENDR<n> PerformanceInterrupt
MonitorsClear-Pending
Count Enable Clear
registerRegisters

0xC400x0300 + (4 * n) PMINTENSET_EL1GICD_ISACTIVER<n> Performance Monitors
Interrupt EnableSet-Active
Set registerRegisters

0xC600x0380 + (4 * n) PMINTENCLR_EL1GICD_ICACTIVER<n> Performance Monitors
Interrupt EnableClear-
Active Clear
registerRegisters

0xC800x0400 + (4 * n) PMOVSCLR_EL0GICD_IPRIORITYR<n> PerformanceInterrupt
MonitorsPriority Overflow
Flag Status Clear
registerRegisters

0xCA00x0800 + (4 * n) PMSWINC_EL0GICD_ITARGETSR<n> PerformanceInterrupt
MonitorsProcessor
SoftwareTargets Increment
registerRegisters

0xCC00x0C00 + (4 * n) PMOVSSET_EL0GICD_ICFGR<n> PerformanceInterrupt
MonitorsConfiguration
Overflow Flag Status Set
registerRegisters

External register index by offset

Page 1566

Offset Name Description
0xE000x0D00 + (4 * n) PMCFGRGICD_IGRPMODR<n> PerformanceInterrupt

MonitorsGroup
ConfigurationModifier
RegisterRegisters

0xE040x0E00 + (4 * n) PMCR_EL0GICD_NSACR<n> PerformanceNon-secure
MonitorsAccess Control
RegisterRegisters

0xE200x0F00 PMCEID0GICD_SGIR PerformanceSoftware
MonitorsGenerated
CommonInterrupt Event
Identification register
0Register

0xE240x0F10 + (4 * n) PMCEID1GICD_CPENDSGIR<n> PerformanceSGI
MonitorsClear-Pending
Common Event
Identification register
1Registers

0xE280x0F20 + (4 * n) PMCEID2GICD_SPENDSGIR<n> PerformanceSGI
MonitorsSet-Pending
Common Event
Identification register
2Registers

0xE2C0x1000 + (4 * n) PMCEID3GICD_IGROUPR<n>E PerformanceInterrupt
MonitorsGroup
CommonRegisters
Event(extended
IdentificationSPI register
3range)

0xE400x1200 + (4 * n) PMMIRGICD_ISENABLER<n>E PerformanceInterrupt
MonitorsSet-Enable
Machine Identification
RegisterRegisters

0xF000x1400 + (4 * n) PMITCTRLGICD_ICENABLER<n>E PerformanceInterrupt
MonitorsClear-Enable
Integration mode Control
registerRegisters

0xFA80x1600 + (4 * n) PMDEVAFF0GICD_ISPENDR<n>E PerformanceInterrupt
MonitorsSet-Pending
DeviceRegisters
Affinity(extended
registerSPI 0range)

0xFAC0x1800 + (4 * n) PMDEVAFF1GICD_ICPENDR<n>E PerformanceInterrupt
MonitorsClear-Pending
DeviceRegisters
Affinity(extended
registerSPI 1range)

0xFB00x1A00 + (4 * n) PMLARGICD_ISACTIVER<n>E PerformanceInterrupt
MonitorsSet-Active
LockRegisters
Access(extended
RegisterSPI range)

0xFB40x1C00 + (4 * n) PMLSRGICD_ICACTIVER<n>E PerformanceInterrupt
MonitorsClear-Active
LockRegisters
Status(extended
RegisterSPI range)

0xFB80x2000 + (4 * n) PMAUTHSTATUSGICD_IPRIORITYR<n>E PerformanceHolds
Monitorsthe
Authenticationpriority
Statusof registerthe
corresponding interrupt for
each extended SPI
supported by the GIC.

External register index by offset

Page 1567

Offset Name Description
0xFBC0x3000 + (4 * n) PMDEVARCHGICD_ICFGR<n>E PerformanceInterrupt

MonitorsConfiguration
DeviceRegisters
Architecture(Extended
registerSPI Range)

0xFC80x3400 + (4 * n) PMDEVIDGICD_IGRPMODR<n>E PerformanceInterrupt
MonitorsGroup
DeviceModifier IDRegisters
register(extended SPI
range)

0xFCC0x3600 + (4 * n) PMDEVTYPEGICD_NSACR<n>E PerformanceNon-secure
MonitorsAccess
DeviceControl Type
registerRegisters

0xFD00x6000 + (8 * n) PMPIDR4GICD_IROUTER<n> PerformanceInterrupt
MonitorsRouting Peripheral
Identification Register
4Registers

0xFE00x8000 + (8 * n) PMPIDR0GICD_IROUTER<n>E PerformanceInterrupt
MonitorsRouting
PeripheralRegisters
Identification(Extended
RegisterSPI 0Range)

0xFE4 PMPIDR1 Performance Monitors
Peripheral Identification
Register 1

0xFE8 PMPIDR2 Performance Monitors
Peripheral Identification
Register 2

0xFEC PMPIDR3 Performance Monitors
Peripheral Identification
Register 3

0xFF0 PMCIDR0 Performance Monitors
Component Identification
Register 0

0xFF4 PMCIDR1 Performance Monitors
Component Identification
Register 1

0xFF8 PMCIDR2 Performance Monitors
Component Identification
Register 2

0xFFC PMCIDR3 Performance Monitors
Component Identification
Register 3

In the GIC Redistributor block:
Frame Offset Name Description

RD_base 0x0000 GICR_CTLR Redistributor Control Register
RD_base 0x0004 GICR_IIDR Redistributor Implementer Identification

Register
RD_base 0x0008 GICR_TYPER Redistributor Type Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0010 GICR_STATUSR Error Reporting Status Register
RD_base 0x0014 GICR_WAKER Redistributor Wake Register
RD_base 0x0018 GICR_MPAMIDR Report maximum PARTID and PMG

Register
RD_base 0x001C GICR_PARTIDR Set PARTID and PMG Register
RD_base 0x0040 GICR_SETLPIR Set LPI Pending Register
RD_base 0x0048 GICR_CLRLPIR Clear LPI Pending Register

External register index by offset

Page 1568

Frame Offset Name Description
RD_base 0x0070 GICR_PROPBASER Redistributor Properties Base Address

Register
RD_base 0x0078 GICR_PENDBASER Redistributor LPI Pending Table Base

Address Register
RD_base 0x00A0 GICR_INVLPIR Redistributor Invalidate LPI Register
RD_base 0x00B0 GICR_INVALLR Redistributor Invalidate All Register
RD_base 0x00C0 GICR_SYNCR Redistributor Synchronize Register
SGI_base 0x0080 GICR_IGROUPR0 Interrupt Group Register 0
SGI_base 0x0080 + (4 * n) GICR_IGROUPR<n>E Interrupt Group Registers
SGI_base 0x0100 GICR_ISENABLER0 Interrupt Set-Enable Register 0
SGI_base 0x0100 + (4 * n) GICR_ISENABLER<n>E Interrupt Set-Enable Registers
SGI_base 0x0180 GICR_ICENABLER0 Interrupt Clear-Enable Register 0
SGI_base 0x0180 + (4 * n) GICR_ICENABLER<n>E Interrupt Clear-Enable Registers
SGI_base 0x0200 GICR_ISPENDR0 Interrupt Set-Pending Register 0
SGI_base 0x0200 + (4 * n) GICR_ISPENDR<n>E Interrupt Set-Pending Registers
SGI_base 0x0280 GICR_ICPENDR0 Interrupt Clear-Pending Register 0
SGI_base 0x0280 + (4 * n) GICR_ICPENDR<n>E Interrupt Clear-Pending Registers
SGI_base 0x0300 GICR_ISACTIVER0 Interrupt Set-Active Register 0
SGI_base 0x0300 + (4 * n) GICR_ISACTIVER<n>E Interrupt Set-Active Registers
SGI_base 0x0380 GICR_ICACTIVER0 Interrupt Clear-Active Register 0
SGI_base 0x0380 + (4 * n) GICR_ICACTIVER<n>E Interrupt Clear-Active Registers
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI

range)
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n> Interrupt Priority Registers
SGI_base 0x0400 + (4 * n) GICR_IPRIORITYR<n>E Interrupt Priority Registers (extended PPI

range)
SGI_base 0x0C00 GICR_ICFGR0 Interrupt Configuration Register 0
SGI_base 0x0C00 + (4 * n) GICR_ICFGR<n>E Interrupt configuration registers
SGI_base 0x0C04 GICR_ICFGR1 Interrupt Configuration Register 1
SGI_base 0x0D00 GICR_IGRPMODR0 Interrupt Group Modifier Register 0
SGI_base 0x0D00 + (4 * n) GICR_IGRPMODR<n>E Interrupt Group Modifier Registers
SGI_base 0x0E00 GICR_NSACR Non-secure Access Control Register
VLPI_base 0x0070 GICR_VPROPBASER Virtual Redistributor Properties Base

Address Register
VLPI_base 0x0078 GICR_VPENDBASER Virtual Redistributor LPI Pending Table

Base Address Register
VLPI_base 0x0080 GICR_VSGIR Redistributor virtual SGI pending state

request register
VLPI_base 0x0088 GICR_VSGIPENDR Redistributor virtual SGI pending state

register

In the GIC Virtual CPU interface block:
Offset Name Description
0x0000 GICV_CTLR Virtual Machine Control Register
0x0004 GICV_PMR Virtual Machine Priority Mask Register
0x0008 GICV_BPR Virtual Machine Binary Point Register
0x000C GICV_IAR Virtual Machine Interrupt Acknowledge Register
0x0010 GICV_EOIR Virtual Machine End Of Interrupt Register
0x0014 GICV_RPR Virtual Machine Running Priority Register
0x0018 GICV_HPPIR Virtual Machine Highest Priority Pending Interrupt Register
0x001C GICV_ABPR Virtual Machine Aliased Binary Point Register

External register index by offset

Page 1569

Offset Name Description
0x0020 GICV_AIAR Virtual Machine Aliased Interrupt Acknowledge Register
0x0024 GICV_AEOIR Virtual Machine Aliased End Of Interrupt Register
0x0028 GICV_AHPPIR Virtual Machine Aliased Highest Priority Pending Interrupt

Register
0x002C GICV_STATUSR Virtual Machine Error Reporting Status Register

0x00D0 + (4 * n) GICV_APR<n> Virtual Machine Active Priorities Registers
0x00FC GICV_IIDR Virtual Machine CPU Interface Identification Register
0x1000 GICV_DIR Virtual Machine Deactivate Interrupt Register

In the CTI block:
Offset Name Description
0x000 CTICONTROL CTI Control register
0x010 CTIINTACK CTI Output Trigger Acknowledge register
0x014 CTIAPPSET CTI Application Trigger Set register
0x018 CTIAPPCLEAR CTI Application Trigger Clear register
0x01C CTIAPPPULSE CTI Application Pulse register

0x020 + (4 * n) CTIINEN<n> CTI Input Trigger to Output Channel Enable registers
0x0A0 + (4 * n) CTIOUTEN<n> CTI Input Channel to Output Trigger Enable registers

0x130 CTITRIGINSTATUS CTI Trigger In Status register
0x134 CTITRIGOUTSTATUS CTI Trigger Out Status register
0x138 CTICHINSTATUS CTI Channel In Status register
0x13C CTICHOUTSTATUS CTI Channel Out Status register
0x140 CTIGATE CTI Channel Gate Enable register
0x144 ASICCTL CTI External Multiplexer Control register
0x150 CTIDEVCTL CTI Device Control register
0xF00 CTIITCTRL CTI Integration mode Control register
0xFA0 CTICLAIMSET CTI CLAIM Tag Set register
0xFA4 CTICLAIMCLR CTI CLAIM Tag Clear register
0xFA8 CTIDEVAFF0 CTI Device Affinity register 0
0xFAC CTIDEVAFF1 CTI Device Affinity register 1
0xFB0 CTILAR CTI Lock Access Register
0xFB4 CTILSR CTI Lock Status Register
0xFB8 CTIAUTHSTATUS CTI Authentication Status register
0xFBC CTIDEVARCH CTI Device Architecture register
0xFC0 CTIDEVID2 CTI Device ID register 2
0xFC4 CTIDEVID1 CTI Device ID register 1
0xFC8 CTIDEVID CTI Device ID register 0
0xFCC CTIDEVTYPE CTI Device Type register
0xFD0 CTIPIDR4 CTI Peripheral Identification Register 4
0xFE0 CTIPIDR0 CTI Peripheral Identification Register 0
0xFE4 CTIPIDR1 CTI Peripheral Identification Register 1
0xFE8 CTIPIDR2 CTI Peripheral Identification Register 2
0xFEC CTIPIDR3 CTI Peripheral Identification Register 3
0xFF0 CTICIDR0 CTI Component Identification Register 0
0xFF4 CTICIDR1 CTI Component Identification Register 1
0xFF8 CTICIDR2 CTI Component Identification Register 2
0xFFC CTICIDR3 CTI Component Identification Register 3

External register index by offset

Page 1570

In the GIC CPU interface block:
Offset Name Description
0x0000 GICC_CTLR CPU Interface Control Register
0x0004 GICC_PMR CPU Interface Priority Mask Register
0x0008 GICC_BPR CPU Interface Binary Point Register
0x000C GICC_IAR CPU Interface Interrupt Acknowledge Register
0x0010 GICC_EOIR CPU Interface End Of Interrupt Register
0x0014 GICC_RPR CPU Interface Running Priority Register
0x0018 GICC_HPPIR CPU Interface Highest Priority Pending Interrupt Register
0x001C GICC_ABPR CPU Interface Aliased Binary Point Register
0x0020 GICC_AIAR CPU Interface Aliased Interrupt Acknowledge Register
0x0024 GICC_AEOIR CPU Interface Aliased End Of Interrupt Register
0x0028 GICC_AHPPIR CPU Interface Aliased Highest Priority Pending Interrupt

Register
0x002C GICC_STATUSR CPU Interface Status Register
0x002C GICC_STATUSR CPU Interface Status Register

0x00D0 + (4 * n) GICC_APR<n> CPU Interface Active Priorities Registers
0x00E0 + (4 * n) GICC_NSAPR<n> CPU Interface Non-secure Active Priorities Registers

0x00FC GICC_IIDR CPU Interface Identification Register
0x1000 GICC_DIR CPU Interface Deactivate Interrupt Register

In the GIC ITS control block:
Offset Name Description
0x0000 GITS_CTLR ITS Control Register
0x0004 GITS_IIDR ITS Identification Register
0x0008 GITS_TYPER ITS Type Register
0x0010 GITS_MPAMIDR Report maximum PARTID and PMG Register
0x0014 GITS_PARTIDR Set PARTID and PMG Register
0x0018 GITS_MPIDR Report ITS's affinity.

0x00400x0020 GITS_STATUSR ITS Error Reporting Status Register
0x00480x0028 GITS_UMSIR ITS Unmapped MSI register

0x0080 GITS_CBASER ITS Command Queue Descriptor
0x0088 GITS_CWRITER ITS Write Register
0x0090 GITS_CREADR ITS Read Register

0x0100 + (8 * n) GITS_BASER<n> ITS Translation Table Descriptors
0x20020 GITS_SGIR ITS SGI Register

In the GIC Virtual interface control block:
Offset Name Description
0x0000 GICH_HCR Hypervisor Control Register
0x0004 GICH_VTR Virtual Type Register
0x0008 GICH_VMCR Virtual Machine Control Register
0x0010 GICH_MISR Maintenance Interrupt Status Register
0x0020 GICH_EISR End Interrupt Status Register
0x0030 GICH_ELRSR Empty List Register Status Register

0x00F0 + (4 * n) GICH_APR<n> Active Priorities Registers
0x0100 + (4 * n) GICH_LR<n> List Registers

External register index by offset

Page 1571

In the GIC ITS translation block:
Offset Name Description
0x0040 GITS_TRANSLATER ITS Translation Register

In the RAS block:
Offset Name Description

0x000 + (64 * n) ERR<n>FR Error Record Feature Register
0x008 + (64 * n) ERR<n>CTLR Error Record Control Register
0x010 + (64 * n) ERR<n>STATUS Error Record Primary Status Register
0x018 + (64 * n) ERR<n>ADDR Error Record Address Register
0x020 + (64 * n) ERR<n>MISC0 Error Record Miscellaneous Register 0
0x028 + (64 * n) ERR<n>MISC1 Error Record Miscellaneous Register 1
0x030 + (64 * n) ERR<n>MISC2 Error Record Miscellaneous Register 2
0x038 + (64 * n) ERR<n>MISC3 Error Record Miscellaneous Register 3
0x800 + (64 * n) ERR<n>PFGF Pseudo-fault Generation Feature Register
0x800 + (8 * n) ERRIMPDEF<n> IMPLEMENTATION DEFINED Register <n>
0x808 + (64 * n) ERR<n>PFGCTL Pseudo-fault Generation Control Register
0x810 + (64 * n) ERR<n>PFGCDN Pseudo-fault Generation Countdown Register

0xE00 ERRGSR Error Group Status Register
0xE10 ERRIIDR Implementation Identification Register
0xE80 ERRFHICR0 Fault Handling Interrupt Configuration Register 0

0xE80 + (8 * n) ERRIRQCR<n> Generic Error Interrupt Configuration Register
0xE88 ERRFHICR1 Fault Handling Interrupt Configuration Register 1
0xE8C ERRFHICR2 Fault Handling Interrupt Configuration Register 2
0xE90 ERRERICR0 Error Recovery Interrupt Configuration Register 0
0xE98 ERRERICR1 Error Recovery Interrupt Configuration Register 1
0xE9C ERRERICR2 Error Recovery Interrupt Configuration Register 2
0xEA0 ERRCRICR0 Critical Error Interrupt Configuration Register 0
0xEA8 ERRCRICR1 Critical Error Interrupt Configuration Register 1
0xEAC ERRCRICR2 Critical Error Interrupt Configuration Register 2
0xEF8 ERRIRQSR Error Interrupt Status Register
0xFA8 ERRDEVAFF Device Affinity Register
0xFBC ERRDEVARCH Device Architecture Register
0xFC8 ERRDEVID Device Configuration Register
0xFD0 ERRPIDR4 Peripheral Identification Register 4
0xFE0 ERRPIDR0 Peripheral Identification Register 0
0xFE4 ERRPIDR1 Peripheral Identification Register 1
0xFE8 ERRPIDR2 Peripheral Identification Register 2
0xFEC ERRPIDR3 Peripheral Identification Register 3
0xFF0 ERRCIDR0 Component Identification Register 0
0xFF4 ERRCIDR1 Component Identification Register 1
0xFF8 ERRCIDR2 Component Identification Register 2
0xFFC ERRCIDR3 Component Identification Register 3

In the AMU block:
Offset Name Description

0x000 + (8 * n) AMEVCNTR0<n>[31:0] Activity Monitors Event Counter Registers 0

External register index by offset

Page 1572

Offset Name Description
0x004 + (8 * n) AMEVCNTR0<n>[63:32] Activity Monitors Event Counter Registers 0
0x100 + (8 * n) AMEVCNTR1<n>[31:0] Activity Monitors Event Counter Registers 1
0x104 + (8 * n) AMEVCNTR1<n>[63:32] Activity Monitors Event Counter Registers 1
0x400 + (4 * n) AMEVTYPER0<n> Activity Monitors Event Type Registers 0
0x480 + (4 * n) AMEVTYPER1<n> Activity Monitors Event Type Registers 1

0xC00 AMCNTENSET0 Activity Monitors Count Enable Set Register 0
0xC04 AMCNTENSET1 Activity Monitors Count Enable Set Register 1
0xC20 AMCNTENCLR0 Activity Monitors Count Enable Clear Register 0
0xC24 AMCNTENCLR1 Activity Monitors Count Enable Clear Register 1
0xCE0 AMCGCR Activity Monitors Counter Group Configuration Register
0xE00 AMCFGR Activity Monitors Configuration Register
0xE04 AMCR Activity Monitors Control Register
0xE08 AMIIDR Activity Monitors Implementation Identification Register
0xFA8 AMDEVAFF0 Activity Monitors Device Affinity Register 0
0xFAC AMDEVAFF1 Activity Monitors Device Affinity Register 1
0xFBC AMDEVARCH Activity Monitors Device Architecture Register
0xFCC AMDEVTYPE Activity Monitors Device Type Register
0xFD0 AMPIDR4 Activity Monitors Peripheral Identification Register 4
0xFE0 AMPIDR0 Activity Monitors Peripheral Identification Register 0
0xFE4 AMPIDR1 Activity Monitors Peripheral Identification Register 1
0xFE8 AMPIDR2 Activity Monitors Peripheral Identification Register 2
0xFEC AMPIDR3 Activity Monitors Peripheral Identification Register 3
0xFF0 AMCIDR0 Activity Monitors Component Identification Register 0
0xFF4 AMCIDR1 Activity Monitors Component Identification Register 1
0xFF8 AMCIDR2 Activity Monitors Component Identification Register 2
0xFFC AMCIDR3 Activity Monitors Component Identification Register 3

In the MPAM block:
Frame Offset Name Description

MPAMF_BASE_ns 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_ns 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_ns 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_ns 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning
Feature Identification
Register

MPAMF_BASE_ns 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_ns 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_ns 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_ns 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_ns 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

External register index by offset

Page 1573

Frame Offset Name Description
MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR MPAM Resource

Monitoring Identification
Register

MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_ns 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_ns 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_ns 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_ns 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_ns 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_ns 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_ns 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_ns 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_ns 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

MPAMF_BASE_ns 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID
Narrowing Configuration
Register

MPAMF_BASE_ns 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_ns 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_ns 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

External register index by offset

Page 1574

Frame Offset Name Description
MPAMF_BASE_ns 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System

Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_ns 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_ns 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_ns 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_ns 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_ns 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_ns 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_ns 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_ns 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_ns 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion
Bitmap Partition
Configuration Register

MPAMF_BASE_s 0x0000 MPAMF_IDR MPAM Features
Identification Register

MPAMF_BASE_s 0x0008 MPAMF_SIDR MPAM Features Secure
Identification Register

MPAMF_BASE_s 0x0018 MPAMF_IIDR MPAM Implementation
Identification Register

MPAMF_BASE_s 0x0020 MPAMF_AIDR MPAM Architecture
Identification Register

MPAMF_BASE_s 0x0028 MPAMF_IMPL_IDR MPAM Implementation-
Specific Partitioning

External register index by offset

Page 1575

Frame Offset Name Description
Feature Identification
Register

MPAMF_BASE_s 0x0030 MPAMF_CPOR_IDR MPAM Features Cache
Portion Partitioning ID
register

MPAMF_BASE_s 0x0038 MPAMF_CCAP_IDR MPAM Features Cache
Capacity Partitioning ID
register

MPAMF_BASE_s 0x0040 MPAMF_MBW_IDR MPAM Memory Bandwidth
Partitioning Identification
Register

MPAMF_BASE_s 0x0048 MPAMF_PRI_IDR MPAM Priority Partitioning
Identification Register

MPAMF_BASE_s 0x0050 MPAMF_PARTID_NRW_IDR MPAM PARTID Narrowing
ID register

MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR MPAM Resource
Monitoring Identification
Register

MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR MPAM Features Cache
Storage Usage Monitoring
ID register

MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR MPAM Features Memory
Bandwidth Usage
Monitoring ID register

MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L MPAM Error MSI Low-part
Address Register

MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H MPAM Error MSI High-part
Address Register

MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA MPAM Error MSI Data
Register

MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR MPAM Error MSI Write
Attributes Register

MPAMF_BASE_s 0x00ED MPAMF_ERR_MSI_MPAM MPAM Error MSI Write
MPAM Information
Register

MPAMF_BASE_s 0x00F0 MPAMF_ECR MPAM Error Control
Register

MPAMF_BASE_s 0x00F8 MPAMF_ESR MPAM Error Status
Register

MPAMF_BASE_s 0x0100 MPAMCFG_PART_SEL MPAM Partition
Configuration Selection
Register

MPAMF_BASE_s 0x0108 MPAMCFG_CMAX MPAM Cache Maximum
Capacity Partition
Configuration Register

MPAMF_BASE_s 0x0200 MPAMCFG_MBW_MIN MPAM Memory Bandwidth
Minimum Partition
Configuration Register

MPAMF_BASE_s 0x0208 MPAMCFG_MBW_MAX MPAM Memory Bandwidth
Maximum Partition
Configuration Register

MPAMF_BASE_s 0x0220 MPAMCFG_MBW_WINWD MPAM Memory Bandwidth
Partitioning Window Width
Configuration Register

MPAMF_BASE_s 0x0400 MPAMCFG_PRI MPAM Priority Partition
Configuration Register

MPAMF_BASE_s 0x0500 MPAMCFG_MBW_PROP MPAM Memory Bandwidth
Proportional Stride
Partition Configuration
Register

External register index by offset

Page 1576

Frame Offset Name Description
MPAMF_BASE_s 0x0600 MPAMCFG_INTPARTID MPAM Internal PARTID

Narrowing Configuration
Register

MPAMF_BASE_s 0x0800 MSMON_CFG_MON_SEL MPAM Monitor Instance
Selection Register

MPAMF_BASE_s 0x0808 MSMON_CAPT_EVNT MPAM Capture Event
Generation Register

MPAMF_BASE_s 0x0810 MSMON_CFG_CSU_FLT MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Filter Register

MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL MPAM Memory System
Monitor Configure Cache
Storage Usage Monitor
Control Register

MPAMF_BASE_s 0x0820 MSMON_CFG_MBWU_FLT MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Filter Register

MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL MPAM Memory System
Monitor Configure Memory
Bandwidth Usage Monitor
Control Register

MPAMF_BASE_s 0x0840 MSMON_CSU MPAM Cache Storage
Usage Monitor Register

MPAMF_BASE_s 0x0848 MSMON_CSU_CAPTURE MPAM Cache Storage
Usage Monitor Capture
Register

MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR MPAM CSU Monitor
Overflow Status Register

MPAMF_BASE_s 0x0860 MSMON_MBWU MPAM Memory Bandwidth
Usage Monitor Register

MPAMF_BASE_s 0x0868 MSMON_MBWU_CAPTURE MPAM Memory Bandwidth
Usage Monitor Capture
Register

MPAMF_BASE_s 0x0880 MSMON_MBWU_L MPAM Long Memory
Bandwidth Usage Monitor
Register

MPAMF_BASE_s 0x0890 MSMON_MBWU_L_CAPTURE MPAM Long Memory
Bandwidth Usage Monitor
Capture Register

MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR MPAM MBWU Monitor
Overflow Status Register

MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM MPAM Monitor Overflow
MSI Write MPAM
Information Register

MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L MPAM Monitor Overflow
MSI Low-part Address
Register

MPAMF_BASE_s 0x08E4 MSMON_OFLOW_MSI_ADDR_H MPAM Monitor Overflow
MSI Write High-part
Address Register

MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA MPAM Monitor Overflow
MSI Write Data Register

MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR MPAM Monitor Overflow
MSI Write Attributes
Register

MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR MPAM Monitor Overflow
Status Register

MPAMF_BASE_s 0x1000 + (4 * n) MPAMCFG_CPBM<n> MPAM Cache Portion
Bitmap Partition
Configuration Register

External register index by offset

Page 1577

Frame Offset Name Description
MPAMF_BASE_s 0x2000 + (4 * n) MPAMCFG_MBW_PBM<n> MPAM Bandwidth Portion

Bitmap Partition
Configuration Register

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright Â© 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

External register index by offset

Page 1578

(old) htmldiff from- (new)

AMCIDR0, Activity Monitors Component Identification
Register 0

The AMCIDR0 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configuration
The power domain of AMCIDR0 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes
AMCIDR0 is a 32-bit register.

Field descriptions
The AMCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the AMCIDR0

AMCIDR0 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFF0 AMCIDR0

Accesses on this interface are RO.

AMCIDR0, Activity Monitors Component Identification Register 0

Page 1579

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AMCIDR0, Activity Monitors Component Identification Register 0

Page 1580

(old) htmldiff from- (new)

AMCIDR1, Activity Monitors Component Identification
Register 1

The AMCIDR1 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configuration
The power domain of AMCIDR1 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes
AMCIDR1 is a 32-bit register.

Field descriptions
The AMCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

AMCIDR1, Activity Monitors Component Identification Register 1

Page 1581

Accessing the AMCIDR1

AMCIDR1 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFF4 AMCIDR1

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AMCIDR1, Activity Monitors Component Identification Register 1

Page 1582

(old) htmldiff from- (new)

AMCIDR2, Activity Monitors Component Identification
Register 2

The AMCIDR2 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configuration
The power domain of AMCIDR2 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes
AMCIDR2 is a 32-bit register.

Field descriptions
The AMCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the AMCIDR2

AMCIDR2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFF8 AMCIDR2

Accesses on this interface are RO.

AMCIDR2, Activity Monitors Component Identification Register 2

Page 1583

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AMCIDR2, Activity Monitors Component Identification Register 2

Page 1584

(old) htmldiff from- (new)

AMCIDR3, Activity Monitors Component Identification
Register 3

The AMCIDR3 characteristics are:

Purpose
Provides information to identify an activity monitors component.

For more information, see 'About the Component identification scheme'.

Configuration
The power domain of AMCIDR3 is IMPLEMENTATION DEFINED.

Implementation of this register is OPTIONAL.

This register is present only when FEAT_AMUv1 is implemented.

Attributes
AMCIDR3 is a 32-bit register.

Field descriptions
The AMCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the AMCIDR3

AMCIDR3 can be accessed through the memory-mapped interfaces:

Component Offset Instance
AMU 0xFFC AMCIDR3

Accesses on this interface are RO.

AMCIDR3, Activity Monitors Component Identification Register 3

Page 1585

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

AMCIDR3, Activity Monitors Component Identification Register 3

Page 1586

(old) htmldiff from- (new)

CNTP_CTL, Counter-timer Physical Timer Control
The CNTP_CTL characteristics are:

Purpose
Control register for the EL1 physical timer.

Configuration
The power domain of CNTP_CTL is IMPLEMENTATION DEFINED.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Attributes
CNTP_CTL is a 32-bit register.

Field descriptions
The CNTP_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTP_CTL, Counter-timer Physical Timer Control

Page 1587

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTP_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTP_CTL
CNTP_CTL can be implemented in any implemented CNTBaseN frame, and in the corresponding CNTEL0BaseN
frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame:

• CNTP_CTL is accessible in that frame if the value of CNTACR<n>.RWPT is 1.
• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTP_CTL is accessible in that frame if both:
◦ CNTP_CTL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0PTEN is 1.

• Otherwise, the CNTP_CTL address in that frame is RAZ/WI.

CNTP_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x02C CNTP_CTL

Accesses on this interface are RW.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x02C CNTP_CTL

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTP_CTL, Counter-timer Physical Timer Control

Page 1588

ext-cntp_tval.html
ext-cntacrn.html
ext-cntel0acr.html

(old) htmldiff from- (new)

CNTV_CTL, Counter-timer Virtual Timer Control
The CNTV_CTL characteristics are:

Purpose
Control register for the virtual timer.

Configuration
The power domain of CNTV_CTL is IMPLEMENTATION DEFINED.

For more information, see 'Power and reset domains for the system level implementation of the Generic Timer'.

Attributes
CNTV_CTL is a 32-bit register.

Field descriptions
The CNTV_CTL bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 ISTATUSIMASKENABLE

Bits [31:3]

Reserved, RES0.

ISTATUS, bit [2]

The status of the timer. This bit indicates whether the timer condition is met:

ISTATUS Meaning
0b0 Timer condition is not met.
0b1 Timer condition is met.

When the value of the ENABLE bit is 1, ISTATUS indicates whether the timer condition is met. ISTATUS takes no
account of the value of the IMASK bit. If the value of ISTATUS is 1 and the value of IMASK is 0 then the timer
interrupt is asserted.

When the value of the ENABLE bit is 0, the ISTATUS field is UNKNOWN.

AccessThis tobit thisis field isread-only. RO.

IMASK, bit [1]

Timer interrupt mask bit. Permitted values are:

IMASK Meaning
0b0 Timer interrupt is not masked by the IMASK bit.
0b1 Timer interrupt is masked by the IMASK bit.

For more information, see the description of the ISTATUS bit.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CNTV_CTL, Counter-timer Virtual Timer Control

Page 1589

ENABLE, bit [0]

Enables the timer. Permitted values are:

ENABLE Meaning
0b0 Timer disabled.
0b1 Timer enabled.

Setting this bit to 0 disables the timer output signal, but the timer value accessible from CNTV_TVAL continues to
count down.

Note

Disabling the output signal might be a power-saving option.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the CNTV_CTL
CNTV_CTL can be implemented in any implemented CNTBaseN frame that has virtual timer capability, and in the
corresponding CNTEL0BaseN frame.

'CNTCTLBase status and control fields for the CNTBaseN and CNTEL0BaseN frames' describes the status fields that
identify whether a CNTBaseN frame is implemented, and for an implemented frame:

• Whether the CNTBaseN frame has virtual timer capability.
• Whether the corresponding CNTEL0BaseN frame is implemented.
• For an implementation that recognizes two Security states, whether the CNTBaseN frame, and any

corresponding CNTEL0BaseN frame, is accessible by Non-secure accesses.

For an implemented CNTBaseN frame that has virtual timer capability:

• CNTV_CTL is accessible in that frame if the value of CNTACR<n>.RWVT is 1.
• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

For an implemented CNTEL0BaseN frame:

• CNTV_CTL is accessible in that frame if both:
◦ CNTV_CTL is accessible in the corresponding CNTBaseN frame:
◦ The value of CNTEL0ACR.EL0VTEN is 1.

• Otherwise, the CNTV_CTL address in that frame is RAZ/WI.

CNTV_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
Timer CNTBaseN 0x03C CNTV_CTL

Accesses on this interface are RW.

Component Frame Offset Instance
Timer CNTEL0BaseN 0x03C CNTV_CTL

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CNTV_CTL, Counter-timer Virtual Timer Control

Page 1590

ext-cntv_tval.html
ext-cntacrn.html
ext-cntel0acr.html

(old) htmldiff from- (new)

CTICIDR0, CTI Component Identification Register 0
The CTICIDR0 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information, see 'About the Component Identification scheme'.

Configuration
CTICIDR0 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR0 is a 32-bit register.

Field descriptions
The CTICIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the CTICIDR0

CTICIDR0 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFF0 CTICIDR0

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

CTICIDR0, CTI Component Identification Register 0

Page 1591

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTICIDR0, CTI Component Identification Register 0

Page 1592

(old) htmldiff from- (new)

CTICIDR1, CTI Component Identification Register 1
The CTICIDR1 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information, see 'About the Component Identification scheme'.

Configuration
CTICIDR1 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR1 is a 32-bit register.

Field descriptions
The CTICIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Reads as 0b0000.

Access to this field is RO.

CTICIDR1, CTI Component Identification Register 1

Page 1593

Accessing the CTICIDR1

CTICIDR1 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFF4 CTICIDR1

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTICIDR1, CTI Component Identification Register 1

Page 1594

(old) htmldiff from- (new)

CTICIDR2, CTI Component Identification Register 2
The CTICIDR2 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information, see 'About the Component Identification scheme'.

Configuration
CTICIDR2 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR2 is a 32-bit register.

Field descriptions
The CTICIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the CTICIDR2

CTICIDR2 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFF8 CTICIDR2

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

CTICIDR2, CTI Component Identification Register 2

Page 1595

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTICIDR2, CTI Component Identification Register 2

Page 1596

(old) htmldiff from- (new)

CTICIDR3, CTI Component Identification Register 3
The CTICIDR3 characteristics are:

Purpose
Provides information to identify a CTI component.

For more information, see 'About the Component Identification scheme'.

Configuration
CTICIDR3 is in the Debug power domain.

Implementation of this register is OPTIONAL.

This register is required for CoreSight compliance.

Attributes
CTICIDR3 is a 32-bit register.

Field descriptions
The CTICIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the CTICIDR3

CTICIDR3 can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFFC CTICIDR3

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

CTICIDR3, CTI Component Identification Register 3

Page 1597

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTICIDR3, CTI Component Identification Register 3

Page 1598

(old) htmldiff from- (new)

CTICLAIMCLR, CTI CLAIM Tag Clear register
The CTICLAIMCLR characteristics are:

Purpose
Used by software to read the values of the CLAIM bits, and to clear CLAIM tag bits to 0.

Configuration
CTICLAIMCLR is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTICLAIMCLR is a 32-bit register.

Field descriptions
The CTICLAIMCLR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CLAIM31CLAIM30CLAIM29CLAIM28CLAIM27CLAIM26CLAIM25CLAIM24CLAIM23CLAIM22CLAIM21CLAIM20CLAIM19CLAIM18CLAIM17CLAIM16CLAIM15CLAIM14CLAIM13CLAIM12CLAIM11CLAIM10CLAIM9CLAIM8CLAIM7CLAIM6CLAIM5CLAIM4CLAIM3CLAIM2CLAIM1CLAIM0

CLAIM<x>, bit [x], for x = 31 to 0

CLAIM tag clear bit.

For other values of x, reads return the value of CLAIM[x] and the behavior on writes is:

Reads return the value of CLAIM<x>, writes have the following behavior:

For values of x greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/SBZ.
Software can rely on these bits reading as zero, and must use a Should-Be-Zero policy on writes. Implementations
must ignore writes.

CLAIM<x> Meaning
0b0 No action.
0b1 Indirectly clear CLAIM<[x>] to 0.

A single write to CTICLAIMCLR can clear multiple tags to 0.

If x is greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/WI.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMCLR

CTICLAIMCLR can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFA4 CTICLAIMCLR

This interface is accessible as follows:

CTICLAIMCLR, CTI CLAIM Tag Clear register

Page 1599

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTICLAIMCLR, CTI CLAIM Tag Clear register

Page 1600

(old) htmldiff from- (new)

CTICLAIMSET, CTI CLAIM Tag Set register
The CTICLAIMSET characteristics are:

Purpose
Used by software to set CLAIM bits to 1.

Configuration
CTICLAIMSET is in the Debug power domain.

Implementation of this register is OPTIONAL.

Attributes
CTICLAIMSET is a 32-bit register.

Field descriptions
The CTICLAIMSET bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CLAIM31CLAIM30CLAIM29CLAIM28CLAIM27CLAIM26CLAIM25CLAIM24CLAIM23CLAIM22CLAIM21CLAIM20CLAIM19CLAIM18CLAIM17CLAIM16CLAIM15CLAIM14CLAIM13CLAIM12CLAIM11CLAIM10CLAIM9CLAIM8CLAIM7CLAIM6CLAIM5CLAIM4CLAIM3CLAIM2CLAIM1CLAIM0

CLAIM<x>, bit [x], for x = 31 to 0

CLAIM tag set bit.

For other values of x, the bit is RAO and the behavior on writes is:

IfFor values of x isgreater lessthan thanor equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this fieldbit is
RAORAZ/SBZ. Software can rely on these bits reading as zero, and themust behavioruse a Should-Be-Zero policy on
writeswrites. is:Implementations must ignore writes.

CLAIM<x> Meaning
0b0 No action.
0b1 Indirectly set CLAIM[x] tag to 1.

A single write to CTICLAIMSET can set multiple tags to 1.

If x is greater than or equal to the IMPLEMENTATION DEFINED number of CLAIM tags, this bit is RAZ/WI.

An External Debug reset clears the CLAIM tag bits to 0.

Accessing the CTICLAIMSET

CTICLAIMSET can be accessed through the external debug interface:

Component Offset Instance
CTI 0xFA0 CTICLAIMSET

This interface is accessible as follows:

• When SoftwareLockStatus() accesses to this register are RO.
• When !SoftwareLockStatus() accesses to this register are RW.

CTICLAIMSET, CTI CLAIM Tag Set register

Page 1601

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

CTICLAIMSET, CTI CLAIM Tag Set register

Page 1602

(old) htmldiff from- (new)

DBGBVR<n>_EL1, Debug Breakpoint Value Registers,
n = 0 - 15

The DBGBVR<n>_EL1 characteristics are:

Purpose
Holds a virtual address, or a VMID and/or a context ID, for use in breakpoint matching. Forms breakpoint n together
with control register DBGBCR<n>_EL1.

Configuration
External register DBGBVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System register
DBGBVR<n>_EL1[63:0].

External register DBGBVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGBVR<n>[31:0].

External register DBGBVR<n>_EL1 bits [63:32] are architecturally mapped to AArch32 System register
DBGBXVR<n>[31:0].

DBGBVR<n>_EL1 is in the Core power domain.

How this register is interpreted depends on the value of DBGBCR<n>_EL1.BT.

• When DBGBCR<n>_EL1.BT is 0b0x0x, this register holds a virtual address.
• When DBGBCR<n>_EL1.BT is 0b001x, 0b011x, or 0b110x, this register holds a Context ID.
• When DBGBCR<n>_EL1.BT is 0b100x, this register holds a VMID.
• When DBGBCR<n>_EL1.BT is 0b101x, this register holds a VMID and a Context ID.
• When DBGBCR<n>_EL1.BT is 0b111x, this register holds two Context ID values.

For other values of DBGBCR<n>_EL1.BT, this register is RES0.

If breakpoint n is not implemented then accesses to this register are:

• RES0 when IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess().
• A CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR otherwise.

Attributes
DBGBVR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGBVR<n>_EL1 bit assignments are:

When DBGBCR<n>_EL1.BT == 0b0x0x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] Bits[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Software must treat this field as RES0 if the most significant bit of VA is 0 or RES0, and as
RES1 if the most significant bit of VA is 1.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1603

ext-dbgbcrn_el1.html
AArch32-dbgbvrn.html
ext-dbgbcrn_el1.html
ext-dbgbcrn_el1.html
ext-dbgbcrn_el1.html
ext-dbgbcrn_el1.html
ext-dbgbcrn_el1.html
ext-dbgbcrn_el1.html
ext-dbgbcrn_el1.html

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored,
and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits
is ignored by hardware.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

Extension to VA[48:2]. ForSee more information, see VA[48:2].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Extension to RESS[14:4]. ForSee more information, see RESS[14:4].] for more details.

VA[48:2], bits [48:2]

If the address is being matched in an AArch64 stage 1 translation regime:

• This field contains bits[48:2] of the address for comparison.
• When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49]

are RESS.

If the address is being matched in an AArch32 stage 1 translation regime, the first 20 bits of this field are RES0, and
the rest of the field contains bits[31:2] of the address for comparison.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

When DBGBCR<n>_EL1.BT == 0b001x:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison.

The value is compared against CONTEXTIDR_EL2 when (FEAT_VHE is implemented or FEAT_Debugv8p2 is
implemented), EL2 is using AArch64, HCR_EL2.E2H is 1, and either:

• The PE is executing at EL2.
• HCR_EL2.TGE is 1, the PE is executing at EL0, and EL2 is enabled in the current Security state.

Otherwise, the value is compared against the following:

• CONTEXTIDR when the PE is executing at AArch32.

• CONTEXTIDR_EL1 when the PE is executing at AArch64.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1604

AArch64-contextidr_el2.html
AArch32-contextidr.html
AArch64-contextidr_el1.html

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b011x, EL2 is implemented and (FEAT_VHE is
implemented or FEAT_Debugv8p2 is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b100x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VHE is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. ForSee more information, see DBGBVR<n>_EL1.VMID[7:0].] for more details.

If EL2 is using AArch32, this field is RES0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1605

AArch64-contextidr_el1.html
AArch64-vtcr_el2.html

When DBGBCR<n>_EL1.BT == 0b101x and EL2 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 VMID[15:8] VMID[7:0]

ContextID
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:48]

Reserved, RES0.

VMID[15:8], bits [47:40]

When FEAT_VMID16 is implemented and VTCR_EL2.VS == 1:

Extension to VMID[7:0]. ForSee more information, see DBGBVR<n>_EL1.VMID[7:0].] for more details.

If EL2 is using AArch32, or if the implementation has an 8-bit VMID, this field is RES0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID[7:0], bits [39:32]

VMID value for comparison.

The VMID is 8 bits when any of the following are true:

• EL2 is using AArch32.
• VTCR_EL2.VS is 0.
• FEAT_VMID16 is not implemented.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When DBGBCR<n>_EL1.BT == 0b110x, EL2 is implemented and (FEAT_VHE is
implemented or FEAT_Debugv8p2 is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2

RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

Reserved, RES0.

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1606

AArch64-vtcr_el2.html
AArch64-contextidr_el1.html
AArch64-contextidr_el2.html

When DBGBCR<n>_EL1.BT == 0b111x, EL2 is implemented and (FEAT_VHE is
implemented or FEAT_Debugv8p2 is implemented):

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
ContextID2
ContextID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ContextID2, bits [63:32]

Context ID value for comparison against CONTEXTIDR_EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ContextID, bits [31:0]

Context ID value for comparison against CONTEXTIDR_EL1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the DBGBVR<n>_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

DBGBVR<n>_EL1 can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0x400 +

(16 * n)
DBGBVR<n>_EL1 63:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15

Page 1607

AArch64-contextidr_el2.html
AArch64-contextidr_el1.html

(old) htmldiff from- (new)

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
The DBGCLAIMCLR_EL1 characteristics are:

Purpose
Used by software to read the values of the CLAIM tag bits, and to clear CLAIM tag bits to 0.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMSET_EL1 register.

Configuration
External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMCLR_EL1[31:0].

External register DBGCLAIMCLR_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMCLR[31:0].

DBGCLAIMCLR_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMCLR_EL1 is a 32-bit register.

Field descriptions
The DBGCLAIMCLR_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WISBZ CLAIM

Bits [31:8]

Reserved, RAZ/WI.SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on
writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Read or clear CLAIM tag bits. Reading this field returns the current value of the CLAIM tag bits.

Writing a 1 to one of these bits clears the corresponding CLAIM tag bit to 0. This is an indirect write to the CLAIM tag
bits. A single write operation can clear multiple CLAIM tag bits to 0.

Writing 0 to one of these bits has no effect.

On a Cold reset, this field resets to 0.

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 1608

Accessing the DBGCLAIMCLR_EL1

DBGCLAIMCLR_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFA4 DBGCLAIMCLR_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register

Page 1609

(old) htmldiff from- (new)

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
The DBGCLAIMSET_EL1 characteristics are:

Purpose
Used by software to set the CLAIM tag bits to 1.

The architecture does not define any functionality for the CLAIM tag bits.

Note

CLAIM tags are typically used for communication between the debugger and
target software.

Used in conjunction with the DBGCLAIMCLR_EL1 register.

Configuration
External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch64 System register
DBGCLAIMSET_EL1[31:0].

External register DBGCLAIMSET_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGCLAIMSET[31:0].

DBGCLAIMSET_EL1 is in the Core power domain.

An implementation must include eight CLAIM tag bits.

Attributes
DBGCLAIMSET_EL1 is a 32-bit register.

Field descriptions
The DBGCLAIMSET_EL1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WISBZ CLAIM

Bits [31:8]

Reserved, RAZ/WI.SBZ. Software can rely on these bits reading as zero, and must use a should-be-zero policy on
writes. Implementations must ignore writes.

CLAIM, bits [7:0]

Set CLAIM tag bits.

This field is RAO.

Writing a 1 to one of these bits sets the corresponding CLAIM tag bit to 1. This is an indirect write to the CLAIM tag
bits. A single write operation can set multiple CLAIM tag bits to 1.

Writing 0 to one of these bits has no effect.

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 1610

Accessing the DBGCLAIMSET_EL1

DBGCLAIMSET_EL1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFA0 DBGCLAIMSET_EL1

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGCLAIMSET_EL1, Debug CLAIM Tag Set register

Page 1611

(old) htmldiff from- (new)

DBGWVR<n>_EL1, Debug Watchpoint Value Registers,
n = 0 - 15

The DBGWVR<n>_EL1 characteristics are:

Purpose
Holds a data address value for use in watchpoint matching. Forms watchpoint n together with control register
DBGWCR<n>_EL1.

Configuration
External register DBGWVR<n>_EL1 bits [63:0] are architecturally mapped to AArch64 System register
DBGWVR<n>_EL1[63:0].

External register DBGWVR<n>_EL1 bits [31:0] are architecturally mapped to AArch32 System register
DBGWVR<n>[31:0].

DBGWVR<n>_EL1 is in the Core power domain.

If watchpoint n is not implemented then accesses to this register are:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalDebugAccess(), RES0.
• Otherwise, a CONSTRAINED UNPREDICTABLE choice of RES0 or ERROR.

Attributes
DBGWVR<n>_EL1 is a 64-bit register.

Field descriptions
The DBGWVR<n>_EL1 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RESS[14:4] Bits[52:49] VA[48:2]

VA[48:2] RES0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RESS[14:4], bits [63:53]

Reserved, Sign extended. Hardware and software must treat this field as RES0 if the most significant bit of VA is 0 or
RES0, and as RES1 if the most significant bit of VA is 1.

Hardware always ignores the value of these bits and it is IMPLEMENTATION DEFINED whether:

• The bits are hardwired to a copy of the most significant bit of VA, meaning writes to these bits are ignored,
and reads to the bits always return the hardwired value.

• The value in those bits can be written, and reads will return the last value written. The value held in those bits
is ignored by hardware.

VA[52:49], bits [52:49]

When FEAT_LVA is implemented:

Extension to VA[48:2]. ForSee more information, see VA[48:2].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 1612

ext-dbgwcrn_el1.html
AArch32-dbgwvrn.html

Otherwise:

Extension to RESS[14:4]. ForSee more information, see RESS[14:4].] for more details.

VA[48:2], bits [48:2]

Bits[48:2] of the address value for comparison.

When FEAT_LVA is implemented, VA[52:49] forms the upper part of the address value. Otherwise, VA[52:49] are RESS.

Arm deprecates setting DBGWVR<n>_EL1[2] == 1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [1:0]

Reserved, RES0.

Accessing the DBGWVR<n>_EL1

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalDebugAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

DBGWVR<n>_EL1 can be accessed through the external debug interface:

Component Offset Instance Range
Debug 0x800 +

(16 * n)
DBGWVR<n>_EL1 63:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalDebugAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15

Page 1613

(old) htmldiff from- (new)

EDCIDR0, External Debug Component Identification
Register 0

The EDCIDR0 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR0 is a 32-bit register.

Field descriptions
The EDCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the EDCIDR0

EDCIDR0 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFF0 EDCIDR0

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDCIDR0, External Debug Component Identification Register 0

Page 1614

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDCIDR0, External Debug Component Identification Register 0

Page 1615

(old) htmldiff from- (new)

EDCIDR1, External Debug Component Identification
Register 1

The EDCIDR1 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR1 is a 32-bit register.

Field descriptions
The EDCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble.

Reads as 0b0000.

Access to this field is RO.

EDCIDR1, External Debug Component Identification Register 1

Page 1616

Accessing the EDCIDR1

EDCIDR1 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFF4 EDCIDR1

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDCIDR1, External Debug Component Identification Register 1

Page 1617

(old) htmldiff from- (new)

EDCIDR2, External Debug Component Identification
Register 2

The EDCIDR2 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR2 is a 32-bit register.

Field descriptions
The EDCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the EDCIDR2

EDCIDR2 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFF8 EDCIDR2

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDCIDR2, External Debug Component Identification Register 2

Page 1618

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDCIDR2, External Debug Component Identification Register 2

Page 1619

(old) htmldiff from- (new)

EDCIDR3, External Debug Component Identification
Register 3

The EDCIDR3 characteristics are:

Purpose
Provides information to identify an external debug component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
EDCIDR3 is a 32-bit register.

Field descriptions
The EDCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the EDCIDR3

EDCIDR3 can be accessed through the external debug interface:

Component Offset Instance
Debug 0xFFC EDCIDR3

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDCIDR3, External Debug Component Identification Register 3

Page 1620

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDCIDR3, External Debug Component Identification Register 3

Page 1621

(old) htmldiff from- (new)

EDPCSR, External Debug Program Counter Sample
Register

The EDPCSR characteristics are:

Purpose
Holds a sampled instruction address value.

Configuration
EDPCSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise,
direct accesses to EDPCSR are RES0.

EDPCSR[63:32] andis EDPCSR[31:0]a arepair accessedof at 32-bit memory mapped addresses that are not
contiguous.registers.

If FEAT_VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the
Performance Monitors registers space.

Attributes
EDPCSR is a 64-bit register.

Field descriptions
The EDPCSR bit assignments are:

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
PC Sample high word, EDPCSRhi

PC Sample low word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

PC Sample high word, EDPCSRhi. If EDVIDSR.HV == 0 then this field is RAZ, otherwise bits [63:32] of the sampled
instruction address value. The translation regime that EDPCSR samples can be determined from
EDVIDSR.{NS,E2,E3}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EDPCSR, External Debug Program Counter Sample Register

Page 1622

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is permitted but not
required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based

Profiling is prohibited.
• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of
setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect
of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples can be
determined from EDVIDSR.{NS,E2,E3}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software
Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR are
unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When FEAT_VHE is implemented and EDSCR.SC2 == 1:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS EL RES0 PC Sample high word, EDPCSRhi

PC Sample low word
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure state sample. Indicates the Security state that is associated with the most recent EDPCSR sample or, when
it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR samples
can be determined from EDPCSR.{NS,EL}.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent EDPCSR sample or,
when it is read as a single atomic 64-bit read, the current EDPCSR sample. The translation regime that EDPCSR
samples can be determined from EDPCSR.{NS,EL}.

EL Meaning
0b00 Sample is from EL0.
0b01 Sample is from EL1.
0b10 Sample is from EL2.
0b11 Sample is from EL3.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EDPCSR, External Debug Program Counter Sample Register

Page 1623

ext-edcidsr.html
ext-edcidsr.html
ext-edcidsr.html

Bits [60:56]

Reserved, RES0.

Bits [55:32]

PC Sample high word, EDPCSRhi. Bits [55:32] of the sampled instruction address value. The translation regime that
EDPCSR samples can be determined from EDPCSR.{NS,EL}.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [31:0]

PC Sample low word. EDPCSRlo, bits[31:0] of the sampled instruction address value.

EDPCSRlo reads as 0xFFFFFFFF when any of the following are true:

• The PE is in Debug state.
• PC Sample-based profiling is prohibited.

If an instruction has retired since the PE left Reset state, then the first read of EDPCSR[31:0] is permitted but not
required to return 0xFFFFFFFF.

EDPCSRlo reads as an UNKNOWN value when any of the following are true:

• The PE is in Reset state.
• No instruction has retired since the PE left Reset state, Debug state, or a state where PC Sample-based

Profiling is prohibited.
• No instruction has retired since the last read of EDPCSR[31:0].

For the cases where a read of EDPCSR[31:0] returns 0xFFFFFFFF or an UNKNOWN value, the read has the side-effect of
setting EDPCSRhi, EDCIDSR, and EDVIDSR to UNKNOWN values.

Otherwise, a read of EDPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect
of indirectly writing to EDPCSRhi, EDCIDSR, and EDVIDSR. The translation regime that EDPCSR samples can be
determined from EDPCSR.{NS,EL}.

For a read of EDPCSR[31:0] from the memory-mapped interface, if EDLSR.SLK == 1, meaning the OPTIONAL Software
Lock is locked, then the side-effect of the access does not occur and EDPCSRhi, EDCIDSR, and EDVIDSR are
unchanged.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDPCSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'

EDPCSR can be accessed through the memory-mapped interfaces:

Component Offset Instance Range
Debug 0x0A0 EDPCSR 31:0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

Component Offset Instance Range
Debug 0x0AC EDPCSR 63:32

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

EDPCSR, External Debug Program Counter Sample Register

Page 1624

ext-edcidsr.html
ext-edcidsr.html
ext-edcidsr.html

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDPCSR, External Debug Program Counter Sample Register

Page 1625

(old) htmldiff from- (new)

EDSCR, External Debug Status and Control Register
The EDSCR characteristics are:

Purpose
Main control register for the debug implementation.

Configuration
External register EDSCR bits [30:29] are architecturally mapped to AArch64 System register MDCCSR_EL0[30:29].

EDSCR is in the Core power domain.

Attributes
EDSCR is a 32-bit register.

Field descriptions
The EDSCR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 131211109 8 7 6 5 4 3 2 1 0
TFORXfullTXfullITORXOTXUPipeAdvITEINTdisTDAMASC2NSRES0SDDRES0HDE RW EL AERR STATUS

TFO, bit [31]

When FEAT_TRF is implemented:

Trace Filter Override. Overrides the Trace Filter controls allowing the external debugger to trace any visible
Exception level.

TFO Meaning
0b0 Trace Filter controls are not affected.
0b1 Trace Filter controls in TRFCR_EL1, TRFCR_EL2 are ignored.

Trace Filter controls TRFCR and HTRFCR are ignored.

When OSLSR_EL1.OSLK == 1, this bit can be indirectly read and written through the MDSCR_EL1 and DBGDSCRext
System registers.

This bit is ignored by the PE when ExternalSecureNoninvasiveDebugEnabled() == FALSE and the Effective value of
MDCR_EL3.STE == 1.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

RXfull, bit [30]

DTRRX full.

On a Cold reset, this field resets to 0.

Access to this field is RO.

EDSCR, External Debug Status and Control Register

Page 1626

AArch64-trfcr_el1.html
AArch64-trfcr_el2.html
AArch32-trfcr.html
AArch32-htrfcr.html
AArch64-oslsr_el1.html

TXfull, bit [29]

DTRTX full.

On a Cold reset, this field resets to 0.

Access to this field is RO.

ITO, bit [28]

ITR overrun.

If the PE is in Non-debug state, this bit is UNKNOWN. ITO is set to 0 on entry to Debug state.

Access to this field is RO.

RXO, bit [27]

DTRRX overrun.

On a Cold reset, this field resets to 0.

Access to this field is RO.

TXU, bit [26]

DTRTX underrun.

On a Cold reset, this field resets to 0.

Access to this field is RO.

PipeAdv, bit [25]

Pipeline advance. Set to 1 every time the PE pipeline retires one or more instructions. Cleared to 0 by a write to
EDRCR.CSPA.

The architecture does not define precisely when this bit is set to 1. It requires only that this happen periodically in
Non-debug state to indicate that software execution is progressing.

Access to this field is RO.

ITE, bit [24]

ITR empty.

If the PE is in Non-debug state, this bit is UNKNOWN. It is always valid in Debug state.

Access to this field is RO.

INTdis, bits [23:22]

When FEAT_Debugv8p4 is implemented:

Interrupt disable. Disables taking interrupts in Non-Debug state.

INTdis Meaning
0b00 Masking of interrupts is controlled by PSTATE and interrupt

routing controls.
0b01 If ExternalSecureDebugEnabled() == TRUE, then all

interrupts, including virtual and SError interrupts, are masked.
If ExternalSecureDebugEnabled() == FALSE, then all
interrupts targetting Non-secure state are masked.

EDSCR, External Debug Status and Control Register

Page 1627

ext-edrcr.html

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

This field is ignored by the PE and treated as zero when ExternalDebugEnabled() == FALSE.

When FEAT_Debugv8p4 is implemented, bit[23] of the register is RES0.

On a Cold reset, this field resets to 0.

Otherwise:

Interrupt disable.

When OSLSR_EL1.OSLK == 1, this field can be indirectly read and written through the MDSCR_EL1 and
DBGDSCRext System registers.

INTdis Meaning
0b00 Do not disable interrupts.
0b01 Disable interrupts taken to Non-secure EL1.
0b10 Disable interrupts taken only to Non-secure EL1 and Non-

secure EL2. If ExternalSecureInvasiveDebugEnabled() ==
TRUE, also disable interrupts taken to Secure EL1.

0b11 Disable interrupts taken only to Non-secure EL1 and Non-
secure EL2. If ExternalSecureInvasiveDebugEnabled() ==
TRUE, also disable all other interrupts.

On a Cold reset, this field resets to 0.

TDA, bit [21]

Traps accesses to the following debug System registers:

• AArch64: DBGBCR<n>_EL1, DBGBVR<n>_EL1, DBGWCR<n>_EL1, DBGWVR<n>_EL1.
• AArch32: DBGBCR<n>, DBGBVR<n>, DBGBXVR<n>, DBGWCR<n>, DBGWVR<n>.

The possible values of this field are:

TDA Meaning
0b0 Accesses to debug System registers do not generate a Software

Access Debug event.
0b1 Accesses to debug System registers generate a Software Access

Debug event, if OSLSR_EL1.OSLK is 0 and if halting is allowed.

On a Cold reset, this field resets to 0.

MA, bit [20]

Memory access mode. Controls the use of memory-access mode for accessing ITR and the DCC. This bit is ignored if in
Non-debug state and set to zero on entry to Debug state.

Possible values of this field are:

MA Meaning
0b0 Normal access mode.
0b1 Memory access mode.

On a Cold reset, this field resets to 0.

SC2, bit [19]

When FEAT_PCSRv8 is implemented, (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and FEAT_PCSRv8p2 is not
implemented:

Sample CONTEXTIDR_EL2. Controls whether the PC Sample-based Profiling Extension samples CONTEXTIDR_EL2 or
VTTBR_EL2.VMID.

EDSCR, External Debug Status and Control Register

Page 1628

AArch64-oslsr_el1.html
AArch64-oslsr_el1.html
AArch64-dbgbcrn_el1.html
AArch64-dbgwcrn_el1.html
AArch32-dbgbcrn.html
AArch32-dbgbvrn.html
AArch32-dbgwcrn.html
AArch32-dbgwvrn.html
AArch64-oslsr_el1.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html

SC2 Meaning
0b0 Sample VTTBR_EL2.VMID.
0b1 Sample CONTEXTIDR_EL2.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

NS, bit [18]

Non-secure status. When in Debug state, gives the current Security state:

NS Meaning
0b0 Secure state.state, IsSecure() == TRUE.
0b1 Non-secure state.state, IsSecure() == FALSE.

In Non-debug state, this bit is UNKNOWN.

Access to this field is RO.

Bit [17]

Reserved, RES0.

SDD, bit [16]

Secure debug disabled.

On entry to Debug state:

• If entering in Secure state, SDD is set to 0.
• If entering in Non-secure state, SDD is set to the inverse of ExternalSecureInvasiveDebugEnabled().

In Debug state, the value of the SDD bit does not change, even if ExternalSecureInvasiveDebugEnabled() changes.

In Non-debug state:

• SDD returns the inverse of ExternalSecureInvasiveDebugEnabled(). If the authentication signals that control
ExternalSecureInvasiveDebugEnabled() change, a context synchronization event is required to guarantee their
effect.

• This bit is unaffected by the Security state of the PE.

If EL3 is not implemented and the implementation is Non-secure, this bit is RES1.

Access to this field is RO.

Bit [15]

Reserved, RES0.

HDE, bit [14]

Halting debug enable. The possible values of this field are:

HDE Meaning
0b0 Halting disabled for Breakpoint, Watchpoint and Halt Instruction

debug events.
0b1 Halting enabled for Breakpoint, Watchpoint and Halt Instruction

debug events.

On a Cold reset, this field resets to 0.

EDSCR, External Debug Status and Control Register

Page 1629

AArch64-contextidr_el2.html

RW, bits [13:10]

Exception level Execution state status. In Debug state, each bit gives the current Execution state of each Exception
level.

RW Meaning Applies when
0b1111 All Exception levels are using

AArch64 or the PE is in Non-debug
state.

0b1110 The PE is in Debug state. EL0 is
using AArch32. All other Exception
levels are using AArch64. Only
permitted if the PE is executing at
EL0.

When AArch32 is
supported at any
Exception level

0b110x The PE is in Debug state. EL0 and
EL1 are using AArch32. EL2 and
EL3 are using AArch64. Only
permitted if EL2 is implemented
and enabled in the current
Security state.

When AArch32 is
supported at any
Exception level

0b10xx The PE is in Debug state. EL0,
EL1, and, if implemented in the
current Security state, EL2 are
using AArch32. EL3 is using
AArch64.

When AArch32 is
supported at any
Exception level, EL3 is
implemented, EL3 is
using AArch64 and EL2
is implemented

0b0xxx The PE is in Debug state. All
Exception levels are using
AArch32.

When AArch32 is
supported at any
Exception level

In Non-debug state, this field is RAO.

Access to this field is RO.

EL, bits [9:8]

Exception level. In Debug state, this gives the current Exception level of the PE.

In Non-debug state, this field is RAZ.

Access to this field is RO.

A, bit [7]

SError interrupt pending. In Debug state, indicates whether an SError interrupt is pending:

• If HCR_EL2.{AMO, TGE} = {1, 0}, EL2 is enabled in the current Security state, and the PE is executing at
EL0 or EL1, a virtual SError interrupt.

• Otherwise, a physical SError interrupt.
A Meaning
0b0 No SError interrupt pending.
0b1 SError interrupt pending.

A debugger can read EDSCR to check whether an SError interrupt is pending without having to execute further
instructions. A pending SError might indicate data from target memory is corrupted.

UNKNOWN in Non-debug state.

Access to this field is RO.

ERR, bit [6]

Cumulative error flag. This bit is set to 1 following exceptions in Debug state and on any signaled overrun or underrun
on the DTR or EDITR.

On a Cold reset, this field resets to 0.

EDSCR, External Debug Status and Control Register

Page 1630

Access to this field is RO.

STATUS, bits [5:0]

Debug status flags.

STATUS Meaning
0b000001 PE is restarting, exiting Debug state.
0b000010 PE is in Non-debug state.
0b000111 Breakpoint.
0b010011 External debug request.
0b011011 Halting step, normal.
0b011111 Halting step, exclusive.
0b100011 OS Unlock Catch.
0b100111 Reset Catch.
0b101011 Watchpoint.
0b101111 HLT instruction.
0b110011 Software access to debug register.
0b110111 Exception Catch.
0b111011 Halting step, no syndrome.

All other values of STATUS are reserved.

Access to this field is RO.

Accessing the EDSCR

EDSCR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x088 EDSCR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and SoftwareLockStatus() accesses to this
register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus() and !SoftwareLockStatus() accesses to this
register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDSCR, External Debug Status and Control Register

Page 1631

(old) htmldiff from- (new)

EDVIDSR, External Debug Virtual Context Sample
Register

The EDVIDSR characteristics are:

Purpose
Contains sampled values captured on reading EDPCSR[31:0].

Configuration
EDVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8 is implemented and FEAT_PCSRv8p2 is not implemented. Otherwise,
direct accesses to EDVIDSR are RES0.

If FEAT_VHE is implemented, the format of this register differs depending on the value of EDSCR.SC2.

Implemented only if the OPTIONAL PC Sample-based Profiling Extension is implemented in the external debug registers
space.

When the PC Sample-based Profiling Extension is implemented in the external debug registers space, if EL2 is not
implemented and EL3 is not implemented, it is IMPLEMENTATION DEFINED whether EDVIDSR is implemented.

Note

FEAT_PCSRv8p2 implements the PC Sample-based Profiling Extension in the
Performance Monitors registers space.

Attributes
EDVIDSR is a 32-bit register.

Field descriptions
The EDVIDSR bit assignments are:

When FEAT_VHE is not implemented or EDSCR.SC2 == 0:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS E2 E3 HV RES0 VMID[15:8] VMID

This format applies in all Armv8.0 implementations.

NS, bit [31]

Non-secure state sample. Indicates the Security state associated with the most recent EDPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS Meaning
0b0 Sample is from Secure state.
0b1 Sample is from Non-secure state.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1632

E2, bit [30]

When EL2 is implemented:

Exception level 2 status sample. Indicates whether the most recent EDPCSR sample was associated with EL2.

E2 Meaning
0b0 Sample is not from EL2.
0b1 Sample is from EL2.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

E3, bit [29]

When EL3 is implemented and the highest implemented Exception level is using AArch64 state:

Exception level 3 status sample. Indicates whether the most recent EDPCSR sample was associated with EL3 using
AArch64.

E3 Meaning
0b0 Sample is not from EL3 using AArch64.
0b1 Sample is from EL3 using AArch64.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

HV, bit [28]

EDPCSRhi (EDPCSR[63:32]) valid. Indicates whether bits [63:32] of the most recent EDPCSR sample might be
nonzero:

HV Meaning
0b0 Bits[63:32] of the most recent EDPCSR sample are zero.
0b1 Bits[63:32] of the most recent EDPCSR sample might be nonzero.

An EDVIDSR.HV value of 1 does not mean that the value of EDPCSRhi is nonzero. An EDVIDSR.HV value of 0 is a hint
that EDPCSRhi (EDPCSR[63:32]) does not need to be read.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [27:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented and EL2 is implemented:

Extension to VMID[7:0]. ForSee more information, see VMID[7:0].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

EDVIDSR, External Debug Virtual Context Sample Register

Page 1633

VMID, bits [7:0]

When EL2 is implemented:

VMID sample. The VMID associated with the most recent EDPCSRlo (EDPCSR[31:0]) sample. When the most recent
EDPCSR sample was generated:

• This field is RES0 if any of the following apply:
◦ The PE is executing in Secure state.
◦ The PE is executing at EL2.

• Otherwise:
◦ If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or VTCR_EL2.VS is 1, this field

is set to VTTBR_EL2.VMID.
◦ If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0, PMVIDSR.VMID[7:0]

is set to VTTBR_EL2.VMID[7:0] and PMVIDSR.VMID[15:8] is RES0.
◦ If EL2 is using AArch32, this field is set to VTTBR.VMID.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

When (FEAT_VHE is implemented or FEAT_Debugv8p2 is implemented) and
EDSCR.SC2 == 1:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CONTEXTIDR_EL2

CONTEXTIDR_EL2, bits [31:0]

Context ID. The value of CONTEXTIDR_EL2 that is associated with the most recent EDPCSR sample. When the most
recent EDPCSR sample was generated:

• If EL2 was using AArch64 and the PE was executing in Non-secure state, then this field is set to the Context ID
sampled from CONTEXTIDR_EL2.

• If EL2 was using AArch32 or the PE was executing in Secure state, then this field is set to an UNKNOWN value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the EDVIDSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'.

EDVIDSR can be accessed through the external debug interface:

Component Offset Instance
Debug 0x0A8 EDVIDSR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

EDVIDSR, External Debug Virtual Context Sample Register

Page 1634

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch32-vttbr.html
AArch64-contextidr_el2.html
AArch64-contextidr_el2.html

(old) htmldiff from- (new)

ERRCIDR0, Component Identification Register 0
The ERRCIDR0 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

ERRCIDR0 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR0 is a 32-bit register.

Field descriptions
The ERRCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Component identification preamble, segment 0.

Reads as 0x0D.

Access to this field is RO.

Accessing the ERRCIDR0

ERRCIDR0 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFF0

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR0, Component Identification Register 0

Page 1635

(old) htmldiff from- (new)

ERRCIDR0, Component Identification Register 0

Page 1636

(old) htmldiff from- (new)

ERRCIDR1, Component Identification Register 1
The ERRCIDR1 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

ERRCIDR1 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR1 is a 32-bit register.

Field descriptions
The ERRCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1111 Generic peripheral with IMPLEMENTATION DEFINED register

layout.

Other values are defined by the CoreSight Architecture.

This field reads as 0xF.

PRMBL_1, bits [3:0]

Component identification preamble, segment 1.

Reads as 0b0000.

Access to this field is RO.

ERRCIDR1, Component Identification Register 1

Page 1637

Accessing the ERRCIDR1

ERRCIDR1 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFF4

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERRCIDR1, Component Identification Register 1

Page 1638

(old) htmldiff from- (new)

ERRCIDR2, Component Identification Register 2
The ERRCIDR2 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

ERRCIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR2 is a 32-bit register.

Field descriptions
The ERRCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Component identification preamble, segment 2.

Reads as 0x05.

Access to this field is RO.

Accessing the ERRCIDR2

ERRCIDR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFF8

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR2, Component Identification Register 2

Page 1639

(old) htmldiff from- (new)

ERRCIDR2, Component Identification Register 2

Page 1640

(old) htmldiff from- (new)

ERRCIDR3, Component Identification Register 3
The ERRCIDR3 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

ERRCIDR3 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCIDR3 is a 32-bit register.

Field descriptions
The ERRCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Component identification preamble, segment 3.

Reads as 0xB1.

Access to this field is RO.

Accessing the ERRCIDR3

ERRCIDR3 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFFC

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCIDR3, Component Identification Register 3

Page 1641

(old) htmldiff from- (new)

ERRCIDR3, Component Identification Register 3

Page 1642

(old) htmldiff from- (new)

ERRCRICR2, Critical Error Interrupt Configuration
Register 2

The ERRCRICR2 characteristics are:

Purpose
Critical Error Interrupt control and configuration register.

Configuration
This register is present only when (the Critical Error Interrupt is implemented or the implementation does not use the
recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRCRICR2 are RES0.

ERRCRICR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRCRICR2 is a 32-bit register.

Field descriptions
The ERRCRICR2 bit assignments are:

When the Critical Error Interrupt is implemented and the implementation uses
the recommended layout for the ERRIRQCR<n> registers:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IRQENNSMSI SH MemAttr

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Disabled.
0b1 Enabled.

On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 1643

NSMSI, bit [6]

When the component supports configuring the Security attribute for message signaled interrupts and the component does not
allow Non-secure writes to ERRCRICR2:

Security attribute. Defines the physical address space for message signaled interrupts.

NSMSI Meaning
0b0 Secure.
0b1 Non-secure.

On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

When the component allows Non-secure writes to ERRCRICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.

Otherwise:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRCRICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer
Shareable.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 1644

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

MemAttr Meaning
0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the
ERRIRQCR<n> registers:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRCRICR2

ERRCRICR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xEAC

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 1645

(old) htmldiff from- (new)

ERRCRICR2, Critical Error Interrupt Configuration Register 2

Page 1646

(old) htmldiff from- (new)

ERRERICR2, Error Recovery Interrupt Configuration
Register 2

The ERRERICR2 characteristics are:

Purpose
Error Recovery Interrupt control and configuration register.

Configuration
This register is present only when (the Error Recovery Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRERICR2 are RES0.

ERRERICR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRERICR2 is a 32-bit register.

Field descriptions
The ERRERICR2 bit assignments are:

When the Error Recovery Interrupt is implemented and the implementation uses
the recommended layout for the ERRIRQCR<n> registers:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IRQENNSMSI SH MemAttr

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Disabled.
0b1 Enabled.

On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 1647

NSMSI, bit [6]

When the component supports configuring the Security attribute for message signaled interrupts and the component does not
allow Non-secure writes to ERRERICR2:

Security attribute. Defines the physical address space for message signaled interrupts.

NSMSI Meaning
0b0 Secure.
0b1 Non-secure.

On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

When the component allows Non-secure writes to ERRERICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.

Otherwise:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRERICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer
Shareable.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 1648

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

MemAttr Meaning
0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the
ERRIRQCR<n> registers:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRERICR2

ERRERICR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xE9C

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 1649

(old) htmldiff from- (new)

ERRERICR2, Error Recovery Interrupt Configuration Register 2

Page 1650

(old) htmldiff from- (new)

ERRFHICR2, Fault Handling Interrupt Configuration
Register 2

The ERRFHICR2 characteristics are:

Purpose
Fault Handling Interrupt control and configuration register.

Configuration
This register is present only when (the Fault Handling Interrupt is implemented or the implementation does not use
the recommended layout for the ERRIRQCR<n> registers) and interrupt configuration registers are implemented.
Otherwise, direct accesses to ERRFHICR2 are RES0.

ERRFHICR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRFHICR2 is a 32-bit register.

Field descriptions
The ERRFHICR2 bit assignments are:

When the Fault Handling Interrupt is implemented and the implementation uses
the recommended layout for the ERRIRQCR<n> registers:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 IRQENNSMSI SH MemAttr

Bits [31:8]

Reserved, RES0.

IRQEN, bit [7]

When the component supports disabling message signaled interrupts:

Message signaled interrupt enable. Enables generation of message signaled interrupts.

IRQEN Meaning
0b0 Disabled.
0b1 Enabled.

On an Error recovery reset, this field resets to 0.

Otherwise:

Reserved, RES0.

Message signaled interrupt enable.

Message signaled interrupts are always enabled.

ERRFHICR2, Fault Handling Interrupt Configuration Register 2

Page 1651

NSMSI, bit [6]

When the component supports configuring the Security attribute for message signaled interrupts and the component does not
allow Non-secure writes to ERRFHICR2:

Security attribute. Defines the physical address space for message signaled interrupts.

NSMSI Meaning
0b0 Secure.
0b1 Non-secure.

On an Error recovery reset, this field resets to an IMPLEMENTATION DEFINED value.

When the component allows Non-secure writes to ERRFHICR2:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute used for message signaled interrupts is Non-secure.

Otherwise:

Reserved, RES0.

Security attribute. Defines the physical address space for message signaled interrupts.

The Security attribute for message signaled interrupts is IMPLEMENTATION DEFINED.

SH, bits [5:4]

When the component supports configuring the Shareability domain for message signaled interrupts:

Shareability. Defines the Shareability domain for message signaled interrupts.

SH Meaning
0b00 Not shared.
0b10 Outer Shareable.
0b11 Inner Shareable.

All other values are reserved.

This field is ignored when ERRFHICR2.MemAttr specifies any of the following memory types:

• Any Device memory type.
• Normal memory, Inner Non-cacheable, Outer Non-cacheable.

All Device and Normal Inner Non-cacheable Outer Non-cacheable memory regions are always treated as Outer
Shareable.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Shareability.

The Shareability domain for message signaled interrupts is IMPLEMENTATION DEFINED.

ERRFHICR2, Fault Handling Interrupt Configuration Register 2

Page 1652

MemAttr, bits [3:0]

When the component supports configuring the memory type for message signaled interrupts:

Memory type. Defines the memory type and attributes for message signaled interrupts.

MemAttr Meaning
0b0000 Device-nGnRnE memory.
0b0001 Device-nGnRE memory.
0b0010 Device-nGRE memory.
0b0011 Device-GRE memory.
0b0101 Normal memory, Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal memory, Inner Write-Through, Outer Non-cacheable.
0b0111 Normal memory, Inner Write-Back, Outer Non-cacheable.
0b1001 Normal memory, Inner Non-cacheable, Outer Write-Through.
0b1010 Normal memory, Inner Write-Through, Outer Write-Through.
0b1011 Normal memory, Inner Write-Back, Outer Write-Through.
0b1101 Normal memory, Inner Non-cacheable, Outer Write-Back.
0b1110 Normal memory, Inner Write-Through, Outer Write-Back.
0b1111 Normal memory, Inner Write-Back, Outer Write-Back.

All other values are reserved.

Note

This is the same format as the VMSAv8-64 stage 2 memory region attributes.

On an Error recovery reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Memory type.

The memory type used for message signaled interrupts is IMPLEMENTATION DEFINED.

When the implementation does not use the recommended layout for the
ERRIRQCR<n> registers:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
IMPLEMENTATION DEFINED

IMPLEMENTATION DEFINED, bits [31:0]

IMPLEMENTATION DEFINED.

Accessing the ERRFHICR2

ERRFHICR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xE8C

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERRFHICR2, Fault Handling Interrupt Configuration Register 2

Page 1653

(old) htmldiff from- (new)

ERRFHICR2, Fault Handling Interrupt Configuration Register 2

Page 1654

(old) htmldiff from- (new)

ERR<n>ADDR, Error Record Address Register, n = 0 -
65534

The ERR<n>ADDR characteristics are:

Purpose
If an address is associated with a detected error, then it is written to ERR<n>ADDR when the error is recorded. It is
IMPLEMENTATION DEFINED how the recorded address maps to the software-visible physical address. Software might have
to reconstruct the actual physical addresses using the identity of the node and knowledge of the system.

Configuration
This register is present only when error record <n> is implemented and error record <n> includes an address
associated with an error. Otherwise, direct accesses to ERR<n>ADDR are RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

Attributes
ERR<n>ADDR is a 64-bit register.

Field descriptions
The ERR<n>ADDR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
NS SI AI VA RES0 PADDR

PADDR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NS, bit [63]

Non-secure attribute.

NS Meaning
0b0 ERR<n>ADDR.PADDR is a Secure address.
0b1 ERR<n>ADDR.PADDR is a Non-secure address.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SI, bit [62]

AddressSecure SpaceIncorrect. Incorrect.Indicates whether ERR<n>ADDR.NS is valid.

Indicates whether ERR<n>ADDR.NS is valid.

SI Meaning
0b0 ERR<n>ADDR.NS is correct. That is, it matches the programmers'

view of the Non-secure attribute for this recorded location.
0b1 ERR<n>ADDR.NS might not be correct. That iscorrect, itand

might not match the programmers' view of the Non-secure
attribute for the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

Page 1655

ext-errnfr.html

On a Cold reset, this field resets to an architecturally UNKNOWN value.

AI, bit [61]

Address Incorrect. Indicates whether ERR<n>ADDR.PADDR is a valid physical address that is known to match the
programmers' view of the physical address for the recorded location.

AI Meaning
0b0 ERR<n>ADDR.PADDR is a valid physical address. That is, it

matches the programmers' view of the physical address for the
recorded location.

0b1 ERR<n>ADDR.PADDR might not be a valid physical address, and
might not match the programmers' view of the physical address for
the recorded location.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

VA, bit [60]

Virtual Address. Indicates whether ERR<n>ADDR.PADDR field is a virtual address.

VA Meaning
0b0 ERR<n>ADDR.PADDR is not a virtual address.
0b1 ERR<n>ADDR.PADDR is a virtual address.

No context information is provided for the virtual address. When ERR<n>ADDR.VA == 0b1,
ERR<n>ADDR.{NS,SI,AI} read as {0,1,1}.

Support for this bit is optional. If this bit is not implemented and ERR<n>ADDR.PADDR field is a virtual address, then
ERR<n>ADDR.{NS,SI,AI} read as {0,1,1}.

It is IMPLEMENTATION DEFINED whether this bit is read-only or read/write.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [59:56]

Reserved, RES0.

PADDR, bits [55:0]

Physical Address. Address of the recorded location. If the physical address size implemented by this component is
smaller than the size of this field, then high-order bits are unimplemented and either RES0 or have a fixed read-only
IMPLEMENTATION DEFINED value. Low-order address bits might also be unimplemented and RES0, for example, if the
physical address is always aligned to the size of a protection granule.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>ADDR
ERR<n>ADDR ignores writes if all of the following are true:

• Any of the following are true:
◦ The RAS Common Fault Injection Model Extension is implemented by the node that owns this error

record and ERR<q>PFGF.AV == 0b0.
◦ The RAS Common Fault Injection Model Extension is not implemented by the node that owns this

error record.
• ERR<n>STATUS.AV == 0b1.

ERR<n>ADDR can be accessed through the memory-mapped interfaces:

Component Offset Instance

ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

Page 1656

RAS 0x018 + (64 * n) ERR<n>ADDR

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>ADDR, Error Record Address Register, n = 0 - 65534

Page 1657

(old) htmldiff from- (new)

ERR<n>CTLR, Error Record Control Register, n = 0 -
65534

The ERR<n>CTLR characteristics are:

Purpose
The error control register contains enable bits for the node that writes to this record:

• Enabling error detection and correction.
• Enabling the critical error, error recovery, and fault handling interrupts.
• Enabling in-band error response for Uncorrected errors.

For each bit, if the node does not support the feature, then the bit is RES0. The definition of each record is
IMPLEMENTATION DEFINED.

Configuration
This register is present only when error record <n> is implemented and error record <n> is the first error record
owned by a node. Otherwise, direct accesses to ERR<n>CTLR are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>CTLR is a 64-bit register.

Field descriptions
The ERR<n>CTLR bit assignments are:

63626160595857565554535251504948474645 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED

RES0 CIRES0WDUIBit[10]WCFIBit[8]WUEWFIWUIBit[4]Bit[3]Bit[2]IMPLEMENTATION
DEFINED ED

31302928272625242322212019181716151413 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:32]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

Bits [31:14]

Reserved, RES0.

CI, bit [13]

When ERR<n>FR.CI == 0b10:

Critical error interrupt enable. When enabled, the critical error interrupt is generated for a critical error condition.

CI Meaning
0b0 Critical error interrupt not generated for critical errors. Critical

errors are treated as Uncontained errors.
0b1 Critical error interrupt generated for critical errors.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1658

ext-errnfr.html

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [12]

Reserved, RES0.

WDUI, bit [11]

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for deferred errors on writes enable.

When enabled, the error recovery interrupt is generated for detected Deferred errors on writes.

WDUI Meaning
0b0 Error recovery interrupt not generated for deferred errors on

writes.
0b1 Error recovery interrupt generated for deferred errors on

writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

DUI, bit [10]

When ERR<n>FR.DUI == 0b10:

Error recovery interrupt for deferred errors enable.

When ERR<n>FR.DUI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Deferred errors.

DUI Meaning
0b0 Error recovery interrupt not generated for deferred errors.
0b1 Error recovery interrupt generated for deferred errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.DUI == 0b11:

Error recovery interrupt for deferred errors on reads enable.

When ERR<n>FR.DUI == 0b11, this bit is named RDUI.

When enabled, the error recovery interrupt is generated for detected Deferred errors on reads.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1659

ext-errnfr.html
ext-errnfr.html

RDUI Meaning
0b0 Error recovery interrupt not generated for deferred errors on

reads.
0b1 Error recovery interrupt generated for deferred errors on reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WCFI, bit [9]

When ERR<n>FR.CFI == 0b11:

Fault handling interrupt for Corrected errors on writes enable.

When enabled:

• If the node implements Corrected error counters for writes, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see
ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.onwrites.
WCFI Meaning
0b0 Fault handling interrupt not generated for Corrected errors on

writes.
0b1 Fault handling interrupt generated for Corrected errors on

writes.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

CFI, bit [8]

When ERR<n>FR.CFI == 0b10:

Fault handling interrupt for Corrected errors enable.

When ERR<n>FR.CFI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• If the node implements Corrected error counters, then the fault handling interrupt is generated when a
counter overflows and the overflow bit for the counter is set to 0b1. For more information, see ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.
CFI Meaning
0b0 Fault handling interrupt not generated for Corrected errors.
0b1 Fault handling interrupt generated for Corrected errors.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1660

ext-errnmisc0.html
ext-errnfr.html
ext-errnmisc0.html

When ERR<n>FR.CFI == 0b11:

Fault handling interrupt for Corrected errors on reads enable.

When ERR<n>FR.CFI == 0b11, this bit is named RCFI.

When enabled:

• If the node implements Corrected error counters for reads, then the fault handling interrupt is generated
when a counter overflows and the overflow bit for the counter is set to 0b1. For more information, see
ERR<n>MISC0.

• Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.onreads.
RCFI Meaning
0b0 Fault handling interrupt not generated for Corrected errors on

reads.
0b1 Fault handling interrupt generated for Corrected errors on

reads.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUE, bit [7]

When ERR<n>FR.UE == 0b11:

In-band Uncorrected error reporting on writes enable.

When enabled, responses to writes that detect an Uncorrected error that cannot be deferred are signaled in-band as a
detected Uncorrected error (External Abort).

WUE Meaning
0b0 External Abort response for Uncorrected errors on writes

disabled.
0b1 External Abort response for Uncorrected errors on writes

enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WFI, bit [6]

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on writes enable.

When enabled:

• The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

◦ If the node implements Corrected error counters for writes, then the fault handling interrupt is also
generated when a counter overflows and the overflow bit for the counter is set to 0b1.

◦ Otherwise, the fault handling interrupt is also generated for detected Corrected errors on writes.
WFI Meaning
0b0 Fault handling interrupt on writes disabled.
0b1 Fault handling interrupt on writes enabled.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1661

ext-errnfr.html
ext-errnmisc0.html

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

WUI, bit [5]

When ERR<n>FR.UI == 0b11:

Uncorrected error recovery interrupt on writes enable.

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on writes that are not
deferred.

WUI Meaning
0b0 Error recovery interrupt on writes disabled.
0b1 Error recovery interrupt on writes enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UE, bit [4]

When ERR<n>FR.UE == 0b10:

In-band Uncorrected error reporting enable.

When ERR<n>FR.UE == 0b10, this control applies to errors arising from both reads and writes.

When enabled, responses to transactions that detect an Uncorrected error that cannot be deferred are signaled in-
band as a detected Uncorrected error (External Abort).

UE Meaning
0b0 External Abort response for Uncorrected errors disabled.
0b1 External Abort response for Uncorrected errors enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UE == 0b11:

In-band Uncorrected error reporting on reads enable.

When ERR<n>FR.UE == 0b11, this bit is named RUE.

When enabled, responses to reads that detect an Uncorrected error that cannot be deferred are signaled in-band as a
detected Uncorrected error (External Abort).

RUE Meaning
0b0 External Abort response for Uncorrected errors on reads

disabled.
0b1 External Abort response for Uncorrected errors on reads enabled.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1662

ext-errnfr.html
ext-errnfr.html

Otherwise:

Reserved, RES0.

FI, bit [3]

When ERR<n>FR.FI == 0b10:

Fault handling interrupt enable.

When ERR<n>FR.FI == 0b10, this control applies to errors arising from both reads and writes.

When enabled:

• The fault handling interrupt is generated for all detected Deferred errors and Uncorrected errors.
• If the fault handling interrupt for Corrected errors control is not implemented:

◦ If the node implements Corrected error counters, then the fault handling interrupt is also generated
when a counter overflows and the overflow bit for the counter is set to 0b1.

◦ Otherwise, the fault handling interrupt is also generated for all detected Corrected errors.
FI Meaning
0b0 Fault handling interrupt disabled.
0b1 Fault handling interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.FI == 0b11:

Fault handling interrupt on reads enable.

When ERR<n>FR.FI == 0b11, this bit is named RFI.

When enabled:

• The fault handling interrupt is generated for detected Deferred errors and Uncorrected errors.
• If the corresponding fault handling interrupt for Corrected errors control is not implemented:

◦ If the node implements Corrected error counters for reads, then the fault handling interrupt is also
generated when a counter overflows and the overflow bit for the counter is set to 0b1.

◦ Otherwise, the fault handling interrupt is also generated for detected Corrected errors on reads.
RFI Meaning
0b0 Fault handling interrupt on reads disabled.
0b1 Fault handling interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

UI, bit [2]

When ERR<n>FR.UI == 0b10:

Uncorrected error recovery interrupt enable.

When ERR<n>FR.UI == 0b10, this control applies to errors arising from both reads and writes.

When enabled, the error recovery interrupt is generated for all detected Uncorrected errors that are not deferred.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1663

ext-errnfr.html
ext-errnfr.html
ext-errnfr.html

UI Meaning
0b0 Error recovery interrupt disabled.
0b1 Error recovery interrupt enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When ERR<n>FR.UI == 0b11:

Uncorrected error recovery interrupt on reads enable.

When ERR<n>FR.UI == 0b11, this bit is named RUI.

When enabled, the error recovery interrupt is generated for detected Uncorrected errors on reads that are not
deferred.

RUI Meaning
0b0 Error recovery interrupt on reads disabled.
0b1 Error recovery interrupt on reads enabled.

The interrupt is generated even if the error syndrome is discarded because the error record already records a higher
priority error.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

IMPLEMENTATION DEFINED, bit [1]

Reserved for IMPLEMENTATION DEFINED controls. Must permit SBZP write policy for software.

ED, bit [0]

When ERR<n>FR.ED == 0b10:

Error reporting and logging enable. When disabled, the node behaves as if error detection and correction are disabled,
and no errors are recorded or signaled by the node. Arm recommends that, when disabled, correct error detection and
correction codes are written for writes, unless disabled by an IMPLEMENTATION DEFINED control for error injection.

ED Meaning
0b0 Error reporting disabled.
0b1 Error reporting enabled.

It is IMPLEMENTATION DEFINED whether the node fully disables error detection and correction when reporting is
disabled. That is, even with error reporting disabled, the node might continue to silently correct errors. Uncorrectable
errors might result in corrupt data being silently propagated by the node.

Note

If this node requires initialization after Cold reset to prevent signaling false
errors, then Arm recommends this bit is set to 0b0 on Cold reset, meaning
errors are not reported from Cold reset. This allows boot software to initialize
a node without signaling errors. Software can enable error reporting after the
node is initialized. Otherwise, the Cold reset value is IMPLEMENTATION DEFINED.
If the Cold reset value is 0b1, the reset values of other controls in this register
are also IMPLEMENTATION DEFINED and should not be UNKNOWN.

On a Cold reset, this field resets to an IMPLEMENTATION DEFINED value.

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1664

ext-errnfr.html

Otherwise:

Reserved, RES0.

Accessing the ERR<n>CTLR

ERR<n>CTLR can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x008 + (64 * n) ERR<n>CTLR

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>CTLR, Error Record Control Register, n = 0 - 65534

Page 1665

(old) htmldiff from- (new)

ERR<n>MISC2, Error Record Miscellaneous Register 2,
n = 0 - 65534

The ERR<n>MISC2 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

• Information to locate where the error was detected.
• If the error was detected within a FRU, the identity of the FRU.
• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

Configuration
This register is present only when (an implementation implements ERR<n>MISC2 or RAS System Architecture v1.1 is
implemented) and error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC2 are RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC2, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommendsrecommendeds that ERR<n>MISC2 does not
require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request is disabled at Cold reset and is enabled by software
writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION
DEFINED field in ERR<q>CTLR.

Attributes
ERR<n>MISC2 is a 64-bit register.

Field descriptions
The ERR<n>MISC2 bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534

Page 1666

ext-errnfr.html

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC2
Reads from ERR<n>MISC2 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error

ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a
persistent error, while preventing specific information, such as that identifying
a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC2 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x030 + (64 * n) ERR<n>MISC2

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534

Page 1667

(old) htmldiff from- (new)

ERR<n>MISC3, Error Record Miscellaneous Register 3,
n = 0 - 65534

The ERR<n>MISC3 characteristics are:

Purpose
IMPLEMENTATION DEFINED error syndrome register. The miscellaneous syndrome registers might contain:

• Information to locate where the error was detected.
• If the error was detected within a FRU, the identity of the FRU.
• A Corrected error counter or counters.
• Other state information not present in the corresponding status and address registers.

If the node that owns error record n supports the RAS Timestamp Extension (ERR<q>FR.TS != 0b00), then
ERR<n>MISC3 contains the timestamp value for error record n when the error was detected. Otherwise the contents
of ERR<n>MISC3 are IMPLEMENTATION DEFINED.

Configuration
This register is present only when (an implementation implements ERR<n>MISC3 or RAS System Architecture v1.1 is
implemented) and error record <n> is implemented. Otherwise, direct accesses to ERR<n>MISC3 are RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>MISC3, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

If RAS System Architecture v1.1 is not implemented, Arm recommendsrecommendeds that ERR<n>MISC3 does not
require zeroing to return the record to a quiescent state.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request is disabled at Cold reset and is enabled by software
writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION
DEFINED field in ERR<q>CTLR.

Attributes
ERR<n>MISC3 is a 64-bit register.

Field descriptions
The ERR<n>MISC3 bit assignments are:

ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

Page 1668

ext-errnfr.html
ext-errnfr.html

When ERR<q>FR.TS != 0b00:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
TS
TS

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TS, bits [63:0]

Timestamp. Timestamp value recorded when the error was detected. Valid only if ERR<n>STATUS.V == 0b1.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Access to this field is RO or RW.

When ERR<q>FR.TS == 0b00:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
IMPLEMENTATION DEFINED
IMPLEMENTATION DEFINED

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IMPLEMENTATION DEFINED, bits [63:0]

IMPLEMENTATION DEFINED syndrome.

Accessing the ERR<n>MISC3
Reads from ERR<n>MISC3 return an IMPLEMENTATION DEFINED value and writes have IMPLEMENTATION DEFINED
behavior.

If the Common Fault Injection Mechanism is implemented by the node that owns this error record, and
ERR<q>PFGF.MV is 0b1, then some parts of this register are read/write when ERR<n>STATUS.MV == 0b1. See
ERR<n>PFGF.MV for more information.

For other parts of this register, or if the Common Fault Injection Mechanism is not implemented, then Arm
recommends that:

• Miscellaneous syndrome for multiple errors, such as a corrected error counter, is read/write.
• When ERR<n>STATUS.MV == 0b1, the miscellaneous syndrome specific to the most recently recorded error

ignores writes.

Note

These recommendations allow a counter to be reset in the presence of a
persistent error, while preventing specific information, such as that identifying
a FRU, from being lost if an error is detected while the previous error is being
logged.

ERR<n>MISC3 can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x038 + (64 * n) ERR<n>MISC3

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

Page 1669

(old) htmldiff from- (new)

ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534

Page 1670

(old) htmldiff from- (new)

ERR<n>PFGCTL, Pseudo-fault Generation Control
Register, n = 0 - 65534

The ERR<n>PFGCTL characteristics are:

Purpose
Enables controlled fault generation.

Configuration
This register is present only when error record <n> is implemented, the node implements the RAS Common Fault
Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node.
Otherwise, direct accesses to ERR<n>PFGCTL are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>PFGCTL is a 64-bit register.

Field descriptions
The ERR<n>PFGCTL bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

CDNEN R RES0 MVAV PN ER CI CE DEUEOUERUEUUCOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

CDNEN, bit [31]

Countdown Enable. Controls transfers from the value that is held in the ERR<n>PFGCDN into the Error Generation
Counter and enables this counter.

CDNEN Meaning
0b0 The Error Generation Counter is disabled.
0b1 The Error Generation Counter is enabled. On a write of 0b1 to

this bit, the Error Generation Counter is set to
ERR<n>PFGCDN.CDN.

On a Cold reset, this field resets to 0.

R, bit [30]

Restart. Controls whether, upon reaching zero, the Error Generation Counter restarts from the ERR<n>PFGCDN
value or stops.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 1671

ext-errnfr.html
ext-errnpfgcdn.html
ext-errnpfgcdn.html
ext-errnpfgcdn.html

R Meaning
0b0 On reaching 0, the Error Generation Counter will stop.
0b1 On reaching 0, the Error Generation Counter is set to

ERR<n>PFGCDN.CDN.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [29:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome. The value that is written to ERR<n>STATUS.MV when an injected error is recorded.

MV Meaning
0b0 ERR<n>STATUS.MV is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.MV is set to 0b1 when an injected error is

recorded.

This bit reads-as-one and ignores writes if the node always records some syndrome in ERR<n>MISC<m>, setting
ERR<n>STATUS.MV to 1, when an injected error is recorded. This bit is RES0 if the node does not support this
control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

AV, bit [11]

Address syndrome. The value that is written to ERR<n>STATUS.AV when an injected error is recorded.

AV Meaning
0b0 ERR<n>STATUS.AV is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.AV is set to 0b1 when an injected error is

recorded.

This bit reads-as-one and ignores writes if the node always sets ERR<n>STATUS.AV to 0b1 when an injected error is
recorded. This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [10]

Poison flag. The value that is written to ERR<n>STATUS.PN when an injected error is recorded.

PN Meaning
0b0 ERR<n>STATUS.PN is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.PN is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [9]

Error Reported flag. The value that is written to ERR<n>STATUS.ER when an injected error is recorded.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 1672

ext-errnpfgcdn.html

ER Meaning
0b0 ERR<n>STATUS.ER is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.ER is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

CI, bit [8]

Critical Error flag. The value that is written to ERR<n>STATUS.CI when an injected error is recorded.

CI Meaning
0b0 ERR<n>STATUS.CI is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.CI is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

CE, bits [7:6]

Corrected Error generation enable. Controls the type of Corrected Error condition that might be generated.

CE Meaning
0b00 No error of this type will be generated.
0b01 A non-specific Corrected Error, that is, a Corrected Error that is

recorded as ERR<n>STATUS.CE == 0b10, might be generated
when the Error Generation Counter decrements to zero.

0b10 A transient Corrected Error, that is, a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b01, might be generated
when the Error Generation Counter decrements to zero.

0b11 A persistent Corrected Error, that is, a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b11, might be generated
when the Error Generation Counter decrements to zero.

The set of permitted values for this field is defined by ERR<n>PFGF.CE.

This field is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [5]

Deferred Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

DE Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UEO, bit [4]

Latent or Restartable Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 1673

UEO Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UER, bit [3]

Signaled or Recoverable Error generation enable. Controls whether this type of error condition might be generated. It
is IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UER Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UEU, bit [2]

Unrecoverable Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UEU Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UC, bit [1]

Uncontainable Error generation enable. Controls whether this type of error condition might be generated. It is
IMPLEMENTATION DEFINED whether the error is generated if the data is not consumed.

UC Meaning
0b0 No error of this type will be generated.
0b1 An error of this type might be generated when the Error

Generation Counter decrements to zero.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [0]

Overflow flag. The value that is written to ERR<n>STATUS.OF when an injected error is recorded.

OF Meaning
0b0 ERR<n>STATUS.OF is set to 0b0 when an injected error is

recorded.
0b1 ERR<n>STATUS.OF is set to 0b1 when an injected error is

recorded.

This bit is RES0 if the node does not support this control.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 1674

Accessing the ERR<n>PFGCTL

ERR<n>PFGCTL can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x808 + (64 * n) ERR<n>PFGCTL

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534

Page 1675

(old) htmldiff from- (new)

ERR<n>PFGF, Pseudo-fault Generation Feature
Register, n = 0 - 65534

The ERR<n>PFGF characteristics are:

Purpose
Defines which common architecturally-defined fault generation features are implemented.

Configuration
This register is present only when error record <n> is implemented, the node implements the RAS Common Fault
Injection Model Extension (ERR<n>FR.INJ != 0b00) and error record <n> is the first error record owned by a node.
Otherwise, direct accesses to ERR<n>PFGF are RES0.

ERR<n>FR describes the features implemented by the node.

Attributes
ERR<n>PFGF is a 64-bit register.

Field descriptions
The ERR<n>PFGF bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

RES0 R SYN RES0 MVAV PN ER CI CE DEUEOUERUEUUCOF
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:31]

Reserved, RES0.

R, bit [30]

Restartable. Support for Error Generation Counter restart mode.

R Meaning
0b0 The node does not support this feature.
0b1 Feature controllable.

SYN, bit [29]

Syndrome. Fault syndrome injection.

SYN Meaning
0b0 When an injected error is recorded, the node sets

ERR<n>STATUS.{IERR, SERR} to IMPLEMENTATION DEFINED
values. ERR<n>STATUS.{IERR, SERR} are UNKNOWN when
ERR<n>STATUS.V == 0b0.

0b1 When an injected error is recorded, the node does not update the
ERR<n>STATUS.{IERR, SERR} fields. ERR<n>STATUS.{IERR,
SERR} are writable when ERR<n>STATUS.V == 0b0.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 1676

ext-errnfr.html

Note

If ERR<n>PFGF.SYN == 0b1, software can write specific values into the
ERR<n>STATUS.{IERR, SERR} fields when setting up a fault injection event.
The sets of values that can be written to these fields is IMPLEMENTATION
DEFINED.

Bits [28:13]

Reserved, RES0.

MV, bit [12]

Miscellaneous syndrome.

Additional syndrome injection. Defines whether software can control all or part of the syndrome recorded in the
ERR<n>MISC<m> registers when an injected error is recorded.

It is IMPLEMENTATION DEFINED which syndrome fields in ERR<n>MISC<m> this refers to, as some fields might always
be recorded by an error. For example, a Corrected Error counter.

MV Meaning
0b0 When an injected error is recorded, the node might record

IMPLEMENTATION DEFINED additional syndrome in
ERR<n>MISC<m>. If any syndrome is recorded in
ERR<n>MISC<m>, then ERR<n>STATUS.MV is set to 0b1.

0b1 When an injected error is recorded, the node does not update all
the syndrome fields in the ERR<n>MISC<m> and does one of:

• The node does not update any fields in ERR<n>MISC<m>
and sets ERR<n>STATUS.MV to ERR<n>PFGCTL.MV.

• The node records some syndrome in ERR<n>MISC<m> and
sets ERR<n>STATUS.MV to 0b1. ERR<n>PFGCTL.MV is
RAO/WI.RAO.

The syndrome fields that the node does not update are unchanged
and are writable when ERR<n>STATUS.MV == 0b0.

Note

If ERR<n>PFGF.MV == 0b1, software can write specific values into the
ERR<n>MISC<m> registers when setting up a fault injection event. The
values that can be written to these registers are IMPLEMENTATION DEFINED.

AV, bit [11]

Address syndrome. Address syndrome injection.

AV Meaning
0b0 When an injected error is recorded, the node either sets

ERR<n>ADDR and ERR<n>STATUS.AV for the access, or leaves
these unchanged.

0b1 When an injected error is recorded, the node does not update
ERR<n>ADDR and does one of:

• Sets ERR<n>STATUS.AV to ERR<n>PFGCTL.AV.
• Sets ERR<n>STATUS.AV to 0b1. ERR<n>PFGCTL.AV is

RAO/WI.RAO.
ERR<n>ADDR is writable when ERR<n>STATUS.AV == 0b0.

Note

If ERR<n>PFGF.AV == 0b1, software can write a specific value into
ERR<n>ADDR when setting up a fault injection event.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 1677

PN, bit [10]

Poison flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.PN status flag.

PN Meaning
0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED

whether the node sets ERR<n>STATUS.PN to 0b1.
0b1 When an injected error is recorded, ERR<n>STATUS.PN is set to

ERR<n>PFGCTL.PN.

This behavior replaces the architecture-defined rules for setting the PN bit.

This bit reads-as-zero if the node does not support this flag.

ER, bit [9]

Error Reported flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.ER status flag.

ER Meaning
0b0 When an injected error is recorded, the node sets

ERR<n>STATUS.ER according to the architecture-defined rules
for setting the ER bit.

0b1 When an injected error is recorded, ERR<n>STATUS.ER is set to
ERR<n>PFGCTL.ER. This behavior replaces the architecture-
defined rules for setting the ER bit.

This bit reads-as-zero if the node does not support this flag.

CI, bit [8]

Critical Error flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.CI status flag.

CI Meaning
0b0 When an injected error is recorded, it is IMPLEMENTATION DEFINED

whether the node sets ERR<n>STATUS.CI to 0b1.
0b1 When an injected error is recorded, ERR<n>STATUS.CI is set to

ERR<n>PFGCTL.CI.

This behavior replaces the architecture-defined rules for setting the CI bit.

This bit reads-as-zero if the node does not support this flag.

CE, bits [7:6]

Corrected Error generation. Describes the types of Corrected Error that the fault generation feature of the node can
generate.

CE Meaning
0b00 The fault generation feature of the node cannot generate this type

of error.
0b01 The fault generation feature of the node allows generation of a

non-specific Corrected Error, that is, a Corrected Error that is
recorded as ERR<n>STATUS.CE == 0b10.

0b11 The fault generation feature of the node allows generation of
transient or persistent Corrected Errors, that is, Corrected Errors
that are recorded as ERR<n>STATUS.CE == 0b01 and 0b11.

All other values are reserved.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.CE indicates whether the node supports this type of error.

This field reads-as-zeros if the node does not support this type of error.

DE, bit [5]

Deferred Error generation. Describes whether the fault generation feature of the node can generate this type of error.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 1678

ext-errnfr.html
ext-errnfr.html

DE Meaning
0b0 The fault generation feature of the node cannot generate this type

of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.DE indicates whether the node supports this type of error.

This bit reads-as-zero if the node does not support this type of error.

UEO, bit [4]

Latent or Restartable Error generation. Describes whether the fault generation feature of the node can generate this
type of error.

UEO Meaning
0b0 The fault generation feature of the node cannot generate this

type of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UEO indicates whether the node supports this type of error.

This bit reads-as-zero if the node does not support this type of error.

UER, bit [3]

Signaled or Recoverable Error generation. Describes whether the fault generation feature of the node can generate
this type of error.

UER Meaning
0b0 The fault generation feature of the node cannot generate this

type of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UER indicates whether the node supports this type of error.

This bit reads-as-zero if the node does not support this type of error.

UEU, bit [2]

Unrecoverable Error generation. Describes whether the fault generation feature of the node can generate this type of
error.

UEU Meaning
0b0 The fault generation feature of the node cannot generate this

type of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UEU indicates whether the node supports this type of error.

This bit reads-as-zero if the node does not support this type of error.

UC, bit [1]

Uncontainable Error generation. Describes whether the fault generation feature of the node can generate this type of
error.

UC Meaning
0b0 The fault generation feature of the node cannot generate this type

of error.
0b1 The fault generation feature of the node allows generation of this

type of error.

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 1679

ext-errnfr.html
ext-errnfr.html
ext-errnfr.html
ext-errnfr.html
ext-errnfr.html
ext-errnfr.html
ext-errnfr.html
ext-errnfr.html

If ERR<n>FR.FRX is 0b1 then ERR<n>FR.UC indicates whether the node supports this type of error.

This bit reads-as-zero if the node does not support this type of error.

OF, bit [0]

Overflow flag. Describes how the fault generation feature of the node sets the ERR<n>STATUS.OF status flag.

OF Meaning
0b0 When an injected error is recorded, the node sets

ERR<n>STATUS.OF according to the architecture-defined rules
for setting the OF bit.

0b1 When an injected error is recorded, ERR<n>STATUS.OF is set to
ERR<n>PFGCTL.OF. This behavior replaces the architecture-
defined rules for setting the OF bit.

This bit reads-as-zero if the node does not support this flag.

Accessing the ERR<n>PFGF

ERR<n>PFGF can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x800 + (64 * n) ERR<n>PFGF

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534

Page 1680

ext-errnfr.html
ext-errnfr.html

(old) htmldiff from- (new)

ERR<n>STATUS, Error Record Primary Status Register,
n = 0 - 65534

The ERR<n>STATUS characteristics are:

Purpose
Contains status information for error record <n>, including:

• Whether any error has been detected (valid).
• Whether any detected error was not corrected, and returned to a Requester.
• Whether any detected error was not corrected and deferred.
• Whether an error record has been discarded because additional errors have been detected before the first

error was handled by software (overflow).
• Whether any error has been reported.
• Whether the other error record registers contain valid information.
• Whether the error was reported because poison data was detected or because a corrupt value was detected by

an error detection code.
• A primary error code.
• An IMPLEMENTATION DEFINED extended error code.

Within this register:

• The {AV, V, MV} bits are valid bits that define whether error record <n> registers are valid.
• The {UE, OF, CE, DE, UET} bits encode the types of error or errors recorded.
• The {CI, ER, PN, IERR, SERR} fields are syndrome fields.

Configuration
This register is present only when error record <n> is implemented. Otherwise, direct accesses to ERR<n>STATUS
are RES0.

ERR<q>FR describes the features implemented by the node that owns error record <n>. <q> is the index of the first
error record owned by the same node as error record <n>. If the node owns a single record, then q = n.

For IMPLEMENTATION DEFINED fields in ERR<n>STATUS, writing zero returns the error record to an initial quiescent
state.

In particular, if any IMPLEMENTATION DEFINED syndrome fields might generate a Fault Handling or Error Recovery
Interrupt request, writing zero is sufficient to deactivate the Interrupt request.

Fields that are read-only, non-zero, and ignore writes are compliant with this requirement.

Note

Arm recommends that any IMPLEMENTATION DEFINED syndrome field that can
generate a Fault Handling, Error Recovery, Critical, or IMPLEMENTATION
DEFINED, interrupt request is disabled at Cold reset and is enabled by software
writing an IMPLEMENTATION DEFINED nonzero value to an IMPLEMENTATION
DEFINED field in ERR<q>CTLR.

Attributes
ERR<n>STATUS is a 64-bit register.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1681

ext-errnfr.html

Field descriptions
The ERR<n>STATUS bit assignments are:

When RAS System Architecture v1.1 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

AV V UE ER OF MV CE DE PN UET CI RES0 IERR SERR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record <n> includes an address associated with an error:

Address Valid.

AV Meaning
0b0 ERR<n>ADDR not valid.
0b1 ERR<n>ADDR contains an address associated with the highest

priority error recorded by this record.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

V Meaning
0b0 ERR<n>STATUS not valid.
0b1 ERR<n>STATUS valid. At least one error has been recorded.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to 0.

UE, bit [29]

Uncorrected Error.

UE Meaning
0b0 No errors have been detected, or all detected errors have been

either corrected or deferred.
0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1682

ER, bit [28]

Error Reported.

ER Meaning
0b0 No in-band error (External Abort) reported.
0b1 An External Abort was signaled by the component to the Requester

making the access or other transaction. This can be because any of
the following are true:

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is implemented and was set to 0b1 when an Uncorrected
error was detected.

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is not implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0 and this bit is never set to 0b1 by a Deferred error.
• ERR<n>STATUS.{UE,DE} == {0,0} and this bit can be set to 0b1 by a Deferred error.

This bit is read/write-one-to-clear.

Note

An External Abort signaled by the component might be masked and not
generate any exception.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

• A Corrected error counter is implemented, an error is counted, and the counter overflows.
• ERR<n>STATUS.V was previously set to 0b1, a Corrected error counter is not implemented, and a Corrected

error is recorded.
• ERR<n>STATUS.V was previously set to 0b1, and a type of error other than a Corrected error is recorded.

Otherwise, this bit is unchanged when an error is recorded.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.
• A direct write to this bit that clears this bit to zero might indirectly set the counter overflow flag to an

UNKNOWN value.
OF Meaning
0b0 Since this bit was last cleared to zero, no error syndrome has been

discarded and, if a Corrected error counter is implemented, it has
not overflowed.

0b1 Since this bit was last cleared to zero, at least one error syndrome
has been discarded or, if a Corrected error counter is
implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1683

On a Cold reset, this field resets to an architecturally UNKNOWN value.

MV, bit [26]

When error record <n> includes an additional information for an error:

Miscellaneous Registers Valid.

MV Meaning
0b0 ERR<n>MISC<m> not valid.
0b1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m>

registers contains additional information for an error recorded by
this record.

This bit is read/write-one-to-clear.

Note

If the ERR<n>MISC<m> registers can contain additional information for a
previously recorded error, then the contents must be self-describing to
software or a user. For example, certain fields might relate only to Corrected
errors, and other fields only to the most recent error that was not discarded.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

CE Meaning
0b00 No errors were corrected.
0b01 At least one transient error was corrected.
0b10 At least one error was corrected.
0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a correctable error is transient or persistent is
IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to 0b10 when a corrected
error is recorded.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software write ones to
this field to clear this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [23]

Deferred Error.

DE Meaning
0b0 No errors were deferred.
0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1684

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [22]

Poison.

PN Meaning
0b0 Uncorrected error or Deferred error recorded because a corrupt

value was detected, for example, by an error detection code (EDC),
or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison
value was detected.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.{DE,UE} == {0,0}.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

UET Meaning
0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software write ones to
this field to clear this field to zero.

This field is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

Note

Software might use the information in the error record registers to determine
what recovery is necessary.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

CI, bit [19]

Critical Error. Indicates whether a critical error condition has been recorded.

CI Meaning
0b0 No critical error condition.
0b1 Critical error condition.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1685

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [18:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value. Further
IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is
written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed
read-as-zero or read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

• Any of the following are true:
◦ The RAS Common Fault Injection Model Extension is implemented by the node that owns this error

record and ERR<q>PFGF.SYN == 0b0.
◦ The RAS Common Fault Injection Model Extension is not implemented by the node that owns this

error record.
• ERR<n>STATUS.V == 0b0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage
an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or
generate a short log entry.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1686

SERR Meaning
0x00 No error.
0x01 IMPLEMENTATION DEFINED error.
0x02 Data value from (non-associative) internal memory. For example,

ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
0x04 Assertion failure. For example, consistency failure.
0x05 Error detected on internal data path. For example, parity on

ALU result.
0x06 Data value from associative memory. For example, ECC error on

cache data.
0x07 Address/control value from associative memory. For example,

ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.
0x09 Address/control value from a TLB. For example, ECC error on

TLB tag.
0x0A Data value from producer. For example, parity error on write

data bus.
0x0B Address/control value from producer. For example, parity error

on address bus.
0x0C Data value from (non-associative) external memory. For

example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to

unpopulated memory.
0x0E Illegal access (software fault). For example, byte write to word

register.
0x0F Illegal state (software fault). For example, device not ready.
0x10 Internal data register. For example, parity on a SIMD&FP

register. For a PE, all general-purpose, stack pointer, SIMD&FP,
and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System
register. For a PE, all registers other than general-purpose,
stack pointer, SIMD&FP, and SVE registers are control
registers.

0x12 Error response from Completer of access. For example, error
response from cache write-back.

0x13 External timeout. For example, timeout on interaction with
another component.

0x14 Internal timeout. For example, timeout on interface within the
component.

0x15 Deferred error from Completer not supported at Requester. For
example, poisoned data received from the Completer of an
access by a Requester that cannot defer the error further.

0x16 Deferred error from Requester not supported at Completer. For
example, poisoned data received from the Requester of an
access by a Completer that cannot defer the error further.

0x17 Deferred error from Completer passed through. For example,
poisoned data received from the Completer of an access and
returned to the Requester.

0x18 Deferred error from Requester passed through. For example,
poisoned data received from the Requester of an access and
deferred to the Completer.

0x19 Error recorded by PCIe error logs. Indicates that the component
has recorded an error in a PCIe error log. This might be the
PCIe device status register, AER, DVSEC, or other mechanisms
defined by PCIe.

0x1A Other internal error. For example, parity error on internal state
of the component that is not covered by another primary error
code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is
written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed
read-as-zero or read-as-one values.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1687

This field is not valid and reads UNKNOWN if all of the following are true:

• Any of the following are true:
◦ The RAS Common Fault Injection Model Extension is implemented by the node that owns this error

record and ERR<q>PFGF.SYN == 0b0.
◦ The RAS Common Fault Injection Model Extension is not implemented by the node that owns this

error record.
• ERR<n>STATUS.V == 0b0.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

When RAS System Architecture v1.0 is implemented:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0

AV V UE ER OF MV CE DE PN UET RES0 IERR SERR
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:32]

Reserved, RES0.

AV, bit [31]

When error record <n> includes an address associated with an error:

Address Valid.

AV Meaning
0b0 ERR<n>ADDR not valid.
0b1 ERR<n>ADDR contains an address associated with the highest

priority error recorded by this record.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

V, bit [30]

Status Register Valid.

V Meaning
0b0 ERR<n>STATUS not valid.
0b1 ERR<n>STATUS valid. At least one error has been recorded.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and is not being cleared to 0b0 in the same
write.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to 0.

UE, bit [29]

Uncorrected Error.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1688

UE Meaning
0b0 No errors have been detected, or all detected errors have been

either corrected or deferred.
0b1 At least one detected error was not corrected and not deferred.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if ERR<n>STATUS.OF
== 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

ER, bit [28]

Error Reported.

ER Meaning
0b0 No in-band error (External Abort) reported.
0b1 An External Abort was signaled by the component to the Requester

making the access or other transaction. This can be because any of
the following are true:

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is implemented and was set to 0b1 when an Uncorrected
error was detected.

• The applicable one of the ERR<q>CTLR.{WUE,RUE,UE} bits
is not implemented and the component always reports errors.

It is IMPLEMENTATION DEFINED whether this bit can be set to 0b1 by a Deferred error.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero, when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing ERR<n>STATUS.UE to 0b0, if this bit is never set to 0b1 by a Deferred error.
• Clearing ERR<n>STATUS.{UE,DE} to {0,0}, if this bit can be set to 0b1 by a Deferred error.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0 and this bit is never set to 0b1 by a Deferred error.
• ERR<n>STATUS.{UE,DE} == {0,0} and this bit can be set to 0b1 by a Deferred error.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

Note

An External Abort signaled by the component might be masked and not
generate any exception.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

OF, bit [27]

Overflow.

Indicates that multiple errors have been detected. This bit is set to 0b1 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0b1.
• A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1.
• A Corrected error is detected, no Corrected error counter is implemented, ERR<n>STATUS.UE == 0b0,

ERR<n>STATUS.DE == 0b0, and ERR<n>STATUS.CE != 0b00. ERR<n>STATUS.CE might be updated for the
new Corrected error.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1689

• A Corrected error counter is implemented, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, and the
counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is set to 0b1 when one of the following occurs:

• A Deferred error is detected and ERR<n>STATUS.UE == 0b1.
• A Corrected error is detected, no Corrected error counter is implemented, and either or both the

ERR<n>STATUS.UE or ERR<n>STATUS.DE bits are set to 0b1.
• A Corrected error counter is implemented, either or both the ERR<n>STATUS.UE or ERR<n>STATUS.DE bits

are set to 0b1, and the counter overflows.

It is IMPLEMENTATION DEFINED whether this bit is cleared to 0b0 when one of the following occurs:

• An Uncorrected error is detected and ERR<n>STATUS.UE == 0b0.
• A Deferred error is detected, ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b0.
• A Corrected error is detected, ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0 and

ERR<n>STATUS.CE == 0b00.

The IMPLEMENTATION DEFINED clearing of this bit might also depend on the value of the other error status bits.

If a Corrected error counter is implemented:

• A direct write that modifies the counter overflow flag indirectly might set this bit to an UNKNOWN value.
• A direct write to this bit that clears this bit to 0b0 might indirectly set the counter overflow flag to an

UNKNOWN value.
OF Meaning
0b0 If ERR<n>STATUS.UE == 0b1, then no error syndrome for an

Uncorrected error has been discarded.
If ERR<n>STATUS.UE == 0b0 and ERR<n>STATUS.DE == 0b1,
then no error syndrome for a Deferred error has been discarded.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0, and
a Corrected error counter is implemented, then the counter has
not overflowed.
If ERR<n>STATUS.UE == 0b0, ERR<n>STATUS.DE == 0b0,
ERR<n>STATUS.CE != 0b00, and no Corrected error counter is
implemented, then no error syndrome for a Corrected error has
been discarded.

Note
This bit might have been set to 0b1 when
an error syndrome was discarded and
later cleared to 0b0 when a higher priority
syndrome was recorded.

0b1 At least one error syndrome has been discarded or, if a Corrected
error counter is implemented, it might have overflowed.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

MV, bit [26]

When error record <n> includes an additional information for an error:

Miscellaneous Registers Valid.

MV Meaning
0b0 ERR<n>MISC<m> not valid.
0b1 The IMPLEMENTATION DEFINED contents of the ERR<n>MISC<m>

registers contains additional information for an error recorded by
this record.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1690

This bit is read/write-one-to-clear.

Note

If the ERR<n>MISC<m> registers can contain additional information for a
previously recorded error, then the contents must be self-describing to
software or a user. For example, certain fields might relate only to Corrected
errors, and other fields only to the most recent error that was not discarded.

On a Cold reset, this field resets to 0.

Otherwise:

Reserved, RES0.

CE, bits [25:24]

Corrected Error.

CE Meaning
0b00 No errors were corrected.
0b01 At least one transient error was corrected.
0b10 At least one error was corrected.
0b11 At least one persistent error was corrected.

The mechanism by which a component or node detects whether a correctable error is transient or persistent is
IMPLEMENTATION DEFINED. If no such mechanism is implemented, then the node sets this field to 0b10 when a corrected
error is recorded.

When clearing ERR<n>STATUS.V to 0b0, if this field is nonzero, then Arm recommends that software write ones to
this field to clear this field to zero.

This field is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This field ignores writes if
ERR<n>STATUS.OF == 0b1 and is not being cleared to 0b0 in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

DE, bit [23]

Deferred Error.

DE Meaning
0b0 No errors were deferred.
0b1 At least one error was not corrected and deferred.

Support for deferring errors is IMPLEMENTATION DEFINED.

When clearing ERR<n>STATUS.V to 0b0, if this bit is nonzero, then Arm recommends that software write 0b1 to this
bit to clear this bit to zero.

This bit is not valid and reads UNKNOWN if ERR<n>STATUS.V == 0b0. This bit ignores writes if ERR<n>STATUS.OF
== 0b1 and is not being cleared to 0b0 in the same write.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

PN, bit [22]

Poison.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1691

PN Meaning
0b0 Uncorrected error or Deferred error recorded because a corrupt

value was detected, for example, by an error detection code (EDC),
or Corrected error recorded.

0b1 Uncorrected error or Deferred error recorded because a poison
value was detected.

If this bit is nonzero, then Arm recommends that software write 0b1 to this bit to clear this bit to zero, when any of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing both ERR<n>STATUS.{DE, UE} to 0b0.

This bit is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.{DE,UE} == {0,0}.

This bit ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This bit is read/write-one-to-clear.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

UET, bits [21:20]

Uncorrected Error Type. Describes the state of the component after detecting or consuming an Uncorrected error.

UET Meaning
0b00 Uncorrected error, Uncontainable error (UC).
0b01 Uncorrected error, Unrecoverable error (UEU).
0b10 Uncorrected error, Latent or Restartable error (UEO).
0b11 Uncorrected error, Signaled or Recoverable error (UER).

If this field is nonzero, then Arm recommends that software write ones to this field to clear this field to zero, when any
of:

• Clearing ERR<n>STATUS.V to 0b0.
• Clearing ERR<n>STATUS.UE to 0b0.

This field is not valid and reads UNKNOWN if any of the following are true:

• ERR<n>STATUS.V == 0b0.
• ERR<n>STATUS.UE == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

This field is read/write-ones-to-clear. Writing a value other than all-zeros or all-ones sets this field to an UNKNOWN
value.

Note

Software might use the information in the error record registers to determine
what recovery is necessary.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Bits [19:16]

Reserved, RES0.

IERR, bits [15:8]

IMPLEMENTATION DEFINED error code. Used with any primary error code ERR<n>STATUS.SERR value. Further
IMPLEMENTATION DEFINED information can be placed in the ERR<n>MISC<m> registers.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1692

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is
written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed
read-as-zero or read-as-one values.

This field is not valid and reads UNKNOWN if all of the following are true:

• Any of the following are true:
◦ The RAS Common Fault Injection Model Extension is implemented by the node that owns this error

record and ERR<q>PFGF.SYN == 0b0.
◦ The RAS Common Fault Injection Model Extension is not implemented by the node that owns this

error record.
• ERR<n>STATUS.V == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

SERR, bits [7:0]

Architecturally-defined primary error code. The primary error code might be used by a fault handling agent to triage
an error without requiring device-specific code. For example, to count and threshold corrected errors in software, or
generate a short log entry.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1693

SERR Meaning
0x00 No error.
0x01 IMPLEMENTATION DEFINED error.
0x02 Data value from (non-associative) internal memory. For example,

ECC from on-chip SRAM or buffer.
0x03 IMPLEMENTATION DEFINED pin. For example, nSEI pin.
0x04 Assertion failure. For example, consistency failure.
0x05 Error detected on internal data path. For example, parity on

ALU result.
0x06 Data value from associative memory. For example, ECC error on

cache data.
0x07 Address/control value from associative memory. For example,

ECC error on cache tag.
0x08 Data value from a TLB. For example, ECC error on TLB data.
0x09 Address/control value from a TLB. For example, ECC error on

TLB tag.
0x0A Data value from producer. For example, parity error on write

data bus.
0x0B Address/control value from producer. For example, parity error

on address bus.
0x0C Data value from (non-associative) external memory. For

example, ECC error in SDRAM.
0x0D Illegal address (software fault). For example, access to

unpopulated memory.
0x0E Illegal access (software fault). For example, byte write to word

register.
0x0F Illegal state (software fault). For example, device not ready.
0x10 Internal data register. For example, parity on a SIMD&FP

register. For a PE, all general-purpose, stack pointer, SIMD&FP,
and SVE registers are data registers.

0x11 Internal control register. For example, Parity on a System
register. For a PE, all registers other than general-purpose,
stack pointer, SIMD&FP, and SVE registers are control
registers.

0x12 Error response from Completer of access. For example, error
response from cache write-back.

0x13 External timeout. For example, timeout on interaction with
another component.

0x14 Internal timeout. For example, timeout on interface within the
component.

0x15 Deferred error from Completer not supported at Requester. For
example, poisoned data received from the Completer of an
access by a Requester that cannot defer the error further.

0x16 Deferred error from Requester not supported at Completer. For
example, poisoned data received from the Requester of an
access by a Completer that cannot defer the error further.

0x17 Deferred error from Completer passed through. For example,
poisoned data received from the Completer of an access and
returned to the Requester.

0x18 Deferred error from Requester passed through. For example,
poisoned data received from the Requester of an access and
deferred to the Completer.

0x19 Error recorded by PCIe error logs. Indicates that the component
has recorded an error in a PCIe error log. This might be the
PCIe device status register, AER, DVSEC, or other mechanisms
defined by PCIe.

0x1A Other internal error. For example, parity error on internal state
of the component that is not covered by another primary error
code.

All other values are reserved.

The implemented set of valid values that this field can take is IMPLEMENTATION DEFINED. If any value not in this set is
written to this register, then the value read back from this field is UNKNOWN.

Note

This means that one or more bits of this field might be implemented as fixed
read-as-zero or read-as-one values.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1694

This field is not valid and reads UNKNOWN if all of the following are true:

• Any of the following are true:
◦ The RAS Common Fault Injection Model Extension is implemented by the node that owns this error

record and ERR<q>PFGF.SYN == 0b0.
◦ The RAS Common Fault Injection Model Extension is not implemented by the node that owns this

error record.
• ERR<n>STATUS.V == 0b0.

This field ignores writes if ERR<n>STATUS.{CE,DE,UE} != {0b00,0,0}, and the highest priority of these is not being
cleared to zero in the same write.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the ERR<n>STATUS
The {AV, V, UE, ER, OF, MV, CE, DE, PN, UET, CI} fields are write-one-to-clear, meaning writes of zero are ignored, and
a write of one or all-ones to the field clears the field to zero. The {IERR, SERR} fields are read/write fields, although
the set of implemented valid values is IMPLEMENTATION DEFINED. See also ERR<n>PFGF.SYN.

After reading ERR<n>STATUS, software must clear the valid bits in the register to allow new errors to be recorded.
However, between reading the register and clearing the valid bits, a new error might have overwritten the register. To
prevent this error being lost by software, the register prevents updates to fields that might have been updated by a
new error.

When RAS System Architecture v1.0 is implemented:

• Writes to the {UE, DE, CE} fields are ignored if the OF bit is set and is not being cleared.
• Writes to the V bit are ignored if any of the {UE, DE, CE} fields are nonzero and are not being cleared.
• Writes to the {AV, MV} bits and {ER, PN, UET, IERR, SERR} syndrome fields are ignored if the highest

priority error status field is nonzero and not being cleared. The error status fields in priority order from
highest to lowest, are UE, DE, and CE.

When RAS System Architecture v1.1 is implemented, a write to the register is ignored if all of:

• Any of {V, UE, OF, CE, DE} fields are nonzero before the write.
• The write does not clear the nonzero {V, UE, OF, CE, DE} fields to zero by writing ones to the applicable field

or fields.

Some of the fields in ERR<n>STATUS are also defined as UNKNOWN where certain combinations of the {V, DE, UE}
status fields are zero. The rules for writes to ERR<n>STATUS allow a node to implement such a field as a fixed read-
only value.

For example, when RAS System Architecture v1.1 is implemented, a write to ERR<n>STATUS when
ERR<n>STATUS.V is 1 results in either ERR<n>STATUS.V field being cleared to zero, or ERR<n>STATUS.V not
changing. Since all fields in ERR<n>STATUS, other than {AV, V, MV}, usually read as UNKNOWN values when
ERR<n>STATUS.V is zero, this means those fields can be implemented as read-only if applicable.

To ensure correct and portable operation, when software is clearing the valid bits in the register to allow new errors to
be recorded, Arm recommends that software:

• Determine which fields to clear to zero by reading ERR<n>STATUS.
• Write ones to all the write-one-to-clear fields that are nonzero.
• Write zero to all the read/write fields.
• Write zero to all the write-one-to-clear fields that are zero.

Otherwise, these fields might not have the correct value when a new fault is recorded.

An exception is when the node supports writing to these fields as part of fault injection. See also ERR<n>PFGF.SYN.

ERR<n>STATUS can be accessed through the memory-mapped interfaces:

Component Offset Instance
RAS 0x010 + (64 * n) ERR<n>STATUS

Accesses on this interface are RW.

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1695

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534

Page 1696

(old) htmldiff from- (new)

ERRPIDR2, Peripheral Identification Register 2
The ERRPIDR2 characteristics are:

Purpose
Provides discovery information about the component.

For more information, see 'About the Peripheral identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

ERRPIDR2 is implemented only as part of a memory-mapped group of error records.

Attributes
ERRPIDR2 is a 32-bit register.

Field descriptions
The ERRPIDR2 bit assignments are:

When the component uses a 12-bit part number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 REVISION JEDEC DES_1

Bits [31:8]

Reserved, RES0.

REVISION, bits [7:4]

Component major revision. ERRPIDR2.REVISION and ERRPIDR3.REVAND together form the revision number of the
component, with ERRPIDR2.REVISION being the most significant part and ERRPIDR3.REVAND the least significant
part. When a component is changed, ERRPIDR2.REVISION or ERRPIDR3.REVAND are increased to ensure that
software can differentiate the different revisions of the component. If ERRPIDR2.REVISION is increased then
ERRPIDR3.REVAND should be set to 0b0000.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code

ERRPIDR2, Peripheral Identification Register 2

Page 1697

ext-errpidr3.html
ext-errpidr3.html
ext-errpidr3.html
ext-errpidr3.html
ext-errpidr1.html

is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

When the component uses a 16-bit part number:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PART_2 JEDEC DES_1

Bits [31:8]

Reserved, RES0.

PART_2, bits [7:4]

Part number, bits [15:12].

The part number is selected by the designer of the component. The designer chooses whether to use a 12-bit or a
16-bit part number:

• If a 12-bit part number is used, it is stored in ERRPIDR1.PART_1 and ERRPIDR0.PART_0. There are 8 bits,
ERRPIDR2.REVISION and ERRPIDR3.REVAND, available to define the revision of the component.

• If a 16-bit part number is used, it is stored in ERRPIDR2.PART_2, ERRPIDR1.PART_1 and ERRPIDR0.PART_0.
There are 4 bits, ERRPIDR3.REVISION, available to define the revision of the component.

This field reads as an IMPLEMENTATION DEFINED value.

JEDEC, bit [3]

JEDEC-assigned JEP106 implementer code is used.

Reads as 0b1.

Access to this field is RO.

DES_1, bits [2:0]

Designer, JEP106 identification code, bits [6:4]. ERRPIDR1.DES_0 and ERRPIDR2.DES_1 together form the JEDEC-
assigned JEP106 identification code for the designer of the component. The parity bit in the JEP106 identification code
is not included. The code identifies the designer of the component, which might not be not the same as the
implementer of the device containing the component. To obtain a number, or to see the assignment of these codes,
contact JEDEC http://www.jedec.org.

This field reads as an IMPLEMENTATION DEFINED value.

Note

For a component designed by Arm Limited, the JEP106 identification code is
0x3B.

ERRPIDR2, Peripheral Identification Register 2

Page 1698

ext-errpidr1.html
ext-errpidr0.html
ext-errpidr3.html
ext-errpidr1.html
ext-errpidr0.html
ext-errpidr3.html
ext-errpidr1.html

Accessing the ERRPIDR2

ERRPIDR2 can be accessed through the memory-mapped interfaces:

Component Offset
RAS 0xFE8

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

ERRPIDR2, Peripheral Identification Register 2

Page 1699

(old) htmldiff from- (new)

GICC_ABPR, CPU Interface Aliased Binary Point
Register

The GICC_ABPR characteristics are:

Purpose
Defines the point at which the priority value fields split into two parts, the group priority field and the subpriority field.
The group priority field determines Group 1 interrupt preemption.

Configuration
The reset value of this register is defined as (minimum GICC_BPR.Binary_Point + 1), resulting in a permitted range of
0x1-0x4.

In systems that support two Security states:

• This register is an alias of the Non-secure copy of GICC_BPR.
• Non-secure accesses to this register return a shifted value of the binary point.
• If ICC_CTLR_EL3.CBPR_EL1NS == 1, Secure accesses to this register access ICC_BPR0_EL1.

Attributes
GICC_ABPR is a 32-bit register.

Field descriptions
The GICC_ABPR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 Binary_Point

Bits [31:3]

Reserved, RES0.

Binary_Point, bits [2:0]

Controls how the 8-bit interrupt priority field is split into a group priority field, that determines interrupt preemption,
and a subpriority field. The following list describes how this field determines the interrupt priority bits assigned to the
group priority field:

• 'Secure ICC_BPR1_EL1 Binary Point when CBPR == 0' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069), for the processing of Group 1
interrupts in a GIC implementation that supports interrupt grouping, when GICC_CTLR.CBPR == 0.

• 'Non-secure ICC_BPR1_EL1 Binary Point when CBPR == 0' in ARM® Generic Interrupt Controller
Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069), for all other cases.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the GICC_ABPR
This register is used only when System register access is not enabled. When System register access is enabled, the
System registers ICC_BPR0_EL1 and ICC_BPR1_EL1 provide equivalent functionality.

GICC_ABPR, CPU Interface Aliased Binary Point Register

Page 1700

ext-gicc_bpr.html
ext-gicc_bpr.html
AArch64-icc_ctlr_el3.html
AArch64-icc_bpr0_el1.html
ext-gicc_ctlr.html
AArch64-icc_bpr0_el1.html

GICC_ABPR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC CPU
interface

0x001C GICC_ABPR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICC_ABPR, CPU Interface Aliased Binary Point Register

Page 1701

(old) htmldiff from- (new)

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending
Register

The GICD_CLRSPI_NSR characteristics are:

Purpose
Removes the pending state from a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n>
value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register provides functionality for all SPIs.

Attributes
GICD_CLRSPI_NSR is a 32-bit register.

Field descriptions
The GICD_CLRSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is less than 0b10.

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1702

• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can clear the pending state of any valid SPI.

GICD_CLRSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0048 GICD_CLRSPI_NSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1703

(old) htmldiff from- (new)

GICD_CLRSPI_SR, Clear Secure SPI Pending Register
The GICD_CLRSPI_SR characteristics are:

Purpose
Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register is WI.

Attributes
GICD_CLRSPI_SR is a 32-bit register.

Field descriptions
The GICD_CLRSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_CLRSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1704

GICD_CLRSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0058 GICD_CLRSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WI.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WI.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1705

(old) htmldiff from- (new)

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n
= 0 - 3

The GICD_CPENDSGIR<n> characteristics are:

Purpose
Removes the pending state from an SGI.

A write to this register changes the state of a pending SGI to inactive, and the state of an active and pending SGI to
active.

Configuration
Four SGI clear-pending registers are implemented. Each register contains eight clear-pending bits for each of four
SGIs, for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes
GICD_CPENDSGIR<n> is a 32-bit register.

Field descriptions
The GICD_CPENDSGIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SGI_clear_pending_bits3 SGI_clear_pending_bits2 SGI_clear_pending_bits1 SGI_clear_pending_bits0

SGI_clear_pending_bits<x>, bits [8x+7:8x], for x = 3 to 0

Removes the pending state from SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

SGI_clear_pending_bits<x> Meaning
0x00 If read, indicates that the SGI from the

corresponding PE is not pending and is
not active and pending.
If written, has no effect.

0x01 If read, indicates that the SGI from the
corresponding PE is pending or is active
and pending.
If written, removes the pending state
from the SGI for the corresponding PE.

On a Warm reset, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD
are the integer division and modulo operations:

• The corresponding GICD_CPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF10 + (4n)).
• The offset of the required field within the register GICD_CPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI clear-pending field m is bit C.

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 1706

Accessing the GICD_CPENDSGIR<n>
These registers are used only when affinity routing is not enabled. When affinity routing is enabled, this register is
RES0. An implementation is permitted to make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

GICD_CPENDSGIR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F10

+ (4 *
n)

GICD_CPENDSGIR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3

Page 1707

(old) htmldiff from- (new)

GICD_CTLR, Distributor Control Register
The GICD_CTLR characteristics are:

Purpose
Enables interrupts and affinity routing.

Configuration
The format of this register depends on the Security state of the access and the number of Security states supported,
which is specified by GICD_CTLR.DS.

Attributes
GICD_CTLR is a 32-bit register.

Field descriptions
The GICD_CTLR bit assignments are:

When access is Secure, in a system that supports two Security states:

31 30292827262524232221201918171615141312111098 7 6 5 4 3 2 1 0
RWP RES0 E1NWFDSARE_NSARE_SRES0EnableGrp1SEnableGrp1NSEnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP Meaning
0b0 No register write in progress. The effects of previous register

writes to the affected register fields are visible to all logical
components of the GIC architecture, including the CPU
interfaces.

0b1 Register write in progress. The effects of previous register writes
to the affected register fields are not guaranteed to be visible to
all logical components of the GIC architecture, including the CPU
interfaces, as the effects of the changes are still being
propagated.

This field tracks writes to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>.

Updates to other register fields are not tracked by this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:8]

Reserved, RES0.

GICD_CTLR, Distributor Control Register

Page 1708

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0b0 A PE that is asleep cannot be picked for 1 of N interrupts.
0b1 A PE that is asleep can be picked for 1 of N interrupts as

determined by IMPLEMENTATION DEFINED controls.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS, bit [6]

Disable Security.

DS Meaning
0b0 Non-secure accesses are not permitted to access and modify

registers that control Group 0 interrupts.
0b1 Non-secure accesses are permitted to access and modify registers

that control Group 0 interrupts.

If DS is written from 0 to 1 when GICD_CTLR.ARE_S == 1, then GICD_CTLR.ARE for the single Security state is RAO/
WI.

If the Distributor only supports a single Security state, this bit is RAO/WI.

If the Distributor supports two Security states, it IMPLEMENTATION DEFINED whether this bit is programmable or
implemented as RAZ/WI.

When this field is set to 1, all accesses to GICD_CTLR access the single Security state view, and all bits are accessible.

When set to 1, this field can only be cleared by a hardware reset.

Writing this bit from 0 to 1 is UNPREDICTABLE if any of the following is true:

• GICD_CTLR.EnableGrp0==1.
• GICD_CTLR.EnableGrp1S==1.
• GICD_CTLR.EnableGrp1NS==1.
• One or more INTID is in the Active or Active and Pending state.

On a Warm reset, this field resets to 0.

ARE_NS, bit [5]

Affinity Routing Enable, Non-secure state.

ARE_NS Meaning
0b0 Affinity routing disabled for Non-secure state.
0b1 Affinity routing enabled for Non-secure state.

When affinity routing is enabled for the Secure state, this field is RAO/WI.

Changing the ARE_NS settings from 0 to 1 is UNPREDICTABLE except when GICD_CTLR.EnableGrp1 Non-secure == 0.

Changing the ARE_NS settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

On a Warm reset, this field resets to 0.

ARE_S, bit [4]

Affinity Routing Enable, Secure state.

GICD_CTLR, Distributor Control Register

Page 1709

ARE_S Meaning
0b0 Affinity routing disabled for Secure state.
0b1 Affinity routing enabled for Secure state.

Changing the ARE_S setting from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp0==0.
• GICD_CTLR.EnableGrp1S==0.
• GICD_CTLR.EnableGrp1NS==0.

Changing the ARE_S settings from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility for Secure state is not implemented, this field is RAO/WI.

On a Warm reset, this field resets to 0.

Bit [3]

Reserved, RES0.

EnableGrp1S, bit [2]

Enable Secure Group 1 interrupts.

EnableGrp1S Meaning
0b0 Secure Group 1 interrupts are disabled.
0b1 Secure Group 1 interrupts are enabled.

If GICD_CTLR.ARE_S == 0, this field is RES0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EnableGrp1NS, bit [1]

Enable Non-secure Group 1 interrupts.

EnableGrp1NS Meaning
0b0 Non-secure Group 1 interrupts are disabled.
0b1 Non-secure Group 1 interrupts are enabled.

Note

This field also controls whether LPIs are forwarded to the PE.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0 Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

When access is Non-secure, in a system that supports two Security states:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RWP RES0 ARE_NSRES0EnableGrp1AEnableGrp1

GICD_CTLR, Distributor Control Register

Page 1710

RWP, bit [31]

This bit is a read-only alias of the Secure GICD_CTLR.RWP bit.

Bits [30:5]

Reserved, RES0.

ARE_NS, bit [4]

This bit is a read-write alias of the Secure GICD_CTLR.ARE_NS bit.

If GICv2 backwards compatibility for Non-secure state is not implemented, this field is RAO/WI.

Bits [3:2]

Reserved, RES0.

EnableGrp1A, bit [1]

If ARE_NS == 1, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 0, then this bit is RES0.

EnableGrp1, bit [0]

If ARE_NS == 0, then this bit is a read-write alias of the Secure GICD_CTLR.EnableGrp1NS bit.

If ARE_NS == 1, then this bit is RES0.

When in a system that supports only a single Security state:

31 3029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0
RWP RES0 nASSGIreqE1NWFDSRES0ARERES0EnableGrp1EnableGrp0

RWP, bit [31]

Register Write Pending. Read only. Indicates whether a register write is in progress or not:

RWP Meaning
0b0 No register write in progress. The effects of previous register

writes to the affected register fields are visible to all logical
components of the GIC architecture, including the CPU
interfaces.

0b1 Register write in progress. The effects of previous register writes
to the affected register fields are not guaranteed to be visible to
all logical components of the GIC architecture, including the CPU
interfaces, as the effects of the changes are still being
propagated.

This field tracks updates to:

• GICD_CTLR[2:0], the Group Enables, for transitions from 1 to 0 only.
• GICD_CTLR[7:4], the ARE bits, E1NWF bit and DS bit.
• GICD_ICENABLER<n>, the bits that allow disabling of SPIs.

Updates to other register fields are not tracked by this field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GICD_CTLR, Distributor Control Register

Page 1711

Bits [30:9]

Reserved, RES0.

nASSGIreq, bit [8]

When FEAT_GICv4p1 is implemented:

Controls whether SGIs have an active state.

This bit is RES0 if GICD_TYPER2.GICD_TYPER2.nASSGIcap is 0.

This bit is WI when any of GICD_CTLR.{EnableGrp0,EnableGrp1} is 1.

nASSGIreq Meaning
0b0 SGIs have an active state and must be deactivated.
0b1 SGIs do not have an active state and do not require

deactivation.

On a Warm reset, this field resets to 0.

Otherwise:

Reserved, RES0.

E1NWF, bit [7]

Enable 1 of N Wakeup Functionality.

It is IMPLEMENTATION DEFINED whether this bit is programmable, or RAZ/WI.

If it is implemented, then it has the following behavior:

E1NWF Meaning
0b0 A PE that is asleep cannot be picked for 1 of N interrupts.
0b1 A PE that is asleep can be picked for 1 of N interrupts as

determined by IMPLEMENTATION DEFINED controls.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

DS, bit [6]

Disable Security. This field is RAO/WI.

Bit [5]

Reserved, RES0.

ARE, bit [4]

Affinity Routing Enable.

ARE Meaning
0b0 Affinity routing disabled.
0b1 Affinity routing enabled.

Changing the ARE settings from 0 to 1 is UNPREDICTABLE except when all of the following apply:

• GICD_CTLR.EnableGrp1==0.
• GICD_CTLR.EnableGrp0==0.

Changing ARE from 1 to 0 is UNPREDICTABLE.

If GICv2 backwards compatibility is not implemented, this field is RAO/WI.

GICD_CTLR, Distributor Control Register

Page 1712

On a Warm reset, this field resets to 0.

Bits [3:2]

Reserved, RES0.

EnableGrp1, bit [1]

Enable Group 1 interrupts.

EnableGrp1 Meaning
0b0 Group 1 interrupts disabled.
0b1 Group 1 interrupts enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

EnableGrp0, bit [0]

Enable Group 0 interrupts.

EnableGrp0 Meaning
0b0 Group 0 interrupts are disabled.
0b1 Group 0 interrupts are enabled.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the GICD_CTLR
If an interrupt is pending within a CPU interface when the corresponding GICD_CTLR.EnableGrpX bit is written from
1 to 0 the interrupt must be retrieved from the CPU interface.

Note

This might have no effect on the forwarded interrupt if it has already been
activated. When a write changes the value of ARE for a Security state or the
value of the DS bit, the format used for interpreting the remaining bits
provided in the write data is the format that applied before the write takes
effect.

GICD_CTLR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0000 GICD_CTLR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_CTLR, Distributor Control Register

Page 1713

(old) htmldiff from- (new)

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers,
n = 0 - 31

The GICD_ICACTIVER<n> characteristics are:

Purpose
Deactivates the corresponding interrupt. These registers are used when saving and restoring GIC state.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICACTIVER<n> is a 32-bit register.

Field descriptions
The GICD_ICACTIVER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_active_bit31Clear_active_bit30Clear_active_bit29Clear_active_bit28Clear_active_bit27Clear_active_bit26Clear_active_bit25Clear_active_bit24Clear_active_bit23Clear_active_bit22Clear_active_bit21Clear_active_bit20Clear_active_bit19Clear_active_bit18Clear_active_bit17Clear_active_bit16Clear_active_bit15Clear_active_bit14Clear_active_bit13Clear_active_bit12Clear_active_bit11Clear_active_bit10Clear_active_bit9Clear_active_bit8Clear_active_bit7Clear_active_bit6Clear_active_bit5Clear_active_bit4Clear_active_bit3Clear_active_bit2Clear_active_bit1Clear_active_bit0

Clear_active_bit<x>, bit [x], for x = 31 to 0

Removes the active state from interrupt number 32n + x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no
effect.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICACTIVER is (0x380 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 1714

ext-gicr_typer.html
ext-gicr_typer.html

Accessing the GICD_ICACTIVER<n>
When affinity routing is enabled for the Security state of an interrupt, the bits corresponding to SGIs and PPIs in that
Security state are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ICACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ICACTIVER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0380

+ (4 *
n)

GICD_ICACTIVER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31

Page 1715

ext-gicr_icactiver0.html

(old) htmldiff from- (new)

GICD_ICACTIVER<n>E, Interrupt Clear-Active
Registers (extended SPI range), n = 0 - 31

The GICD_ICACTIVER<n>E characteristics are:

Purpose
Removes the active state from the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ICACTIVER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICACTIVER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICACTIVER<n>E is a 32-bit register.

Field descriptions
The GICD_ICACTIVER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_active_bit31Clear_active_bit30Clear_active_bit29Clear_active_bit28Clear_active_bit27Clear_active_bit26Clear_active_bit25Clear_active_bit24Clear_active_bit23Clear_active_bit22Clear_active_bit21Clear_active_bit20Clear_active_bit19Clear_active_bit18Clear_active_bit17Clear_active_bit16Clear_active_bit15Clear_active_bit14Clear_active_bit13Clear_active_bit12Clear_active_bit11Clear_active_bit10Clear_active_bit9Clear_active_bit8Clear_active_bit7Clear_active_bit6Clear_active_bit5Clear_active_bit4Clear_active_bit3Clear_active_bit2Clear_active_bit1Clear_active_bit0

Clear_active_bit<x>, bit [x], for x = 31 to 0

For the extended SPIs, removes the active state to interrupt number x. Reads and writes have the following behavior:

Clear_active_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not active, and is not active and
pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is active, or is active and pending.
If written, deactivates the corresponding
interrupt, if the interrupt is active. If the
interrupt is already deactivated, the write has no
effect.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICACTIVER<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ICACTIVER<n>E is (0x1C00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31

Page 1716

Accessing the GICD_ICACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1C00

+ (4 *
n)

GICD_ICACTIVER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31

Page 1717

(old) htmldiff from- (new)

GICD_ICENABLER<n>, Interrupt Clear-Enable
Registers, n = 0 - 31

The GICD_ICENABLER<n> characteristics are:

Purpose
Disables forwarding of the corresponding interrupt to the CPU interfaces.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICENABLER<n> is a 32-bit register.

Field descriptions
The GICD_ICENABLER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_enable_bit31Clear_enable_bit30Clear_enable_bit29Clear_enable_bit28Clear_enable_bit27Clear_enable_bit26Clear_enable_bit25Clear_enable_bit24Clear_enable_bit23Clear_enable_bit22Clear_enable_bit21Clear_enable_bit20Clear_enable_bit19Clear_enable_bit18Clear_enable_bit17Clear_enable_bit16Clear_enable_bit15Clear_enable_bit14Clear_enable_bit13Clear_enable_bit12Clear_enable_bit11Clear_enable_bit10Clear_enable_bit9Clear_enable_bit8Clear_enable_bit7Clear_enable_bit6Clear_enable_bit5Clear_enable_bit4Clear_enable_bit3Clear_enable_bit2Clear_enable_bit1Clear_enable_bit0

Clear_enable_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes have
the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, disables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 0.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n> number, n, is given by n = m DIV 32.

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1718

ext-gicr_typer.html
ext-gicr_typer.html

• The offset of the required GICD_ICENABLER is (0x180 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Note

Writing a 1 to a GICD_ICENABLER<n> bit only disables the forwarding of the
corresponding interrupt from the Distributor to any CPU interface. It does not
prevent the interrupt from changing state, for example becoming pending or
active and pending if it is already active.

Accessing the GICD_ICENABLER<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 and Secure Group 1 interrupts are RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

Completion of a write to this register does not guarantee that the effects of the write are visible throughout the affinity
hierarchy. To ensure an enable has been cleared, software must write to the register with bits set to 1 to clear the
required enables. Software must then poll GICD_CTLR.RWP until it has the value zero.

GICD_ICENABLER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0180

+ (4 *
n)

GICD_ICENABLER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1719

(old) htmldiff from- (new)

GICD_ICENABLER<n>E, Interrupt Clear-Enable
Registers, n = 0 - 31

The GICD_ICENABLER<n>E characteristics are:

Purpose
Disables forwarding of the corresponding SPI in the extended SPI range to the CPU interfaces.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ICENABLER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICENABLER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICENABLER<n>E is a 32-bit register.

Field descriptions
The GICD_ICENABLER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_enable_bit31Clear_enable_bit30Clear_enable_bit29Clear_enable_bit28Clear_enable_bit27Clear_enable_bit26Clear_enable_bit25Clear_enable_bit24Clear_enable_bit23Clear_enable_bit22Clear_enable_bit21Clear_enable_bit20Clear_enable_bit19Clear_enable_bit18Clear_enable_bit17Clear_enable_bit16Clear_enable_bit15Clear_enable_bit14Clear_enable_bit13Clear_enable_bit12Clear_enable_bit11Clear_enable_bit10Clear_enable_bit9Clear_enable_bit8Clear_enable_bit7Clear_enable_bit6Clear_enable_bit5Clear_enable_bit4Clear_enable_bit3Clear_enable_bit2Clear_enable_bit1Clear_enable_bit0

Clear_enable_bit<x>, bit [x], for x = 31 to 0

For the extended SPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Clear_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read
of this bit returns 0.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICENABLER<n>E number, n, is given by n = (m-4096) DIV 32.

• The offset of the required GICD_ICENABLER<n>E is (0x1400 + (4*n)).

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1720

Accessing the GICD_ICENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1400

+ (4 *
n)

GICD_ICENABLER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31

Page 1721

(old) htmldiff from- (new)

GICD_ICFGR<n>, Interrupt Configuration Registers, n
= 0 - 63

The GICD_ICFGR<n> characteristics are:

Purpose
Determines whether the corresponding interrupt is edge-triggered or level-sensitive.

Configuration
These registers are available in all GIC configurations. If the GIC implementation supports two Security states, these
registers are Common.

GICD_ICFGR1 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICFGR1 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ICFGR<n>

For each supported PPI, it is IMPLEMENTATION DEFINED whether software can program the corresponding Int_config
field.

For SGIs, Int_config fields are RO, meaning that GICD_ICFGR0 is RO.

Changing Int_config when the interrupt is individually enabled is UNPREDICTABLE.

Changing the interrupt configuration between level-sensitive and edge-triggered (in either direction) at a time when
there is a pending interrupt will leave the interrupt in an UNKNOWN pending state.

Fields corresponding to unimplemented interrupts are RAZ/WI.

Attributes
GICD_ICFGR<n> is a 32-bit register.

Field descriptions
The GICD_ICFGR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit [2x]) is RES0.

Possible values of Int_config[1] (bit [2x+1]) are:

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 1722

ext-gicr_typer.html
ext-gicr_typer.html

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b01 Corresponding interrupt is edge-triggered.

For SGIs, Int_config[1] is RAO/WI.

For SPIs and PPIs, Int_config[1] is programmable unless the implementation supports two Security states and the bit
corresponds to a Group 0 or Secure Group 1 interrupt, in which case the bit is RAZ/WI to Non-secure accesses.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the GICD_ICFGR<n>

GICD_ICFGR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0C00 +

(4 * n)
GICD_ICFGR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63

Page 1723

(old) htmldiff from- (new)

GICD_ICFGR<n>E, Interrupt Configuration Registers
(Extended SPI Range), n = 0 - 63

The GICD_ICFGR<n>E characteristics are:

Purpose
Determines whether the corresponding SPI in the extended SPI range is edge-triggered or level-sensitive.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_ICFGR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICFGR<n>E registers is
((GICD_TYPER.ESPI_range+1)*2). Registers are numbered from 0.

Attributes
GICD_ICFGR<n>E is a 32-bit register.

Field descriptions
The GICD_ICFGR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Int_config15Int_config14Int_config13Int_config12Int_config11Int_config10Int_config9Int_config8Int_config7Int_config6Int_config5Int_config4Int_config3Int_config2Int_config1Int_config0

Int_config<x>, bits [2x+1:2x], for x = 15 to 0

Indicates whether the interrupt with ID 16n + x is level-sensitive or edge-triggered.

Int_config[0] (bit[2x]) is RES0.

Possible values of Int_config[1] (bit[2x+1]) are:

Int_config<x> Meaning
0b00 Corresponding interrupt is level-sensitive.
0b01 Corresponding interrupt is edge-triggered.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the GICD_ICFGR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICFGR<n>E, the corresponding bit
is RES0.

When GICD_CTLR.DS==0, a register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63

Page 1724

GICD_ICFGR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x3000 +

(4 * n)
GICD_ICFGR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63

Page 1725

(old) htmldiff from- (new)

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers,
n = 0 - 31

The GICD_ICPENDR<n> characteristics are:

Purpose
Removes the pending state from the corresponding interrupt.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ICPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ICPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ICPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ICPENDR<n> is a 32-bit register.

Field descriptions
The GICD_ICPENDR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_pending_bit31Clear_pending_bit30Clear_pending_bit29Clear_pending_bit28Clear_pending_bit27Clear_pending_bit26Clear_pending_bit25Clear_pending_bit24Clear_pending_bit23Clear_pending_bit22Clear_pending_bit21Clear_pending_bit20Clear_pending_bit19Clear_pending_bit18Clear_pending_bit17Clear_pending_bit16Clear_pending_bit15Clear_pending_bit14Clear_pending_bit13Clear_pending_bit12Clear_pending_bit11Clear_pending_bit10Clear_pending_bit9Clear_pending_bit8Clear_pending_bit7Clear_pending_bit6Clear_pending_bit5Clear_pending_bit4Clear_pending_bit3Clear_pending_bit2Clear_pending_bit1Clear_pending_bit0

Clear_pending_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, removes the pending state from interrupt number 32n + x. Reads and writes have the following
behavior:

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 1726

ext-gicr_typer.html
ext-gicr_typer.html

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on any PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending:

• On this PE if the interrupt is an SGI or
PPI.

• On at least one PE if the interrupt is an
SPI.

If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to active.
This has no effect in the following cases:

• If the interrupt is an SGI. In this case, the
write is ignored. The pending state of an
SGI can be cleared using
GICD_CPENDSGIR<n>.

• If the interrupt is not pending and is not
active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write to
GICD_ISPENDR<n>. In this case, if the
interrupt signal continues to be asserted,
the interrupt remains pending or active
and pending.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ICPENDR is (0x200 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_ICPENDR<n>
Clear-pending bits for SGIs are RO/WI.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ICPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be cleared by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ICPENDR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0280

+ (4 * n)
GICD_ICPENDR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 1727

ext-gicr_icpendr0.html

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31

Page 1728

(old) htmldiff from- (new)

GICD_ICPENDR<n>E, Interrupt Clear-Pending
Registers (extended SPI range), n = 0 - 31

The GICD_ICPENDR<n>E characteristics are:

Purpose
Removes the pending state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_ICPENDR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICPENDR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ICPENDR<n>E is a 32-bit register.

Field descriptions
The GICD_ICPENDR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Clear_pending_bit31Clear_pending_bit30Clear_pending_bit29Clear_pending_bit28Clear_pending_bit27Clear_pending_bit26Clear_pending_bit25Clear_pending_bit24Clear_pending_bit23Clear_pending_bit22Clear_pending_bit21Clear_pending_bit20Clear_pending_bit19Clear_pending_bit18Clear_pending_bit17Clear_pending_bit16Clear_pending_bit15Clear_pending_bit14Clear_pending_bit13Clear_pending_bit12Clear_pending_bit11Clear_pending_bit10Clear_pending_bit9Clear_pending_bit8Clear_pending_bit7Clear_pending_bit6Clear_pending_bit5Clear_pending_bit4Clear_pending_bit3Clear_pending_bit2Clear_pending_bit1Clear_pending_bit0

Clear_pending_bit<x>, bit [x], for x = 31 to 0

For the extended PPIs, removes the pending state to interrupt number x. Reads and writes have the following
behavior:

Clear_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from pending to
inactive, or from active and pending to active.
This has no effect in the following cases:

• If the interrupt is not pending and is not
active and pending.

• If the interrupt is a level-sensitive
interrupt that is pending or active and
pending for a reason other than a write
to GICD_ISPENDR<n>E. In this case, if
the interrupt signal continues to be
asserted, the interrupt remains pending
or active and pending.

On a Warm reset, this field resets to 0.

GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31

Page 1729

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ICPENDR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ICPENDR<n>E is (0x1800 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_ICPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ICPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ICPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1800

+ (4 *
n)

GICD_ICPENDR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31

Page 1730

(old) htmldiff from- (new)

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 -
31

The GICD_IGROUPR<n> characteristics are:

Purpose
Controls whether the corresponding interrupt is in Group 0 or Group 1.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_IGROUPR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_IGROUPR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_IGROUPR<n> is a 32-bit register.

Field descriptions
The GICD_IGROUPR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_status_bit31Group_status_bit30Group_status_bit29Group_status_bit28Group_status_bit27Group_status_bit26Group_status_bit25Group_status_bit24Group_status_bit23Group_status_bit22Group_status_bit21Group_status_bit20Group_status_bit19Group_status_bit18Group_status_bit17Group_status_bit16Group_status_bit15Group_status_bit14Group_status_bit13Group_status_bit12Group_status_bit11Group_status_bit10Group_status_bit9Group_status_bit8Group_status_bit7Group_status_bit6Group_status_bit5Group_status_bit4Group_status_bit3Group_status_bit2Group_status_bit1Group_status_bit0

Group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the corresponding

interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding
interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the corresponding
interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding
interrupt is Non-secure Group 1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICD_IGRPMODR<n> to form a 2-bit field that defines an interrupt group. The
encoding of this field is described in GICD_IGRPMODR<n>.

If affinity routing is disabled for the Security state of an interrupt, then:

• The corresponding GICD_IGRPMODR<n> bit is RES0.
• For Secure interrupts, the interrupt is Secure Group 0.
• For Non-secure interrupts, the interrupt is Non-secure Group 1.

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 1731

ext-gicr_typer.html
ext-gicr_typer.html

On a Warm reset, when n == 0, this field resets to an UNKNOWN value.

On a Warm reset, when n > 0, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGROUP<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGROUP is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

Accessing the GICD_IGROUPR<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_IGROUPR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Accesses to GICD_IGROUPR0 when affinity routing is not enabled for a
Security state access the same state as GICR_IGROUPR0, and must update
Redistributor state associated with the PE performing the accesses.
Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IGROUPR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0080

+ (4 * n)
GICD_IGROUPR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31

Page 1732

ext-gicr_igroupr0.html

(old) htmldiff from- (new)

GICD_IGROUPR<n>E, Interrupt Group Registers
(extended SPI range), n = 0 - 31

The GICD_IGROUPR<n>E characteristics are:

Purpose
Controls whether the corresponding SPI in the extended SPI range is in Group 0 or Group 1.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_IGROUPR<n>E
are RES0.

GICD_IGROUPR<n>E resets to 0x00000000.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1:

• The number of implemented GICD_IGROUPR<n>E registers is (GICD_TYPER.ESPI_range+1). Registers are
numbered from 0.

• When GICD_CTLR.DS==0, this register is Secure.

Attributes
GICD_IGROUPR<n>E is a 32-bit register.

Field descriptions
The GICD_IGROUPR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_status_bit31Group_status_bit30Group_status_bit29Group_status_bit28Group_status_bit27Group_status_bit26Group_status_bit25Group_status_bit24Group_status_bit23Group_status_bit22Group_status_bit21Group_status_bit20Group_status_bit19Group_status_bit18Group_status_bit17Group_status_bit16Group_status_bit15Group_status_bit14Group_status_bit13Group_status_bit12Group_status_bit11Group_status_bit10Group_status_bit9Group_status_bit8Group_status_bit7Group_status_bit6Group_status_bit5Group_status_bit4Group_status_bit3Group_status_bit2Group_status_bit1Group_status_bit0

Group_status_bit<x>, bit [x], for x = 31 to 0

Group status bit.

Group_status_bit<x> Meaning
0b0 When GICD_CTLR.DS==1, the corresponding

interrupt is Group 0.
When GICD_CTLR.DS==0, the corresponding
interrupt is Secure.

0b1 When GICD_CTLR.DS==1, the corresponding
interrupt is Group 1.
When GICD_CTLR.DS==0, the corresponding
interrupt is Non-secure Group 1.

If affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to the interrupt is
concatenated with the equivalent bit in GICD_IGRPMODR<n>E to form a 2-bit field that defines an interrupt group.
The encoding of this field is described in GICD_IGRPMODR<n>E.

If affinity routing is disabled for the Security state of an interrupt, the bit is RES0:

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31

Page 1733

• The corresponding GICD_IGROUPR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_IGROUPR<n>E is (0x1000 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_IGROUPR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGROUPR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IGROUPR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1000

+ (4 *
n)

GICD_IGROUPR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0206; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31

Page 1734

(old) htmldiff from- (new)

GICD_IGRPMODR<n>, Interrupt Group Modifier
Registers, n = 0 - 31

The GICD_IGRPMODR<n> characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n> registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• Secure Group 1.

Configuration
When GICD_CTLR.DS==0, these registers are Secure.

The number of implemented GICD_IGROUPR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

When GICD_CTLR.ARE_S==0 or GICD_CTLR.DS==1, the GICD_IGRPMODR<n> registers are RES0. An
implementation can make these registers RAZ/WI in this case.

Attributes
GICD_IGRPMODR<n> is a 32-bit register.

Field descriptions
The GICD_IGRPMODR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_modifier_bit31Group_modifier_bit30Group_modifier_bit29Group_modifier_bit28Group_modifier_bit27Group_modifier_bit26Group_modifier_bit25Group_modifier_bit24Group_modifier_bit23Group_modifier_bit22Group_modifier_bit21Group_modifier_bit20Group_modifier_bit19Group_modifier_bit18Group_modifier_bit17Group_modifier_bit16Group_modifier_bit15Group_modifier_bit14Group_modifier_bit13Group_modifier_bit12Group_modifier_bit11Group_modifier_bit10Group_modifier_bit9Group_modifier_bit8Group_modifier_bit7Group_modifier_bit6Group_modifier_bit5Group_modifier_bit4Group_modifier_bit3Group_modifier_bit2Group_modifier_bit1Group_modifier_bit0

Group_modifier_bit<x>, bit [x], for x = 31 to 0

Group modifier bit. When affinity routing is enabled for the Security state of an interrupt, the bit that corresponds to
the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n> to form a 2-bit field that defines an
interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IGRPMODR<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_IGRPMODR is (0x080 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 1735

See GICD_IGROUPR<n> for information about the GICD_IGRPMODR0 reset value.

Accessing the GICD_IGRPMODR<n>
When affinity routing is enabled for Secure state, GICD_IGRPMODR0 is RES0 and equivalent functionality is proved by
GICR_IGRPMODR0.

When GICD_CTLR.DS==0, the register is RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IGRPMODR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0D00

+ (4 *
n)

GICD_IGRPMODR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31

Page 1736

ext-gicr_igrpmodr0.html

(old) htmldiff from- (new)

GICD_IGRPMODR<n>E, Interrupt Group Modifier
Registers (extended SPI range), n = 0 - 31

The GICD_IGRPMODR<n>E characteristics are:

Purpose
When GICD_CTLR.DS==0, this register together with the GICD_IGROUPR<n>E registers, controls whether the
corresponding interrupt is in:

• Secure Group 0.
• Non-secure Group 1.
• When System register access is enabled, Secure Group 1.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_IGRPMODR<n>E are RES0.

GICD_IGRPMODR<n>E resets to 0x00000000.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1:

• The number of implemented GICD_IGRPMODR<n>E registers is (GICD_TYPER.ESPI_range+1). Registers are
numbered from 0.

• When GICD_CTLR.DS==0, this register is Secure.

Attributes
GICD_IGRPMODR<n>E is a 32-bit register.

Field descriptions
The GICD_IGRPMODR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Group_modifier_bit31Group_modifier_bit30Group_modifier_bit29Group_modifier_bit28Group_modifier_bit27Group_modifier_bit26Group_modifier_bit25Group_modifier_bit24Group_modifier_bit23Group_modifier_bit22Group_modifier_bit21Group_modifier_bit20Group_modifier_bit19Group_modifier_bit18Group_modifier_bit17Group_modifier_bit16Group_modifier_bit15Group_modifier_bit14Group_modifier_bit13Group_modifier_bit12Group_modifier_bit11Group_modifier_bit10Group_modifier_bit9Group_modifier_bit8Group_modifier_bit7Group_modifier_bit6Group_modifier_bit5Group_modifier_bit4Group_modifier_bit3Group_modifier_bit2Group_modifier_bit1Group_modifier_bit0

Group_modifier_bit<x>, bit [x], for x = 31 to 0

Group modifier bit. In implementations where affinity routing is enabled for the Security state of an interrupt, the bit
that corresponds to the interrupt is concatenated with the equivalent bit in GICD_IGROUPR<n>E to form a 2-bit field
that defines an interrupt group:

Group
modifier bit

Group
status bit Definition Short

name
0b0 0b0 Secure Group 0 G0S
0b0 0b1 Non-secure Group 1 G1NS
0b1 0b0 Secure Group 1 G1S
0b1 0b1 Reserved, treated as Non-

secure Group 1
-

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31

Page 1737

• The corresponding GICD_IGRPMODR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_IGRPMODR<n>E is (0x3400 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_IGRPMODR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IGRPMODR<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IGRPMODR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x3400

+ (4 *
n)

GICD_IGRPMODR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31

Page 1738

(old) htmldiff from- (new)

GICD_IIDR, Distributor Implementer Identification
Register

The GICD_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Distributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICD_IIDR is a 32-bit register.

Field descriptions
The GICD_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major
revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

GICD_IIDR, Distributor Implementer Identification Register

Page 1739

Accessing the GICD_IIDR

GICD_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0008 GICD_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IIDR, Distributor Implementer Identification Register

Page 1740

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n =
0 - 254

The GICD_IPRIORITYR<n> characteristics are:

Purpose
Holds the priority of the corresponding interrupt.

Configuration
These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_IPRIORITYR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_IPRIORITYR0 to GICD_IPRIORITYR7 are Banked for each connected PE with GICR_TYPER.Processor_Number <
8.

Accessing GICD_IPRIORITYR0 to GICD_IPRIORITYR7 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_IPRIORITYR<n> is a 32-bit register.

Field descriptions
The GICD_IPRIORITYR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to 0.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to 0.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to 0.

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 1741

ext-gicr_typer.html
ext-gicr_typer.html

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_IPRIORITYR<n> register is (0x400 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing the GICD_IPRIORITYR<n>
These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Security
state of an interrupt:

• GICR_IPRIORITYR<n> is used instead of GICD_IPRIORITYR<n> where n = 0 to 7 (that is, for SGIs and PPIs).
• GICD_IPRIORITYR<n> is RAZ/WI where n = 0 to 7.

These registers are byte-accessible.

A register field corresponding to an unimplemented interrupt is RAZ/WI.

A GIC might implement fewer than eight priority bits, but must implement at least bits [7:4] of each field. In each field,
unimplemented bits are RAZ/WI, see 'Interrupt prioritization' in ARM® Generic Interrupt Controller Architecture
Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

When GICD_CTLR.DS==0:

• A register bit that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

'Software accesses of interrupt priority' in ARM® Generic Interrupt Controller Architecture Specification, GIC
architecture version 3.0 and version 4.0 (ARM IHI 0069).

It is IMPLEMENTATION DEFINED whether changing the value of a priority field changes the priority of an active interrupt.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_IPRIORITYR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0400

+ (4 *
n)

GICD_IPRIORITYR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 1742

ext-gicr_ipriorityrn.html

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254

Page 1743

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>E, Holds the priority of the
corresponding interrupt for each extended SPI

supported by the GIC., n = 0 - 255
The GICD_IPRIORITYR<n>E characteristics are:

Purpose
Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_IPRIORITYR<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_IPRIORITYR<n>E registers is
((GICD_TYPER.ESPI_range+1)*8). Registers are numbered from 0.

Attributes
GICD_IPRIORITYR<n>E is a 32-bit register.

Field descriptions
The GICD_IPRIORITYR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Priority_offset_3B Priority_offset_2B Priority_offset_1B Priority_offset_0B

Priority_offset_3B, bits [31:24]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 3. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_2B, bits [23:16]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 2. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Priority_offset_1B, bits [15:8]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 1. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.,
n = 0 - 255

Page 1744

Priority_offset_0B, bits [7:0]

Interrupt priority value from an IMPLEMENTATION DEFINED range, at byte offset 0. Lower priority values correspond to
greater priority of the interrupt.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_IPRIORITYR<n> number, n, is given by n = (m-4096) DIV 4.
• The offset of the required GICD_IPRIORITYR<n>E register is (0x2000 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Accessing the GICD_IPRIORITYR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0:

• A field that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-secure accesses.
• A Non-secure access to a field that corresponds to a Non-secure Group 1 interrupt behaves as described in

Software accesses of interrupt priority.

Bits corresponding to unimplemented interrupts are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than once. The effect of the change
must be visible in finite time.

GICD_IPRIORITYR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x2000

+ (4 *
n)

GICD_IPRIORITYR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC.,
n = 0 - 255

Page 1745

(old) htmldiff from- (new)

GICD_IROUTER<n>, Interrupt Routing Registers, n =
32 - 1019

The GICD_IROUTER<n> characteristics are:

Purpose
When affinity routing is enabled, provides routing information for the SPI with INTID n.

Configuration
These registers are available in all configurations of the GIC. If the GIC implementation supports two Security states,
these registers are Common.

The maximum value of n is given by (32*(GICD_TYPER.ITLinesNumber+1) - 1). GICD_IROUTER<n> registers where
n=0 to 31 are reserved.

Attributes
GICD_IROUTER<n> is a 64-bit register.

Field descriptions
The GICD_IROUTER<n> bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

Interrupt_Routing_Mode RES0 Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3, the least significant affinity level field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0b0 Interrupts routed to the PE specified by

a.b.c.d. In this routing, a, b, c, and d are
the values of fields Aff3, Aff2, Aff1, and Aff0
respectively.

0b1 Interrupts routed to any PE defined as a
participating node.

If GICD_IROUTER<n>.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the
corresponding interrupt becomes pending behavior is CONSTRAINED UNPREDICTABLE:

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 1746

• The interrupt is not forwarded to any PE, direct reads return the written value

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the UNKNOWN implemented
PE

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the written value

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this field
is 1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2, an intermediate affinity level field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff1, bits [15:8]

Affinity level 1, an intermediate affinity level field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Aff0, bits [7:0]

Affinity level 0, the most significant affinity level field.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n> register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n> register is 0x6000 + 8n.

Accessing the GICD_IROUTER<n>
These registers are used only when affinity routing is enabled. When affinity routing is not enabled:

• These registers are RES0. An implementation is permitted to make the register RAZ/WI in this case.
• The GICD_ITARGETSR<n> registers provide interrupt routing information.

Note

When affinity routing becomes enabled for a Security state (for example,
following a reset or following a write to GICD_CTLR) the value of all writeable
fields in this register is UNKNOWN for that Security state. When the group of an
interrupt changes so the ARE setting for the interrupt changes to 1, the value
of this register is UNKNOWN for that interrupt.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any GICD_IROUTER<n> registers that correspond to Group 0 or Secure Group 1
interrupts are accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 1747

Note

For each interrupt, a GIC implementation might support fewer than 256
values for an affinity level. In this case, some bits of the corresponding affinity
level field might be RO. Implementations must ensure that an interrupt that is
pending at the time of the write uses either the old value or the new value and
must ensure that the interrupt is neither lost nor handled more than one time.
The effect of the change must be visible in finite time.

GICD_IROUTER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x6000

+ (8 * n)
GICD_IROUTER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019

Page 1748

(old) htmldiff from- (new)

GICD_IROUTER<n>E, Interrupt Routing Registers
(Extended SPI Range), n = 0 - 1023

The GICD_IROUTER<n>E characteristics are:

Purpose
When affinity routing is enabled, provides routing information for the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_IROUTER<n>E
are RES0.

RW fields in this register reset to architecturally UNKNOWN values.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_IROUTER<n>E registers is
(((GICD_TYPER.ESPI_range+1)*32)-1). Registers are numbered from 0.

Attributes
GICD_IROUTER<n>E is a 64-bit register.

Field descriptions
The GICD_IROUTER<n>E bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
RES0 Aff3

Interrupt_Routing_Mode RES0 Aff2 Aff1 Aff0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bits [63:40]

Reserved, RES0.

Aff3, bits [39:32]

Affinity level 3, the least significant affinity level field.

Interrupt_Routing_Mode, bit [31]

Interrupt Routing Mode. Defines how SPIs are routed in an affinity hierarchy:

Interrupt_Routing_Mode Meaning
0b0 Interrupts routed to the PE specified by

a.b.c.d. In this routing, a, b, c, and d are
the values of fields Aff3, Aff2, Aff1, and Aff0
respectively.

0b1 Interrupts routed to any PE defined as a
participating node.

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 1749

If GICD_IROUTER<n>E.IRM == 0 and the affinity path does not correspond to an implemented PE, then if the
corresponding interrupt becomes pending behavior is CONSTRAINED UNPREDICTABLE:

• The interrupt is not forwarded to any PE, direct reads return the written value

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the UNKNOWN implemented
PE

• The affinity path is treated as an UNKNOWN implemented PE, direct reads return the written value

In implementations that do not require 1 of N distribution of SPIs, this bit might be RAZ/WI.

When this bit is set to 1, GICD_IROUTER<n>E.{Aff3, Aff2, Aff1, Aff0} are UNKNOWN.

Note

An implementation might choose to make the Aff<n> fields RO when this field
is 1.

Bits [30:24]

Reserved, RES0.

Aff2, bits [23:16]

Affinity level 2, an intermediate affinity level field.

Aff1, bits [15:8]

Affinity level 1, an intermediate affinity level field.

Aff0, bits [7:0]

Affinity level 0, the most significant affinity level field.

For an SPI with INTID m:

• The corresponding GICD_IROUTER<n>E register number, n, is given by n = m.
• The offset of the GICD_IROUTER<n>E register is 0x6000 + 8n.

Accessing the GICD_IROUTER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_IROUTER<n>E, the register is
RES0.

When GICD_CTLR.DS==0, a register that corresponds to a Group 0 or Secure Group 1 interrupt is RAZ/WI to Non-
secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_IROUTER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x8000

+ (8 *
n)

GICD_IROUTER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 1750

1530/1209/2020 1015:0306; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023

Page 1751

(old) htmldiff from- (new)

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n
= 0 - 31

The GICD_ISACTIVER<n> characteristics are:

Purpose
Activates the corresponding interrupt. These registers are used when saving and restoring GIC state.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISACTIVER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISACTIVER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISACTIVER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISACTIVER<n> is a 32-bit register.

Field descriptions
The GICD_ISACTIVER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_active_bit31Set_active_bit30Set_active_bit29Set_active_bit28Set_active_bit27Set_active_bit26Set_active_bit25Set_active_bit24Set_active_bit23Set_active_bit22Set_active_bit21Set_active_bit20Set_active_bit19Set_active_bit18Set_active_bit17Set_active_bit16Set_active_bit15Set_active_bit14Set_active_bit13Set_active_bit12Set_active_bit11Set_active_bit10Set_active_bit9Set_active_bit8Set_active_bit7Set_active_bit6Set_active_bit5Set_active_bit4Set_active_bit3Set_active_bit2Set_active_bit1Set_active_bit0

Set_active_bit<x>, bit [x], for x = 31 to 0

Adds the active state to interrupt number 32n + x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding interrupt

is not active, and is not active and pending.
If written, has no effect.

0b1 If read, indicates that the corresponding interrupt
is active, or is active and pending.
If written, activates the corresponding interrupt, if
the interrupt is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n> number, n, is given by n = m DIV 32.
• The offset of the required GICD_ISACTIVER is (0x300 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

Page 1752

ext-gicr_typer.html
ext-gicr_typer.html

Accessing the GICD_ISACTIVER<n>
When affinity routing is enabled for the Security state of an interrupt, bits corresponding to SGIs and PPIs are RAZ/
WI, and equivalent functionality for SGIs and PPIs is provided by GICR_ISACTIVER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

The bit reads as one if the status of the interrupt is active or active and pending. GICD_ISPENDR<n> and
GICD_ICPENDR<n> provide the pending status of the interrupt.

GICD_ISACTIVER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0300

+ (4 *
n)

GICD_ISACTIVER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31

Page 1753

ext-gicr_isactiver0.html

(old) htmldiff from- (new)

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers
(extended SPI range), n = 0 - 31

The GICD_ISACTIVER<n>E characteristics are:

Purpose
Adds the active state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ISACTIVER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISACTIVER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISACTIVER<n>E is a 32-bit register.

Field descriptions
The GICD_ISACTIVER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_active_bit31Set_active_bit30Set_active_bit29Set_active_bit28Set_active_bit27Set_active_bit26Set_active_bit25Set_active_bit24Set_active_bit23Set_active_bit22Set_active_bit21Set_active_bit20Set_active_bit19Set_active_bit18Set_active_bit17Set_active_bit16Set_active_bit15Set_active_bit14Set_active_bit13Set_active_bit12Set_active_bit11Set_active_bit10Set_active_bit9Set_active_bit8Set_active_bit7Set_active_bit6Set_active_bit5Set_active_bit4Set_active_bit3Set_active_bit2Set_active_bit1Set_active_bit0

Set_active_bit<x>, bit [x], for x = 31 to 0

For the extended SPIs, adds the active state to interrupt number x. Reads and writes have the following behavior:

Set_active_bit<x> Meaning
0b0 If read, indicates that the corresponding interrupt

is not active, and is not active and pending.
If written, has no effect.

0b1 If read, indicates that the corresponding interrupt
is active, or active and pending on this PE.
If written, activates the corresponding interrupt, if
the interrupt is not already active. If the interrupt
is already active, the write has no effect.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISACTIVER<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ISACTIVER<n>E is (0x1A00 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31

Page 1754

Accessing the GICD_ISACTIVER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISACTIVER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISACTIVER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1A00

+ (4 *
n)

GICD_ISACTIVER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31

Page 1755

(old) htmldiff from- (new)

GICD_ISENABLER<n>, Interrupt Set-Enable Registers,
n = 0 - 31

The GICD_ISENABLER<n> characteristics are:

Purpose
Enables forwarding of the corresponding interrupt to the CPU interfaces.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISENABLER<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISENABLER0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISENABLER0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISENABLER<n> is a 32-bit register.

Field descriptions
The GICD_ISENABLER<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_enable_bit31Set_enable_bit30Set_enable_bit29Set_enable_bit28Set_enable_bit27Set_enable_bit26Set_enable_bit25Set_enable_bit24Set_enable_bit23Set_enable_bit22Set_enable_bit21Set_enable_bit20Set_enable_bit19Set_enable_bit18Set_enable_bit17Set_enable_bit16Set_enable_bit15Set_enable_bit14Set_enable_bit13Set_enable_bit12Set_enable_bit11Set_enable_bit10Set_enable_bit9Set_enable_bit8Set_enable_bit7Set_enable_bit6Set_enable_bit5Set_enable_bit4Set_enable_bit3Set_enable_bit2Set_enable_bit1Set_enable_bit0

Set_enable_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, controls the forwarding of interrupt number 32n + x to the CPU interfaces. Reads and writes have
the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

For SGIs, the behavior of this bit is IMPLEMENTATION DEFINED.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n> number, n, is given by n = m DIV 32.

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 1756

ext-gicr_typer.html
ext-gicr_typer.html

• The offset of the required GICD_ISENABLER is (0x100 + (4*n)).
• The bit number of the required group modifier bit in this register is m MOD 32.

At start-up, and after a reset, a PE can use this register to discover which peripheral INTIDs the GIC supports. If
GICD_CTLR.DS==0 in a system that supports EL3, the PE must do this for the Secure view of the available interrupts,
and Non-secure software running on the PE must do this discovery after the Secure software has configured interrupts
as Group 0/Secure Group 1 and Non-secure Group 1.

Accessing the GICD_ISENABLER<n>
For SGIs and PPIs:

• When ARE is 1 for the Security state of an interrupt, the field for that interrupt is RES0 and an implementation
is permitted to make the field RAZ/WI in this case.

• Equivalent functionality is provided by GICR_ISENABLER0.

Bits corresponding to unimplemented interrupts are RAZ/WI.

When GICD_CTLR.DS==0, bits corresponding to Group 0 or Secure Group 1 interrupts are RAZ/WI to Non-secure
accesses.

It is IMPLEMENTATION DEFINED whether implemented SGIs are permanently enabled, or can be enabled and disabled by
writes to GICD_ISENABLER<n> and GICD_ICENABLER<n> where n=0.

For SPIs and PPIs, each bit controls the forwarding of the corresponding interrupt from the Distributor to the CPU
interfaces.

GICD_ISENABLER<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0100

+ (4 *
n)

GICD_ISENABLER<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31

Page 1757

(old) htmldiff from- (new)

GICD_ISENABLER<n>E, Interrupt Set-Enable
Registers, n = 0 - 31

The GICD_ISENABLER<n>E characteristics are:

Purpose
Enables forwarding of the corresponding SPI in the extended SPI range to the CPU interfaces.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to
GICD_ISENABLER<n>E are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISENABLER<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISENABLER<n>E is a 32-bit register.

Field descriptions
The GICD_ISENABLER<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_enable_bit31Set_enable_bit30Set_enable_bit29Set_enable_bit28Set_enable_bit27Set_enable_bit26Set_enable_bit25Set_enable_bit24Set_enable_bit23Set_enable_bit22Set_enable_bit21Set_enable_bit20Set_enable_bit19Set_enable_bit18Set_enable_bit17Set_enable_bit16Set_enable_bit15Set_enable_bit14Set_enable_bit13Set_enable_bit12Set_enable_bit11Set_enable_bit10Set_enable_bit9Set_enable_bit8Set_enable_bit7Set_enable_bit6Set_enable_bit5Set_enable_bit4Set_enable_bit3Set_enable_bit2Set_enable_bit1Set_enable_bit0

Set_enable_bit<x>, bit [x], for x = 31 to 0

For the extended SPI range, controls the forwarding of interrupt number x to the CPU interface. Reads and writes
have the following behavior:

Set_enable_bit<x> Meaning
0b0 If read, indicates that forwarding of the

corresponding interrupt is disabled.
If written, has no effect.

0b1 If read, indicates that forwarding of the
corresponding interrupt is enabled.
If written, enables forwarding of the
corresponding interrupt.
After a write of 1 to this bit, a subsequent read of
this bit returns 1.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ISENABLER<n>E number, n, is given by n = (m-4096) DIV 32.

• The offset of the required GICD_ISENABLER<n>E is (0x1200 + (4*n)).

• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31

Page 1758

Accessing the GICD_ISENABLER<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISENABLER<n>E, the
corresponding bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISENABLER<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1200

+ (4 *
n)

GICD_ISENABLER<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31

Page 1759

(old) htmldiff from- (new)

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n
= 0 - 31

The GICD_ISPENDR<n> characteristics are:

Purpose
Adds the pending state to the corresponding interrupt.

Configuration
These registers are available in all GIC configurations. If GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ISPENDR<n> registers is (GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ISPENDR0 is Banked for each connected PE with GICR_TYPER.Processor_Number < 8.

Accessing GICD_ISPENDR0 from a PE with GICR_TYPER.Processor_Number > 7 is CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ISPENDR<n> is a 32-bit register.

Field descriptions
The GICD_ISPENDR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_pending_bit31Set_pending_bit30Set_pending_bit29Set_pending_bit28Set_pending_bit27Set_pending_bit26Set_pending_bit25Set_pending_bit24Set_pending_bit23Set_pending_bit22Set_pending_bit21Set_pending_bit20Set_pending_bit19Set_pending_bit18Set_pending_bit17Set_pending_bit16Set_pending_bit15Set_pending_bit14Set_pending_bit13Set_pending_bit12Set_pending_bit11Set_pending_bit10Set_pending_bit9Set_pending_bit8Set_pending_bit7Set_pending_bit6Set_pending_bit5Set_pending_bit4Set_pending_bit3Set_pending_bit2Set_pending_bit1Set_pending_bit0

Set_pending_bit<x>, bit [x], for x = 31 to 0

For SPIs and PPIs, adds the pending state to interrupt number 32n + x. Reads and writes have the following behavior:

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 1760

ext-gicr_typer.html
ext-gicr_typer.html

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending on any PE.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending:

• On this PE if the interrupt is an SGI or PPI.
• On at least one PE if the interrupt is an SPI.

If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is an SGI. The pending state
of an SGI can be set using
GICD_SPENDSGIR<n>.

• If the interrupt is not inactive and is not
active.

• If the interrupt is already pending because
of a write to GICD_ISPENDR<n>.

• If the interrupt is already pending because
the corresponding interrupt signal is
asserted. In this case, the interrupt remains
pending if the interrupt signal is
deasserted.

On a Warm reset, this field resets to 0.

Accessing the GICD_ISPENDR<n>
Set-pending bits for SGIs are read-only and ignore writes. The Set-pending bits for SGIs are provided as
GICD_SPENDSGIR<n>.

When affinity routing is enabled for the Security state of an interrupt:

• Bits corresponding to SGIs and PPIs are RAZ/WI, and equivalent functionality for SGIs and PPIs is provided by
GICR_ISPENDR0.

• Bits corresponding to Group 0 and Group 1 Secure interrupts can only be set by Secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0 and
Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are accessible only by
Secure accesses and are RAZ/WI to Non-secure accesses.

GICD_ISPENDR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0200

+ (4 * n)
GICD_ISPENDR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31

Page 1761

(old) htmldiff from- (new)

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers
(extended SPI range), n = 0 - 31

The GICD_ISPENDR<n>E characteristics are:

Purpose
Adds the pending state to the corresponding SPI in the extended SPI range.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_ISPENDR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ISPENDR<n>E registers is
(GICD_TYPER.ESPI_range+1). Registers are numbered from 0.

Attributes
GICD_ISPENDR<n>E is a 32-bit register.

Field descriptions
The GICD_ISPENDR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Set_pending_bit31Set_pending_bit30Set_pending_bit29Set_pending_bit28Set_pending_bit27Set_pending_bit26Set_pending_bit25Set_pending_bit24Set_pending_bit23Set_pending_bit22Set_pending_bit21Set_pending_bit20Set_pending_bit19Set_pending_bit18Set_pending_bit17Set_pending_bit16Set_pending_bit15Set_pending_bit14Set_pending_bit13Set_pending_bit12Set_pending_bit11Set_pending_bit10Set_pending_bit9Set_pending_bit8Set_pending_bit7Set_pending_bit6Set_pending_bit5Set_pending_bit4Set_pending_bit3Set_pending_bit2Set_pending_bit1Set_pending_bit0

Set_pending_bit<x>, bit [x], for x = 31 to 0

For the extended SPIs, adds the pending state to interrupt number x. Reads and writes have the following behavior:

Set_pending_bit<x> Meaning
0b0 If read, indicates that the corresponding

interrupt is not pending.
If written, has no effect.

0b1 If read, indicates that the corresponding
interrupt is pending, or active and pending.
If written, changes the state of the
corresponding interrupt from inactive to
pending, or from active to active and pending.
This has no effect in the following cases:

• If the interrupt is already pending
because of a write to
GICD_ISPENDR<n>E.

• If the interrupt is already pending
because the corresponding interrupt
signal is asserted. In this case, the
interrupt remains pending if the interrupt
signal is deasserted.

On a Warm reset, this field resets to 0.

For INTID m, when DIV and MOD are the integer division and modulo operations:

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31

Page 1762

• The corresponding GICD_ISPENDR<n>E number, n, is given by n = (m-4096) DIV 32.
• The offset of the required GICD_ISPENDR<n>E is (0x1600 + (4*n)).
• The bit number of the required group modifier bit in this register is (m-4096) MOD 32.

Accessing the GICD_ISPENDR<n>E
When affinity routing is not enabled for the Security state of an interrupt in GICD_ISPENDR<n>E, the corresponding
bit is RES0.

When GICD_CTLR.DS==0, bits corresponding to Secure SPIs are RAZ/WI to Non-secure accesses.

Bits corresponding to unimplemented interrupts are RAZ/WI.

GICD_ISPENDR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x1600

+ (4 *
n)

GICD_ISPENDR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31

Page 1763

(old) htmldiff from- (new)

GICD_ITARGETSR<n>, Interrupt Processor Targets
Registers, n = 0 - 254

The GICD_ITARGETSR<n> characteristics are:

Purpose
When affinity routing is not enabled, holds the list of target PEs for the interrupt. That is, it holds the list of CPU
interfaces to which the Distributor forwards the interrupt if it is asserted and has sufficient priority.

Configuration
These registers are available in all configurations of the GIC. When GICD_CTLR.DS==0, these registers are Common.

The number of implemented GICD_ITARGETSR<n> registers is 8*(GICD_TYPER.ITLinesNumber+1). Registers are
numbered from 0.

GICD_ITARGETSR0 to GICD_ITARGETSR7 are Banked for each connected PEwith GICR_TYPER.Processor_Number <
8.

Accessing GICD_ITARGETSR0 to GICD_ITARGETSR7 from a PE with GICR_TYPER.Processor_Number > 7 is
CONSTRAINED UNPREDICTABLE:

• Register is RAZ/WI.
• An UNKNOWN banked copy of the register is accessed.

Attributes
GICD_ITARGETSR<n> is a 32-bit register.

Field descriptions
The GICD_ITARGETSR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CPU_targets_offset_3B CPU_targets_offset_2B CPU_targets_offset_1B CPU_targets_offset_0B

PEs in the system number from 0, and each bit in a PE targets field refers to the corresponding PE. For example, a
value of 0x3 means that the Pending interrupt is sent to PEs 0 and 1. For GICD_ITARGETSR0-GICD_ITARGETSR7, a
read of any targets field returns the number of the PE performing the read.

CPU_targets_offset_3B, bits [31:24]

PE targets for an interrupt, at byte offset 3.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CPU_targets_offset_2B, bits [23:16]

PE targets for an interrupt, at byte offset 2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CPU_targets_offset_1B, bits [15:8]

PE targets for an interrupt, at byte offset 1.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 1764

ext-gicr_typer.html
ext-gicr_typer.html

On a Warm reset, this field resets to an architecturally UNKNOWN value.

CPU_targets_offset_0B, bits [7:0]

PE targets for an interrupt, at byte offset 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

The bits that are set to 1 in the PE targets field determine which PEs are targeted:

Value of PE targets field Interrupt targets
0bxxxxxxx1 CPU interface 0
0bxxxxxx1x CPU interface 1
0bxxxxx1xx CPU interface 2
0bxxxx1xxx CPU interface 3
0bxxx1xxxx CPU interface 4
0bxx1xxxxx CPU interface 5
0bx1xxxxxx CPU interface 6
0b1xxxxxxx CPU interface 7

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_ITARGETSR<n> number, n, is given by n = m DIV 4.
• The offset of the required GICD_ITARGETSR<n> register is (0x800 + (4*n)).
• The byte offset of the required Priority field in this register is m MOD 4, where:

◦ Byte offset 0 refers to register bits [7:0].
◦ Byte offset 1 refers to register bits [15:8].
◦ Byte offset 2 refers to register bits [23:16].
◦ Byte offset 3 refers to register bits [31:24].

Software can write to these registers at any time. Any change to a targets field value:

• Has no effect on any active interrupt. This means that removing a CPU interface from a targets list does not
cancel an active state for interrupts on that CPU interface. There is no effect on interrupts that are active and
pending until the active status is cleared, at which time it is treated as a pending interrupt.

• Has an effect on any pending interrupts. This means:
◦ Enables the CPU interface to be chosen as a target for the pending interrupt using an

IMPLEMENTATION DEFINED mechanism.
◦ Removing a CPU interface from the target list of a pending interrupt removes the pending state of

the interrupt on that CPU interface.

Accessing the GICD_ITARGETSR<n>
These registers are used when affinity routing is not enabled. When affinity routing is enabled for the Security state of
an interrupt, the target PEs for an interrupt are defined by GICD_IROUTER<n> and the associated byte in
GICD_ITARGETSR<n> is RES0. An implementation is permitted to make the byte RAZ/WI in this case.

• These registers are byte-accessible.
• A register field corresponding to an unimplemented interrupt is RAZ/WI.
• A field bit corresponding to an unimplemented CPU interface is RAZ/WI.
• GICD_ITARGETSR0-GICD_ITARGETSR7 are read-only. Each field returns a value that corresponds only to the

PE reading the register.
• It is IMPLEMENTATION DEFINED which, if any, SPIs are statically configured in hardware. The field for such an SPI

is read-only, and returns a value that indicates the PE targets for the interrupt.
• If GICD_CTLR.DS==0, unless the GICD_NSACR<n> registers permit Non-secure software to control Group 0

and Secure Group 1 interrupts, any bits that correspond to Group 0 or Secure Group 1 interrupts are
accessible only by Secure accesses and are RAZ/WI to Non-secure accesses.

In a single connected PE implementation, all interrupts target one PE, and these registers are RAZ/WI.

Note

Implementations must ensure that an interrupt that is pending at the time of
the write uses either the old value or the new value and must ensure that the
interrupt is neither lost nor handled more than one time. The effect of the
change must be visible in finite time.

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 1765

GICD_ITARGETSR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0800

+ (4 *
n)

GICD_ITARGETSR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254

Page 1766

(old) htmldiff from- (new)

GICD_NSACR<n>, Non-secure Access Control
Registers, n = 0 - 63

The GICD_NSACR<n> characteristics are:

Purpose
Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

Configuration
The concept of selective enabling of Non-secure access to Group 0 and Secure Group 1 interrupts applies to SGIs and
SPIs.

GICD_NSACR0 is a Banked register used for SGIs. A copy is provided for every PE that has a CPU interface and that
supports this feature.

Attributes
GICD_NSACR<n> is a 32-bit register.

Field descriptions
The GICD_NSACR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS_access15NS_access14NS_access13NS_access12NS_access11NS_access10NS_access9NS_access8NS_access7NS_access6NS_access5NS_access4NS_access3NS_access2NS_access1NS_access0

NS_access<x>, bits [2x+1:2x], for x = 15 to 0

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure
interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 1767

NS_access<x> Meaning
0b00 No Non-secure access is permitted to fields associated

with the corresponding interrupt.
0b01 Non-secure read and write access is permitted to set-

pending bits in GICD_ISPENDR<n> associated with
the corresponding interrupt. A Non-secure write
access to GICD_SETSPI_NSR is permitted to set the
pending state of the corresponding interrupt. A Non-
secure write access to GICD_SGIR is permitted to
generate a Secure SGI for the corresponding interrupt.
An implementation might also provide read access to
clear-pending bits in GICD_ICPENDR<n> associated
with the corresponding interrupt.

0b10 As 0b01, but adds Non-secure read and write access
permission to fields associated with the corresponding
interrupt in the GICD_ICPENDR<n> registers. A Non-
secure write access to GICD_CLRSPI_NSR is permitted
to clear the pending state of the corresponding
interrupt. Also adds Non-secure read access
permission to fields associated with the corresponding
interrupt in the GICD_ISACTIVER<n> and
GICD_ICACTIVER<n> registers.

0b11 For GICD_NSACR0 this encoding is reserved and
treated as 10.
For all other GICD_NSACR<n> registers this encoding
is treated as 0b10, but adds Non-secure read and write
access permission to GICD_ITARGETSR<n> and
GICD_IROUTER<n> fields associated with the
corresponding interrupt.

On a Warm reset, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n> number, n, is given by n = m DIV 16.
• The offset of the required GICD_NSACR<n> register is (0xE00 + (4*n)).

Note

Because each field in this register comprises two bits, GICD_NSACR0 controls
access rights to SGI registers, GICD_NSACR1 controls access to PPI registers
(and is always RAZ/WI), and all other GICD_NSACR<n> registers control
access to SPI registers.

For compatibility with GICv2, writes to GICD_NSACR0 for a particular PE must be coordinated within the Distributor
and must update GICR_NSACR for the Redistributor associated with that PE.

Accessing the GICD_NSACR<n>
These registers are always used when affinity routing is not enabled. When affinity routing is enabled for the Secure
state, GICD_NSACR0 is RES0 and GICR_NSACR provides equivalent functionality for SGIs.

These registers do not support PPIs, therefore GICD_NSACR1 is RAZ/WI.

GICD_NSACR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0E00 +

(4 * n)
GICD_NSACR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 1 accesses to this register are RAZ/WI.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RAZ/WI.

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 1768

ext-gicr_nsacr.html
ext-gicr_nsacr.html

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63

Page 1769

(old) htmldiff from- (new)

GICD_NSACR<n>E, Non-secure Access Control
Registers, n = 0 - 63

The GICD_NSACR<n>E characteristics are:

Purpose
Enables Secure software to permit Non-secure software on a particular PE to create and control Group 0 interrupts.

Configuration
This register is present only when FEAT_GICv3p1 is implemented. Otherwise, direct accesses to GICD_NSACR<n>E
are RES0.

When GICD_TYPER.ESPI==0, these registers are RES0.

When GICD_TYPER.ESPI==1, the number of implemented GICD_ICFGR<n>E registers is
((GICD_TYPER.ESPI_range+1)*2). Registers are numbered from 0.

Attributes
GICD_NSACR<n>E is a 32-bit register.

Field descriptions
The GICD_NSACR<n>E bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
NS_access15NS_access14NS_access13NS_access12NS_access11NS_access10NS_access9NS_access8NS_access7NS_access6NS_access5NS_access4NS_access3NS_access2NS_access1NS_access0

NS_access<x>, bits [2x+1:2x], for x = 15 to 0

Controls Non-secure access of the interrupt with ID 16n + x.

If the corresponding interrupt does not support configurable Non-secure access, the field is RAZ/WI.

Otherwise, the field is RW and determines the level of Non-secure control permitted if the interrupt is a Secure
interrupt. If the interrupt is a Non-secure interrupt, this field is ignored.

The possible values of each 2-bit field are:

GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63

Page 1770

NS_access<x> Meaning
0b00 No Non-secure access is permitted to fields associated

with the corresponding interrupt.
0b01 Non-secure read and write access is permitted to set-

pending bits in GICD_ISPENDR<n>E associated with
the corresponding interrupt. A Non-secure write
access to GICD_SETSPI_NSR is permitted to set the
pending state of the corresponding interrupt.

0b10 As 0b01, but adds Non-secure read and write access
permission to fields associated with the corresponding
interrupt in the GICD_ICPENDR<n>E registers. A
Non-secure write access to GICD_CLRSPI_NSR is
permitted to clear the pending state of the
corresponding interrupt. Also adds Non-secure read
access permission to fields associated with the
corresponding interrupt in the GICD_ISACTIVER<n>E
and GICD_ICACTIVER<n>E registers.

0b11 This encoding is treated as 0b10, but adds Non-secure
read and write access permission to
GICD_IROUTER<n>E fields associated with the
corresponding interrupt.

On a Warm reset, this field resets to 0.

For interrupt ID m, when DIV and MOD are the integer division and modulo operations:

• The corresponding GICD_NSACR<n>E number, n, is given by n = (m - 4096) DIV 16.
• The offset of the required GICD_NSACR<n>E register is (0x3600 + (4*n)).

Accessing the GICD_NSACR<n>E

GICD_NSACR<n>E can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x3600

+ (4 * n)
GICD_NSACR<n>E

This interface is accessible as follows:

• When GICD_CTLR.DS == 1 accesses to this register are RAZ/WI.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RAZ/WI.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63

Page 1771

(old) htmldiff from- (new)

GICD_SETSPI_NSR, Set Non-secure SPI Pending
Register

The GICD_SETSPI_NSR characteristics are:

Purpose
Adds the pending state to a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value
for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register provides functionality for all SPIs.

Attributes
GICD_SETSPI_NSR is a 32-bit register.

Field descriptions
The GICD_SETSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_SETSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is 0.

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1772

• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can set the pending state of any valid SPI.

GICD_SETSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0040 GICD_SETSPI_NSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1773

(old) htmldiff from- (new)

GICD_SETSPI_SR, Set Secure SPI Pending Register
The GICD_SETSPI_SR characteristics are:

Purpose
Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
If GICD_TYPER.MBIS == 0, this register is reserved.

When GICD_CTLR.DS == 1, this register is WI.

Attributes
GICD_SETSPI_SR is a 32-bit register.

Field descriptions
The GICD_SETSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

The INTID of the SPI.

The function of this register depends on whether the targeted SPI is configured to be an edge-triggered or level-
sensitive interrupt:

• For an edge-triggered interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will stop being pending on activation, or if the pending state is removed by a write to
GICD_CLRSPI_NSR, GICD_CLRSPI_SR, or GICD_ICPENDR<n>.

• For a level-sensitive interrupt, a write to GICD_SETSPI_NSR or GICD_SETSPI_SR adds the pending state to
the targeted interrupt. It will remain pending until it is deasserted by a write to GICD_CLRSPI_NSR or
GICD_CLRSPI_SR. If the interrupt is activated between having the pending state added and being deactivated,
then the interrupt will be active and pending.

Accessing the GICD_SETSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 1774

GICD_SETSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0050 GICD_SETSPI_SR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WI.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WI.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SETSPI_SR, Set Secure SPI Pending Register

Page 1775

(old) htmldiff from- (new)

GICD_SGIR, Software Generated Interrupt Register
The GICD_SGIR characteristics are:

Purpose
Controls the generation of SGIs.

Configuration
This register is available in all configurations of the GIC. If the GIC supports two Security states this register is
Common.

Attributes
GICD_SGIR is a 32-bit register.

Field descriptions
The GICD_SGIR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 TargetListFilter CPUTargetList NSATT RES0 INTID

Bits [31:26]

Reserved, RES0.

TargetListFilter, bits [25:24]

Determines how the Distributor processes the requested SGI.

TargetListFilter Meaning
0b00 Forward the interrupt to the CPU interfaces specified

by GICD_SGIR.CPUTargetList.
0b01 Forward the interrupt to all CPU interfaces except

that of the PE that requested the interrupt.
0b10 Forward the interrupt only to the CPU interface of

the PE that requested the interrupt.
0b11 Reserved.

CPUTargetList, bits [23:16]

When GICD_SGIR.TargetListFilter is 0b00, this field defines the CPU interfaces to which the Distributor must forward
the interrupt.

Each bit of the field refers to the corresponding CPU interface. For example, CPUTargetList[0] corresponds to
interface 0. Setting a bit to 1 indicates that the interrupt must be forwarded to the corresponding interface.

If this field is 0b00000000 when GICD_SGIR.TargetListFilter is 0b00, the Distributor does not forward the interrupt to
any CPU interface.

NSATT, bit [15]

Specifies the required group of the SGI.

GICD_SGIR, Software Generated Interrupt Register

Page 1776

NSATT Meaning
0b0 Forward the SGI specified in the INTID field to a specified CPU

interface only if the SGI is configured as Group 0 on that
interface.

0b1 Forward the SGI specified in the INTID field to a specified CPU
interface only if the SGI is configured as Group 1 on that
interface.

This field is writable only by a Secure access. Non-secure accesses can also generate Group 0 interrupts, if allowed to
do so by GICD_NSACR0. Otherwise, Non-secure writes to GICD_SGIR generate an SGI only if the specified SGI is
programmed as Group 1, regardless of the value of bit [15] of the write.

Bits [14:4]

Reserved, RES0.

INTID, bits [3:0]

The INTID of the SGI to forward to the specified CPU interfaces.

Accessing the GICD_SGIR
This register is used only when affinity routing is not enabled. When affinity routing is enabled, this register is RES0.

It is IMPLEMENTATION DEFINED whether this register has any effect when the forwarding of interrupts by the Distributor
is disabled by GICD_CTLR.

GICD_SGIR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F00 GICD_SGIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SGIR, Software Generated Interrupt Register

Page 1777

(old) htmldiff from- (new)

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n =
0 - 3

The GICD_SPENDSGIR<n> characteristics are:

Purpose
Adds the pending state to an SGI.

A write to this register changes the state of an inactive SGI to pending, and the state of an active SGI to active and
pending.

Configuration
Four SGI set-pending registers are implemented. Each register contains eight set-pending bits for each of four SGIs,
for a total of 16 possible SGIs.

In multiprocessor implementations, each PE has a copy of these registers.

Attributes
GICD_SPENDSGIR<n> is a 32-bit register.

Field descriptions
The GICD_SPENDSGIR<n> bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
SGI_set_pending_bits3 SGI_set_pending_bits2 SGI_set_pending_bits1 SGI_set_pending_bits0

SGI_set_pending_bits<x>, bits [8x+7:8x], for x = 3 to 0

Adds the pending state to SGI number 4n + x for the PE corresponding to the bit number written to.

Reads and writes have the following behavior:

SGI_set_pending_bits<x> Meaning
0x00 If read, indicates that the SGI from the

corresponding PE is not pending and is not
active and pending.
If written, has no effect.

0x01 If read, indicates that the SGI from the
corresponding PE is pending or is active
and pending.
If written, adds the pending state to the
SGI for the corresponding PE.

On a Warm reset, this field resets to 0.

For SGI ID m, generated by processing element C writing to the corresponding GICD_SGIR field, where DIV and MOD
are the integer division and modulo operations:

• The corresponding GICD_SPENDSGIR<n> number is given by n = m DIV 4.
• The offset of the required register is (0xF20 + (4n)).
• The offset of the required field within the register GICD_SPENDSGIR<n> is given by m MOD 4.
• The required bit in the 8-bit SGI set-pending field m is bit C.

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 1778

Accessing the GICD_SPENDSGIR<n>
These registers are used only when affinity routing is not enabled. When affinity routing is enabled for the Security
state of an interrupt then the bit associated with SGI in that Security state is RES0. An implementation is permitted to
make the register RAZ/WI in this case.

A register bit that corresponds to an unimplemented SGI is RAZ/WI.

These registers are byte-accessible.

If the GIC implementation supports two Security states:

• A register bit that corresponds to a Group 0 interrupt is RAZ/WI to Non-secure accesses.
• Register bits corresponding to unimplemented PEs are RAZ/WI.

GICD_SPENDSGIR<n> can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0F20

+ (4 *
n)

GICD_SPENDSGIR<n>

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3

Page 1779

(old) htmldiff from- (new)

GICD_STATUSR, Error Reporting Status Register
The GICD_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.

Configuration
If the GIC implementation supports two Security states this register is Banked to provide Secure and Non-secure
copies.

Attributes
GICD_STATUSR is a 32-bit register.

Field descriptions
The GICD_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 WRODRWODWRDRRD

Bits [31:4]

Reserved, RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

GICD_STATUSR, Error Reporting Status Register

Page 1780

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GICD_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GICD_STATUSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0010 GICD_STATUSR

(S)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Secure accesses to this register are RW.

Component Offset Instance
GIC Distributor 0x0010 GICD_STATUSR

(NS)

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_STATUSR, Error Reporting Status Register

Page 1781

(old) htmldiff from- (new)

GICD_TYPER, Interrupt Controller Type Register
The GICD_TYPER characteristics are:

Purpose
Provides information about what features the GIC implementation supports. It indicates:

• Whether the GIC implementation supports two Security states.
• The maximum number of INTIDs that the GIC implementation supports.
• The number of PEs that can be used as interrupt targets.

Configuration
This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register is Common.

Attributes
GICD_TYPER is a 32-bit register.

Field descriptions
The GICD_TYPER bit assignments are:

3130292827 26 25 24 2322212019 18 17 16 1514131211 10 9 8 7 6 5 4 3 2 1 0
ESPI_rangeRSSNo1NA3V IDbits DVISLPISMBIS num_LPIs SecurityExtnRES0ESPICPUNumberITLinesNumber

ESPI_range, bits [31:27]

When GICD_TYPER.ESPI == 1:

Indicates the maximum INTID in the Extended SPI range.

Maximum Extended SPI INTID is (32*(ESPI_range + 1) + 4095)

Otherwise:

Reserved, RES0.

RSS, bit [26]

Range Selector Support.

RSS Meaning
0b0 The IRI supports targeted SGIs with affinity level 0 values of 0 -

15.
0b1 The IRI supports targeted SGIs with affinity level 0 values of 0 -

255.

No1N, bit [25]

Indicates whether 1 of N SPI interrupts are supported.

GICD_TYPER, Interrupt Controller Type Register

Page 1782

No1N Meaning
0b0 1 of N SPI interrupts are supported.
0b1 1 of N SPI interrupts are not supported.

A3V, bit [24]

Affinity 3 valid. Indicates whether the Distributor supports nonzero values of Affinity level 3.

A3V Meaning
0b0 The Distributor only supports zero values of Affinity level 3.
0b1 The Distributor supports nonzero values of Affinity level 3.

IDbits, bits [23:19]

The number of interrupt identifier bits supported, minus one.

DVIS, bit [18]

When FEAT_GICv4 is implemented:

Indicates whether the implementation supports Direct Virtual LPI injection.

DVIS Meaning
0b0 The implementation does not support Direct Virtual LPI

injection.
0b1 The implementation supports Direct Virtual LPI injection.

Otherwise:

Reserved, RES0.

LPIS, bit [17]

Indicates whether the implementation supports LPIs.

LPIS Meaning
0b0 The implementation does not support LPIs.
0b1 The implementation supports LPIs.

MBIS, bit [16]

Indicates whether the implementation supports message-based interrupts by writing to Distributor registers.

MBIS Meaning
0b0 The implementation does not support message-based interrupts

by writing to Distributor registers.
The GICD_CLRSPI_NSR, GICD_SETSPI_NSR, GICD_CLRSPI_SR,
and GICD_SETSPI_SR registers are reserved.

0b1 The implementation supports message-based interrupts by
writing to the GICD_CLRSPI_NSR, GICD_SETSPI_NSR,
GICD_CLRSPI_SR, or GICD_SETSPI_SR registers.

num_LPIs, bits [15:11]

Number of supported LPIs.

• 0b00000 Number of LPIs as indicated by GICD_TYPER.IDbits.

• All other values Number of LPIs supported is 2(num_LPIs+1).

◦ Available LPI INTIDs are 8192..(8192 + 2(num_LPIs+1) - 1).

GICD_TYPER, Interrupt Controller Type Register

Page 1783

◦ This field cannot indicate a maximum LPI INTID greater than that indicated by
GICD_TYPER.IDbits.

When the supported INTID width is less than 14 bits, this field is RES0 and no LPIs are supported.

SecurityExtn, bit [10]

Indicates whether the GIC implementation supports two Security states:

When GICD_CTLR.DS == 1, this field is RAZ.

SecurityExtn Meaning
0b0 The GIC implementation supports only a single Security

state.
0b1 The GIC implementation supports two Security states.

Bit [9]

Reserved, RES0.

ESPI, bit [8]

Extended SPI

ESPI Meaning
0b0 Extended SPI range not implemented.
0b1 Extended SPI range implemented.

CPUNumber, bits [7:5]

Reports the number of PEs that can be used when affinity routing is not enabled, minus 1.

These PEs must be numbered contiguously from zero, but the relationship between this number and the affinity
hierarchy from MPIDR is IMPLEMENTATION DEFINED. If the implementation does not support ARE being zero, this field is
000.

ITLinesNumber, bits [4:0]

For the INTID range 32 to 1019, indicates the maximum SPI supported.

If the value of this field is N, the maximum SPI INTID is 32(N+1) minus 1. For example, 00011 specifies that the
maximum SPI INTID in is 127.

Regardless of the range of INTIDs defined by this field, interrupt IDs 1020-1023 are reserved for special purposes.

A value of 0 indicates no SPIs are support.

The ITLinesNumber field only indicates the maximum number of SPIs that the GIC implementation might support. This
value determines the number of instances of the following interrupt registers:

• GICD_IGROUPR<n>.
• GICD_ISENABLER<n>.
• GICD_ICENABLER<n>.
• GICD_ISPENDR<n>.
• GICD_ICPENDR<n>.
• GICD_ISACTIVER<n>.
• GICD_ICACTIVER<n>.
• GICD_IPRIORITYR<n>.
• GICD_ITARGETSR<n>.
• GICD_ICFGR<n>.

The GIC architecture does not require a GIC implementation to support a continuous range of SPI interrupt IDs.
Software must check which SPI INTIDs are supported, up to the maximum value indicated by
GICD_TYPER.ITLinesNumber.

GICD_TYPER, Interrupt Controller Type Register

Page 1784

Accessing the GICD_TYPER

GICD_TYPER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x0004 GICD_TYPER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_TYPER, Interrupt Controller Type Register

Page 1785

(old) htmldiff from- (new)

GICD_TYPER2, Interrupt Controller Type Register 2
The GICD_TYPER2 characteristics are:

Purpose
Provides information about which features the GIC implementation supports.

Configuration
This register is present only when FEAT_GICv4p1 is implemented. Otherwise, direct accesses to GICD_TYPER2 are
RES0.

When GICD_CTLR.DS == 0, this register is Common.

Attributes
GICD_TYPER2 is a 32-bit register.

Field descriptions
The GICD_TYPER2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 nASSGIcapVIL RES0 VID

Bits [31:9]

Reserved, RES0.

nASSGIcap, bit [8]

Indicates whether SGIs can be configured to not have an active state.

nASSGIcap Meaning
0b0 SGIs have an active state.
0b1 SGIs can be globally configured not to have an active

state.

This bit is RES0 on implementations that support two Security states.

VIL, bit [7]

Indicates whether 16 bits of vPEID are implemented.

VIL Meaning
0b0 GIC supports 16-bit vPEID.
0b1 GIC supports GICD_TYPER2.VID + 1 bits of vPEID.

Bits [6:5]

Reserved, RES0.

GICD_TYPER2, Interrupt Controller Type Register 2

Page 1786

VID, bits [4:0]

When GICD_TYPER2.VIL == 1, the number of bits is equal to the bits of vPEID minus one.

When GICD_TYPER2.VIL == 0, this field is RES0.

Accessing the GICD_TYPER2

GICD_TYPER2 can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
Dist_base 0x000C GICD_TYPER2

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GICD_TYPER2, Interrupt Controller Type Register 2

Page 1787

no old file htmldiff from- (new)

GICM_CLRSPI_NSR, Clear Non-secure SPI Pending
Register

The GICM_CLRSPI_NSR characteristics are:

Purpose
Removes the pending state from a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n>
value for that SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
This register is present only when GICM_TYPER.CLR == 1. Otherwise, direct accesses to GICM_CLRSPI_NSR are
RES0.

When GICD_CTLR.DS == 1, this register provides functionality for all SPIs.

Attributes
GICM_CLRSPI_NSR is a 32-bit register.

Field descriptions
The GICM_CLRSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_CLRSPI_NSR.

Accessing the GICM_CLRSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is less than 0b10.

• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can clear the pending state of any valid SPI.

GICM_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1788

GICM_CLRSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0048 GICM_CLRSPI_NSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICM_CLRSPI_NSR, Clear Non-secure SPI Pending Register

Page 1789

no old file htmldiff from- (new)

GICM_CLRSPI_SR, Clear Secure SPI Pending Register
The GICM_CLRSPI_SR characteristics are:

Purpose
Removes the pending state from a valid SPI.

A write to this register changes the state of a pending SPI to inactive, and the state of an active and pending SPI to
active.

Configuration
This register is present only when GICM_TYPER.SR == 1 and GICM_TYPER.CLR == 1. Otherwise, direct accesses to
GICM_CLRSPI_SR are RES0.

When GICD_CTLR.DS == 1, this register is WI.

Attributes
GICM_CLRSPI_SR is a 32-bit register.

Field descriptions
The GICM_CLRSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_CLRSPI_SR.

Accessing the GICM_CLRSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is not pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICM_CLRSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0058 GICD_CLRSPI_SR

This interface is accessible as follows:

GICM_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1790

• When GICD_CTLR.DS == 0 accesses to this register are WI.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WI.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICM_CLRSPI_SR, Clear Secure SPI Pending Register

Page 1791

no old file htmldiff from- (new)

GICM_IIDR, Distributor Implementer Identification
Register

The GICM_IIDR characteristics are:

Purpose
Provides information about the implementer and revision of the Distributor.

Configuration
This register is available in all configurations of the GIC. If the GIC implementation supports two Security states, this
register is Common.

Attributes
GICM_IIDR is a 32-bit register.

Field descriptions
The GICM_IIDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ProductID RES0 Variant Revision Implementer

ProductID, bits [31:24]

An IMPLEMENTATION DEFINED product identifier.

Bits [23:20]

Reserved, RES0.

Variant, bits [19:16]

An IMPLEMENTATION DEFINED variant number. Typically, this field is used to distinguish product variants, or major
revisions of a product.

Revision, bits [15:12]

An IMPLEMENTATION DEFINED revision number. Typically, this field is used to distinguish minor revisions of a product.

Implementer, bits [11:0]

Contains the JEP106 code of the company that implemented the Distributor:

• Bits [11:8] are the JEP106 continuation code of the implementer. For an Arm implementation, this field is 0x4.
• Bit [7] is always 0.
• Bits [6:0] are the JEP106 identity code of the implementer. For an Arm implementation, bits [7:0] are therefore

0x3B.

GICM_IIDR, Distributor Implementer Identification Register

Page 1792

Accessing the GICM_IIDR

GICM_IIDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0FCC GICM_IIDR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

15/12/2020 10:02; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICM_IIDR, Distributor Implementer Identification Register

Page 1793

no old file htmldiff from- (new)

GICM_SETSPI_NSR, Set Non-secure SPI Pending
Register

The GICM_SETSPI_NSR characteristics are:

Purpose
Adds the pending state to a valid SPI if permitted by the Security state of the access and the GICD_NSACR<n> value
for that SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
When GICD_CTLR.DS==1, this register provides functionality for all SPIs.

Attributes
GICM_SETSPI_NSR is a 32-bit register.

Field descriptions
The GICM_SETSPI_NSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_SETSPI_NSR.

Accessing the GICM_SETSPI_NSR
Writes to this register have no effect if:

• The value written specifies a Secure SPI, the value is written by a Non-secure access, and the value of the
corresponding GICD_NSACR<n> register is 0.

• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

Note

A Secure access to this register can set the pending state of any valid SPI.

GICM_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1794

GICM_SETSPI_NSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0040 GICM_SETSPI_NSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are WO.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WO.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICM_SETSPI_NSR, Set Non-secure SPI Pending Register

Page 1795

no old file htmldiff from- (new)

GICM_SETSPI_SR, Set Secure SPI Pending Register
The GICM_SETSPI_SR characteristics are:

Purpose
Adds the pending state to a valid SPI.

A write to this register changes the state of an inactive SPI to pending, and the state of an active SPI to active and
pending.

Configuration
This register is present only when GICM_TYPER.SR == 1. Otherwise, direct accesses to GICM_SETSPI_SR are RES0.

When GICD_CTLR.DS==1, this register is WI.

Attributes
GICM_SETSPI_SR is a 32-bit register.

Field descriptions
The GICM_SETSPI_SR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 INTID

Bits [31:13]

Reserved, RES0.

INTID, bits [12:0]

This field is an alias of GICD_SETSPI_SR.

Accessing the GICM_SETSPI_SR
Writes to this register have no effect if:

• The value is written by a Non-secure access.
• The value written specifies an invalid SPI.
• The SPI is already pending.

16-bit accesses to bits [15:0] of this register must be supported.

GICM_SETSPI_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0050 GICM_SETSPI_SR

This interface is accessible as follows:

GICM_SETSPI_SR, Set Secure SPI Pending Register

Page 1796

• When GICD_CTLR.DS == 0 accesses to this register are WI.
• When an access is Secure accesses to this register are WO.
• When an access is Non-secure accesses to this register are WI.

15/12/2020 10:02; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICM_SETSPI_SR, Set Secure SPI Pending Register

Page 1797

no old file htmldiff from- (new)

GICM_TYPER, Distributor MSI Type Register
The GICM_TYPER characteristics are:

Purpose
Provides information about what features the GIC implementation supports.

Configuration
This register is available in all configurations of the GIC. When GICD_CTLR.DS==0, this register is Common.

Attributes
GICM_TYPER is a 32-bit register.

Field descriptions
The GICM_TYPER bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
ValidCLR SR INTID RES0 NumSPIs

Valid, bit [31]

Reports whether GICM_TYPER content is valid.

Valid Meaning
0b0 GICM_TYPER reports no information on the capabilities of the

GICM frame, all other fields are RES0.
0b1 GICM_TYPER reports information on capabilities of GICM frame.

CLR, bit [30]

Reports whether MSI clear registers are supported.

CLR Meaning
0b0 MSI clear registers not implemented.
0b1 MSI clear registers implemented.

SR, bit [29]

Reports whether Secure aliases of MSI registers are supported.

SR Meaning
0b0 Secure aliases of MSI registers not implemented.
0b1 Secure aliases of MSI registers implemented.

INTID, bits [28:16]

INTID of the first SPI assigned to this GICM frame.

GICM_TYPER, Distributor MSI Type Register

Page 1798

Bits [15:11]

Reserved, RES0.

NumSPIs, bits [10:0]

Number of SPIs assigned to this GICM frame.

Accessing the GICM_TYPER

GICM_TYPER can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
GIC

Distributor
MSI_base 0x0004 GICM_TYPER

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RO.
• When an access is Non-secure accesses to this register are RO.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

GICM_TYPER, Distributor MSI Type Register

Page 1799

(old) htmldiff from- (new)

GITS_STATUSR, ITS Error Reporting Status Register
The GITS_STATUSR characteristics are:

Purpose
Provides software with a mechanism to detect:

• Accesses to reserved locations.
• Writes to read-only locations.
• Reads of write-only locations.
• Unmapped MSIs.

Configuration

Attributes
GITS_STATUSR is a 32-bit register.

Field descriptions
The GITS_STATUSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 SnydromeOverflowUMSIWRODRWODWRDRRD

Bits [31:10]

Reserved, RES0.

Snydrome, bits [9:6]

Syndrome for the MSI that set GITS_STATUSR.UMSI to 1.

Snydrome Meaning
0b0000 Unknown reason.
0b0010 DeviceID out of range.
0b0011 DeviceID unmapped.
0b0100 EventID out of range.
0b0101 EventID unmapped.
0b0111 Collection unmapped.
0b1001 vPEID unmapped.

An implementation might not support reporting all syndromes, and might report 0b0000 for any cause.

This field is UNKNOWN when GITS_STATUSR.UMSI is 0.

Overflow, bit [5]

Reports whether an unmapped MSI has been received while GITS_STATUSR.UMSI is 1.

Overflow Meaning
0b0 No unmapped MSIs have been received since

GITS_STATUSR.UMSI set to 1.
0b1 At least one unmapped MSIs have been received since

GITS_STATUSR.UMSI set to 1.

GITS_STATUSR, ITS Error Reporting Status Register

Page 1800

A software write of 1 to the bit clears it. A write of any other value is ignored.

If GITS_TYPER.UMSI is 0, this field is RES0.

UMSI, bit [4]

Reports whether an unmapped MSI has been received

UMSI Meaning
0b0 No unmapped MSIs have been received.
0b1 Unampped MSI received.

A software write of 1 to the bit clears it. A write of any other value is ignored.

If GITS_TYPER.UMSI is 0, this field is RES0.

WROD, bit [3]

Write to an RO location.

WROD Meaning
0b0 Normal operation.
0b1 A write to an RO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RWOD, bit [2]

Read of a WO location.

RWOD Meaning
0b0 Normal operation.
0b1 A read of a WO location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

WRD, bit [1]

Write to a reserved location.

WRD Meaning
0b0 Normal operation.
0b1 A write to a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

RRD, bit [0]

Read of a reserved location.

RRD Meaning
0b0 Normal operation.
0b1 A read of a reserved location has been detected.

When a violation is detected, software must write 1 to this register to reset it.

Accessing the GITS_STATUSR
This is an optional register. If the register is not implemented, the location is RAZ/WI.

GITS_STATUSR, ITS Error Reporting Status Register

Page 1801

ext-gits_typer.html
ext-gits_typer.html

GITS_STATUSR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0040 0x0020 GITS_STATUSR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

GITS_STATUSR, ITS Error Reporting Status Register

Page 1802

(old) htmldiff from- (new)

GITS_UMSIR, ITS Unmapped MSI register
The GITS_UMSIR characteristics are:

Purpose
Provides the DeviceID and EventID of the unmapped MSI that set GITS_STATUSR.UMSI.

Configuration
This register is present only when GITS_TYPER.UMSI == 1. Otherwise, direct accesses to GITS_UMSIR are RES0.

Attributes
GITS_UMSIR is a 64-bit register.

Field descriptions
The GITS_UMSIR bit assignments are:

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32
DeviceID
EventID

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DeviceID, bits [63:32]

DeviceID of MSI that set GITS_STATUSR.UMSI to 1.

If GITS_STATUSR.UMSI is 0, this field is UNKNOWN.

EventID, bits [31:0]

EventID of MSI that set GITS_STATUSR.UMSI to 1.

If GITS_STATUSR.UMSI is 0, this field is UNKNOWN.

Accessing the GITS_UMSIR

GITS_UMSIR can be accessed through the memory-mapped interfaces:

Component Offset Instance
GIC ITS control 0x0048 0x0028 GITS_UMSIR

This interface is accessible as follows:

• When GICD_CTLR.DS == 0 accesses to this register are RO.
• When an access is Secure accesses to this register are RW.
• When an access is Non-secure accesses to this register are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

GITS_UMSIR, ITS Unmapped MSI register

Page 1803

(old) htmldiff from- (new)

GITS_UMSIR, ITS Unmapped MSI register

Page 1804

(old) htmldiff from- (new)

MPAMF_CSUMON_IDR, MPAM Features Cache Storage
Usage Monitoring ID register

The MPAMF_CSUMON_IDR characteristics are:

Purpose
Indicates the number of cache storage usage monitor instances and other properties of the CSU monitoring.
MPAMF_CSUMON_IDR_s indicates the number and properties of Secure cache storage usage monitoring.
MPAMF_CSUMON_IDR_ns indicates the number and properties of Non-secure cache storage usage monitoring.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource instance currently
selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are constant across all resource instances.

Configuration
The power domain of MPAMF_CSUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to MPAMF_CSUMON_IDR are RES0.

Attributes
MPAMF_CSUMON_IDR is a 32-bit register.

Field descriptions
The MPAMF_CSUMON_IDR bit assignments are:

31 30 292827 26 25242322212019181716151413121110 9 8 7 6 5 4 3 2 1 0
HAS_CAPTURECSU_RO RES0 HAS_OFSRNUM_MON RES0 NUM_MON

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_CSU to the corresponding MSMON_CSU_CAPTURE on a capture
event.

HAS_CAPTURE Meaning
0b0 MSMON_CSU_CAPTURE is not implemented and

there is no support for capture events in the CSU
monitor.

0b1 The MSMON_CSU_CAPTURE register is implemented
and the CSU monitor supports the capture event
behavior.

If RIS is implemented, this field indicates that CSU monitor capture is implemented for the resource instance selected
by MPAMCFG_PART_SEL.RIS.

CSU_RO, bit [30]

The implementation of MSMON_CSU is read-only.

CSU_RO Meaning
0b0 MSMON_CSU is read-write.
0b1 MSMON_CSU is read-only.

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1805

ext-mpamcfg_part_sel.html
ext-msmon_csu.html
ext-msmon_csu_capture.html
ext-msmon_csu_capture.html
ext-msmon_csu_capture.html
ext-mpamcfg_part_sel.html
ext-msmon_csu.html
ext-msmon_csu.html
ext-msmon_csu.html

If RIS is implemented, this field indicates that the MSMON_CSU monitor register is read-only for the resource
instance selected by MPAMCFG_PART_SEL.RIS.

Bits [29:2716]

Reserved, RES0.

HAS_OFSR, bit [26]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The CSU monitor overflow status bitmap register, MSMON_CSU_OFSR, is implemented.

HAS_OFSR Meaning
0b0 MSMON_CSU_OFSR register is not implemented.
0b1 MSMON_CSU_OFSR register is implemented.

If RIS is implemented, this field indicates that CSU monitor overflow status bitmap register is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [25:16]

Reserved, RES0.

NUM_MON, bits [15:0]

The number of cache storage usage monitor instances implemented.

The largest MSMON_CFG_MON_SEL.MON_SEL value is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of CSU monitor instances implemented for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_CSUMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_CSUMON_IDR is read-only.

MPAMF_CSUMON_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_CSUMON_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_CSUMON_IDR_s) and Non-secure (MPAMF_CSUMON_IDR_ns) MPAM
feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_CSUMON_IDR shows the configuration of cache storage usage monitoring
for the cache resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

Access to MPAMF_CSUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_CSUMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0088 MPAMF_CSUMON_IDR_s

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1806

ext-msmon_csu.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-msmon_cfg_mon_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-msmon_cfg_mon_sel.html

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0088 MPAMF_CSUMON_IDR_ns

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register

Page 1807

no old file htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part
Address Register

The MPAMF_ERR_MSI_ADDR_H characteristics are:

Purpose
MPAMF_ERR_MSI_ADDR_H is a 32-bit read-write register for the high part of the MPAM error MSI address.
MPAMF_ERR_MSI_ADDR_H_s is the high part of the MSI write address for error interrupts related to Secure
PARTIDs. MPAMF_ERR_MSI_ADDR_H_ns is the high part of the MSI write address for error interrupts related to Non-
secure PARTIDs.

Configuration
The power domain of MPAMF_ERR_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_ADDR_H are RES0.

Attributes
MPAMF_ERR_MSI_ADDR_H is a 32-bit register.

Field descriptions
The MPAMF_ERR_MSI_ADDR_H bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MSI_ADDR_H

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing the MPAMF_ERR_MSI_ADDR_H
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ERR_MSI_ADDR_H_s must be accessible from the Secure MPAM feature page.
MPAMF_ERR_MSI_ADDR_H_ns must be accessible from the Non-secure MPAM feature page.

MPAMF_ERR_MSI_ADDR_H_s and MPAMF_ERR_MSI_ADDR_H_ns must be separate registers. The Secure instance
(MPAMF_ERR_MSI_ADDR_H_s) accesses the error MSI high address used for Secure PARTIDs, and the Non-secure
instance (MPAMF_ERR_MSI_ADDR_H_ns) accesses the error MSI high address used for Non-secure PARTIDs.

MPAMF_ERR_MSI_ADDR_H can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register

Page 1808

MPAM MPAMF_BASE_s 0x00E4 MPAMF_ERR_MSI_ADDR_H_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00E4 MPAMF_ERR_MSI_ADDR_H_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register

Page 1809

no old file htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part
Address Register

The MPAMF_ERR_MSI_ADDR_L characteristics are:

Purpose
MPAMF_ERR_MSI_ADDR_L is a 32-bit read-write register for the low part of the MPAM error MSI address.
MPAMF_ERR_MSI_ADDR_L_s is the low part of the MSI write address for error interrupts related to Secure PARTIDs.
MPAMF_ERR_MSI_ADDR_L_ns is the low part of the MSI write address for error interrupts related to Non-secure
PARTIDs.

Configuration
The power domain of MPAMF_ERR_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_ADDR_L are RES0.

Attributes
MPAMF_ERR_MSI_ADDR_L is a 32-bit register.

Field descriptions
The MPAMF_ERR_MSI_ADDR_L bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSI_ADDR_L Bits[1:0]

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing the MPAMF_ERR_MSI_ADDR_L
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ERR_MSI_ADDR_L_s must be accessible from the Secure MPAM feature page. MPAMF_ERR_MSI_ADDR_L_ns
must be accessible from the Non-secure MPAM feature page.

MPAMF_ERR_MSI_ADDR_L_s and MPAMF_ERR_MSI_ADDR_L_ns must be separate registers. The Secure instance
(MPAMF_ERR_MSI_ADDR_L_s) accesses the error MSI low address used for Secure PARTIDs, and the Non-secure
instance (MPAMF_ERR_MSI_ADDR_L_ns) accesses the error MSI low address used for Non-secure PARTIDs.

MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register

Page 1810

MPAMF_ERR_MSI_ADDR_L can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00E0 MPAMF_ERR_MSI_ADDR_L_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00E0 MPAMF_ERR_MSI_ADDR_L_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register

Page 1811

no old file htmldiff from- (new)

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write
Attributes Register

The MPAMF_ERR_MSI_ATTR characteristics are:

Purpose
MPAMF_ERR_MSI_ATTR is a 32-bit read-write register that controls MPAM error MSI write attributes for MPAM
errors in this MSC. MPAMF_ERR_MSI_ATTR_s controls the attributes of Secure MPAM error MSI writes.
MPAMF_ERR_MSI_ATTR_ns controls the attributes of Non-secure MPAM error MSI writes.

Configuration
The power domain of MPAMF_ERR_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_ATTR are RES0.

Attributes
MPAMF_ERR_MSI_ATTR is a 32-bit register.

Field descriptions
The MPAMF_ERR_MSI_ATTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MSI_SHMSI_MEMATTR RES0 MSIEN

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

MSI_SH Meaning
0b00 Non-shareable.
0b01 Reserved, CONSTRAINED UNPREDICTABLE.
0b10 Outer Shareable.
0b11 Inner Shareable.

When MPAMF_ERR_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the contents of this field are
IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm ARM, except that the
following encodings are Reserved (not UNPREDICTABLE) and behave as DEvice-nGnRnE: 0b0100, 0b1000 and 0b1100.

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

Page 1812

MSI_MEMATTR Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b0101 Normal Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal Inner Write-Through Cacheable, Outer Non-

cacheable.
0b0111 Normal Inner Write-Back Cacheable, Outer Non-

cacheable.
0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1001 Normal Inner Non-Cachable, Outer Write-Through

Cacheable.
0b1010 Normal Inner Write-Through Cacheable, Outer Write-

Through Cachable.
0b1011 Normal Inner Write-Back Cacheable, Outer Write-

Through Cachable.
0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1101 Normal Inner Non-cacheable, Outer Write-Back

Cacheable.
0b1110 Normal Inner Write-Through Cacheable, Outer Write-

Back Cacheable.
0b1111 Normal Inner Write-Back Cacheable, Outer Write-

Back Cacheable.

When this field specifies a Device memory type, the contents of MPAMF_ERR_MSI_ATTR.MSI_SH are IGNORED and
Shareability is effectively Outer Shareable.

Device types may be implemented as any Device type with more 'n' characters. For example, if this field is set to
0b0010, an implementation may treat the MSI write as the specified type, Device-nGRE, or as Device-nGnRE or as
Device-nGnRnE.

Reserved encodings 0b0100, 0b1000 and 0b1100 must be implemented to behave the same as the 0b0000 encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Error interrupt MSI Enable.

MSIEN Meaning
0b0 MPAM error MSI writes are not generated to signal enabled

MPAM error interrupts. When error MSI writesare disabled,
hardwired error interrupts could be generated.

0b1 MPAM error MSI writes are generated to signal enabled
MPAM error interrupts. When error MSI writes are enabled,
hardwired error interrupts are not generated.

The value of this field affects whether hardwired error interrupts are generated.

On a Warm reset, this field resets to 0.

Accessing the MPAMF_ERR_MSI_ATTR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ERR_MSI_ATTR_s must be accessible from the Secure MPAM feature page. MPAMF_ERR_MSI_ATTR_ns must
be accessible from the Non-secure MPAM feature page.

MPAMF_ERR_MSI_ATTR_s and MPAMF_ERR_MSI_ATTR_ns must be separate registers. The Secure instance
(MPAMF_ERR_MSI_ATTR_s) accesses the error MSI attributes used for Secure PARTIDs, and the Non-secure instance
(MPAMF_ERR_MSI_ATTR_ns) accesses the error MSI attributes used for Non-secure PARTIDs.

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

Page 1813

MPAMF_ERR_MSI_ATTR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00EC MPAMF_ERR_MSI_ATTR_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00EC MPAMF_ERR_MSI_ATTR_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register

Page 1814

no old file htmldiff from- (new)

MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register
The MPAMF_ERR_MSI_DATA characteristics are:

Purpose
MPAMF_ERR_MSI_DATA is a 32-bit read-write register for the MPAM error MSI data. MPAMF_ERR_MSI_DATA_s is
the data for the MSI write for error interrupts related to Secure PARTIDs. MPAMF_ERR_MSI_DATA_ns is the data for
the MSI write for error interrupts related to Non-secure PARTIDs.

Configuration
The power domain of MPAMF_ERR_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_DATA are RES0.

Attributes
MPAMF_ERR_MSI_DATA is a 32-bit register.

Field descriptions
The MPAMF_ERR_MSI_DATA bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSI_DATA

MSI_DATA, bits [31:0]

MSI data to be written to ITS to signal an MSI.

Accessing the MPAMF_ERR_MSI_DATA
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ERR_MSI_DATA_s must be accessible from the Secure MPAM feature page. MPAMF_ERR_MSI_DATA_ns must
be accessible from the Non-secure MPAM feature page.

MPAMF_ERR_MSI_DATA_s and MPAMF_ERR_MSI_DATA_ns must be separate registers. The Secure instance
(MPAMF_ERR_MSI_DATA_s) accesses the error MSI data used for Secure PARTIDs, and the Non-secure instance
(MPAMF_ERR_MSI_DATA_ns) accesses the error MSI data used for Non-secure PARTIDs.

MPAMF_ERR_MSI_DATA can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00E8 MPAMF_ERR_MSI_DATA_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00E8 MPAMF_ERR_MSI_DATA_ns

MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

Page 1815

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register

Page 1816

no old file htmldiff from- (new)

MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM
Information Register

The MPAMF_ERR_MSI_MPAM characteristics are:

Purpose
MPAMF_ERR_MSI_MPAM is a 32-bit read-write register that sets the MPAM information for error MSI write attributes
for MPAM errors in this MSC. MPAMF_ERR_MSI_MPAM_s controls MPAM information labeling of Secure MPAM error
MSI writes. MPAMF_ERR_MSI_MPAM_ns controls MPAM information labeling of Non-secure MPAM error MSI writes.

Configuration
The power domain of MPAMF_ERR_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_IDR.HAS_ERR_MSI == 1. Otherwise, direct accesses to
MPAMF_ERR_MSI_MPAM are RES0.

Attributes
MPAMF_ERR_MSI_MPAM is a 32-bit register.

Field descriptions
The MPAMF_ERR_MSI_MPAM bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for PARTID MSC error interrupt write.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for MSC error interrupt write.

The PARTID in this register is in the Secure PARTID space in the MPAMF_ERR_MSI_MPAM_s instance and in the Non-
secure PARTID space in the MPAMF_ERR_MSI_MPAM_ns instance of this register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the MPAMF_ERR_MSI_MPAM
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register

Page 1817

MPAMF_ERR_MSI_MPAM_s must be accessible from the Secure MPAM feature page. MPAMF_ERR_MSI_MPAM_ns
must be accessible from the Non-secure MPAM feature page.

MPAMF_ERR_MSI_MPAM_s and MPAMF_ERR_MSI_MPAM_ns must be separate registers. The Secure instance
(MPAMF_ERR_MSI_MPAM_s) accesses the error MSI MPAM information used for Secure PARTIDs, and the Non-
secure instance (MPAMF_ERR_MSI_MPAM_ns) accesses the error MSI MPAM information used for Non-secure
PARTIDs.

MPAMF_ERR_MSI_MPAM can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x00ED MPAMF_ERR_MSI_MPAM_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x00DC MPAMF_ERR_MSI_MPAM_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register

Page 1818

(old) htmldiff from- (new)

MPAMF_IDR, MPAM Features Identification Register
The MPAMF_IDR characteristics are:

Purpose
Indicates which memory partitioning and monitoring features are present on this MSC. MPAMF_IDR_s indicates the
MPAM features accessed from the Secure MPAM feature page. MPAMF_IDR_ns indicates the MPAM features accessed
from the Non-secure MPAM feature page.

When MPAMF_IDR.HAS_RIS is 1, some fields in this register give information for the resource instance selected by
MPAMCFG_PART_SEL.RIS. The description of every field that is affected by MPAMCFG_PART_SEL.RIS has that
information within the field description.

Configuration
The power domain of MPAMF_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented. Otherwise, direct accesses to MPAMF_IDR are RES0.

MAMPF_IDR is 64-bit register when MPAM v0.1 or v1.1 is implemented.

Otherwise, MAMPF_IDR is a 32-bit register.

Attributes
MPAMF_IDR is a:

• 64-bit register when FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented
• 32-bit register otherwise

Field descriptions
The MPAMF_IDR bit assignments are:

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

63 62 61 60 59 58 57 56 555453525150494847464544434241 40 39 38 37 36 35 34 33 32
RES0 RIS_MAX RES0 HAS_ERR_MSIHAS_ESRHAS_ESRHAS_EXTD_ESRHAS_EXTD_ESRNO_IMPL_MSMONNO_IMPL_MSMONNO_IMPL_PARTNO_IMPL_PARTRES0RES0HAS_RISHAS_RIS

HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX
31 30 29 28 27 26 25 24 2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

Bits [63:60]

Reserved, RES0.

RIS_MAX, bits [59:56]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_RIS == 1:

Maximum RIS value supported in MPAMCFG_PART_SEL. Must be 0b0000 if MPAMF_IDR.HAS_RIS == 0.

Otherwise:

Reserved, RES0.

MPAMF_IDR, MPAM Features Identification Register

Page 1819

ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Bits [55:4140]

Reserved, RES0.

HAS_ERR_MSI, bit [40]

When MPAMF_IDR.EXT == 1:

Has support for MSI writes to signal MPAM error interrupts. These registers are implemented:
MPAMF_EDRR_MSI_ADDR_L, MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR, MPAMF_ERR_MSI_DATA and
MPAM_ERR_MSI_MPAM.

HAS_ERR_MSI Meaning
0b0 MPAMF_ERR_MSI_ADDR_L,

MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR,
MPAMF_ERR_MSI_DATA and
MPAMF_ERR_MSI_MPAM registers are not
implemented.

0b1 MPAMF_ERR_MSI_ADDR_L,
MPAMF_ERR_MSI_ADDR_H, MPAMF_ERR_MSI_ATTR,
MPAMF_ERR_MSI_DATA and
MPAMF_ERR_MSI_MPAM are implemented and can
be used to generate writes to signal error interrupts.

If MPAMF_IDR.HAS_ESR is 0, this bit must also be 0.

Otherwise:

Reserved, RES0.

HAS_ESR, bit [39]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is implemented.

HAS_ESR Meaning
0b0 MPAMF_ESR, MPAMF_ECR, and MPAM error handling are

not implemented.
0b1 MPAMF_ESR, MPAMF_ECR, and MPAM error handling are

implemented.

If a MSC cannot encounter any of the error conditions listed in 'Errors in MSCs' in Arm® Architecture Reference
Manual Supplement, Memory System Resource Partitioning and Monitoring (MPAM), for Armv8-A (ARM DDI 0598),
both the MPAMF_ESR and MPAMF_ECR must be RAZ/WI.

Otherwise:

Reserved, RES0.

HAS_EXTD_ESR, bit [38]

When MPAMF_IDR.EXT == 1:

MPAMF_ESR is 64 bits.

HAS_EXTD_ESR Meaning
0b0 MPAMF_ESR is 32 bits.
0b1 MPAMF_ESR is 64 bits.

When MPAMF_IDR.HAS_RIS and MPAMF_IDR.HAS_ESR, this field must be 1.

MPAMF_IDR, MPAM Features Identification Register

Page 1820

ext-mpamf_edrr_msi_addr_l.html
ext-mpam_err_msi_mpam.html
ext-mpamf_esr.html
ext-mpamf_esr.html
ext-mpamf_ecr.html
ext-mpamf_esr.html
ext-mpamf_ecr.html
ext-mpamf_ecr.html
ext-mpamf_esr.html
ext-mpamf_esr.html
ext-mpamf_esr.html

Otherwise:

Reserved, RES0.

NO_IMPL_MSMON, bit [37]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource monitors.

NO_IMPL_MSMON Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource monitor.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource monitors.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource monitors described in
MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

NO_IMPL_PART, bit [36]

When MPAMF_IDR.EXT == 1 and MPAMF_IDR.HAS_IMPL_IDR == 1:

MPAMF_IMPL_IDR defines no IMPLEMENTATION DEFINED resource controls.

NO_IMPL_PART Meaning
0b0 MPAMF_IMPL_IDR defines at least one

IMPLEMENTATION DEFINED resource control.
0b1 MPAMF_IMPL_IDR does not define any

IMPLEMENTATION DEFINED resource controls.

If RIS is implemented, this field indicates the presence of IMPLEMENTATION DEFINED resource controls described in
MPAMF_IMPL_IDR for the selected resource instance.

Otherwise:

Reserved, RES0.

Bits [35:33]

Reserved, RES0.

HAS_RIS, bit [32]

When MPAMF_IDR.EXT == 1:

Has resource instance selector. Indicates that MPAMCFG_PART_SEL contains the RIS field that selects a resource
instance to control.

HAS_RIS Meaning
0b0 MPAMCFG_PART_SEL does not implement the

MPAMCFG_PART_SEL.RIS field or multiple resource
instance suport.

0b1 MPAMCFG_PART_SEL implements the
MPAMCFG_PART_SEL.RIS field and MPAM resource
instance numbers up to and including
MPAMF_IDR.RIS_MAX.

MPAMF_IDR, MPAM Features Identification Register

Page 1821

ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Otherwise:

Reserved, RES0.

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by groups

or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the implementation-specific MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has priority partitioning. Indicates that MPAM priority partitioning is implemented and MPAMF_PRI_IDR exists.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has priority partitioning and MPAMF_PRI_IDR.

If RIS is implemented, this field indicates the presence of priority partitioning resource controls as described in
MPAMF_PRI_IDR for the selected resource instance.

MPAMF_IDR, MPAM Features Identification Register

Page 1822

ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html

HAS_MBW_PART, bit [26]

Has memory bandwidth partitioning. Indicates whether this MSC implements MPAM memory bandwidth partitioning
and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning or

have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

If RIS is implemented, this field indicates the presence of memory bandwidth partitioning resource controls as
described in MPAMF_MBW_IDR for the selected resource instance.

HAS_CPOR_PART, bit [25]

Has cache portion partitioning. Indicates whether this MSC implements MPAM cache portion partitioning and
MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or have

MPAMF_CPOR_IDR or MPAMCFG_CPBM<n>
registers.

0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM<n>
registers.

If RIS is implemented, this field indicates the presence of cache portion partitioning resource controls as described in
MPAMF_CPOR_IDR for the selected resource instance.

HAS_CCAP_PART, bit [24]

Has cache capacity partitioning. Indicates whether this MSC implements MPAM cache capacity partitioning and the
MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

If RIS is implemented, this field indicates the presence of cache capacity partitioning resource controls as described in
MPAMF_CPOR_IDR for the selected resource instance.

PMG_MAX, bits [23:16]

Maximum value of Non-secure PMG supported by this component.

PARTID_MAX, bits [15:0]

Maximum value of Non-secure PARTID supported by this component.

Otherwise:

31 30 29 28 27 26 25 24 23222120191817161514131211109876543210
HAS_PARTID_NRWHAS_MSMONHAS_IMPL_IDREXTHAS_PRI_PARTHAS_MBW_PARTHAS_CPOR_PARTHAS_CCAP_PART PMG_MAX PARTID_MAX

HAS_PARTID_NRW, bit [31]

Has PARTID narrowing.

MPAMF_IDR, MPAM Features Identification Register

Page 1823

ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_cpor_idr.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_cpor_idr.html

HAS_PARTID_NRW Meaning
0b0 Does not have MPAMF_PARTID_NRW_IDR,

MPAMCFG_INTPARTID or intPARTID mapping
support.

0b1 Supports the MPAMF_PARTID_NRW_IDR,
MPAMCFG_INTPARTID registers.

HAS_MSMON, bit [30]

Has resource monitors. Indicates whether this MSC has MPAM resource monitors.

HAS_MSMON Meaning
0b0 Does not support MPAM resource monitoring by groups

or MPAMF_MSMON_IDR.
0b1 Supports resource monitoring by matching a

combination of PARTID and PMG. See
MPAMF_MSMON_IDR.

HAS_IMPL_IDR, bit [29]

Has MPAMF_IMPL_IDR. Indicates whether this MSC has the implementation-specific MPAM features register,
MPAMF_IMPL_IDR.

HAS_IMPL_IDR Meaning
0b0 Does not have MPAMF_IMPL_IDR.
0b1 Has MPAMF_IMPL_IDR.

EXT, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Extended MPAMF_IDR.

EXT Meaning
0b0 MPAMF_IDR has no defined bits in [63:32]. The register is

effectively 32 bits.
0b1 MPAMF_IDR has bits defined in [63:32]. The register is 64-bits.

Otherwise:

Reserved, RES0.

HAS_PRI_PART, bit [27]

Has priority partitioning. Indicates whether this MSC implements MPAM priority partitioning and MPAMF_PRI_IDR.

HAS_PRI_PART Meaning
0b0 Does not support priority partitioning or have

MPAMF_PRI_IDR.
0b1 Has MPAMF_PRI_IDR.

HAS_MBW_PART, bit [26]

Has memory bandwidth partitioning. Indicates whether this MSC implements MPAM memory bandwidth partitioning
and MPAMF_MBW_IDR.

HAS_MBW_PART Meaning
0b0 Does not support memory bandwidth partitioning or

have MPAMF_MBW_IDR register.
0b1 Has MPAMF_MBW_IDR register.

MPAMF_IDR, MPAM Features Identification Register

Page 1824

ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_partid_nrw_idr.html
ext-mpamcfg_intpartid.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_impl_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_pri_idr.html
ext-mpamf_mbw_idr.html
ext-mpamf_mbw_idr.html

HAS_CPOR_PART, bit [25]

Has cache portion partitioning. Indicates whether this MSC implements MPAM cache portion partitioning and
MPAMF_CPOR_IDR.

HAS_CPOR_PART Meaning
0b0 Does not support cache portion partitioning or have

MPAMF_CPOR_IDR or MPAMCFG_CPBM<n>
registers.

0b1 Has MPAMF_CPOR_IDR and MPAMCFG_CPBM<n>
registers.

HAS_CCAP_PART, bit [24]

Has cache capacity partitioning. Indicates whether this MSC implements MPAM cache capacity partitioning and the
MPAMF_CCAP_IDR and MPAMCFG_CMAX registers.

HAS_CCAP_PART Meaning
0b0 Does not support cache capacity partitioning or

have MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

0b1 Has MPAMF_CCAP_IDR and MPAMCFG_CMAX
registers.

PMG_MAX, bits [23:16]

Maximum value of Non-secure PMG supported by this component.

PARTID_MAX, bits [15:0]

Maximum value of Non-secure PARTID supported by this component.

Accessing the MPAMF_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_IDR is read-only.

MPAMF_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_IDR is permitted to have the same contents when read from either the Secure and Non-secure MPAM feature
pages unless the register contents is different for Secure and Non-secure versions, when there must be separate
registers in the Secure (MPAMF_IDR_s) and Non-secure (MPAMF_IDR_ns) MPAM feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_IDR shows the configuration of MSC MPAM for the resource instance
selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have values that track the
implemented properties of the resource instance. Fields that do not mention RIS are constant across all resource
instances.

MPAMF_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0000 MPAMF_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0000 MPAMF_IDR_ns

Accesses on this interface are RO.

MPAMF_IDR, MPAM Features Identification Register

Page 1825

ext-mpamf_cpor_idr.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_cpor_idr.html
ext-mpamcfg_cpbmn.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamf_ccap_idr.html
ext-mpamcfg_cmax.html
ext-mpamcfg_part_sel.html

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_IDR, MPAM Features Identification Register

Page 1826

(old) htmldiff from- (new)

MPAMF_MBWUMON_IDR, MPAM Features Memory
Bandwidth Usage Monitoring ID register

The MPAMF_MBWUMON_IDR characteristics are:

Purpose
Indicates the number of memory bandwidth usage monitor instances implemented. This register also indicates several
properties of MBWU monitoring, including whether the implementation supports capture, scaling or long counters.

MPAMF_MBWUMON_IDR_s indicates the number of Secure memory bandwidth usage monitor instances.
MPAMF_MBWUMON_IDR_ns indicates the number of Non-secure memory bandwidth usage monitor instances.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource instance currently
selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are constant across all resource instances.

Configuration
The power domain of MPAMF_MBWUMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to MPAMF_MBWUMON_IDR are RES0.

Attributes
MPAMF_MBWUMON_IDR is a 32-bit register.

Field descriptions
The MPAMF_MBWUMON_IDR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20191817161514131211109876543210
HAS_CAPTUREHAS_LONGLWDHAS_RWBWRES0HAS_OFSRSCALERES0NUM_MON SCALE NUM_MON

HAS_CAPTURE, bit [31]

The implementation supports copying an MSMON_MBWU to the corresponding MSMON_MBWU_CAPTURE on a
capture event.

HAS_CAPTURE Meaning
0b0 MSMON_MBWU_CAPTURE is not implemented and

there is no support for capture events in the MBWU
monitor.

0b1 The MSMON_MBWU_CAPTURE register is
implemented and the MBWU monitor supports the
capture event behavior.

If RIS is implemented, this field indicates that MBWU monitor capture is implemented for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_LONG is 1, this also indicates that MSMON_MBWU_L_CAPTURE is implemented.

HAS_LONG, bit [30]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Indicates whether MSMON_MBWU_L is implemented.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1827

ext-mpamcfg_part_sel.html
ext-msmon_mbwu.html
ext-msmon_mbwu_capture.html
ext-msmon_mbwu_capture.html
ext-msmon_mbwu_capture.html
ext-mpamcfg_part_sel.html
ext-msmon_mbwu_l_capture.html
ext-msmon_mbwu_l.html

If HAS_CAPTURE is 1, indicates whether MSMON_MBWU_L_CAPTURE is implemented.

HAS_LONG Meaning
0b0 Does not implement MSMON_MBWU_L or

MSMON_MBWU_L_CAPTURE.
0b1 Implements MSMON_MBWU_L. If HAS_CAPTURE == 1,

MSMON_MBWU_L_CAPTURE is also implemented.

If RIS is implemented, this field indicates that the long MBWU monitor is implemented for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

If MPAMF_MBWUMON_IDR.HAS_CAPTURE is 1, this also indicates that MSMON_MBWU_L_CAPTURE is
implemented.

Otherwise:

Reserved, RES0.

LWD, bit [29]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Long register VALUE width.

If MPAMF_MBWUMON_IDR.HAS_LONG is 0, MPAMF_MBWUMON_IDR.LWD must also be 0.

LWD Meaning
0b0 If MPAMF_MBWUMON_IDR.HAS_LONG is 1, MSMON_MBWU_L

has 44-bit VALUE field in bits [43:0]. Bits [62:44] are RES0. If
HAS_LONG is 1 and MPAMF_MBWUMON_IDR.HAS_CAPTURE is
1, MSMON_MBWU_L_CAPTURE also has 44-bit VALUE field in
bits [43:0].

0b1 MSMON_MBWU_L has 63-bit VALUE field in bits [62:0]. If
MPAMF_MBWUMON_IDR.HAS_CAPTURE == 1,
MSMON_MBWU_L_CAPTURE also has 63-bit VALUE field in bits
[62:0].

If RIS is implemented, this field indicates the length of the MSMON_MBWU_L.VALUE field implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

HAS_RWBW, bit [28]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Read/write bandwidth selection is implemented in MSMON_CFG_MBWU_FLT

HAS_RWBW Meaning
0b0 Read/write bandwidth selection is not implemented.
0b1 Read/write bandwidth selection is implemented

If RIS is implemented, this field indicates whether read/write bandwidth collection selection is available in
MSMON_CFG_MBWU_FLT for resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1828

ext-msmon_mbwu_l_capture.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l_capture.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l_capture.html
ext-mpamcfg_part_sel.html
ext-msmon_mbwu_l_capture.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l_capture.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l_capture.html
ext-msmon_mbwu_l.html
ext-mpamcfg_part_sel.html
ext-msmon_cfg_mbwu_flt.html
ext-msmon_cfg_mbwu_flt.html
ext-mpamcfg_part_sel.html

BitBits [27:21]

Reserved, RES0.

HAS_OFSR, bit [26]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

The MBWU monitor overflow status bitmap register, MSMON_MBWU_OFSR, is implemented.

HAS_OFSR Meaning
0b0 MSMON_MBWU_OFSR register is not implemented.
0b1 MSMON_MBWU_OFSR register is implemented.

If RIS is implemented, this field indicates that MBWU monitor overflow status bitmap register is implemented for the
resource instance selected by MPAMCFG_PART_SEL.RIS.

Otherwise:

Reserved, RES0.

Bits [25:21]

Reserved, RES0.

SCALE, bits [20:16]

Scaling of MSMON_MBWU.VALUE in bits. If scaling is enabled by MSMON_CFG_MBWU_CTL.SCLEN, the byte count
in the VALUE field has been shifted by SCALE bits to the right.

SCALE Meaning
0b00000 Scaling is not implemented.
0bxxxxx Other values are right shift count when scaling is enabled.

If RIS is implemented, this field indicates the scale value for MSMON_MBWU.VALUE field for the resource instance
selected by MPAMCFG_PART_SEL.RIS.

NUM_MON, bits [15:0]

The number of memory bandwidth usage monitor instances implemented. The largest monitor instance selector,
MSMON_CFG_MON_SEL.MON_SEL, is NUM_MON minus 1.

If RIS is implemented, this field indicates the number of MBWU monitor instances for MSMON_MBWU.VALUE field for
the resource instance selected by MPAMCFG_PART_SEL.RIS.

Accessing the MPAMF_MBWUMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_MBWUMON_IDR is read-only.

MPAMF_MBWUMON_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_MBWUMON_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_MBWUMON_IDR_s) and Non-secure (MPAMF_MBWUMON_IDR_ns) MPAM
feature pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MBWUMON_IDR shows the configuration of memory bandwidth monitoring
for the bandwidth resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field
descriptions have values that track the implemented properties of the resource instance. Fields that do not mention
RIS are constant across all resource instances.

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1829

ext-mpamcfg_part_sel.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-mpamcfg_part_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_mbwu.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html

Access to MPAMF_MBWUMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MBWUMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0090 MPAMF_MBWUMON_IDR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0090 MPAMF_MBWUMON_IDR_ns

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register

Page 1830

ext-msmon_cfg_mon_sel.html

(old) htmldiff from- (new)

MPAMF_MSMON_IDR, MPAM Resource Monitoring
Identification Register

The MPAMF_MSMON_IDR characteristics are:

Purpose
Indicates which MPAM monitoring features are present on this MSC. MPAMF_MSMON_IDR_s indicates Secure
monitoring features. MPAMF_MSMON_IDR_ns indicates Non-secure monitoring features.

If MPAMF_IDR.HAS_RIS is 1, fields that mention RIS must reflect the properties of the resource instance currently
selected by MPAMCFG_PART_SEL.RIS. Fields that do not mention RIS are constant across all resource instances.

Configuration
The power domain of MPAMF_MSMON_IDR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented and MPAMF_IDR.HAS_MSMON == 1. Otherwise,
direct accesses to MPAMF_MSMON_IDR are RES0.

Attributes
MPAMF_MSMON_IDR is a 32-bit register.

Field descriptions
The MPAMF_MSMON_IDR bit assignments are:

31 30 29 28 27262524232221201918 17 16 1514131211109876543210
HAS_LOCAL_CAPT_EVNTNO_HW_OFLW_INTRRES0HAS_OFLW_MSIMSMON_MBWUHAS_OFLOW_SRMSMON_CSU RES0 MSMON_MBWUMSMON_CSU RES0

HAS_LOCAL_CAPT_EVNT, bit [31]

Has local capture event generator. Indicates whether this MSC has the MPAM local capture event generator and the
MSMON_CAPT_EVNT register.

HAS_LOCAL_CAPT_EVNT Meaning
0b0 Does not support MPAM local capture

event generator or MSMON_CAPT_EVNT.
0b1 Supports the MPAM local capture event

generator and the MSMON_CAPT_EVNT
register.

NO_HW_OFLW_INTR,Bits bit [30:18]

When FEAT_MPAMv1p1 is implemented:

Does not have hardwired MPAM monitor overflow interrupt.

NO_HW_OFLW_INTR Meaning
0b0 Supports generating a hardwired interrupt to

signal MPAM monitor overflow.
0b1 No support for a hardwired interrupt to signal

MPAM monitor overflow.

If this field is 0, the MSC supports generating a hardwired interrupt for monitor overflow events.

MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

Page 1831

ext-mpamcfg_part_sel.html
ext-msmon_capt_evnt.html
ext-msmon_capt_evnt.html
ext-msmon_capt_evnt.html

If this field is 0 and the HAS_OFLW_MSI field in this register is 1, the MSC supports generating both hardwired
interrupts and MSI writes to signal interrupts.

Otherwise:

Reserved, RES0.

HAS_OFLW_MSI, bit [29]

When FEAT_MPAMv1p1 is implemented:

Has support for MSI writes to signal MPAM monitor overflow interrupts. These registers are implemented:
MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and MSMON_OFLOW_MSI_MPAM.

HAS_OFLW_MSI Meaning
0b0 MSMON_OFLOW_MSI_ADDR_L,

MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_MPAM registers are not
implemented.

0b1 MSMON_OFLOW_MSI_ADDR_L,
MSMON_OFLOW_MSI_ADDR_H,
MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and
MSMON_OFLOW_MSI_ATTR are implemented and
can be used to generate writes to signal MPAM
monitor overflow interrupts.

If MPAMF_MSMON_IDR.NO_HW_OFLW_INTR is 1 and this bit is 0, this MSC does not support monitor overflow
interrupts.

Otherwise:

Reserved, RES0.

HAS_OFLOW_SR, bit [28]

When FEAT_MPAMv1p1 is implemented:

Has MPAM monitor overflow status register MSMON_OFLOW_SR.

HAS_OFLOW_SR Meaning
0b0 Does not have MSMON_OFLOW_SR.
0b1 Supports MSMON_OFLOW_SR.

Otherwise:

Reserved, RES0.

Bits [27:18]

Reserved, RES0.

MSMON_MBWU, bit [17]

Memory bandwidth usage monitoring. Indicates whether MPAM monitoring for Memory Bandwidth Usage by PARTID
and PMG is implemented and whether the following bandwidth usage registers are accessible:

• MPAMF_MBWUMON_IDR, MSMON_CFG_MBWU_CTL, MSMON_CFG_MBWU_FLT, MSMON_MBWU.
• The optional MSMON_MBWU_CAPTURE.

MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

Page 1832

ext-msmon_cfg_mbwu_flt.html
ext-msmon_mbwu.html
ext-msmon_mbwu_capture.html

• If MPAM v0.1 or MPAM v1.1 is implemented, the optional MSMON_MBWU_L and the optional
MSMON_MBWU_L_CAPTURE.

MSMON_MBWU Meaning
0b0 Does not have monitoring for memory bandwidth

usage and does not use the bandwidth usage
registers.

0b1 Has monitoring of memory bandwidth usage and
uses the bandwidth usage registers.

If RIS is implemented, this field indicates that memory bandwidth usage monitoring is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS as described in MPAMF_MBWUMON_IDR.

MSMON_CSU, bit [16]

Cache storage usage monitoring. Indicates whether MPAM monitoring of cache storage usage by PARTID and PMG is
implemented and the following registers are accessible:

• MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL, MSMON_CFG_CSU_FLT, MSMON_CSU.
• The optional MSMON_CSU_CAPTURE.

MSMON_CSU Meaning
0b0 Does not have monitoring for cache storage usage or

the MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL,
MSMON_CFG_CSU_FLT, MSMON_CSU or
MSMON_CSU_CAPTURE registers.

0b1 Has monitoring of cache storage usage and the
MPAMF_CSUMON_IDR, MSMON_CFG_CSU_CTL,
MSMON_CFG_CSU_FLT, MSMON_CSU and optional
MSMON_CSU_CAPTURE registers.

If RIS is implemented, this field indicates that cache storage usage monitoring is implemented for the resource
instance selected by MPAMCFG_PART_SEL.RIS as described in MPAMF_CSUMON_IDR.

Bits [15:0]

Reserved, RES0.

Accessing the MPAMF_MSMON_IDR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MPAMF_MSMON_IDR is read-only.

MPAMF_MSMON_IDR must be readable from the Non-secure and Secure MPAM feature pages.

MPAMF_MSMON_IDR is permitted to have the same contents when read from either the Secure and Non-secure
MPAM feature pages unless the register contents is different for Secure and Non-secure versions, when there must be
separate registers in the Secure (MPAMF_MSMON_IDR_s) and Non-secure (MPAMF_MSMON_IDR_ns) MPAM feature
pages.

When MPAMF_IDR.HAS_RIS is 1, MPAMF_MSMON_IDR shows the configuration of memory system monitoring for the
resource instance selected by MPAMCFG_PART_SEL.RIS. Fields that mention RIS in their field descriptions have
values that track the implemented properties of the resource instance. Fields that do not mention RIS are constant
across all resource instances.

Access to MPAMF_MSMON_IDR is not affected by MSMON_CFG_MON_SEL.RIS.

MPAMF_MSMON_IDR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0080 MPAMF_MSMON_IDR_s

Accesses on this interface are RO.

MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

Page 1833

ext-msmon_mbwu_l.html
ext-msmon_mbwu_l_capture.html
ext-mpamcfg_part_sel.html
ext-msmon_cfg_csu_flt.html
ext-msmon_csu.html
ext-msmon_csu_capture.html
ext-msmon_cfg_csu_flt.html
ext-msmon_csu.html
ext-msmon_csu_capture.html
ext-msmon_cfg_csu_flt.html
ext-msmon_csu.html
ext-msmon_csu_capture.html
ext-mpamcfg_part_sel.html
ext-mpamcfg_part_sel.html
ext-msmon_cfg_mon_sel.html

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0080 MPAMF_MSMON_IDR_ns

Accesses on this interface are RO.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register

Page 1834

(old) htmldiff from- (new)

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor
Configure Cache Storage Usage Monitor Control

Register
The MSMON_CFG_CSU_CTL characteristics are:

Purpose
Controls the CSU monitor selected by MSMON_CFG_MON_SEL. MSMON_CFG_CSU_CTL_s controls the Secure cache
storage usage monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_CSU_CTL_ns controls Non-secure cache storage usage monitor instance selected by the Non-secure
instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CFG_CSU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_CSU == 1. Otherwise, direct accesses to MSMON_CFG_CSU_CTL are RES0.

Attributes
MSMON_CFG_CSU_CTL is a 32-bit register.

Field descriptions
The MSMON_CFG_CSU_CTL bit assignments are:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 1514131211109876543210
ENCAPT_EVNTCAPT_RESETOFLOW_STATUSOFLOW_INTROFLOW_FRZSUBTYPERES0MATCH_PMGMATCH_PARTID RES0 TYPE

EN, bit [31]

Enabled.

EN Meaning
0b0 The monitor instance is disabled and must not collect any

information.
0b1 The monitor instance is enabled to collect information according to

the configuration of the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

Select the event that triggers capture from the following:

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1835

ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html

CAPT_EVNT Meaning
0b000 No capture event is triggered.
0b001 External capture event 1 (optional but recommended)
0b010 External capture event 2 (optional)
0b011 External capture event 3 (optional)
0b100 External capture event 4 (optional)
0b101 External capture event 5 (optional)
0b110 External capture event 6 (optional)
0b111 Capture occurs when a MSMON_CAPT_EVNT register in

this MSC is written and causes a capture event for the
security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an implementation. Those values
representing non-implemented event sources must not trigger a capture event.

If capture is not implemented for the CSU monitor type as indicated by MPAMF_CSUMON_IDR.HAS_CAPTURE = 0,
this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset after capture.

Controls whether the value of MSMON_CSU is reset to zero immediately after being copied to
MSMON_CSU_CAPTURE.

CAPT_RESET Meaning
0b0 Monitor is not reset on capture.
0b1 Monitor is reset on capture.

If capture is not implemented for the CSU monitor type as indicated by MPAMF_CSUMON_IDR.HAS_CAPTURE = 0,
this field is RAZ/WI.

Because the CSU monitor type produces a measurement rather than a count, it might not make sense to ever reset the
value after a capture. If there is no reason to ever reset a CSU monitor, this field is RAZ/WI.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_CSU has overflowed.

OFLOW_STATUS Meaning
0b0 No overflow has occurred.
0b1 At least one overflow has occurred since this bit was

last written to zero.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

OFLOW_INTR, bit [25]

Overflow Interrupt.

Controls whether an overflow interrupt is generated when the value of MSMON_CSU has overflowed.

OFLOW_INTR Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_CSU.
0b1 On overflow, an implementation-specific interrupt is

signaled.

If OFLOW_INTR is not supported by the implementation, this field is RAZ/WI.

OFLOW_FRZ, bit [24]

Freeze Monitor on Overflow.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1836

ext-msmon_csu.html
ext-msmon_csu_capture.html
ext-msmon_csu.html
ext-msmon_csu.html
ext-msmon_csu.html

Controls whether the value of MSMON_CSU freezes on an overflow.

OFLOW_FRZ Meaning
0b0 Monitor count wraps on overflow.
0b1 Monitor count freezes on overflow. The frozen value

might be 0 or another value if the monitor overflowed
with an increment larger than 1.

If overflow is not possible for a CSU monitor in the implementation, this field is RAZ/WI.

SUBTYPE, bits [23:20]

Subtype. Type of cache storage usage counted by this monitor.

This field is not currently used for CSU monitors, but reserved for future use.

This field is RAZ/WI.

Bits [19:18]

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor measures only storage used with PMG matching MSMON_CFG_CSU_FLT.PMG.

MATCH_PMG Meaning
0b0 The monitor measures storage used with any PMG

value.
0b1 The monitor only measures storage used with the PMG

value matching MSMON_CFG_CSU_FLT.PMG.

If MATCH_PMG == 1 and MATCH_PARTID == 0, it is CONSTRAINED UNPREDICTABLE whether the monitor instance:

• Measures the storage used with matching PMG and with any PARTID.
• Measures no storage usage, that is, MSMON_CSU.VALUE is zero.
• Measures the storage used with matching PMG and PARTID, that is, treats MATCH_PARTID as == 1.

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor measures only storage used with PARTID matching MSMON_CFG_CSU_FLT.PARTID.

MATCH_PARTID Meaning
0b0 The monitor measures storage used with any

PARTID value.
0b1 The monitor only measures storage used with the

PARTID value matching
MSMON_CFG_CSU_FLT.PARTID.

Bits [15:8]

Reserved, RES0.

TYPE, bits [7:0]

Monitor Type Code. The CSU monitor is TYPE = 0x43.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x43.

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1837

ext-msmon_csu.html
ext-msmon_cfg_csu_flt.html
ext-msmon_cfg_csu_flt.html
ext-msmon_csu.html
ext-msmon_cfg_csu_flt.html
ext-msmon_cfg_csu_flt.html

Access to this field is RO.

Accessing the MSMON_CFG_CSU_CTL
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CFG_CSU_CTL_s must be accessible from the Secure MPAM feature page. MSMON_CFG_CSU_CTL_ns must
be accessible from the Non-secure MPAM feature page.

MSMON_CFG_CSU_CTL_s and MSMON_CFG_CSU_CTL_ns must be separate registers. The Secure instance
(MSMON_CFG_CSU_CTL_s) accesses the cache storage usage monitor controls used for Secure PARTIDs, and the
Non-secure instance (MSMON_CFG_CSU_CTL_ns) accesses the cache storage usage monitor controls used for Non-
secure PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage monitor
configuration settings for the cache resource instance selected by MSMON_CFG_MON_SEL.RIS and the cache storage
usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_CSU_CTL access the cache storage usage monitor
configuration settings for the cache storage usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_CSU_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0818 MSMON_CFG_CSU_CTL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0818 MSMON_CFG_CSU_CTL_ns

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register

Page 1838

ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html

(old) htmldiff from- (new)

MSMON_CFG_MBWU_CTL, MPAM Memory System
Monitor Configure Memory Bandwidth Usage Monitor

Control Register
The MSMON_CFG_MBWU_CTL characteristics are:

Purpose
Controls the MBWU monitor selected by MSMON_CFG_MON_SEL. MSMON_CFG_MBWU_CTL_s controls the Secure
memory bandwidth usage monitor instance selected by the Secure instance of MSMON_CFG_MON_SEL.
MSMON_CFG_MBWU_CTL_ns controls Non-secure memory bandwidth usage monitor instance selected by the Non-
secure instance of MSMON_CFG_MON_SEL.

If MPAMF_IDR.HAS_RIS is 1, the monitor instance configuration accessed is for the resource instance currently
selected by MSMON_CFG_MON_SEL.RIS and the monitor instance of that resource instance selected by
MSMON_CFG_MON_SEL.MON_SEL.

Configuration
The power domain of MSMON_CFG_MBWU_CTL is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAM is implemented, MPAMF_IDR.HAS_MSMON == 1 and
MPAMF_MSMON_IDR.MSMON_MBWU == 1. Otherwise, direct accesses to MSMON_CFG_MBWU_CTL are RES0.

Attributes
MSMON_CFG_MBWU_CTL is a 32-bit register.

Field descriptions
The MSMON_CFG_MBWU_CTL bit assignments are:

31 30 29 28 27 26 25 24 23222120 19 18 17 16 15 14 131211109876543210
ENCAPT_EVNTCAPT_RESETOFLOW_STATUSOFLOW_INTROFLOW_FRZSUBTYPESCLENRES0MATCH_PMGMATCH_PARTIDOFLOW_STATUS_LOFLOW_INTR_L RES0 TYPE

EN, bit [31]

Enabled.

EN Meaning
0b0 The monitor instance is disabled and must not collect any

information.
0b1 The monitor instance is enabled to collect information according to

the configuration of the instance.

CAPT_EVNT, bits [30:28]

Capture event selector.

When the selected capture event occurs, MSMON_MBWU of the monitor instance is copied to
MSMON_MBWU_CAPTURE of the same instance. If the long counter is also implemented, MSMON_MBWU_L is also
copied to MSMON_MBWU_L_CAPTURE.

Select the event that triggers capture from the following:

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1839

ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_mbwu.html
ext-msmon_mbwu_capture.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l_capture.html

CAPT_EVNT Meaning
0b000 No capture event is triggered.
0b001 External capture event 1 (optional but recommended)
0b010 External capture event 2 (optional)
0b011 External capture event 3 (optional)
0b100 External capture event 4 (optional)
0b101 External capture event 5 (optional)
0b110 External capture event 6 (optional)
0b111 Capture occurs when a MSMON_CAPT_EVNT register in

this MSC is written and causes a capture event for the
security state of this monitor. (optional)

The values marked as optional indicate capture event sources that can be omitted in an implementation. Those values
representing non-implemented event sources must not trigger a capture event.

If capture is not implemented for the MBWU monitor type as indicated by MPAMF_MBWUMON_IDR.HAS_CAPTURE =
0, this field is RAZ/WI.

CAPT_RESET, bit [27]

Reset MSMON_MBWU.VALUE after capture.

Controls whether the VALUE field of the monitor instance is reset to zero immediately after being copied to the
corresponding capture register.

CAPT_RESET Meaning
0b0 MSMON_MBWU.VALUE field of the monitor instance is

not reset on capture.
0b1 MSMON_MBWU.VALUE field of the monitor instance is

reset on capture.

If capture is not implemented for the MBWU monitor type as indicated by MPAMF_MBWUMON_IDR.HAS_CAPTURE =
0, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that include
MSMON_MBWU_L.

OFLOW_STATUS, bit [26]

Overflow status.

Indicates whether the value of MSMON_MBWU has overflowed.

OFLOW_STATUS Meaning
0b0 MSMON_MBWU.VALUE has not overflowed.
0b1 MSMON_MBWU.VALUE has overflowed at least

once since this bit was last written to zero.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

Overflow status for MSMON_MBWU_L.VALUE is reported in MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L.

OFLOW_INTR, bit [25]

Enable interrupt on overflow of MSMON_MBWU.VALUE.

OFLOW_INTR Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_MBWU.VALUE.
0b1 An implementation-specific interrupt is signaled on an

overflow of MSMON_MBWU.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1840

ext-msmon_capt_evnt.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html

Interrupt enable for overflow of MSMON_MBWU_L.VALUE is controlled by
MSMON_CFG_MBWU_CTL.OFLOW_INTR_L.

OFLOW_FRZ, bit [24]

Freeze monitor instance on overflow.

Controls whether MSMON_MBWU.VALUE field of the monitor instance freezes on an overflow.

OFLOW_FRZ Meaning
0b0 MSMON_MBWU.VALUE field of the monitor instance

wraps on overflow.
0b1 MSMON_MBWU.VALUE field of the monitor instance

freezes on overflow. If the increment that caused the
overflow was 1, the frozen value is the post-increment
value of 0. If the increment that caused the overflow was
larger than 1, the frozen value of the monitor might be 0
or a larger value less than the final increment.

If overflow is not possible for the instance of the MBWU monitor in the implementation, this field is RAZ/WI.

This control bit affects both MSMON_MBWU and MSMON_MBWU_L in implementations that include
MSMON_MBWU_L.

SUBTYPE, bits [23:20]

Subtype. Type of bandwidth counted by this monitor.

This field is not currently used for MBWU monitors, but reserved for future use.

This field is RAZ/WI.

SCLEN, bit [19]

MSMON_MBWU.VALUE Scaling Enable.

Enables scaling of MSMON_MBWU.VALUE by MPAMF_MBWUMON_IDR.SCALE.

SCLEN Meaning
0b0 MSMON_MBWU.VALUE has bytes counted by the monitor

instance.
0b1 MSMON_MBWU.VALUE has bytes counted by the monitor

instance, shifted right by MPAMF_MBWUMON_IDR.SCALE.

Bit [18]

Reserved, RES0.

MATCH_PMG, bit [17]

Match PMG.

Controls whether the monitor instance only counts data transferred with PMG matching
MSMON_CFG_MBWU_FLT.PMG.

MATCH_PMG Meaning
0b0 The monitor instance counts data transferred with any

PMG value.
0b1 The monitor instance only counts data transferred with

the PMG value matching
MSMON_CFG_MBWU_FLT.PMG.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1841

ext-msmon_mbwu_l.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_mbwu.html
ext-msmon_cfg_mbwu_flt.html
ext-msmon_cfg_mbwu_flt.html

MATCH_PARTID, bit [16]

Match PARTID.

Controls whether the monitor instance counts only data transferred with PARTID matching
MSMON_CFG_MBWU_FLT.PARTID.

MATCH_PARTID Meaning
0b0 The monitor instance counts data transferred with

any PARTID value.
0b1 The monitor instance only counts data transferred

with the PARTID value matching
MSMON_CFG_MBWU_FLT.PARTID.

OFLOW_STATUS_L, bit [15]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Overflow Status of MSMON_MBWU_L.VALUE of the monitor instance.

Indicates whether MSMON_MBWU_L.VALUE has overflowed.

OFLOW_STATUS_L Meaning
0b0 MSMON_MBWU_L.VALUE has not overflowed.
0b1 MSMON_MBWU_L.VALUE has overflowed at least

once since this bit was last written to zero.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Overflow status of MSMON_MBWU.VALUE is reported in MSMON_CFG_MBWU_CTL.OFLOW_STATUS.

Otherwise:

Reserved, RES0.

OFLOW_INTR_L, bit [14]

When FEAT_MPAMv0p1 is implemented or FEAT_MPAMv1p1 is implemented:

Overflow Interrupt for MSMON_MBWU_L.

Controls whether an MPAM overflow interrupt is generated when MSMON_MBWU_L.VALUE overflows.

OFLOW_INTR_L Meaning
0b0 No interrupt is signaled on an overflow of

MSMON_MBWU_L.VALUE.
0b1 An implementation-specific interrupt is signalled on

overflow of MSMON_MBWU_L.VALUE.

If overflow is not possible for an MBWU monitor in the MSC implementation, this field is RAZ/WI.

If the overflow interrupt is not supported by the MSC implementation, this field is RAZ/WI.

If MPAMF_MBWUMON_IDR.HAS_LONG == 0, this bit is RES0.

Otherwise:

Reserved, RES0.

Bits [13:8]

Reserved, RES0.

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1842

ext-msmon_cfg_mbwu_flt.html
ext-msmon_cfg_mbwu_flt.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html
ext-msmon_mbwu_l.html

TYPE, bits [7:0]

Monitor Type Code. The MBWU monitor is TYPE = 0x42.

TYPE is a read-only constant indicating the type of the monitor.

Reads as 0x42.

Access to this field is RO.

Accessing the MSMON_CFG_MBWU_CTL
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CFG_MBWU_CTL_s must be accessible from the Secure MPAM feature page. MSMON_CFG_MBWU_CTL_ns
must be accessible from the Non-secure MPAM feature page.

MSMON_CFG_MBWU_CTL_s and MSMON_CFG_MBWU_CTL_ns must be separate registers. The Secure instance
(MSMON_CFG_MBWU_CTL_s) accesses the memory bandwidth usage monitor controls used for Secure PARTIDs, and
the Non-secure instance (MSMON_CFG_MBWU_CTL_ns) accesses the memory bandwidth usage monitor controls used
for Non-secure PARTIDs.

When RIS is implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration settings
for the bandwidth resource instance selected by MSMON_CFG_MON_SEL.RIS and the memory bandwidth usage
monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

When RIS is not implemented, loads and stores to MSMON_CFG_MBWU_CTL access the monitor configuration
settings for the memory bandwidth usage monitor instance selected by MSMON_CFG_MON_SEL.MON_SEL.

MSMON_CFG_MBWU_CTL can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0828 MSMON_CFG_MBWU_CTL_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0828 MSMON_CFG_MBWU_CTL_ns

Accesses on this interface are RW.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control
Register

Page 1843

ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html

no old file htmldiff from- (new)

MSMON_CSU_OFSR, MPAM CSU Monitor Overflow
Status Register

The MSMON_CSU_OFSR characteristics are:

Purpose
MSMON_CSU_OFSR is a 32-bit read-only register that shows bitmap of CSU monitor instance overflow status for a
contiguous group of 32 monitor instances. MSMON_CSU_OFSR_s gives a bitmap of pending CSU overflow status for
32 Secure CSU monitor instances. MSMON_CSU_OFSR_ns gives a bitmap of pending CSU overflow status for 32 Non-
secure CSU monitor instances.

Configuration
The power domain of MSMON_CSU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_CSUMON_IDR.HAS_OFSR == 1. Otherwise, direct accesses to
MSMON_CSU_OFSR are RES0.

Attributes
MSMON_CSU_OFSR is a 32-bit register.

Field descriptions
The MSMON_CSU_OFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OFPND31OFPND30OFPND29OFPND28OFPND27OFPND26OFPND25OFPND24OFPND23OFPND22OFPND21OFPND20OFPND19OFPND18OFPND17OFPND16OFPND15OFPND14OFPND13OFPND12OFPND11OFPND10OFPND9OFPND8OFPND7OFPND6OFPND5OFPND4OFPND3OFPND2OFPND1OFPND0

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for CSU monitor instances. The RIS and the contiguous range of CSU monitor instances are
set in MSMON_CFG_MON_SEL. i of 0 corresponds to the CSU monitor instance MSMON_CFG_MON_SEL.MON_SEL
& 0xFFE0.

OFPND<i> Meaning
0b0 CSU monitor instance

(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) does
not have a pending overflow.

0b1 CSU monitor instance
(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has a
pending overflow.

After reading MSMON_OFLOW_SR to determine that a CSU monitor instance has a pending overflow and which RIS
values have pending overflows, an interrupt service routine could poll groups of 32 monitor instances in a RIS for
pending monitors by reading this bitmap and incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

Accessing the MSMON_CSU_OFSR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_CSU_OFSR_s must be accessible from the Secure MPAM feature page. MSMON_CSU_OFSR_ns must be
accessible from the Non-secure MPAM feature page.

MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register

Page 1844

ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html

MSMON_CSU_OFSR_s and MSMON_CSU_OFSR_ns must be separate registers. The Secure instance
(MSMON_CSU_OFSR_s) accesses the CSU monitor overflow status bitmap used for Secure PARTIDs, and the Non-
secure instance (MSMON_CSU_OFSR_ns) accesses the CSU monitor overflow status bitmap used for Non-secure
PARTIDs.

MSMON_CSU_OFSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0858 MSMON_CSU_OFSR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0858 MSMON_CSU_OFSR_ns

Accesses on this interface are RO.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register

Page 1845

no old file htmldiff from- (new)

MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow
Status Register

The MSMON_MBWU_OFSR characteristics are:

Purpose
MSMON_MBWU_OFSR is a 32-bit read-only register that shows bitmap of MBWU monitor instance overflow status for
a contiguous group of 32 monitor instances. MSMON_MBWU_OFSR_s gives a bitmap of pending MBWU overflow
status for 32 Secure MBWU monitor instances. MSMON_MBWU_OFSR_ns gives a bitmap of pending MBWU overflow
status for 32 Non-secure MBWU monitor instances.

Configuration
The power domain of MSMON_MBWU_OFSR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MBWUMON_IDR.HAS_OFSR == 1. Otherwise, direct accesses to
MSMON_MBWU_OFSR are RES0.

Attributes
MSMON_MBWU_OFSR is a 32-bit register.

Field descriptions
The MSMON_MBWU_OFSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
OFPND31OFPND30OFPND29OFPND28OFPND27OFPND26OFPND25OFPND24OFPND23OFPND22OFPND21OFPND20OFPND19OFPND18OFPND17OFPND16OFPND15OFPND14OFPND13OFPND12OFPND11OFPND10OFPND9OFPND8OFPND7OFPND6OFPND5OFPND4OFPND3OFPND2OFPND1OFPND0

OFPND<i>, bit [i], for i = 31 to 0

Overflow status bitmap for MBWU monitor instances. The RIS and the contiguous range of MBWU monitor instances
are set in MSMON_CFG_MON_SEL. i of 0 corresponds to the MBWU monitor instance
MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0.

OFPND<i> Meaning
0b0 MBWU monitor instance

(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) does
not have a pending overflow.

0b1 MBWU monitor instance
(MSMON_CFG_MON_SEL.MON_SEL & 0xFFE0 + i) has a
pending overflow.

After reading MSMON_OFLOW_SR to determine that a MBWU monitor instance has a pending overflow and which
RIS values have pending overflows, an interrupt service routine could poll groups of 32 monitor instances in a RIS for
pending monitors by reading this bitmap and incrementing MSMON_CFG_MON_SEL.MON_SEL by 32.

A pending overflow may be in either the MSMON_CFG_MBWU_CTL.OFLOW_STATUS or
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L field.

Accessing the MSMON_MBWU_OFSR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register

Page 1846

ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html
ext-msmon_cfg_mon_sel.html

MSMON_MBWU_OFSR_s must be accessible from the Secure MPAM feature page. MSMON_MBWU_OFSR_ns must be
accessible from the Non-secure MPAM feature page.

MSMON_MBWU_OFSR_s and MSMON_MBWU_OFSR_ns must be separate registers. The Secure instance
(MSMON_MBWU_OFSR_s) accesses the MBWU monitor overflow status bitmap used for Secure PARTIDs, and the
Non-secure instance (MSMON_MBWU_OFSR_ns) accesses the MBWU monitor overflow status bitmap used for Non-
secure PARTIDs.

MSMON_MBWU_OFSR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x0898 MSMON_MBWU_OFSR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x0898 MSMON_MBWU_OFSR_ns

Accesses on this interface are RO.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register

Page 1847

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor
Overflow MSI Write High-part Address Register

The MSMON_OFLOW_MSI_ADDR_H characteristics are:

Purpose
MSMON_OFLOW_MSI_ADDR_H is a 32-bit read-write register for the high part of the MPAM monitor overflow MSI
address. MSMON_OFLOW_MSI_ADDR_H_s is the high part of the MSI write address for monitor overflow interrupts
from Secure monitor instances. MSMON_OFLOW_MSI_ADDR_H_ns is the high part of the MSI write address for
monitor overflow interrupts from Non-secure monitor instances.

Configuration
The power domain of MSMON_OFLOW_MSI_ADDR_H is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_ADDR_H are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

Attributes
MSMON_OFLOW_MSI_ADDR_H is a 32-bit register.

Field descriptions
The MSMON_OFLOW_MSI_ADDR_H bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MSI_ADDR_H

Bits [31:20]

Reserved, RES0.

MSI_ADDR_H, bits [19:0]

MSI write address bits[51:32].

Accessing the MSMON_OFLOW_MSI_ADDR_H
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_OFLW_MSI_ADDR_H_s must be accessible from the Secure MPAM feature page.
MSMON_OFLW_MSI_ADDR_H_ns must be accessible from the Non-secure MPAM feature page.

MSMON_OFLW_MSI_ADDR_H_s and MSMON_OFLW_MSI_ADDR_H_ns must be separate registers. The Secure
instance (MSMON_OFLW_MSI_ADDR_H_s) accesses the monitor overflow MSI high address used for Secure PARTIDs,
and the Non-secure instance (MSMON_OFLW_MSI_ADDR_H_ns) accesses the monitor overflow MSI high address used
for Non-secure PARTIDs.

MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register

Page 1848

MSMON_OFLOW_MSI_ADDR_H can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08E4 MSMON_OFLW_MSI_ADDR_H_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08E4 MSMON_OFLW_MSI_ADDR_H_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register

Page 1849

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow
MSI Low-part Address Register

The MSMON_OFLOW_MSI_ADDR_L characteristics are:

Purpose
MSMON_OFLOW_MSI_ADDR_L is a 32-bit read-write register for the low part of the MPAM monitor MSI address.
MSMON_OFLOW_MSI_ADDR_L_s is the low part of the MSI write address for overflow interrupts from Secure monitor
intances. MSMON_OFLOW_MSI_ADDR_L_ns is the low part of the MSI write address for overflow interrupts from
Non-secure monitor instances.

Configuration
The power domain of MSMON_OFLOW_MSI_ADDR_L is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented. Otherwise, direct accesses to
MSMON_OFLOW_MSI_ADDR_L are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

Attributes
MSMON_OFLOW_MSI_ADDR_L is a 32-bit register.

Field descriptions
The MSMON_OFLOW_MSI_ADDR_L bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSI_ADDR_L Bits[1:0]

MSI_ADDR_L, bits [31:2]

MSI write address bits[31:2].

Bits [1:0]

Reads as 0b00.

Access to this field is RO.

Accessing the MSMON_OFLOW_MSI_ADDR_L
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_OFLOW_MSI_ADDR_L_s must be accessible from the Secure MPAM feature page.
MSMON_OFLOW_MSI_ADDR_L_ns must be accessible from the Non-secure MPAM feature page.

MSMON_OFLOW_MSI_ADDR_L_s and MSMON_OFLOW_MSI_ADDR_L_ns must be separate registers. The Secure
instance (MSMON_OFLOW_MSI_ADDR_L_s) accesses the monitor overflow MSI low address used for Secure PARTIDs,

MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register

Page 1850

and the Non-secure instance (MSMON_OFLOW_MSI_ADDR_L_ns) accesses the monitor overflow MSI low address
used for Non-secure PARTIDs.

MSMON_OFLOW_MSI_ADDR_L can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08E0 MSMON_OFLOW_MSI_ADDR_L_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08E0 MSMON_OFLOW_MSI_ADDR_L_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register

Page 1851

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow
MSI Write Attributes Register

The MSMON_OFLOW_MSI_ATTR characteristics are:

Purpose
MSMON_OFLOW_MSI_ATTR is a 32-bit read-write register that controls MPAM monitor overflow MSI write attributes
for MPAM monitor overflows in this MSC. MSMON_OFLOW_MSI_ATTR_s controls Secure MPAM monitor overflow
MSI writes. MSMON_OFLOW_MSI_ATTR_ns controls Non-secure MPAM monitor overflow MSI writes.

Configuration
The power domain of MSMON_OFLOW_MSI_ATTR is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_ATTR are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

Attributes
MSMON_OFLOW_MSI_ATTR is a 32-bit register.

Field descriptions
The MSMON_OFLOW_MSI_ATTR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 MSI_SHMSI_MEMATTR RES0 MSIEN

Bits [31:30]

Reserved, RES0.

MSI_SH, bits [29:28]

Sharability attribute of MSI writes.

MSI_SH Meaning
0b00 Non-shareable.
0b01 Reserved, CONSTRAINED UNPREDICTABLE.
0b10 Outer Shareable.
0b11 Inner Shareable.

When MSMON_OFLOW_MSI_ATTR.MSI_MEMATTR specifies a Device memory type, the contents of this field are
IGNORED and Shareability is effectively Outer Shareable.

MSI_MEMATTR, bits [27:24]

Memory attributes of MSI writes.

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

Page 1852

Note: This encoding matches the VMSAv8-64 stage 2 MemAttr[3:0] field as described in the Arm ARM,except that the
following encodings are Reserved (not UNPREDICTABLE) and behave as DEvice-nGnRnE: 0b0100, 0b1000 and 0b1100.

MSI_MEMATTR Meaning
0b0000 Device-nGnRnE.
0b0001 Device-nGnRE.
0b0010 Device-nGRE.
0b0011 Device-GRE.
0b0100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b0101 Normal Inner Non-cacheable, Outer Non-cacheable.
0b0110 Normal Inner Write-Through Cacheable, Outer Non-

cacheable.
0b0111 Normal Inner Write-Back Cacheable, Outer Non-

cacheable.
0b1000 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1001 Normal Inner Non-Cachable, Outer Write-Through

Cacheable.
0b1010 Normal Inner Write-Through Cacheable, Outer Write-

Through Cachable.
0b1011 Normal Inner Write-Back Cacheable, Outer Write-

Through Cachable.
0b1100 Reserved. Behave as Device-nGnRnE, 0b0000.
0b1101 Normal Inner Non-cacheable, Outer Write-Back

Cacheable.
0b1110 Normal Inner Write-Through Cacheable, Outer Write-

Back Cacheable.
0b1111 Normal Inner Write-Back Cacheable, Outer Write-

Back Cacheable.

When this field specifies a Device memory type, the contents of MSMON_OFLOW_MSI_ATTR.MSI_SH are IGNORED
and Shareability is effectively Outer Shareable.

Device types may be implemented as any Device type with more n characters. For example, if this field is set to
0b0010, an implementation may treat the MSI write as the specified type, Device-nGRE, or as Device-nGnRE or as
Device-nGnRnE.

Reserved encodings 0b0100, 0b1000 and 0b1100 must be implemented to behave the same as the 0b0000 encoding.

Bits [23:1]

Reserved, RES0.

MSIEN, bit [0]

Monitor overflow MSI write enable.

MSIEN Meaning
0b0 MPAM monitor overflow MSI writes are not generated to

signal enabled MPAM monitor overflow interrupts. When
monitor overflow MSI writes are disabled, hardwired monitor
overflow interrupt could be generated if hardwired monitor
overflow interrupt is implemented.

0b1 MPAM monitor overflow MSI writes are generated to signal
enabled MPAM monitor overflow interrupts. When monitor
overflow MSI writes are enabled, hardwired monitor overflow
interrupts are not generated.

This enable affects whether a hardwired overlow interrupt is generated.

On a Warm reset, this field resets to 0.

Accessing the MSMON_OFLOW_MSI_ATTR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

Page 1853

MSMON_OFLOW_MSI_ATTR_s must be accessible from the Secure MPAM feature page.
MSMON_OFLOW_MSI_ATTR_ns must be accessible from the Non-secure MPAM feature page.

MSMON_OFLOW_MSI_ATTR_s and MSMON_OFLOW_MSI_ATTR_ns must be separate registers. The Secure instance
(MSMON_OFLOW_MSI_ATTR_s) accesses the monitor overflow MSI attributes used for Secure PARTIDs, and the Non-
secure instance (MSMON_OFLOW_MSI_ATTR_ns) accesses the monitor overflow MSI attributes used for Non-secure
PARTIDs.

MSMON_OFLOW_MSI_ATTR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08EC MSMON_OFLOW_MSI_ATTR_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08EC MSMON_OFLOW_MSI_ATTR_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register

Page 1854

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow
MSI Write Data Register

The MSMON_OFLOW_MSI_DATA characteristics are:

Purpose
MSMON_OFLOW_MSI_DATA is a 32-bit read-write register for the MPAM monitor overflow MSI data.
MSMON_OFLOW_MSI_DATA_s is the data for the MSI write for monitor overflow from Secure monitor instances.
MSMON_OFLOW_MSI_DATA_ns is the data for the MSI writes for monitor overflow interrupts from Non-secure
monitor instances.

Configuration
The power domain of MSMON_OFLOW_MSI_DATA is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_DATA are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

Attributes
MSMON_OFLOW_MSI_DATA is a 32-bit register.

Field descriptions
The MSMON_OFLOW_MSI_DATA bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MSI_DATA

MSI_DATA, bits [31:0]

MSI data.

Accessing the MSMON_OFLOW_MSI_DATA
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_OFLOW_MSI_DATA_s must be accessible from the Secure MPAM feature page.
MSMON_OFLOW_MSI_DATA_ns must be accessible from the Non-secure MPAM feature page.

MSMON_OFLOW_MSI_DATA_s and MSMON_OFLOW_MSI_DATA_ns must be separate registers. The Secure instance
(MSMON_OFLOW_MSI_DATA_s) accesses the monitor overflow MSI data used for Secure PARTIDs, and the Non-
secure instance (MSMON_OFLOW_MSI_DATA_ns) accesses the monitor overflow MSI data used for Non-secure
PARTIDs.

MSMON_OFLOW_MSI_DATA can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance

MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register

Page 1855

MPAM MPAMF_BASE_s 0x08E8 MSMON_OFLOW_MSI_DATA_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08E8 MSMON_OFLOW_MSI_DATA_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register

Page 1856

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow
MSI Write MPAM Information Register

The MSMON_OFLOW_MSI_MPAM characteristics are:

Purpose
MSMON_OFLOW_MSI_MPAM is a 32-bit read-write register that sets the MPAM information for a monitor overflow
MSI write. MSMON_OFLOW_MSI_MPAM_s controls MPAM information labeling of Secure monitor overflow MSI
writes. MSMON_OFLOW_MSI_MPAM_ns controls MPAM information labeling of Non-secure monitor overflow MSI
writes.

Configuration
The power domain of MSMON_OFLOW_MSI_MPAM is IMPLEMENTATION DEFINED.

This register is present only when FEAT_MPAMv1p1 is implemented and MPAMF_MSMON_IDR.HAS_OFLW_MSI ==
1. Otherwise, direct accesses to MSMON_OFLOW_MSI_MPAM are RES0.

MSMON_OFLOW_MSI_ADDR_L, MSMON_OFLOW_MSI_ADDR_H, MSMON_OFLOW_MSI_ATTR,
MSMON_OFLOW_MSI_DATA and MSMON_OFLOW_MSI_MPAM must all be implemented to support MSI writes for
monitor overflow interrupts.

Attributes
MSMON_OFLOW_MSI_MPAM is a 32-bit register.

Field descriptions
The MSMON_OFLOW_MSI_MPAM bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PMG PARTID

Bits [31:24]

Reserved, RES0.

PMG, bits [23:16]

Performance monitoring group property for an MSC monitor overflow MSI write.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

PARTID, bits [15:0]

Partition ID for an MSC monitor overflow MSI write.

The PARTID in this field is in the Secure PARTID space in the MSMON_OFLOW_MSI_MPAM_s instance and in the Non-
secure PARTID space in the MSMON_OFLOW_MSI_MPAM_ns instance of this register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register

Page 1857

Accessing the MSMON_OFLOW_MSI_MPAM
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_OFLOW_MSI_MPAM_s must be accessible from the Secure MPAM feature page.
MSMON_OFLOW_MSI_MPAM_ns must be accessible from the Non-secure MPAM feature page.

MSMON_OFLOW_MSI_MPAM_s and MSMON_OFLOW_MSI_MPAM_ns must be separate registers. The Secure
instance (MSMON_OFLOW_MSI_MPAM_s) accesses the monitor overflow MSI MPAM information used for Secure
PARTIDs, and the Non-secure instance (MSMON_OFLOW_MSI_MPAM_ns) accesses the monitor overflow MSI MPAM
information used for Non-secure PARTIDs.

MSMON_OFLOW_MSI_MPAM can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08DC MSMON_OFLOW_MSI_MPAM_s

Accesses on this interface are RW.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08DC MSMON_OFLOW_MSI_MPAM_ns

Accesses on this interface are RW.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register

Page 1858

no old file htmldiff from- (new)

MSMON_OFLOW_SR, MPAM Monitor Overflow Status
Register

The MSMON_OFLOW_SR characteristics are:

Purpose
MSMON_OFLOW_SR is a 32-bit read-only register that shows MPAM monitor overflow status for this MSC.
MSMON_OFLOW_SR_s gives the status of overflows of Secure MPAM monitors. MSMON_OFLOW_SR_ns gives the
status of overflows of Non-secure MPAM monitors.

Configuration
The power domain of MSMON_OFLOW_SR is IMPLEMENTATION DEFINED.

This register is present only when MPAMF_MSMON_IDR.HAS_OFLOW_SR == 1. Otherwise, direct accesses to
MSMON_OFLOW_SR are RES0.

Attributes
MSMON_OFLOW_SR is a 32-bit register.

Field descriptions
The MSMON_OFLOW_SR bit assignments are:

31 30 2928272625242322212019181716 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
CSU_OFLOW_PNDMBWU_OFLOW_PND RES0 RIS_PND15RIS_PND14RIS_PND13RIS_PND12RIS_PND11RIS_PND10RIS_PND9RIS_PND8RIS_PND7RIS_PND6RIS_PND5RIS_PND4RIS_PND3RIS_PND2RIS_PND1RIS_PND0

CSU_OFLOW_PND, bit [31]

At least one cache storage usage monitor has OFLOW_STATUS of 1 in MSMON_CFG_CSU_CTL.

CSU_OFLOW_PND Meaning
0b0 There are no cache storage usage monitor

instances where
MSMON_CFG_CSU_CTL.OFLOW_STATUS is 1.

0b1 MSMON_CFG_CSU_CTL for at least one of the
cache storage usage monitor instances has
OFLOW_STATUS set to 1.

This field clears when MSMON_CFG_CSU_CTL.OFLOW_STATUS has been reset to 0 for all CSU monitor instances in
this MSC.

MBWU_OFLOW_PND, bit [30]

At least one memory bandwidth usage monitor instance has OFLOW_STATUS or OFLOW_STATUS_L of 1 in
MSMON_CFG_MBWU_CTL.

MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

Page 1859

MBWU_OFLOW_PND Meaning
0b0 There are no memory bandwidth usage monitor

instances where
MSMON_CFG_MBWU_CTL.OFLOW_STATUS is
1.

0b1 MSMON_CFG_MBWU_CTL for at least one of
the memory bandwidth usage monitor
instances has either OFLOW_STATUS or
OFLOW_STATUS_L set to 1.

This field clears when MSMON_CFG_MBWU_CTL.OFLOW_STATUS and
MSMON_CFG_MBWU_CTL.OFLOW_STATUS_L have been reset to 0 for all MBWU monitor instances in this MSC.

Bits [29:16]

Reserved, RES0.

RIS_PND<r>, bit [r], for r = 15 to 0

Overflow status by RIS.

RIS_PND<r> Meaning
0b0 RIS r has no unread overflows of any type of monitor.
0b1 RIS r has at least one unread overflow in at least one of

the monitor types.

Combined with the CSU_OFLOW_PND and MBWU_OFLOW_PND flags in this register, an interrupt service routine
could poll only the monitor types indicated in monitors for the resource instances flagged in this field.

Bit r is set when any monitor instance of any type in resource instance r has OFLOW_STATUS or OFLOW_STATUS_L
set to 1.

Accessing the MSMON_OFLOW_SR
This register is within the MPAM feature page memory frames. In a system that supports Secure and Non-secure
memory maps, there must be both Secure and Non-secure MPAM feature pages.

MSMON_OFLOW_SR_s must be accessible from the Secure MPAM feature page. MSMON_OFLOW_SR_ns must be
accessible from the Non-secure MPAM feature page.

MSMON_OFLOW_SR_s and MSMON_OFLOW_SR_ns must be separate registers. The Secure instance
(MSMON_OFLOW_SR_s) accesses the monitor overflow status used for Secure PARTIDs, and the Non-secure instance
(MSMON_OFLOW_SR_ns) accesses the monitor overflow status used for Non-secure PARTIDs.

MSMON_OFLOW_SR can be accessed through the memory-mapped interfaces:

Component Frame Offset Instance
MPAM MPAMF_BASE_s 0x08F0 MSMON_OFLOW_SR_s

Accesses on this interface are RO.

Component Frame Offset Instance
MPAM MPAMF_BASE_ns 0x08F0 MSMON_OFLOW_SR_ns

Accesses on this interface are RO.

15/12/2020 10:03; bddfd1ec80e08900ba81133616b961773fdd90d1

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

no old file htmldiff from- (new)

MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register

Page 1860

(old) htmldiff from- (new)

PMCIDR0, Performance Monitors Component
Identification Register 0

The PMCIDR0 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR0 is a 32-bit register.

Field descriptions
The PMCIDR0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_0

Bits [31:8]

Reserved, RES0.

PRMBL_0, bits [7:0]

Preamble.

Reads as 0x0D.

Access to this field is RO.

Accessing the PMCIDR0

PMCIDR0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFF0 PMCIDR0

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

PMCIDR0, Performance Monitors Component Identification Register 0

Page 1861

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCIDR0, Performance Monitors Component Identification Register 0

Page 1862

(old) htmldiff from- (new)

PMCIDR1, Performance Monitors Component
Identification Register 1

The PMCIDR1 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR1 is a 32-bit register.

Field descriptions
The PMCIDR1 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 CLASS PRMBL_1

Bits [31:8]

Reserved, RES0.

CLASS, bits [7:4]

Component class.

CLASS Meaning
0b1001 CoreSight component.

Other values are defined by the CoreSight Architecture.

This field reads as 0x9.

PRMBL_1, bits [3:0]

Preamble. RAZ.

Reads as 0b0000.

Access to this field is RO.

PMCIDR1, Performance Monitors Component Identification Register 1

Page 1863

Accessing the PMCIDR1

PMCIDR1 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFF4 PMCIDR1

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCIDR1, Performance Monitors Component Identification Register 1

Page 1864

(old) htmldiff from- (new)

PMCIDR2, Performance Monitors Component
Identification Register 2

The PMCIDR2 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR2 is a 32-bit register.

Field descriptions
The PMCIDR2 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_2

Bits [31:8]

Reserved, RES0.

PRMBL_2, bits [7:0]

Preamble.

Reads as 0x05.

Access to this field is RO.

Accessing the PMCIDR2

PMCIDR2 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFF8 PMCIDR2

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

PMCIDR2, Performance Monitors Component Identification Register 2

Page 1865

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCIDR2, Performance Monitors Component Identification Register 2

Page 1866

(old) htmldiff from- (new)

PMCIDR3, Performance Monitors Component
Identification Register 3

The PMCIDR3 characteristics are:

Purpose
Provides information to identify a Performance Monitor component.

For more information, see 'About the Component Identification scheme'.

Configuration
Implementation of this register is OPTIONAL.

If FEAT_DoPD is implemented, this register is in the Core power domain. If FEAT_DoPD is not implemented, this
register is in the Debug power domain.

This register is required for CoreSight compliance.

Attributes
PMCIDR3 is a 32-bit register.

Field descriptions
The PMCIDR3 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 PRMBL_3

Bits [31:8]

Reserved, RES0.

PRMBL_3, bits [7:0]

Preamble.

Reads as 0xB1.

Access to this field is RO.

Accessing the PMCIDR3

PMCIDR3 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xFFC PMCIDR3

This interface is accessible as follows:

• When FEAT_DoPD is not implemented or IsCorePowered() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

PMCIDR3, Performance Monitors Component Identification Register 3

Page 1867

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCIDR3, Performance Monitors Component Identification Register 3

Page 1868

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register
The PMCR_EL0 characteristics are:

Purpose
Provides details of the Performance Monitors implementation, including the number of counters implemented, and
configures and controls the counters.

Configuration
External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch32 System register PMCR[7:0].

External register PMCR_EL0 bits [7:0] are architecturally mapped to AArch64 System register PMCR_EL0[7:0].

PMCR_EL0 is in the Core power domain.

This register is only partially mapped to the internal PMCR System register. An external agent must use other means
to discover the information held in PMCR[31:11], such as accessing PMCFGR and the ID registers.

Attributes
PMCR_EL0 is a 32-bit register.

Field descriptions
The PMCR_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RAZ/WI RES0FZORES0 LP LC DP X D C P E

Bits [31:11]

Reserved, RAZ/WI.

Hardware must implement this field as RAZ/WI. Software must not rely on the register reading as zero, and must use a
read-modify-write sequence to write to the register.

Bit [10]

Reserved, RES0.

FZO, bit [9]

When FEAT_PMUv3p7 is implemented:

Freeze-on-overflow. Stop event counters on overflow.

FZO Meaning
0b0 Do not freeze on overflow.
0b1 Event counters do not count when PMOVSCLR_EL0[(N-1):0] is

nonzero, where N is the value of MDCR_EL2.HPMN if EL2 is
implemented, and PMCR_EL0.N otherwise.

If EL2 is implemented, then:

• This bit affects the operation of event counters in the range [0 .. (MDCR_EL2.HPMN-1)].

PMCR_EL0, Performance Monitors Control Register

Page 1869

ext-pmcfgr.html
AArch64-pmovsclr_el0.html

• If MDCR_EL2.HPMN is less than PMCR_EL0.N:
◦ This bit does not affect the operation of event counters in the range [MDCR_EL2.HPMN ..

(PMCR_EL0.N-1)].
◦ The operation of this bit ignores the values of

PMOVSCLR_EL0[(PMCR_EL0.N-1):MDCR_EL2.HPMN].
• This applies even when EL2 is disabled in the current Security state.

This bit does not affect the operation of PMCCNTR_EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

Bit [8]

Reserved, RES0.

LP, bit [7]

When FEAT_PMUv3p5 is implemented:

Long event counter enable. Determines when unsigned overflow is recorded by an eventa counter overflow bit.

LP Meaning
0b0 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[31:0].
0b1 Event counter overflow on increment that causes unsigned

overflow of PMEVCNTR<n>_EL0[63:0].

If EL2 is implemented and MDCR_EL2.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event
counters in the range [MDCR_EL2.HPMN:(PMCR_EL0.N-1)].

If EL2 is implemented and HDCR.HPMN is less than PMCR_EL0.N, this bit does not affect the operation of event
counters in the range [HDCR.HPMN..(PMCR_EL0.N-1)].

Note

The effect of MDCR_EL2.HPMN or HDCR.HPMN on the operation of this bit
always applies if EL2 is implemented, at all Exception levels including EL2
and EL3, and regardless of whether EL2 is enabled in the current Security
state. For more information, see the description of MDCR_EL2.HPMN or
HDCR.HPMN.

If the highest implemented Exception level is using AArch32, it is IMPLEMENTATION DEFINED whether this bit is RW or
RAZ/WI.

Otherwise:

Reserved, RES0.

LC, bit [6]

When AArch32 is supported at any Exception level:

Long cycle counter enable. Determines when unsigned overflow is recorded by the cycle counter overflow bit.

LC Meaning
0b0 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[31:0].
0b1 Cycle counter overflow on increment that causes unsigned

overflow of PMCCNTR_EL0[63:0].

PMCR_EL0, Performance Monitors Control Register

Page 1870

AArch64-pmovsclr_el0.html
AArch64-pmccntr_el0.html
ext-pmevcntrn_el0.html
ext-pmevcntrn_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html

Arm deprecates use of PMCR_EL0.LC = 0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES1.

DP, bit [5]

When EL3 is implemented or (FEAT_PMUv3p1 is implemented and EL2 is implemented):

Disable cycle counter when event counting is prohibited. The possible values of this bit are:

DP Meaning
0b0 Cycle counting by PMCCNTR_EL0 is not affected by this bit.
0b1 When event counting for counters in the range

[0..(MDCR_EL2.HPMN-1)] is prohibited, cycle counting by
PMCCNTR_EL0 is disabled.

For more information, see 'Prohibiting event counting'.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

X, bit [4]

When the implementation includes a PMU event export bus:

Enable export of events in an IMPLEMENTATION DEFINED PMU event export bus.

X Meaning
0b0 Do not export events.
0b1 Export events where not prohibited.

This field enables the exporting of events over an IMPLEMENTATION DEFINED PMU event export bus to another device,
for example to an OPTIONAL PE trace unit.

No events are exported when counting is prohibited.

This field does not affect the generation of Performance Monitors overflow interrupt requests or signaling to a cross-
trigger interface (CTI) that can be implemented as signals exported from the PE.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RAZ/WI.

D, bit [3]

When AArch32 is supported at any Exception level:

Clock divider.

PMCR_EL0, Performance Monitors Control Register

Page 1871

ext-pmccntr_el0.html
ext-pmccntr_el0.html

D Meaning
0b0 When enabled, PMCCNTR_EL0 counts every clock cycle.
0b1 When enabled, PMCCNTR_EL0 counts once every 64 clock cycles.

If PMCR_EL0.LC == 1, this bit is ignored and the cycle counter counts every clock cycle.

Arm deprecates use of PMCR_EL0.D = 1.

When this register has an architecturally-defined reset value, if this field is implemented as an RW field it resets to:

• A value that is architecturally UNKNOWN if the reset is into an Exception level that is using AArch64.
• 0 if the reset is into an Exception level that is using AArch32.

Otherwise:

Reserved, RES0.

C, bit [2]

Cycle counter reset. The effects of writing to this bit are:

C Meaning
0b0 No action.
0b1 Reset PMCCNTR_EL0 to zero.

Note

Resetting PMCCNTR_EL0 does not change the cycle counter overflow bit. If
FEAT_PMUv3p5 is implemented, the value of PMCR_EL0.LC is ignored, and
bits [63:0] of the cycle counter are reset.

Access to this field is WO/RAZ.

P, bit [1]

Event counter reset. The effects of writing to this bit are:

P Meaning
0b0 No action.
0b1 Reset all event counters, not including PMCCNTR_EL0, to zero.

Note

If FEAT_PMUv3p5 is implemented, the value of MDCR_EL2.HLP, or
PMCR_EL0.LP is ignored and bits [63:0] of all event counters are reset.

Resetting the event counters does not change the event counter overflow bits.
If FEAT_PMUv3p5 is implemented, the value of MDCR_EL2.HLP, or
PMCR_EL0.LP is ignored and bits [63:0] of all affected event counters are
reset.

Access to this field is WO/RAZ.

E, bit [0]

Enable.

E Meaning
0b0 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are disabled.
0b1 All event counters in the range [0..(PMN-1)] and PMCCNTR_EL0,

are enabled by PMCNTENSET_EL0.

If EL2 is implemented then:

PMCR_EL0, Performance Monitors Control Register

Page 1872

ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmccntr_el0.html
ext-pmcntenset_el0.html

• If EL2 is using AArch32, PMN is HDCR.HPMN.
• If EL2 is using AArch64, PMN is MDCR_EL2.HPMN.
• If PMN is less than PMCR_EL0.N, this bit does not affect the operation of event counters in the range

[PMN..(PMCR_EL0.N-1)].

If EL2 is not implemented, PMN is PMCR_EL0.N.

Note

The effect of the following fields on the operation of this bit applies if EL2 is
implemented regardless of whether EL2 is enabled in the current Security
state:

• HDCR.HPMN. See the description of HDCR.HPMN for more
information.

• MDCR_EL2.HPMN. See the description of MDCR_EL2.HPMN for more
information.

On a Warm reset, this field resets to 0.

Accessing the PMCR_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMCR_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0xE04 PMCR_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMCR_EL0, Performance Monitors Control Register

Page 1873

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event
Type Registers, n = 0 - 30

The PMEVTYPER<n>_EL0 characteristics are:

Purpose
Configures event counter n, where n is 0 to 30.

Configuration
External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch64 System register
PMEVTYPER<n>_EL0[31:0].

External register PMEVTYPER<n>_EL0 bits [31:0] are architecturally mapped to AArch32 System register
PMEVTYPER<n>[31:0].

PMEVTYPER<n>_EL0 is in the Core power domain.

If event counter n is not implemented:

• When IsCorePowered() && !DoubleLockStatus() && !OSLockStatus() && AllowExternalPMUAccess(),
accesses are RES0.

• Otherwise, it is CONSTRAINED UNPREDICTABLE whether accesses to this register are RES0 or generate an error
response.

Attributes
PMEVTYPER<n>_EL0 is a 32-bit register.

Field descriptions
The PMEVTYPER<n>_EL0 bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
P U NSKNSUNSH M MT SH RES0 evtCount[15:10] evtCount[9:0]

P, bit [31]

Privileged filtering bit. Controls counting in EL1.

If EL3 is implemented, then counting in Non-secure EL1 is further controlled by the PMEVTYPER<n>_EL0.NSK bit.

P Meaning
0b0 Count events in EL1.
0b1 Do not count events in EL1.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

U, bit [30]

User filtering bit. Controls counting in EL0.

If EL3 is implemented, then counting in Non-secure EL0 is further controlled by the PMEVTYPER<n>_EL0.NSU bit.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1874

U Meaning
0b0 Count events in EL0.
0b1 Do not count events in EL0.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

NSK, bit [29]

When EL3 is implemented:

Non-secure EL1 (kernel) modes filtering bit. Controls counting in Non-secure EL1.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Non-secure EL1 are counted.

Otherwise, events in Non-secure EL1 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSU, bit [28]

When EL3 is implemented:

Non-secure EL0 (Unprivileged) filtering bit. Controls counting in Non-secure EL0.

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.U bit, events in Non-secure EL0 are counted.

Otherwise, events in Non-secure EL0 are not counted.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

NSH, bit [27]

When EL2 is implemented:

EL2 (Hypervisor) filtering bit. Controls counting in EL2.

If FEAT_SEL2 and EL3 are implemented, counting in Secure EL2 is further controlled by the
PMEVTYPER<n>_EL0.SH bit.

NSH Meaning
0b0 Do not count events in EL2.
0b1 Count events in EL2.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

M, bit [26]

When EL3 is implemented:

Secure EL3 filtering bit.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1875

If the value of this bit is equal to the value of the PMEVTYPER<n>_EL0.P bit, events in Secure EL3 are counted.

Otherwise, events in Secure EL3 are not counted.

Most applications can ignore this field and set its value to 0b0.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

MT, bit [25]

When (FEAT_MTPMU is implemented and enabled) or an IMPLEMENTATION DEFINED multi-threaded PMU Extension is
implemented:

Multithreading.

MT Meaning
0b0 Count events only on controlling PE.
0b1 Count events from any PE with the same affinity at level 1 and

above as this PE.

Note
• When the lowest level of affinity consists of logical PEs that are

implemented using a multi-threading type approach, an implementation
is described as multi-threaded. That is, the performance of PEs at the
lowest affinity level is highly interdependent.

• Events from a different thread of a multithreaded implementation are
not Attributable to the thread counting the event.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

SH, bit [24]

When FEAT_SEL2 is implemented and EL3 is implemented:

Secure EL2 filtering.

If the value of this bit is not equal to the value of the PMEVTYPER<n>_EL0.NSH bit, events in Secure EL2 are
counted.

Otherwise, events in Secure EL2 are not counted.

Note

This field is not visible in the AArch32 PMEVTYPER<n> System register.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1876

Bits [23:16]

Reserved, RES0.

evtCount[15:10], bits [15:10]

When FEAT_PMUv3p1 is implemented:

Extension to evtCount[9:0]. ForSee more information, see evtCount[9:0].] for more details.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

evtCount[9:0], bits [9:0]

Event to count. The event number of the event that is counted by event counter PMEVCNTR<n>_EL0.

Software must program this field with an event that is supported by the PE being programmed.

The ranges of event numbers allocated to each type of event are shown in 'Allocation of the PMU event number space'.

If evtCount is programmed to an event that is reserved or not supported by the PE, the behavior depends on the value
written:

• For the range 0x0000 to 0x003F, no events are counted, and the value returned by a direct or external read of
the evtCount field is the value written to the field.

• If 16-bit evtCount is implemented, for the range 0x4000 to 0x403F, no events are counted, and the value
returned by a direct or external read of the evtCount field is the value written to the field.

• For IMPLEMENTATION DEFINED events, it is UNPREDICTABLE what event, if any, is counted, and the value returned
by a direct or external read of the evtCount field is UNKNOWN.

Note

UNPREDICTABLE means the event must not expose privileged information.

Arm recommends that the behavior across a family of implementations is defined such that if a given implementation
does not include an event from a set of common IMPLEMENTATION DEFINED events, then no event is counted and the
value read back on evtCount is the value written.

On a Warm reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMEVTYPER<n>_EL0

Note

SoftwareLockStatus() depends on the type of access attempted and
AllowExternalPMUAccess() has a new definition from Armv8.4. Refer to the
Pseudocode definitions for more information.

PMEVTYPER<n>_EL0 can be accessed through the external debug interface:

Component Offset Instance
PMU 0x400 + (4 *

n)
PMEVTYPER<n>_EL0

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
SoftwareLockStatus() accesses to this register are RO.

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1877

ext-pmevcntrn_el0.html

• When IsCorePowered(), !DoubleLockStatus(), !OSLockStatus(), AllowExternalPMUAccess() and
!SoftwareLockStatus() accesses to this register are RW.

• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30

Page 1878

(old) htmldiff from- (new)

PMVIDSR, VMID Sample Register
The PMVIDSR characteristics are:

Purpose
Contains the sampled VMID value that is captured on reading PMPCSR[31:0].

Configuration
PMVIDSR is in the Core power domain.

This register is present only when FEAT_PCSRv8p2 is implemented and EL2 is implemented. Otherwise, direct
accesses to PMVIDSR are RES0.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented
in the external debug register space, as indicated by the value of
EDDEVID.PCSample.

Attributes
PMVIDSR is a 32-bit register.

Field descriptions
The PMVIDSR bit assignments are:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RES0 VMID[15:8] VMID

Bits [31:16]

Reserved, RES0.

VMID[15:8], bits [15:8]

When FEAT_VMID16 is implemented:

Extension to VMID[7:0]. ForSee more information, see VMID[7:0].] for more details.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Otherwise:

Reserved, RES0.

VMID, bits [7:0]

VMID sample. The VMID associated with the most recent PMPCSR sample. When the most recent PMPCSR sample
was generated:

• This field is set to an UNKNOWN value if any of the following apply:

PMVIDSR, VMID Sample Register

Page 1879

ext-pmpcsr.html
ext-eddevid.html
ext-pmpcsr.html
ext-pmpcsr.html

◦ EL2 is disabled in the current Security state.
◦ The PE is executing at EL2.
◦ EL2 is enabled in the current Security state, the PE is executing at EL0, EL2 is using AArch64,

HCR_EL2.E2H == 1, and HCR_EL2.TGE == 1.
• Otherwise:

◦ If EL2 is using AArch64 and either FEAT_VMID16 is not implemented or VTCR_EL2.VS is 1, this field
is set to VTTBR_EL2.VMID.

◦ If EL2 is using AArch64, FEAT_VMID16 is implemented, and VTCR_EL2.VS is 0, PMVIDSR.VMID[7:0]
is set to VTTBR_EL2.VMID[7:0] and PMVIDSR.VMID[15:8] is RES0.

◦ If EL2 is using AArch32, this field is set to VTTBR.VMID.

Because the value written to PMVIDR is an indirect read of the VMID value, it is CONSTRAINED UNPREDICTABLE whether
PMVIDSR is set to the original or new value if PMPCSR samples:

• An instruction that writes to the VMID value.
• The next Context synchronization event.
• Any instruction executed between these two instructions.

On a Cold reset, this field resets to an architecturally UNKNOWN value.

Accessing the PMVIDSR
IMPLEMENTATION DEFINED extensions to external debug might make the value of this register UNKNOWN, see 'Permitted
behavior that might make the PC Sample-based profiling registers UNKNOWN'.

PMVIDSR can be accessed through the external debug interface:

Component Offset Instance
PMU 0x20C PMVIDSR

This interface is accessible as follows:

• When IsCorePowered(), !DoubleLockStatus() and !OSLockStatus() accesses to this register are RO.
• Otherwise accesses to this register generate an error response.

1530/1209/2020 1015:0307; bddfd1ec80e08900ba81133616b961773fdd90d1ccead0cb9f089f9ceec50268e82aec9e71047211

Copyright © 2010-2020 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.

(old) htmldiff from- (new)

PMVIDSR, VMID Sample Register

Page 1880

AArch64-vtcr_el2.html
AArch64-vtcr_el2.html
AArch32-vttbr.html
ext-pmpcsr.html

	Proprietary Notice
	AArch64 System Registers
	AArch64 System Instructions
	ACCDATA_EL1, Accelerator Data
	CCSIDR_EL1, Current Cache Size ID Register
	CLIDR_EL1, Cache Level ID Register
	CNTHP_CTL_EL2, Counter-timer Hypervisor Physical Timer Control register
	CNTHPS_CTL_EL2, Counter-timer Secure Physical Timer Control register (EL2)
	CNTHV_CTL_EL2, Counter-timer Virtual Timer Control register (EL2)
	CNTHVS_CTL_EL2, Counter-timer Secure Virtual Timer Control register (EL2)
	CNTP_CTL_EL0, Counter-timer Physical Timer Control register
	CNTPS_CTL_EL1, Counter-timer Physical Secure Timer Control register
	CNTV_CTL_EL0, Counter-timer Virtual Timer Control register
	CPACR_EL1, Architectural Feature Access Control Register
	CPTR_EL2, Architectural Feature Trap Register (EL2)
	CPTR_EL3, Architectural Feature Trap Register (EL3)
	CSSELR_EL1, Cache Size Selection Register
	CTR_EL0, Cache Type Register
	CurrentEL, Current Exception Level
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
	DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	DC CIGVAC, Clean and Invalidate of Allocation Tags by VA to PoC
	DC CISW, Data or unified Cache line Clean and Invalidate by Set/Way
	DC CIVAC, Data or unified Cache line Clean and Invalidate by VA to PoC
	DC CSW, Data or unified Cache line Clean by Set/Way
	DC CVAC, Data or unified Cache line Clean by VA to PoC
	DC CVADP, Data or unified Cache line Clean by VA to PoDP
	DC CVAP, Data or unified Cache line Clean by VA to PoP
	DC GVA, Data Cache set Allocation Tag by VA
	DC ISW, Data or unified Cache line Invalidate by Set/Way
	DC IVAC, Data or unified Cache line Invalidate by VA to PoC
	DISR_EL1, Deferred Interrupt Status Register
	DIT, Data Independent Timing
	DSPSR_EL0, Debug Saved Program Status Register
	ELR_EL1, Exception Link Register (EL1)
	ELR_EL2, Exception Link Register (EL2)
	ESR_EL1, Exception Syndrome Register (EL1)
	ESR_EL2, Exception Syndrome Register (EL2)
	ESR_EL3, Exception Syndrome Register (EL3)
	FAR_EL1, Fault Address Register (EL1)
	FAR_EL2, Fault Address Register (EL2)
	FAR_EL3, Fault Address Register (EL3)
	FPCR, Floating-point Control Register
	FPEXC32_EL2, Floating-Point Exception Control register
	FPSR, Floating-point Status Register
	HAFGRTR_EL2, Hypervisor Activity Monitors Fine-Grained Read Trap Register
	HCR_EL2, Hypervisor Configuration Register
	HCRX_EL2, Extended Hypervisor Configuration Register
	HDFGRTR_EL2, Hypervisor Debug Fine-Grained Read Trap Register
	HDFGWTR_EL2, Hypervisor Debug Fine-Grained Write Trap Register
	HFGITR_EL2, Hypervisor Fine-Grained Instruction Trap Register
	HFGRTR_EL2, Hypervisor Fine-Grained Read Trap Register
	HFGWTR_EL2, Hypervisor Fine-Grained Write Trap Register
	HPFAR_EL2, Hypervisor IPA Fault Address Register
	ICC_AP1R<n>_EL1, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_BPR1_EL1, Interrupt Controller Binary Point Register 1
	ICC_CTLR_EL1, Interrupt Controller Control Register (EL1)
	ICC_IGRPEN1_EL1, Interrupt Controller Interrupt Group 1 Enable register
	ICC_SRE_EL1, Interrupt Controller System Register Enable register (EL1)
	ICH_VTR_EL2, Interrupt Controller VGIC Type Register
	ID_AA64ISAR0_EL1, AArch64 Instruction Set Attribute Register 0
	ID_AA64ISAR1_EL1, AArch64 Instruction Set Attribute Register 1
	ID_AA64MMFR1_EL1, AArch64 Memory Model Feature Register 1
	ID_AA64MMFR2_EL1, AArch64 Memory Model Feature Register 2
	ID_AA64PFR0_EL1, AArch64 Processor Feature Register 0
	ID_AA64PFR1_EL1, AArch64 Processor Feature Register 1
	ID_AA64ZFR0_EL1, SVE Feature ID register 0
	ID_ISAR6_EL1, AArch32 Instruction Set Attribute Register 6
	ID_MMFR5_EL1, AArch32 Memory Model Feature Register 5
	ID_PFR0_EL1, AArch32 Processor Feature Register 0
	ID_PFR1_EL1, AArch32 Processor Feature Register 1
	LOREA_EL1, LORegion End Address (EL1)
	LORSA_EL1, LORegion Start Address (EL1)
	MAIR_EL1, Memory Attribute Indirection Register (EL1)
	MAIR_EL2, Memory Attribute Indirection Register (EL2)
	MAIR_EL3, Memory Attribute Indirection Register (EL3)
	MDCCINT_EL1, Monitor DCC Interrupt Enable Register
	MDCCSR_EL0, Monitor DCC Status Register
	MDCR_EL2, Monitor Debug Configuration Register (EL2)
	MDCR_EL3, Monitor Debug Configuration Register (EL3)
	MDSCR_EL1, Monitor Debug System Control Register
	MPIDR_EL1, Multiprocessor Affinity Register
	OSDTRRX_EL1, OS Lock Data Transfer Register, Receive
	OSDTRTX_EL1, OS Lock Data Transfer Register, Transmit
	OSECCR_EL1, OS Lock Exception Catch Control Register
	PAR_EL1, Physical Address Register
	PMCR_EL0, Performance Monitors Control Register
	PMEVCNTR<n>_EL0, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMSELR_EL0, Performance Monitors Event Counter Selection Register
	PMSEVFR_EL1, Sampling Event Filter Register
	PMSNEVFR_EL1, Sampling Inverted Event Filter Register
	PMXEVCNTR_EL0, Performance Monitors Selected Event Count Register
	PMXEVTYPER_EL0, Performance Monitors Selected Event Type Register
	RNDR, Random Number
	RNDRRS, Reseeded Random Number
	SCR_EL3, Secure Configuration Register
	SCTLR_EL1, System Control Register (EL1)
	SCTLR_EL2, System Control Register (EL2)
	SCTLR_EL3, System Control Register (EL3)
	SCXTNUM_EL0, EL0 Read/Write Software Context Number
	SCXTNUM_EL1, EL1 Read/Write Software Context Number
	SCXTNUM_EL2, EL2 Read/Write Software Context Number
	SCXTNUM_EL3, EL3 Read/Write Software Context Number
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_EL1, Saved Program Status Register (EL1)
	SPSR_EL2, Saved Program Status Register (EL2)
	SPSR_EL3, Saved Program Status Register (EL3)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	TCO, Tag Check Override
	TCR_EL1, Translation Control Register (EL1)
	TCR_EL2, Translation Control Register (EL2)
	TCR_EL3, Translation Control Register (EL3)
	TFSR_EL1, Tag Fault Status Register (EL1)
	TFSR_EL2, Tag Fault Status Register (EL2)
	TLBI ALLE1, TLBI ALLE1NXS, TLB Invalidate All, EL1
	TLBI ALLE1IS, TLBI ALLE1ISNXS, TLB Invalidate All, EL1, Inner Shareable
	TLBI ALLE1OS, TLBI ALLE1OSNXS, TLB Invalidate All, EL1, Outer Shareable
	TLBI ALLE2, TLBI ALLE2NXS, TLB Invalidate All, EL2
	TLBI ALLE2IS, TLBI ALLE2ISNXS, TLB Invalidate All, EL2, Inner Shareable
	TLBI ALLE2OS, TLBI ALLE2OSNXS, TLB Invalidate All, EL2, Outer Shareable
	TLBI ALLE3, TLBI ALLE3NXS, TLB Invalidate All, EL3
	TLBI ALLE3IS, TLBI ALLE3ISNXS, TLB Invalidate All, EL3, Inner Shareable
	TLBI ALLE3OS, TLBI ALLE3OSNXS, TLB Invalidate All, EL3, Outer Shareable
	TLBI ASIDE1, TLBI ASIDE1NXS, TLB Invalidate by ASID, EL1
	TLBI ASIDE1IS, TLBI ASIDE1ISNXS, TLB Invalidate by ASID, EL1, Inner Shareable
	TLBI ASIDE1OS, TLBI ASIDE1OSNXS, TLB Invalidate by ASID, EL1, Outer Shareable
	TLBI IPAS2E1, TLBI IPAS2E1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1
	TLBI IPAS2E1IS, TLBI IPAS2E1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	TLBI IPAS2E1OS, TLBI IPAS2E1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	TLBI IPAS2LE1, TLBI IPAS2LE1NXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	TLBI IPAS2LE1IS, TLBI IPAS2LE1ISNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	TLBI IPAS2LE1OS, TLBI IPAS2LE1OSNXS, TLB Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	TLBI RIPAS2E1, TLBI RIPAS2E1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1
	TLBI RIPAS2E1IS, TLBI RIPAS2E1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Inner Shareable
	TLBI RIPAS2E1OS, TLBI RIPAS2E1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, EL1, Outer Shareable
	TLBI RIPAS2LE1, TLBI RIPAS2LE1NXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1
	TLBI RIPAS2LE1IS, TLBI RIPAS2LE1ISNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Inner Shareable
	TLBI RIPAS2LE1OS, TLBI RIPAS2LE1OSNXS, TLB Range Invalidate by Intermediate Physical Address, Stage 2, Last level, EL1, Outer Shareable
	TLBI RVAAE1, TLBI RVAAE1NXS, TLB Range Invalidate by VA, All ASID, EL1
	TLBI RVAAE1IS, TLBI RVAAE1ISNXS, TLB Range Invalidate by VA, All ASID, EL1, Inner Shareable
	TLBI RVAAE1OS, TLBI RVAAE1OSNXS, TLB Range Invalidate by VA, All ASID, EL1, Outer Shareable
	TLBI RVAALE1, TLBI RVAALE1NXS, TLB Range Invalidate by VA, All ASID, Last level, EL1
	TLBI RVAALE1IS, TLBI RVAALE1ISNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	TLBI RVAALE1OS, TLBI RVAALE1OSNXS, TLB Range Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	TLBI RVAE1, TLBI RVAE1NXS, TLB Range Invalidate by VA, EL1
	TLBI RVAE1IS, TLBI RVAE1ISNXS, TLB Range Invalidate by VA, EL1, Inner Shareable
	TLBI RVAE1OS, TLBI RVAE1OSNXS, TLB Range Invalidate by VA, EL1, Outer Shareable
	TLBI RVAE2, TLBI RVAE2NXS, TLB Range Invalidate by VA, EL2
	TLBI RVAE2IS, TLBI RVAE2ISNXS, TLB Range Invalidate by VA, EL2, Inner Shareable
	TLBI RVAE2OS, TLBI RVAE2OSNXS, TLB Range Invalidate by VA, EL2, Outer Shareable
	TLBI RVAE3, TLBI RVAE3NXS, TLB Range Invalidate by VA, EL3
	TLBI RVAE3IS, TLBI RVAE3ISNXS, TLB Range Invalidate by VA, EL3, Inner Shareable
	TLBI RVAE3OS, TLBI RVAE3OSNXS, TLB Range Invalidate by VA, EL3, Outer Shareable
	TLBI RVALE1, TLBI RVALE1NXS, TLB Range Invalidate by VA, Last level, EL1
	TLBI RVALE1IS, TLBI RVALE1ISNXS, TLB Range Invalidate by VA, Last level, EL1, Inner Shareable
	TLBI RVALE1OS, TLBI RVALE1OSNXS, TLB Range Invalidate by VA, Last level, EL1, Outer Shareable
	TLBI RVALE2, TLBI RVALE2NXS, TLB Range Invalidate by VA, Last level, EL2
	TLBI RVALE2IS, TLBI RVALE2ISNXS, TLB Range Invalidate by VA, Last level, EL2, Inner Shareable
	TLBI RVALE2OS, TLBI RVALE2OSNXS, TLB Range Invalidate by VA, Last level, EL2, Outer Shareable
	TLBI RVALE3, TLBI RVALE3NXS, TLB Range Invalidate by VA, Last level, EL3
	TLBI RVALE3IS, TLBI RVALE3ISNXS, TLB Range Invalidate by VA, Last level, EL3, Inner Shareable
	TLBI RVALE3OS, TLBI RVALE3OSNXS, TLB Range Invalidate by VA, Last level, EL3, Outer Shareable
	TLBI VAAE1, TLBI VAAE1NXS, TLB Invalidate by VA, All ASID, EL1
	TLBI VAAE1IS, TLBI VAAE1ISNXS, TLB Invalidate by VA, All ASID, EL1, Inner Shareable
	TLBI VAAE1OS, TLBI VAAE1OSNXS, TLB Invalidate by VA, All ASID, EL1, Outer Shareable
	TLBI VAALE1, TLBI VAALE1NXS, TLB Invalidate by VA, All ASID, Last level, EL1
	TLBI VAALE1IS, TLBI VAALE1ISNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Inner Shareable
	TLBI VAALE1OS, TLBI VAALE1OSNXS, TLB Invalidate by VA, All ASID, Last Level, EL1, Outer Shareable
	TLBI VAE1, TLBI VAE1NXS, TLB Invalidate by VA, EL1
	TLBI VAE1IS, TLBI VAE1ISNXS, TLB Invalidate by VA, EL1, Inner Shareable
	TLBI VAE1OS, TLBI VAE1OSNXS, TLB Invalidate by VA, EL1, Outer Shareable
	TLBI VAE2, TLBI VAE2NXS, TLB Invalidate by VA, EL2
	TLBI VAE2IS, TLBI VAE2ISNXS, TLB Invalidate by VA, EL2, Inner Shareable
	TLBI VAE2OS, TLBI VAE2OSNXS, TLB Invalidate by VA, EL2, Outer Shareable
	TLBI VAE3, TLBI VAE3NXS, TLB Invalidate by VA, EL3
	TLBI VAE3IS, TLBI VAE3ISNXS, TLB Invalidate by VA, EL3, Inner Shareable
	TLBI VAE3OS, TLBI VAE3OSNXS, TLB Invalidate by VA, EL3, Outer Shareable
	TLBI VALE1, TLBI VALE1NXS, TLB Invalidate by VA, Last level, EL1
	TLBI VALE1IS, TLBI VALE1ISNXS, TLB Invalidate by VA, Last level, EL1, Inner Shareable
	TLBI VALE1OS, TLBI VALE1OSNXS, TLB Invalidate by VA, Last level, EL1, Outer Shareable
	TLBI VALE2, TLBI VALE2NXS, TLB Invalidate by VA, Last level, EL2
	TLBI VALE2IS, TLBI VALE2ISNXS, TLB Invalidate by VA, Last level, EL2, Inner Shareable
	TLBI VALE2OS, TLBI VALE2OSNXS, TLB Invalidate by VA, Last level, EL2, Outer Shareable
	TLBI VALE3, TLBI VALE3NXS, TLB Invalidate by VA, Last level, EL3
	TLBI VALE3IS, TLBI VALE3ISNXS, TLB Invalidate by VA, Last level, EL3, Inner Shareable
	TLBI VALE3OS, TLBI VALE3OSNXS, TLB Invalidate by VA, Last level, EL3, Outer Shareable
	TLBI VMALLE1, TLBI VMALLE1NXS, TLB Invalidate by VMID, All at stage 1, EL1
	TLBI VMALLE1IS, TLBI VMALLE1ISNXS, TLB Invalidate by VMID, All at stage 1, EL1, Inner Shareable
	TLBI VMALLE1OS, TLBI VMALLE1OSNXS, TLB Invalidate by VMID, All at stage 1, EL1, Outer Shareable
	TLBI VMALLS12E1, TLBI VMALLS12E1NXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1
	TLBI VMALLS12E1IS, TLBI VMALLS12E1ISNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Inner Shareable
	TLBI VMALLS12E1OS, TLBI VMALLS12E1OSNXS, TLB Invalidate by VMID, All at Stage 1 and 2, EL1, Outer Shareable
	UAO, User Access Override
	VBAR_EL1, Vector Base Address Register (EL1)
	VBAR_EL2, Vector Base Address Register (EL2)
	VDISR_EL2, Virtual Deferred Interrupt Status Register
	VSESR_EL2, Virtual SError Exception Syndrome Register
	VSTTBR_EL2, Virtualization Secure Translation Table Base Register
	VTTBR_EL2, Virtualization Translation Table Base Register
	ZCR_EL1, SVE Control Register (for EL1)
	ZCR_EL2, SVE Control Register (for EL2)
	ZCR_EL3, SVE Control Register (for EL3)

	AArch32 System Registers
	AArch32 System Instructions
	CNTHP_CTL, Counter-timer Hyp Physical Timer Control register
	CNTHPS_CTL, Counter-timer Secure Physical Timer Control Register (EL2)
	CNTHV_CTL, Counter-timer Virtual Timer Control register (EL2)
	CNTHVS_CTL, Counter-timer Secure Virtual Timer Control Register (EL2)
	CNTP_CTL, Counter-timer Physical Timer Control register
	CNTV_CTL, Counter-timer Virtual Timer Control register
	CPSR, Current Program Status Register
	DBGBXVR<n>, Debug Breakpoint Extended Value Registers, n = 0 - 15
	DBGCLAIMCLR, Debug CLAIM Tag Clear register
	DBGCLAIMSET, Debug CLAIM Tag Set register
	DBGDCCINT, DCC Interrupt Enable Register
	DBGDIDR, Debug ID Register
	DBGDRAR, Debug ROM Address Register
	DBGDSAR, Debug Self Address Register
	DBGDSCRext, Debug Status and Control Register, External View
	DBGDSCRint, Debug Status and Control Register, Internal View
	DBGDTRRXext, Debug OS Lock Data Transfer Register, Receive, External View
	DBGDTRRXint, Debug Data Transfer Register, Receive
	DBGDTRTXext, Debug OS Lock Data Transfer Register, Transmit
	DBGDTRTXint, Debug Data Transfer Register, Transmit
	DBGOSECCR, Debug OS Lock Exception Catch Control Register
	DISR, Deferred Interrupt Status Register
	DSPSR, Debug Saved Program Status Register
	FPEXC, Floating-Point Exception Control register
	FPSCR, Floating-Point Status and Control Register
	HDCR, Hyp Debug Control Register
	HDFAR, Hyp Data Fault Address Register
	HIFAR, Hyp Instruction Fault Address Register
	HMAIR0, Hyp Memory Attribute Indirection Register 0
	HMAIR1, Hyp Memory Attribute Indirection Register 1
	HSCTLR, Hyp System Control Register
	ICC_AP1R<n>, Interrupt Controller Active Priorities Group 1 Registers, n = 0 - 3
	ICC_BPR1, Interrupt Controller Binary Point Register 1
	ICC_CTLR, Interrupt Controller Control Register
	ICC_IGRPEN1, Interrupt Controller Interrupt Group 1 Enable register
	ICC_SRE, Interrupt Controller System Register Enable register
	ICH_VTR, Interrupt Controller VGIC Type Register
	ID_MMFR5, Memory Model Feature Register 5
	ID_PFR0, Processor Feature Register 0
	ID_PFR1, Processor Feature Register 1
	MAIR0, Memory Attribute Indirection Register 0
	MAIR1, Memory Attribute Indirection Register 1
	MIDR, Main ID Register
	MPIDR, Multiprocessor Affinity Register
	MVBAR, Monitor Vector Base Address Register
	NMRR, Normal Memory Remap Register
	PMCR, Performance Monitors Control Register
	PMEVCNTR<n>, Performance Monitors Event Count Registers, n = 0 - 30
	PMEVTYPER<n>, Performance Monitors Event Type Registers, n = 0 - 30
	PMSELR, Performance Monitors Event Counter Selection Register
	PMXEVCNTR, Performance Monitors Selected Event Count Register
	PMXEVTYPER, Performance Monitors Selected Event Type Register
	PRRR, Primary Region Remap Register
	SCTLR, System Control Register
	SDCR, Secure Debug Control Register
	SPSR, Saved Program Status Register
	SPSR_abt, Saved Program Status Register (Abort mode)
	SPSR_fiq, Saved Program Status Register (FIQ mode)
	SPSR_hyp, Saved Program Status Register (Hyp mode)
	SPSR_irq, Saved Program Status Register (IRQ mode)
	SPSR_mon, Saved Program Status Register (Monitor mode)
	SPSR_svc, Saved Program Status Register (Supervisor mode)
	SPSR_und, Saved Program Status Register (Undefined mode)
	VDFSR, Virtual SError Exception Syndrome Register
	VDISR, Virtual Deferred Interrupt Status Register

	System Register index by instruction and encoding
	System Register index by functional group
	External registers
	External register index by offset
	AMCIDR0, Activity Monitors Component Identification Register 0
	AMCIDR1, Activity Monitors Component Identification Register 1
	AMCIDR2, Activity Monitors Component Identification Register 2
	AMCIDR3, Activity Monitors Component Identification Register 3
	CNTP_CTL, Counter-timer Physical Timer Control
	CNTV_CTL, Counter-timer Virtual Timer Control
	CTICIDR0, CTI Component Identification Register 0
	CTICIDR1, CTI Component Identification Register 1
	CTICIDR2, CTI Component Identification Register 2
	CTICIDR3, CTI Component Identification Register 3
	CTICLAIMCLR, CTI CLAIM Tag Clear register
	CTICLAIMSET, CTI CLAIM Tag Set register
	DBGBVR<n>_EL1, Debug Breakpoint Value Registers, n = 0 - 15
	DBGCLAIMCLR_EL1, Debug CLAIM Tag Clear register
	DBGCLAIMSET_EL1, Debug CLAIM Tag Set register
	DBGWVR<n>_EL1, Debug Watchpoint Value Registers, n = 0 - 15
	EDCIDR0, External Debug Component Identification Register 0
	EDCIDR1, External Debug Component Identification Register 1
	EDCIDR2, External Debug Component Identification Register 2
	EDCIDR3, External Debug Component Identification Register 3
	EDPCSR, External Debug Program Counter Sample Register
	EDSCR, External Debug Status and Control Register
	EDVIDSR, External Debug Virtual Context Sample Register
	ERRCIDR0, Component Identification Register 0
	ERRCIDR1, Component Identification Register 1
	ERRCIDR2, Component Identification Register 2
	ERRCIDR3, Component Identification Register 3
	ERRCRICR2, Critical Error Interrupt Configuration Register 2
	ERRERICR2, Error Recovery Interrupt Configuration Register 2
	ERRFHICR2, Fault Handling Interrupt Configuration Register 2
	ERR<n>ADDR, Error Record Address Register, n = 0 - 65534
	ERR<n>CTLR, Error Record Control Register, n = 0 - 65534
	ERR<n>MISC2, Error Record Miscellaneous Register 2, n = 0 - 65534
	ERR<n>MISC3, Error Record Miscellaneous Register 3, n = 0 - 65534
	ERR<n>PFGCTL, Pseudo-fault Generation Control Register, n = 0 - 65534
	ERR<n>PFGF, Pseudo-fault Generation Feature Register, n = 0 - 65534
	ERR<n>STATUS, Error Record Primary Status Register, n = 0 - 65534
	ERRPIDR2, Peripheral Identification Register 2
	GICC_ABPR, CPU Interface Aliased Binary Point Register
	GICD_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	GICD_CLRSPI_SR, Clear Secure SPI Pending Register
	GICD_CPENDSGIR<n>, SGI Clear-Pending Registers, n = 0 - 3
	GICD_CTLR, Distributor Control Register
	GICD_ICACTIVER<n>, Interrupt Clear-Active Registers, n = 0 - 31
	GICD_ICACTIVER<n>E, Interrupt Clear-Active Registers (extended SPI range), n = 0 - 31
	GICD_ICENABLER<n>, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICENABLER<n>E, Interrupt Clear-Enable Registers, n = 0 - 31
	GICD_ICFGR<n>, Interrupt Configuration Registers, n = 0 - 63
	GICD_ICFGR<n>E, Interrupt Configuration Registers (Extended SPI Range), n = 0 - 63
	GICD_ICPENDR<n>, Interrupt Clear-Pending Registers, n = 0 - 31
	GICD_ICPENDR<n>E, Interrupt Clear-Pending Registers (extended SPI range), n = 0 - 31
	GICD_IGROUPR<n>, Interrupt Group Registers, n = 0 - 31
	GICD_IGROUPR<n>E, Interrupt Group Registers (extended SPI range), n = 0 - 31
	GICD_IGRPMODR<n>, Interrupt Group Modifier Registers, n = 0 - 31
	GICD_IGRPMODR<n>E, Interrupt Group Modifier Registers (extended SPI range), n = 0 - 31
	GICD_IIDR, Distributor Implementer Identification Register
	GICD_IPRIORITYR<n>, Interrupt Priority Registers, n = 0 - 254
	GICD_IPRIORITYR<n>E, Holds the priority of the corresponding interrupt for each extended SPI supported by the GIC., n = 0 - 255
	GICD_IROUTER<n>, Interrupt Routing Registers, n = 32 - 1019
	GICD_IROUTER<n>E, Interrupt Routing Registers (Extended SPI Range), n = 0 - 1023
	GICD_ISACTIVER<n>, Interrupt Set-Active Registers, n = 0 - 31
	GICD_ISACTIVER<n>E, Interrupt Set-Active Registers (extended SPI range), n = 0 - 31
	GICD_ISENABLER<n>, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISENABLER<n>E, Interrupt Set-Enable Registers, n = 0 - 31
	GICD_ISPENDR<n>, Interrupt Set-Pending Registers, n = 0 - 31
	GICD_ISPENDR<n>E, Interrupt Set-Pending Registers (extended SPI range), n = 0 - 31
	GICD_ITARGETSR<n>, Interrupt Processor Targets Registers, n = 0 - 254
	GICD_NSACR<n>, Non-secure Access Control Registers, n = 0 - 63
	GICD_NSACR<n>E, Non-secure Access Control Registers, n = 0 - 63
	GICD_SETSPI_NSR, Set Non-secure SPI Pending Register
	GICD_SETSPI_SR, Set Secure SPI Pending Register
	GICD_SGIR, Software Generated Interrupt Register
	GICD_SPENDSGIR<n>, SGI Set-Pending Registers, n = 0 - 3
	GICD_STATUSR, Error Reporting Status Register
	GICD_TYPER, Interrupt Controller Type Register
	GICD_TYPER2, Interrupt Controller Type Register 2
	GICM_CLRSPI_NSR, Clear Non-secure SPI Pending Register
	GICM_CLRSPI_SR, Clear Secure SPI Pending Register
	GICM_IIDR, Distributor Implementer Identification Register
	GICM_SETSPI_NSR, Set Non-secure SPI Pending Register
	GICM_SETSPI_SR, Set Secure SPI Pending Register
	GICM_TYPER, Distributor MSI Type Register
	GITS_STATUSR, ITS Error Reporting Status Register
	GITS_UMSIR, ITS Unmapped MSI register
	MPAMF_CSUMON_IDR, MPAM Features Cache Storage Usage Monitoring ID register
	MPAMF_ERR_MSI_ADDR_H, MPAM Error MSI High-part Address Register
	MPAMF_ERR_MSI_ADDR_L, MPAM Error MSI Low-part Address Register
	MPAMF_ERR_MSI_ATTR, MPAM Error MSI Write Attributes Register
	MPAMF_ERR_MSI_DATA, MPAM Error MSI Data Register
	MPAMF_ERR_MSI_MPAM, MPAM Error MSI Write MPAM Information Register
	MPAMF_IDR, MPAM Features Identification Register
	MPAMF_MBWUMON_IDR, MPAM Features Memory Bandwidth Usage Monitoring ID register
	MPAMF_MSMON_IDR, MPAM Resource Monitoring Identification Register
	MSMON_CFG_CSU_CTL, MPAM Memory System Monitor Configure Cache Storage Usage Monitor Control Register
	MSMON_CFG_MBWU_CTL, MPAM Memory System Monitor Configure Memory Bandwidth Usage Monitor Control Register
	MSMON_CSU_OFSR, MPAM CSU Monitor Overflow Status Register
	MSMON_MBWU_OFSR, MPAM MBWU Monitor Overflow Status Register
	MSMON_OFLOW_MSI_ADDR_H, MPAM Monitor Overflow MSI Write High-part Address Register
	MSMON_OFLOW_MSI_ADDR_L, MPAM Monitor Overflow MSI Low-part Address Register
	MSMON_OFLOW_MSI_ATTR, MPAM Monitor Overflow MSI Write Attributes Register
	MSMON_OFLOW_MSI_DATA, MPAM Monitor Overflow MSI Write Data Register
	MSMON_OFLOW_MSI_MPAM, MPAM Monitor Overflow MSI Write MPAM Information Register
	MSMON_OFLOW_SR, MPAM Monitor Overflow Status Register
	PMCIDR0, Performance Monitors Component Identification Register 0
	PMCIDR1, Performance Monitors Component Identification Register 1
	PMCIDR2, Performance Monitors Component Identification Register 2
	PMCIDR3, Performance Monitors Component Identification Register 3
	PMCR_EL0, Performance Monitors Control Register
	PMEVTYPER<n>_EL0, Performance Monitors Event Type Registers, n = 0 - 30
	PMVIDSR, VMID Sample Register

